
Prefer to Classify: Improving Text Classifiers via Auxiliary Preference Learning

Jaehyung Kim 1 2 Jinwoo Shin 1 Dongyeop Kang 3

Abstract

The development of largely human-annotated
benchmarks has driven the success of deep neu-
ral networks in various NLP tasks. To enhance
the effectiveness of existing benchmarks, collect-
ing new additional input-output pairs is often too
costly and challenging, particularly considering
their marginal impact on improving the current
model accuracy. Instead, additional or comple-
mentary annotations on the existing input texts in
the benchmarks can be preferable as an efficient
way to pay the additional human cost. In this
paper, we investigate task-specific preferences be-
tween pairs of input texts as a new alternative way
for such auxiliary data annotation. From ‘pair-
wise’ comparisons with respect to the task, the
auxiliary preference learning enables the model
to learn an additional informative training signal
that cannot be captured with ‘instance-wise’ task
labels. To this end, we propose a novel multi-
task learning framework, called prefer-to-classify
(P2C), which can enjoy the cooperative effect of
learning both the given classification task and the
auxiliary preferences. Here, we provide three
different ways to collect preference signals in
practice: (a) implicitly extracting from annota-
tion records (for free, but often unavailable), (b)
collecting explicitly from crowd workers (high
paid), or (c) pre-trained large language models
such as GPT-3 (low paid). Given existing classifi-
cation NLP benchmarks, we demonstrate that the
proposed auxiliary preference learning via P2C
on them is effective in improving text classifiers.
Our codes are publicly available.1
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1. Introduction
The recent development of natural language processing
(NLP) systems significantly boosts state-of-the-art perfor-
mances on various NLP tasks (Brown et al., 2020; Ouyang
et al., 2022). This success of NLP systems has been driven
by, among other things, the construction of largely human-
annotated benchmarks, such as GLUE (Wang et al., 2019),
SQuAD (Rajpurkar et al., 2016), or BIG-bench (Srivastava
et al., 2022). These benchmarks are usually constructed by
(a) collecting (or writing) the relevant input texts and (b)
assigning output labels by human annotators. Here, (a) is
arguably more costly and cumbersome in many practical
scenarios; for example, input texts with distribution mis-
match or spurious patterns could make the model suffer
from learning the generalized representation (Gururangan
et al., 2018; Karamcheti et al., 2021), and hence the much
higher cost is often paid to the collection process to keep the
quality of the constructed benchmark (Kaushik et al., 2020).
Therefore, it is often preferable to pay the additional human
cost to annotate the existing benchmarks in a complemen-
tary way (instead of collecting new input texts), e.g., one
can improve the label quality (Nie et al., 2020b; Fornaciari
et al., 2021) by assigning multiple annotators to each input
or obtain the finer task information with the new label space
(Williams et al., 2022). In this paper, we investigate a new
alternative way to better exploit the existing benchmarks
(input texts and task labels), with auxiliary annotation to
further improve the model performance.

Contribution. We introduce task-specific preferences be-
tween pairs of input texts as a new and auxiliary data an-
notation, to improve the text classification system upon the
existing task annotations (Figure 1(a)). By relatively or-
dering a pair of two texts and better calibrating them with
respect to the task through ‘pair-wise’ comparison, we ex-
pect that the auxiliary preference learning provides an ad-
ditional informative training signal that cannot be captured
with ‘instance-wise’ evaluation (see Figure 1(b)).

This preference signal could be obtained not only from
human annotators (called subjective preference), but also
from the existing annotation records (called extractive pref-
erence), if available, and even the recent strong pre-trained
language models (called generative preference). To be spe-
cific, generative preference is obtained by querying the pref-
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I came here and ordered 
and it was exceptional. 

Mario and Carlos cut our 
meat exactly the way we 

wanted the property 

Sentiment: Positive Preference

Text A

Text B

Text A
is more 
positive

(a) Pair-wise preference signals (b) Alignment to human annotations (c) Improved text classification

Figure 1. (a) Example of a pair-wise preference signal in the sentiment classification. (b) Auxiliary preference learning makes the classifier
capture the fine-grained task information; e.g., predictions of the classifier become more aligned with human annotations. Test samples
are divided into Hard, Normal, and Easy based on the annotators’ disagreement. (c) Improvement from the collected preference and P2C
in various aspects, e.g., better accuracy and calibration. More results are presented in Section 4.4.

erence between two sentences to the recent language models
(LMs), e.g., GPT-3 (Brown et al., 2020), with a prompting.
Next, extractive preference is constructed from the existing
annotation records in datasets ‘without additional cost’; if
one sample has been less voted than the other, we treat the
latter as a relatively higher preference between the two sam-
ples. Finally, we collect subjective preferences for 5,000
pairs of texts from (paid) crowd workers by asking them
which text is more preferred to the task label.

To utilize both existing class labels and newly obtained
preference labels with their cooperative effect, we propose
a novel multi-task learning framework, coined prefer-to-
classify (P2C), to effectively train the model from both
classification and preference learning tasks. Specifically,
we first introduce diverse multiple preference heads beside
the classification head of the model for better learning from
preference labels. Then, we introduce a new consistency reg-
ularization between classification and preference heads for
imposing the model to have higher classification confidence
in the preferred samples and hence enabling to detection
of the inherent relationship between two tasks. Lastly, we
propose two advanced sampling schemes to select more in-
formative text pairs for improving the efficiency of training.

Through the extensive experiments on ten text classifica-
tion datasets, we demonstrate the effectiveness of our new
auxiliary preference learning framework via P2C; for exam-
ple, P2C with generative preference from GPT-3 exhibited
11.55% relative test error reduction on average compared
to the standard training method of the classifier. Next, P2C
with extractive preference even outperforms the state-of-
the-art methods utilizing annotation records with the 4.27%
relative test error reduction. Lastly, the newly-collected
subjective preference labels show the largest improvement
compared to generative and extractive ones, which reveals
the benefit of a more accurate preference signal; it does not
only with the improvement in task performance but also with

better calibration and task modeling; for example, 6.09%
of expected calibration error while 9.19% from the same
number of task labels. Overall, our work highlights the ef-
fectiveness of preference learning as an auxiliary method to
improve the classification system, and we believe our work
could inspire researchers to consider a new alternative way
for data annotation.

2. Improving Text Classifiers via Auxiliary
Preference Learning

In this section, we present prefer-to-classify (P2C), a novel
multi-task learning framework to use the preference labels as
an auxiliary data annotation for improving the text classifier.
The auxiliary preference learning via P2C could provide
a new informative training signal that cannot be captured
with the existing ‘instance-wise’ evaluation by relatively
ordering a pair of two texts and better calibrating them with
respect to the task through ‘pair-wise’ comparison.

2.1. Preliminaries

Problem description. We describe the problem setup of
our interest under a text classification scenario with K
classes. Let D denote the given training dataset consist-
ing of tuples (x, ytask) ∈ D where x = [x1, . . . , xL] is
the sequence of input tokens xi, and ytask is the target task
label. Our goal is to train a classifier fθ := Wtask ◦ gϕ,
composed with Transformer-based language model back-
bone gϕ (e.g., BERT (Devlin et al., 2019)) and a ran-
dom initialized classification head Wtask, to minimize the
task-specific loss Ltask such as a cross-entropy loss where
p(x) = Softmax

(
fθ(x)

)
.

Preference learning. In this paper, we use a preference
label between two data instances as an auxiliary learning
signal to train the classifier. Specifically, the preference
signals reflect the relative suitability between the two input
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Figure 2. Visual illustration of the proposed auxiliary preference learning for improving the classifier. First, the preference label of the
pair of samples is obtained among three different ways (right) - Generative, Extractive, or Subjective preference. Then, the preference
label is jointly used to train the classifier with the original task label via the proposed Prefer-to-Classify (P2C) framework (left).

samples with respect to the given task. We first assume
that the preference labels of the given dataset are available.
Then, our goal is to train a preference predictor to learn
from the given human preferences, by predicting which
one among the two input samples is more preferred. To
this end, we formulate a preference learning as a supervised
learning problem following the approaches in other domains
such as reinforcement learning and generative modeling
(Christiano et al., 2017; Ziegler et al., 2019; Lee et al., 2021).
Given a pair of two different input tokens (x0,x1) and task
label ytask, a preference label ypref is additionally given;
it indicates which input is preferred considering ytask, i.e.,
ypref ∈ {0, 1, 0.5}, where 1 indicates x1 ≻ x0 (i.e., x1 is
preferred than x0), 0 indicates x0 ≻ x1, and 0.5 implies
an equally preferable case. Each preference label is stored
in a dataset D as a quadruplet (x0,x1, ytask, ypref). Then,
we predict a preference using the preference predictor hψ
following (Bradley & Terry, 1952):

Pψ[x
1 ≻ x0; ytask] =

exp
(
hψ(x

1, ytask)
)∑

i∈{0,1} exp
(
hψ(xi, ytask)

) (1)

where xi ≻ xj implies that input i is preferable to input j.
The underlying assumption of this model is that the prob-
ability of preferring an input depends exponentially on its
output. Then, the preference predictor hψ is trained through
supervised learning with the given human preferences, by
minimizing the binary cross-entropy loss as follow2:

Lpref =− E
(x0,x1,ytask
,ypref)∼D

[
ypref logPψ[x

1 ≻ x0; ytask]

+ (1− ypref) logPψ[x
0 ≻ x1; ytask]

]
(2)

2.2. Prefer-to-classify (P2C)

Next, we present the specific techniques to train the clas-
sifier with given preference labels: (a) multi-task learning

2Equally preferable case is learned with the same coefficients.

of classification and preference learning, (b) consistency
regularization between classification and preference learn-
ing, and (c) informative pair sampling method based on the
disagreement or inconsistency.

Multi-task learning with preference labels. To effectively
learn from the given preference label ypref and the task la-
bel ytask, we train the classifier fθ via multi-task learning
(Ruder, 2017; Sener & Koltun, 2018) of both classification
and preference learning. Specifically, we model the prefer-
ence predictor hψ in Eq. 1 upon the classifier fθ similar to
the case of Wtask. The preference prediction head Wpref

is added on the output of Transformer backbone gϕ(x) and
task label ytask, i.e., hψ(x, ytask) =Wpref ◦ [gϕ(x); ytask]3
where fθ(x) =Wtask ◦ gϕ(x).

Preference learning with diverse multi-preference heads.
In addition, we introduce multiple preference heads
{W (t)

pref}Tt=1 and trained with Lpref in Eq. 2 to fully ex-
ploit the given preference labels. As obtaining preference
labels requires additional cost, it is crucial to find effective
ways to exploit them. By incorporating multiple preference
prediction heads, we can obtain diverse learning signals
from each preference label, based on their different random
initialization (Ganaie et al., 2021). However, these multiple
preference heads easily collapse into identical ones, as they
are built on the compact representation of the pre-trained
Transformer shared with the classification head. Hence,
we introduced diversity regularization between {W (t)

pref}Tt=1

during the training; we add a regularization Ldiv to en-
courage the diverse prediction for each preference head by
maximizing KL-divergence (Wang et al., 2021):

Ldiv =
−1

T − 1

T∑
j=1,j ̸=i

DKL

(
Pψ(i)(x1,x0; ytask)||

Pψ(j)(x1,x0; ytask)
)

(3)

3[A;B] means the concatenation between A and B.
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where Pψ(x1,x0; ytask) is the predictive distribution of
the preference predictor hψ, i.e., Pψ(x1,x0; ytask) =[
Pψ[x

1 ≻ x0; ytask], Pψ[x
0 ≻ x1; ytask]

]
. Overall, we

train the classifier with the following multi-task learning
objective Lmulti under hyper-parameter λdiv:

Lmulti = Ltask + Lall
pref + λdivLdiv (4)

where Lψ
(t)

pref indicate the preference learning objective with

each head ψ(t) and Lall
pref =

∑T
t=1 L

ψ(t)

pref.

Consistency regularization between classification and
preference learning. Even though multi-task learning is an
effective way to train the model, it is still unclear whether
or not the model can capture the relations between the two
tasks explicitly. Accordingly, we hypothesize that a more
preferred instance should have higher confidence from the
classifier, i.e., py(x1) > py(x

0) if x1 ≻ x0 with the given
task label y. Hence, to impose the model explicitly follows
this intuition, we further propose a consistency regulariza-
tion between the two tasks as follows:

Lcons = yprefmax{0, py(x1)− py(x
0)}

+ (1− ypref)max{0, py(x0)− py(x
1)} (5)

Additionally, when the degree of preference is explicitly
provided, i.e., ypref ∈ [0, 1] (see Section 4.3 of extractive
preference case) rather than ypref ∈ {0, 1, 0.5}, we further
extend this consistency regularization with margin m which
represents the degree of preference:

Lcons = yprefmax{0,m−∆py(x
1,x0)}

+ (1− ypref)max{0,∆py(x1,x0)−m} (6)

where ∆py(x
1,x0) = py(x

0) − py(x
1). We note that the

previous consistency regularization Eq. 5 becomes the spe-
cial case of Eq. 6 with m = 0. Overall, our training loss of
the classifier is as follows:

Ltrain = Lmulti + λconsLcons (7)

where λcons is a hyper-parameter.

Selecting informative pairs. As the number of pairs of
samples (x0,x1) is proportional to the square of the number
of training samples, it is difficult to obtain the preference
label for all possible pairs, and even harder to learn from
them even if we have all the preference labels. Hence, we
propose the following advanced sampling scheme to max-
imize preference learning’s effectiveness during training:
(1) Disagreement-based sampling, which selects pairs of
instances with high variance across multiple preference pre-
dictors {hψ(i)}Ti=1, and (2) Inconsistency-based sampling,
which seeks to reduce the mismatched pairs with high con-
sistency loss Lcons in Eq. 5. We evaluate the effects of these
sampling methods in Appendix C.

3. Collection of Preference Labels
In this section, we present the descriptions of three different
types of preference labels (generative, extractive, and sub-
jective) to apply auxiliary preference learning via P2C. The
detailed procedure of collecting each preference label and
comparison between them is presented in Appendix B.

Generative preference from large language models. First,
we propose to use the recent generative pre-trained large lan-
guage models (Brown et al., 2020; Ouyang et al., 2022) to
obtain the preference between pair of samples, and call the
obtained preference label as generative preference. These
models have recently demonstrated the strong zero/few-shot
generalization performance in various NLP tasks, and our
high-level intuition is that such capability could be effec-
tive to provide a useful signal between the samples. To
be specific, we use GPT-3 through the officially provided
API,4 by querying the pair of sentences along with the prop-
erly designed prompts, presented in Appendix B. For the
experiments of the dataset with N samples, we randomly
select one pair for each sample and acquire N generative
preference labels for P2C.

Extractive preference from data annotation records. An-
other way is to extract the preference signals from the ex-
isting datasets; our high-level assumption is that annotation
records of each data, which are naturally gathered during
the construction of the dataset, implicitly capture the pref-
erence between data samples. For example, if one sample
has higher voting (9 out of 10) than the other sample (6 out
of 10) as positive sentiment, one can assume that the former
has a relatively higher preference. We call this implicit pref-
erence label as extractive preference; since the extractive
preference is derived from existing sources of the dataset, it
can be obtained for any pair of samples without additional
cost. Hence, for the dataset with N samples, one can obtain
N2 of extract preference labels at maximum. We randomly
sample the pair of each sample and use their preference
labels during training for P2C.

Subjective preference from crowd workers. Lastly, we
consider directly collecting the human preference and call it
as subjective preference; while it requires a high payment
to hire human annotators, it is expected to be the most ac-
curate as it is directly obtained by asking humans. Hence,
to investigate the advantage of human preference, we con-
struct the subjective preference dataset based on DynaSent-
R2 dataset (Potts et al., 2021) for the sentiment classifica-
tion task. Specifically, we gather the subjective preference
of the sentence pairs by asking crowd workers to answer
“which sentence is more positive (neutral, or negative)?”
using Amazon’s Mechanical Turk crowd-sourcing platform

4text-davinci-003 in https://beta.openai.
com/docs/models/gpt-3
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Table 1. Examples of the collected generative, extractive, and subjective preference labels on the same pair of sentences.

A: I got 3 veggies and a side of fries for over a 11 dollars if you
like homecooked food

B: She listened to my ideas, asked questions to get a better idea
about my style, and was excellent at offering advice as if I were a
total pleb.

Sentiment: Positive, Generative Preference: A ≻ B, Extractive Preference: A ≻ B, Subjective Preference: B ≻ A

A: We enjoyed our first and last meal in Toronto at Bombay Palace,
and I can’t think of a better way to book our journey.

B: So glad I finally tried this place because if confirmed my suspi-
cions about that critic who rated it a 10.

Sentiment: Positive, Generative Preference: A ≻ B, Extractive Preference: B ≻ A, Subjective Preference: No preference

A: The buffalo chicken was not good, but very costly. B: There was so much stuff from all over that I had to leave to find
an ATM for more cash to pay for it all.

Sentiment: Negative, Generative Preference: A ≻ B, Extractive Preference: B ≻ A, Subjective Preference: B ≻ A

A: The hotel offered complimentary breakfast. B: My friends had a full acrylic and the other had a fill. It looked
so good.

Sentiment: Positive, Generative Preference: A ≻ B, Extractive Preference: A ≻ B, Subjective Preference: A ≻ B

Table 2. Comparison of three different types of preference labels.

Types Cost Accuracy Accessibility

Generative Preference Medium Medium High
Extractive Preference Low Medium Medium
Subjective Preference High High Low

(Crowston, 2012). Then, each worker should select one of
the two sentences or answer “No Preference”. Following
(Nie et al., 2020a), we hire three crowd workers for each
pair of sentences at the most, and the pairs are dynamically
selected across multiple rounds to maximize the obtained
information. Consequently, we collect a total of 5,000 pairs’
subjective preference labels.

As described above, each type of preference has distinct
characteristics as shown in Table 2; extractive preference
could be freely obtained if the annotation records of the
benchmark are available (i.e., lowest cost). On the other
hand, generative preference may require an additional cost,
but it is not expensive and provides the easiest way to access
the preference labels. While subjective preference is the
most expensive (e.g., 1.6$ for 10 samples, while 8.0$ for
5,000 samples with GPT-3), it has a clear advantage of pro-
viding an accurate and human-aligned preference signal. To
verify the effect of those differences, we present qualitative
and quantitative examples in Table 1 and Appendix B.

4. Experiments
4.1. Setups

Datasets. For the experiments, we first use the follow-
ing four text classification datasets: (1) CoLA (Warstadt
et al., 2019), (2) SMS Spam (Almeida et al., 2011), (3)
Hate Speech (Fišer et al., 2018), and (4) Emotion (Saravia
et al., 2018). In addition, to demonstrate the effectiveness
of extractive preference, we investigate the publicly avail-
able datasets providing the annotation records and use the

following six text classification datasets. DynaSent (Potts
et al., 2021) is a dynamically constructed sentiment classi-
fication benchmark with ternary (positive/negative/neutral)
sentiments; we use the dataset from the first round, (5)
DynaSent-R1, and from the second round, (6) DynaSent-
R2, the dataset for our experiments. Standford politeness
corpus (Danescu-Niculescu-Mizil et al., 2013) is a binary
classification benchmark for predicting whether the given
sentence is polite or impolite. Since there are two different
input domains within this benchmark, we split them into two
different datasets: (7) Polite-Wiki from Wikipedia, and (8)
Polite-SE from StackExchange, following the original setup.
(9) Offensive agreement dataset (Leonardelli et al., 2021) is
a binary classification benchmark for predicting whether the
given sentence is offensive or not. (10) MultiNLI (Williams
et al., 2018) is a crowd-sourced collection of sentence pairs
annotated with textual entailment information; as the only
validation set includes the annotation records, we split it into
8:1:1 for training, validation, and test sets. All datasets have
the annotation records from 5 annotators for each sample.
More details of datasets are presented in Appendix A.1.

Baselines. We first compare the proposed P2C to a naı̈ve
training with a cross-entropy loss and majority voted task
label, denoted by (a) Vanilla. Then, since P2C with ex-
tractive preference can be viewed as a new way to utilize
the annotation records, we compare this method with a
wide range of disagreement learning methods in Section
4.3, as listed as follows; (b) Soft-labeling (Fornaciari et al.,
2021): using the probabilistic distribution of annotations
as soft labels for training; (c) Margin (Sharmanska et al.,
2016): training the model with hinge loss by setting a mar-
gin proportional to the annotators’ agreements; (d) Filtering
(Leonardelli et al., 2021): removing the training samples
with a high disagreement. (e) Weighting (Uma et al., 2021):
using weighted cross-entropy with smaller weights for the
samples with high disagreements; (f) Multi-annotator (Da-
vani et al., 2022): training the multiple classification heads

5



Prefer to Classify: Improving Text Classifiers via Auxiliary Preference Learning

Table 3. Test accuracy of fine-tuned RoBERTa classifiers with specified training methods or GPT-3 with few-shot prompting on four
different text classification datasets. For P2C, the generative preference labels are obtained from GPT-3. All the values and error bars are
mean and standard deviation across 5 random seeds. The best and the second best results are indicated in bold and underline, respectively.
In the case of few-shot GPT-3, we obtain standard deviation by 3 runs over randomly sampled few-shot examples for prompting.

CoLA SMS Spam Hate Speech Emotion
Method Mcc(↑) ECE(↓) bAcc(↑) / wAcc(↑) ECE(↓) bAcc(↑) / wAcc(↑) ECE(↓) bAcc(↑) / wAcc(↑) ECE(↓)
Vanilla 63.7±1.0 3.6±1.6 96.9±0.3 / 95.1±1.5 1.3±0.3 81.1±1.8 / 69.9±4.6 5.1±1.0 88.6±2.3 / 76.1±7.8 4.0±1.1

Label Smoothing 63.9±0.3 4.6±1.2 96.9±0.8 / 94.0±1.5 1.1±0.3 81.5±0.9 / 71.3±3.2 6.6±1.0 89.8±0.8 / 76.9±6.6 4.0±0.9

Max Entropy 64.1±0.3 4.5±0.4 96.9±1.1 / 94.7±1.6 1.2±0.3 81.6±1.8 / 70.5±4.2 4.3±0.7 89.1±1.1 / 73.1±2.5 3.6±0.9

CS-KD 64.5±1.4 4.1±1.1 96.8±0.9 / 94.0±2.4 1.1±0.2 81.4±2.6 / 69.6±5.1 5.3±1.8 89.4±1.6 / 74.0±6.8 4.1±0.2

GPT-3 (0-shot) 60.4 - 90.3 / 84.3 - 68.7 / 41.6 - 50.2 / 23.3 -
GPT-3 (5-shot) 58.5±0.4 - 92.2±0.5 / 88.5±0.7 - 78.5±2.0 / 70.3±3.6 - 46.6±0.6 / 30.3±2.6 -

GPT-3 (20-shot) 58.3±1.4 - 95.8±0.4 / 94.4±0.7 - 77.8±0.5 / 69.0±1.5 - 47.5±1.0 / 30.8±4.5 -

P2C (Ours) 65.4±1.0 2.8±1.1 97.4±0.4 / 95.2±1.0 1.1±0.3 82.4±1.3 / 73.6±4.5 4.0±0.3 90.7±0.7 / 81.7±4.7 3.6±0.8

for each annotation and using its ensemble for the evaluation.
Furthermore, since we train the model with pair of samples,
we also consider the baseline considering pair-wise training,
(g) Class-wise Self-Knowledge Distillation (CS-KD) (Yun
et al., 2020), which forces the similar predictive distribution
between the same class samples to be similar. Lastly, we
consider two regularization methods, (h) Label Smoothing
(Müller et al., 2019) and (i) Max Entropy (Pereyra et al.,
2017), as the baselines of P2C with generative preference in
Section 4.2. Details are described in Appendix A.2.

Implementation details. All the experiments are conducted
by fine-tuning RoBERTa-base (Liu et al., 2019) using Adam
optimizer (Kingma & Ba, 2015) with a fixed learning rate
1e-5 and the default hyper-parameters of Adam. For all
datasets, the model is fine-tuned using the specified training
method with batch size 16 for 20 epochs. In the case of
P2C, we use T = 3 preference heads {W (i)

pref}Ti=1 and 2-
layer MLPs for each Wpref. We choose hyper-parameters
from a fixed set of candidates based on the validation set:
λcons, λdiv ∈ {1.0, 0.1}. We sample the pair of instances
with the same task labels for efficiency. With the extractive
preference, we apply the consistency loss with margin (Eq.
6) by using the difference of annotation as the margin m.
For other cases, we apply P2C with consistency loss without
margin (Eq. 5) on the pre-defined pairs of samples. More
details and experimental supports for the design choices can
be found in Appendix A.3 and C, respectively.

4.2. Experiments with generative preference

In this section, we first evaluate our framework with the
generative preference labels obtained from the pre-trained
large language model, GPT-3 (Brown et al., 2020). To val-
idate the effectiveness of P2C under the more challenging
scenario, we use the following four datasets which have a
skewed label distribution without annotation records: CoLA,
SMS Spam, Hate Speech, and Emotion. Since their test

datasets are also imbalanced, we measure the balanced ac-
curacy (bAcc) (Huang et al., 2016) and the worst-group
accuracy (wAcc) (Sagawa et al., 2020), to evaluate the gen-
eralization capability of the model, except CoLA since it
is usually used with own metric, Matthews correlation co-
efficient (Mcc) (Chicco & Jurman, 2020). In addition, to
measure the calibration of the trained model, we report Ex-
pected Calibration Error (ECE) (Guo et al., 2017). Here, we
commonly adopt the temperature scaling to measure ECE
following (Guo et al., 2017). As the annotation records are
unavailable, we compare P2C with the baseline methods
incurring the smoothed prediction of classifier only using
the task label: Label Smoothing, Entropy Maximization, and
CS-KD. In addition, we use K-shot prompting predictions
of GPT-3 (K = 0, 5, 20) as an additional baseline.

As shown in Table 3, the generative preference labels with
P2C are consistently effective in improving the performance
of the text classifier; for example, P2C exhibited 11.55%
relative test error reduction on average compared to Vanilla
while also improving the predictive calibration. At the same
time, we note that P2C shows better performance than the
considered baseline, which indicates that the training signal
from the preference label is more than smoothing the pre-
diction of the classifier. Finally, as shown in Table 3, P2C
significantly outperforms GPT-3 baselines, which means
that our framework does not just distill the ‘instance-wise’
knowledge of GPT-3, but obtains complementary informa-
tion through the proposed ‘pair-wise’ comparisons.

4.3. Experiments with extractive preference

While the generative preference is an efficient way to apply
auxiliary preference learning with P2C using the moderate
cost, it would be much better if one could still benefit from
P2C for free. In this section, we evaluate the effectiveness
of P2C with the extractive preference labels, which could
be freely obtained from the existing benchmarks if the anno-
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Table 4. Test accuracy of fine-tuned RoBERTa classifiers with each annotation method on six different text classification datasets. For
P2C, the extractive preference labels are obtained from the annotation records of each dataset. All the values and error bars are mean and
standard deviation across five random seeds. The best and the second best results are indicated in bold and underline, respectively.

Method Offensive Polite-Wiki Polite-SE MNLI DynaSent-R1 DynaSent-R2

Vanilla 75.88±0.72 89.35±1.53 70.00±1.49 81.92±0.70 80.43±0.30 71.23±1.05

Soft-labeling 76.08±1.44 89.57±1.76 70.35±1.68 82.67±0.50 81.10±0.33 72.15±1.59

Margin Loss 76.67±1.18 88.51±0.93 70.51±1.16 81.41±0.63 80.42±0.23 69.27±0.98

Filtering 76.13±1.18 89.50±0.87 68.28±2.43 82.13±0.67 80.38±0.34 69.86±0.78

Weighting 76.17±1.18 89.65±1.46 68.38±1.67 82.48±0.49 80.21±0.41 71.81±1.12

Multi-annotator 76.50±1.98 89.88±1.82 69.39±2.84 82.61±0.70 81.14±0.55 71.97±1.25

CS-KD 75.75±0.66 89.65±1.84 70.10±1.29 82.32±0.23 80.63±0.27 71.81±0.67

P2C (Ours) 77.81±0.21 91.06±0.64 71.21±0.93 83.15±0.29 81.50±0.39 73.06±0.31
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Figure 3. Additional experimental results of P2C with extractive preference on DynaSent-R2. (a) Average L1 distance between the
predictions and the soft labels obtained from the annotation records. The lower distance (↓) means better alignment with annotators. (b)
Reliability diagram shows accuracy as a function of confidence. Perfect calibration is plotted by dashed diagonals (⧸). (c) Expected
Calibration Error (ECE) to quantitatively measure the calibration of the classifier. The lower ECE (↓) means better calibration.

tations records are available. We compare P2C with various
disagreement learning schemes to fine-tune the RoBERTa-
base classifier for each dataset, as they also utilize the an-
notation records for better training. Table 4 summarizes
the results on six text classification datasets. Remarkably,
P2C consistently outperforms the baseline methods for all
six datasets. To be specific, P2C exhibits 7.59% relative
test error reduction compared to the vanilla method in the
average. Furthermore, compared to the previous best dis-
agreement learning method of each dataset, P2C exhibits
4.27% relative test error reduction on average. These re-
sults show that extractive preferences successfully provide
complementary training signals to the classifier from the
pair-wise preference, and demonstrate the effectiveness of
P2C as a training method to utilize the annotation records.

Next, on DynaSent-R2, we conduct additional experiments
to verify how P2C improves the classifier. We first check
whether the prediction of the trained model with P2C is
similar to the annotators’ judgment, as the extractive pref-
erence labels come from annotation records. Specifically,
we compare the L1 distance between the predictions of the
model and the soft labels from the annotation records in

Figure 3(a). We verify that P2C achieves the lowest distance
to the soft labels, showing the validity of our preference
learning for better modeling of the given task. Moreover,
we verify that the calibration of the classifier is more im-
proved than the baselines, as a result of pair-wise preference
modeling. To be specific, we provide a reliability diagram
(Yun et al., 2020), which plots the expected sample accuracy
as a function of the confidence of the classifier in Figure
3(b). We remark that the plotted identity function (dashed
diagonal) implies perfect calibration (Guo et al., 2017), and
our method is the closest one among the baselines. This
calibration effect of P2C is further verified through ECE in
Figure 3(c).

To validate the effectiveness of the proposed component of
P2C in Section 2.2, we perform the ablation experiments,
and the results are presented in Table 5, as the extractive
preference of all pairs is accessible. It is observable that
diverse multi-preference heads improve the effectiveness
of preference labels with better modeling compared to the
single preference head (2-4th rows). In addition, consis-
tency regularization between classification and preference
heads enables the classifier to fully utilize the pair-wise
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Table 5. Ablation study with each component of P2C with extractive preference labels. Test accuracy of fine-tuned RoBERTa classifiers
on DynaSent-R2 and Offensive are compared. All the values and error bars are mean and standard deviation across 5 random seeds.

Method T Ltask Lpref Ldiv Lcons Sampling DynaSent-R2 Offensive

Vanilla - ✓ - - - - 71.23±1.05 75.88±0.72

Preference 1 ✓ ✓ - - - 71.84±0.78 75.90±1.15

3 ✓ ✓ - - - 71.92±0.66 76.43±0.32

3 ✓ ✓ ✓ - - 72.05±1.30 76.67±1.38

3 ✓ ✓ ✓ ✓ - 72.67±0.89 77.67±0.99

P2C (Ours) 3 ✓ ✓ ✓ ✓ ✓ 73.06±0.31 77.81±0.21

Table 6. Results of fine-tuned RoBERTa classifiers with different ways to obtain the labels on DynaSent-R2. Ntask and Npref indicate
the number of used task labels and preference labels, respectively. dhard and deasy are the l1 distance to annotations with hard and easy
samples. Here, the difficulty is defined on the disagreement between annotators. All the values and error bars are mean and standard
deviation across 5 random seeds. The best and the second best results are indicated in bold and underline, respectively.

Method Ntask Npref Accavg(↑) Acchard / Acceasy(↑) ECE(↓) dhard / deasy(↓)
Vanilla 7.5k - 69.03±1.29 59.33±2.57 / 80.00±1.22 9.25±1.39 0.856±0.01 / 0.405±0.03

Task Labels 12.5k - 71.17±1.35 57.86±2.31 / 84.21±1.05 9.19±1.36 0.878±0.04 / 0.327±0.02

Generative Preference 7.5k 5k 71.46±1.16 61.77±0.94 / 82.28±1.01 6.64±0.79 0.850±0.02 / 0.361±0.02

Extractive Preference 7.5k 5k 71.36±1.19 61.16±1.91 / 83.11±1.78 6.75±0.78 0.847±0.03 / 0.351±0.03

Subjective Preference 7.5k 5k 71.74±1.04 62.08±0.94 / 83.01±1.27 6.09±0.31 0.828±0.02 / 0.356±0.02

training signal to solve the task, hence the performance is
significantly improved (5th row). The performance is fur-
ther improved by selecting the informative pairs during the
training (6th row). More results are in Appendix C.

4.4. Experiments with subjective preference

Lastly, we verify the effectiveness of collected subjective
preference labels compared to other types of labels. To
this end, we consider the scenario that the specific types of
labels are additionally obtained on top of the existing task
labels. Namely, task labels could be collected more with
additional training samples, or preference labels between
the existing samples could be obtained. Table 6 summarizes
the experimental results. Here, it is observed that subjective
preference labels are the most effective for improving the
test accuracy (Accavg) along with a better calibration effect.
Remarkably, it is noticeable that the preference labels sig-
nificantly improve the accuracy on relatively hard samples
(Acchard) regardless of its type, while the additional task
labels are effective for the relatively easy samples.5 Some-
what surprisingly, one can observe that the additional 5k
generative preference labels by GPT-3 are more effective
than the same number of task labels, although the former is
much cheaper to obtain than the latter; it indicates that our
framework can serve as a new effective way to evolve the
existing benchmarks along with the recent development of

5We define the difficulty based on the disagreement of annota-
tors, i.e., more disagree indicates more difficult.

pre-trained large language models at a considerable cost.

4.5. Applications of P2C beyond text classification

While we primarily demonstrate the effectiveness of P2C on
the text classification datasets, our approach has the potential
to be applicable beyond text classification. To empirically
verify such advantages, we have conducted additional ex-
periments on an image classification task to validate our
approach’s applicability. Specifically, we used the publicly
available SUN Attribute dataset (Patterson et al., 2014) and
constructed multiple binary scene attribute classification
tasks from it, following the setups in (Sharmanska et al.,
2016). Here, we considered the largest five attributes for the
experiments. As this dataset includes annotation records, we
constructed extractive preference labels to apply P2C. For
experiments, we commonly trained ResNet-18 (He et al.,
2016) from scratch, for 100 epochs using the SGD opti-
mizer with a weight decay of 0.01 and a learning rate of 0.1
(decreased to 0.01 and 0.001 at 50 and 75 epochs, respec-
tively).

In Table 7, one can observe that our P2C approach effec-
tively improves the performance of the image classifier,
with an average relative test error reduction of 6.66% com-
pared to the Vanilla method. These results indicate that
the effectiveness of our approach is not only limited to text
classification and can be extended to broader applications.
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Table 7. Test accuracy of ResNet-18 classifiers on five different binary attribute classification tasks, following the setups in (Sharmanska
et al., 2016). For P2C, the extractive preference labels are obtained from the annotation records of each attribute. All the values and error
bars are mean and standard deviation across five random seeds. The best results are indicated in bold.

Method / Tasks nat.light man-made open enclosed nohorizon Average

Vanilla 78.67±1.05 62.50±2.65 79.00±1.43 85.83±0.61 76.42±0.62 76.48±1.25

P2C (Ours) 79.83±0.94 64.83±1.71 82.33±0.72 86.25±1.43 77.00±1.06 78.05±1.17

5. Related Works
Preference learning. Preference learning is about modeling
the preference using a set of instances, associated with an
order relation (Fürnkranz & Hüllermeier, 2010). Since it
is much easier for humans to make relative judgments, i.e.,
comparing behaviors as better or worse, preference-based
learning becomes an attractive alternative; hence, extensive
research has been conducted to address this problem by
proposing different techniques to learn from human judg-
ments (Bıyık et al., 2020; Chu & Ghahramani, 2005). One
of the most representative fields that adopt preference-based
learning is Reinforcement Learning (RL), to learn RL algo-
rithms from the preferences rather than the explicit design
of reward function (Wirth et al., 2017). After the success-
ful scale-up of preference-based learning with deep neural
networks (Christiano et al., 2017; Lee et al., 2021), this
research direction has been extensively explored in other
domains such as NLP (Stiennon et al., 2020; Ziegler et al.,
2019) and computer vision (Kazemi et al., 2020), especially
focused on the generation tasks, e.g., text summarization
and image generation. However, preference learning is yet
under-explored for classification tasks, despite its great po-
tential to provide complementary and informative training
signals via pair-wise comparison of samples.

Learning-to-rank. Preference learning shares a close re-
lationship with learning-to-rank (LTR), a prevalent frame-
work for constructing models or functions to rank objects,
as both seek to establish the specific order among sam-
ples (Hüllermeier et al., 2008). While preference learn-
ing focuses on developing a model to predict preferences
between objects, LTR primarily aims to generate ranked
lists of items based on their relevance to a given query or
context (Fürnkranz & Hüllermeier, 2010). Consequently,
LTR has become a key component of various information
retrieval problems, such as document retrieval and web
search (Burges et al., 2005; Cao et al., 2007). Simulta-
neously, several works have applied LTR to classification
tasks; for instance, (Chang et al., 2020) illustrates the ef-
ficacy of LTR for multi-label classification. Furthermore,
(Atapour-Abarghouei et al., 2021) transforms classification
into LTR and demonstrates its potential for broader clas-
sification problems. Compared to these works, our work
introduces a novel approach to integrating pairwise compar-
ison for generic classification problems through a multi-task

learning framework, accompanied by new methods for ob-
taining pairwise comparisons between samples.

Auxiliary data annotation. As the development and de-
ployment of NLP systems are directly affected by the quality
of benchmarks, various approaches have been recently ex-
plored to construct more effective and robust benchmarks.
For example, one line of works propose to continuously
evolve the benchmark to prevent it becomes obsolete or
human-aligned by collecting the adversarial samples of the
state-of-the-art models (Nie et al., 2020a; Potts et al., 2021)
or incorporating human in the data construction loop (Kiela
et al., 2021; Yuan et al., 2021). However, as the collection
of new examples is costly, another line of work focuses on
finding a better way to annotate the existing benchmarks.
For example, some recent works investigate the alternative
labeling method rather than a simple majority voting from
the annotation records, to avoid sacrificing the valuable nu-
ances embedded in the annotators’ assessments and their
disagreement (Fornaciari et al., 2021; Leonardelli et al.,
2021; Davani et al., 2022). Our work suggests a new alter-
native way for a better annotation of the existing benchmark
via preference between pairs of samples.

6. Conclusion
In this paper, we introduce task-specific preference signals
between pairs of samples as a new and auxiliary data annota-
tion to improve the existing text classification system, which
relies on instance-wise annotations. To this end, we pro-
pose a novel multi-task learning framework, called prefer-
to-classify (P2C), to effectively train the classifier from both
task and preference labels, and demonstrate this framework
under three different types of preference labels.
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Appendix

Prefer to Classify: Improving Text Classifiers via Auxiliary Preference Learning

A. Experimental Details
A.1. Datasets

As described in Section 4.1, we extensively demonstrate the effectiveness of P2C on the multiple classification datasets; 10
text classification datasets and 1 image classification dataset. For text data, we commonly set the maximum length L as 256
for the tokenization of given data. First, we use the following four text classification datasets in Section 4.2, which do not
release the annotation records; hence, the extractive preference labels are not available:

CoLA (Warstadt et al., 2019) is a binary single sentence classification task, where the goal is to predict whether the given
English sentence is linguistically valid or not. It is composed of 8.5k training samples and 1k development samples. We
remark that the CoLA dataset is part of the popular benchmark, GLUE (Wang et al., 2019), and the dataset is officially
available at https://huggingface.co/datasets/glue.

SMS Spam (Almeida et al., 2011) is a public set of SMS-labeled messages that have been collected for mobile phone spam
research. It has one collection composed of 5,574 English, real and non-encoded messages, tagged according to being
legitimate (ham) or spam. We split the dataset into an 8:1:1 ratio to construct training, validation, and test datasets. SMS
Spam is officially available at https://huggingface.co/datasets/sms_spam.

Hate Speech (Fišer et al., 2018) is constructed by extracting the texts from Stormfront, a white supremacist forum. A
random set of forum posts have been sampled from several subforums and split into sentences. Those sentences have been
manually labeled as containing hate speech or not, according to certain annotation guidelines. Overall, it is composed of
10,703 sentences. We split the dataset into an 8:1:1 ratio to construct training, validation, and test datasets. Hate Speech is
officially available at https://huggingface.co/datasets/hate_speech18.

Emotion (Saravia et al., 2018) is a dataset of English Twitter messages with six basic emotions: sadness (0), joy (1), love
(2), anger (3), fear (4), and surprise (5). In the given Emotion dataset, there are 16,000 training, 2,000 validation, and 2,000
test samples. We use the Emotion dataset at https://huggingface.co/datasets/dair-ai/emotion.

Next, we use the following six text classification datasets, obtained from the following three different sources, which release
the annotation records during the construction of the datasets. Here, all datasets have the annotation records of 5 different
annotators for each data; however, the annotators can be different among data, i.e., there are more than 5 annotators overall.

DynaSent (Potts et al., 2021) is a sentiment classification benchmark with ternary (positive/negative/neutral) sentiments. It
is dynamically constructed through multiple iterations of training a classifier model and finding its adversarial samples by
involving a human annotator in the loop. In our experiments, we use the dataset from the first round, DynaSent-R1, and the
dataset from the second round, DynaSent-R2. DynaSent-R1 comprises 80,488 training samples, 3,600 validation samples,
and 3,600 test samples, respectively. DynaSent-R2 comprises 13,065 training samples, 720 validation samples, and 720 test
samples. All the validation and test samples are fully balanced between the three classes. DynaSent dataset and more details
of the dataset are officially available at https://github.com/cgpotts/dynasent.

Standford politeness corpus (Danescu-Niculescu-Mizil et al., 2013) is a binary classification benchmark for predicting
whether the given sentence is polite or impolite. Since there are two different input domains within this benchmark, we split
them into two different datasets: Polite-Wiki from Wikipedia, and Polite-SE from Stack Exchange, following the original
paper (Danescu-Niculescu-Mizil et al., 2013). Here, two classes: polite and impolite, are defined as the top and, respectively,
bottom quartile of sentences when sorted by their politeness score. The classes are therefore balanced, with each class
consisting of 1,089 samples for the Wikipedia domain and 1,651 samples for the Stack Exchange domain. We split each
dataset into an 8:1:1 ratio to construct training, validation, and test datasets. The source data and more details of the dataset
are officially available at https://www.cs.cornell.edu/˜cristian/Politeness.html.

Offensive agreement dataset (Leonardelli et al., 2021) is a binary classification benchmark for predicting whether the given
sentence is offensive or not. Each sentence is collected from Twitter using Twitter public APIs, based on the hashtags and
keywords on three different domains: Covid-19, US Presidential elections and the Black Lives Matter (BLM) movement.
Remarkably, some of the original samples are not available anymore due to the elimination of tweets from the user side; for
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example, 10,735 samples are collected initially (Leonardelli et al., 2021), but only 6,513 samples are now available. To
address the issue of the reduced number of samples, we slightly modify the dataset to keep the setups of the original paper,
e.g., balanced among the classes and domains. Specifically, we gather the given splits of the dataset into the unified one
and then re-split it as much be balanced as possible. This re-constructed dataset has 2,400 training samples, 400 validation
samples, and 400 test samples. Also, the ratio between Covid-19, Election, and BLM is 3:3:2. The dataset is officially
available with the request to authors at https://github.com/dhfbk/annotators-agreement-dataset.

Multi-Genre Natural Language Inference (MultiNLI) (Sener & Koltun, 2018) is a crowd-sourced collection of 433k
sentence pairs annotated with textual entailment information: for a given premise sentence, one should classify whether
the given hypothesis sentence is entailment, neutral, or contradiction to the premise (ternary classification). Since the
annotation records are only available with the validation set, we construct the datasets by splitting it into 8:1:1 for training,
validation, and test sets. This re-constructed dataset has 15,717 training samples, 1,964 validation samples, and 1,966
test samples. The source data and more details of the dataset are officially available at https://cims.nyu.edu/
˜sbowman/multinli.

Finally, to demonstrate the applicability of P2C beyond NLP tasks, we use the SUN Attribute dataset (Patterson et al., 2014):

SUN Attribute dataset (Patterson et al., 2014) is constructed by conducting Amazon’s Mechanical Turk crowd-sourcing
platform (Crowston, 2012) to annotate the presence of the target attribute in the given image. The dataset consists of 14,340
scene images from the SUN dataset (Xiao et al., 2010), which has 102 scene attributes such as sunny, natural, man-made, etc.
In this dataset, the presence of the attribute is measured as an average score of three binary user responses, i.e., it contains the
annotation records and hence we use it to construct the extractive preference for our framework. The source data and more
details of the dataset are officially available at https://cs.brown.edu/˜gmpatter/sunattributes.html.

A.2. Baselines

We first introduce some notations for a clear explanation. For each sample x, there are annotation records ny(x) ∈ NK
where K is the number of class and nvote(x) =

∑
y ny(x) is the number of votes6. Then, the majority voted target label is

obtained by finding the most agreed labels, i.e., ytask(x) = argmaxy nvote(x), and simply denoted by ytask. Here, our
goal is to train a classifier fθ :=Wtask ◦ gϕ, composed with Transformer-based language model backbone gϕ (e.g., BERT
(Devlin et al., 2019)) and a random initialized classification head Wtask, where the prediction for x is obtained with softmax,
i.e., p(x) = Softmax

(
fθ(x)

)
. For the analysis in Figure 3, we only include four baselines with high performance based on

the results in Table 4.

Vanilla: as described in Section 2.1, the model fθ is trained with the following cross-entropy loss:

Ltrain = ℓxe(p(x), ytask)

Soft-labeling (Fornaciari et al., 2021): instead of using majority voted label ytask, it use the soft-labels q(x) =
ny(x)/nvote(x) with a cross entropy loss:

Ltrain = ℓxe(p(x), q(x)) =
∑
y

−qy(x) log py(x)

Margin Loss (Sharmanska et al., 2016): instead of using majority voted label and cross-entropy loss, it uses the soft-labels
q(x) as a margin for the multi-class hinge loss:

Ltrain =
∑
y

max{0, qy(x)− py(x)}

Filtering (Leonardelli et al., 2021): following the setups in the original paper, we exclude the ambiguous samples that have
a low agreement between the annotators. Specifically, we exclude the samples with nytask = 3 since there are 5 annotators
for all considered datasets by following (Leonardelli et al., 2021), and use majority voting for the others.

6All the used datasets commonly have nvote = 5
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Ltrain = 1[nytask(x) > 3] ℓxe(p(x), ytask)

Weighting (Uma et al., 2021): using weighted cross entropy that down-weigh the samples with a low agreement:

Ltrain = w(x) ℓxe(p(x), ytask)

where w(x) = nytask(x)/nvote(x).

Multi-annotator (Davani et al., 2022): instead of aggregating the different annotators’ annotation records, it introduces
multiple classification heads W (t)

task for learning from each annotator’s annotation y(t)task. Since each annotator does not
annotate all the samples, we simply separate the nvote(x) annotations and train each classification head where t =
1, . . . , nvote. For the inference of test samples, the ensemble of multiple classification heads is used.

Ltrain =
1

nvote(x)

∑
t

ℓxe(p
(t)(x), y

(t)
task)

where p(t)(x) =W
(t)
task ◦ gϕ(x).

CS-KD (Yun et al., 2020): for each sample x, the sample x̂ within the same class, defined by a majority voted label ytask,
is also sample and the consistency regularization is additionally imposed between their prediction with a temperature τ .
Following the original paper, we use τ = 4.

Ltrain = ℓxe(p(x), ytask) + ℓxe(p̃(x), p̃(x̂))

where p̃(x) = Softmax(fθ(x)/τ).

Label Smoothing (Müller et al., 2019): instead of directly using majority voted label ytask, it first constructs the soft-label
q(x) by subtracting τ for the class ytask and equally distributing it to remaining classes, i.e., τ/(K − 1). We find the best
hyper-parameter τ among [0.05, 0.1, 0.15] using the validation set. Then, this soft label q(x) is used to train the model with
a cross-entropy loss:

Ltrain = ℓxe(p(x), q(x)) =
∑
y

−qy(x) log py(x)

Max Entropy (Pereyra et al., 2017): in addition to the cross-entropy loss with the majority voted label ytask, the regulariza-
tion loss to increase the entropy of the prediction p(x) is used as a training loss with a hyper-parameter λ. λ is tuned among
[0.1, 0.5, 1.0] using the validation set:

Ltrain = ℓxe(p(x), ytask) + λ
∑
y

py(x) log py(x)

A.3. Prefer-to-Classify (P2C)

In this section, we describe the details of P2C. We first note that the details are slightly different between extractive
preference learning (Section 4.3) and subjective preference learning (Section 4.4) due to the difference in experimental
setups between them. As described in Section 4, we commonly use T = 3 preference heads {W (i)

pref}Ti=1 and 2-layer MLPs
with tanh activation for each Wpref. We choose hyper-parameters from a fixed set of candidates based on the validation set;
λpref, λdiv ∈ {1.0, 0.1}. Also, we only sample the pair of instances with the same majority voted labels for efficiency.

In the case of learning with extractive preference in Section 4.3, we apply the consistency regularization with margin (Eq. 6)
by using the difference of annotation as the margin m. Specifically, we set a margin of class y between two samples x1 and
x0 as the difference of their soft-labels my = qy(x

1) − qy(x
0), defined in Section A.2. Then, we apply the consistency

regularization to all classes y ∈ [0, 1]K . In addition, we apply the inconsistency-based sampling for the experiments with
extractive preference labels based on the superior experimental results, presented in Section C.

15



Prefer to Classify: Improving Text Classifiers via Auxiliary Preference Learning

Algorithm 1 Prefer-to-Classify (P2C) with extractive preference labels

Input: Classifier from a pre-trained language model fθ, training dataset D with preference labels
{(x0,x1, ytask, ypref)|x0,x1 ∈ D}, preference predictors {hψ(t)}Tt=1, mini-batch size B, and hyper-parameter λcons

1: for each iteration do
2: Draw a mini-batch B = {(xi, ytask,i)Bi=1} and the corresponding pairs with preference labels B̃ = {(x̃i, ypref,i)Bi=1}

from D with the inconsistency-based sampling (see Section 2.2)
3: Obtain fθ(x) by forwarding B, then calculate Lmulti in Eq. 4
4: Obtain hψ(x) by forwarding B and B̃, then calculate Lcons in Eq. 6
5: Update parameters θ and ψ(t) to minimize Ltrain = Lmulti + λconsLcons

6: end for

Algorithm 2 Prefer-to-Classify (P2C) with subjective/generative preference labels

Input: Classifier from a pre-trained language model fθ, original training dataset D = {(xi, yi)}, collected dataset D̃
with preference labels {(x0,x1, ytask, ypref)|x0,x1 ∈ D} where |D̃| = Npref, preference predictors {hψ(t)}Tt=1, a
mini-batch size B and hyper-parameter λcons

1: for each iteration do
2: Draw a mini-batch B = {(xi, ytask,i)Bi=1} from D
3: Draw an another mini-batch B̃ = {(xi, x̃i, ytask,i, ypref,i)Bi=1} from D̃
4: Obtain fθ(x) by forwarding B, then calculate Lmulti in Eq. 4
5: Obtain hψ(x) by forwarding B̃, then calculate Lcons in Eq. 5
6: Update parameters θ and ψ(t) to minimize Ltrain = Lmulti + λconsLcons

7: end for

In the case of learning with subjective and generative preference labels in Section 4.4 and 4.2, we apply the consistency
regularization without margin (Eq. 5) since the explicit degree of preference is not given. Also, since the number of pairs
with subjective preference labels is limited, we use all of them in training without applying the sampling methods described
in Section 2.2. We introduce the additional mini-batch from these pairs to optimize the model with consistency regularization.
The full procedures of P2C with extractive and subjective preference are described in Algorithm 1 and 2, respectively.
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(a) Offensive (b) Polite-Wiki (c) Polite-SE (d) MultiNLI (e) DynaSent-R1 (f) DynaSent-R2

Figure 4. Distribution of the extractive preference labels from the annotation records.

0

1000

2000

3000

4000

5000

N
um

be
r o

f P
re

fe
re

nc
e 

La
be

l

x0 > x1
x1 > x0
x0 = x1

(a) CoLA

0

500

1000

1500

2000

2500

N
um

be
r o

f P
re

fe
re

nc
e 

La
be

l

x0 > x1
x1 > x0
x0 = x1

(b) SMS Spam

0

500

1000

1500

2000

2500

3000

3500

4000

N
um

be
r o

f P
re

fe
re

nc
e 

La
be

l

x0 > x1
x1 > x0
x0 = x1

(c) Hate Speech

0

1000

2000

3000

4000

5000

6000

7000

8000

N
um

be
r o

f P
re

fe
re

nc
e 

La
be

l

x0 > x1
x1 > x0
x0 = x1

(d) Emotion

Figure 5. Distribution of the generative preference labels obtained by querying to GPT-3.

B. Collection of Preference Labels
B.1. More details of preference labels

Extractive preference. For a formal description of the process of collecting extractive preference, we borrow some notations
introduced in Section A.2. As described in Section 3, we obtain the extractive preference label ypref by comparing the number
of votes nytask(x) with the given task label ytask: if nytask(x

1) > nytask(x
0), then we assign ypref = 1 where it indicates

x1 ≻ x0. Similarly, we assign ypref = 0 when nytask(x
1) < nytask(x

0) and ypref = 0.5 when nytask(x
1) = nytask(x

0),
respectively. To reduce the noisy signal and focus on the effective pair, we only compare the samples that have the same
majority voted labels, i.e., ytask(x1) = ytask(x

0). The resulting distribution of extractive preference labels for each data is
presented in Figure 4.

Generative preference. As we denote in Section 3, we collect the generative preference labels by querying the pair of
samples to the recent large pre-trained language model, GPT-3 (Brown et al., 2020). Specifically, we use the officially
provided API7. To this end, we design our prompt as Figure 6; for ith pair of sentences, we provide two sentences along
with their task labels. The resulting distribution of generative preference labels for each data is presented in Figure 5.

Subjective preference. We collect the subjective preference labels based on paired samples from DynaSent-R2 dataset
(Potts et al., 2021) for the sentiment classification task. To be specific, we gather the subjective preference of the pairs by
asking crowd workers to answer “which sentence is more positive (neutral, or negative)?” using Amazon’s Mechanical
Turk crowd-sourcing platform (Crowston, 2012). Then, each worker should select one of the two sentences or answer “No
Preference”. Following (Nie et al., 2020a), we initially provide each pair of sentences to two crowd workers. If two workers
give the same preference label, this pair is labeled with that. If they disagree, we ask a third crowd worker to break the tie. If

7text-davinci-003 in https://beta.openai.com/docs/models/gpt-3
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Figure 6. Prompt design to collect generative preference labels from GPT-3 (Brown et al., 2020).

Figure 7. Interface to collect subjective preference from crowd workers for sentiment classification (DynaSent-R2 (Potts et al., 2021)).

they still fail to reach a consensus, this pair is labeled with “No Preference”.

Under this procedure, we first gather 1,000 subjective preference labels of randomly selected pairs of sentences. Then, we
dynamically collect the additional subjective preference labels to maximize the information of collected pairs, motivated by
the recent dynamic benchmark constructions (Kiela et al., 2021; Nie et al., 2020a). Namely, we first train the model with
existing subjective preference labels. Then, we find the most informative pairs in the aspect of the trained model, using the
disagreement-based sampling introduced in Section 2.2 and query their preference labels in the next stage. We select an
equal number of pairs for each class to balance the label distribution. Overall, starting with 1,000 random pairs, we collect
the preference of 2,000 pairs at each round and iterate this procedure for 2 rounds, i.e., a total of 5,000 pairs’ subjective
preference labels are collected.

Figure 7 shows the interface used to collect subjective preference labels from crowd workers for sentiment analysis based on
DynaSent-R2 (Potts et al., 2021). The top provides the instructions, and then one example is shown. The whole task has 10
items per Human Interface Task (HIT). Workers were paid US$0.8 per HIT on average, and all workers were paid for their
work. To improve the quality of collected preference labels, we only hire the Master workers identified as high-performing
workers from Amazon’s Mechanical Turk system.
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Figure 8. Comparison of three different types of preference labels using 5,000 pair of samples on DynaSent-R2. (a) Distribution of each
type of preference label. (b) Venn Diagram to denote the similarity (i.e., overlap) between different preference labels. (c) Performance of
fine-tuned RoBERTa on the mutually exclusive datasets between all of three different types of preference labels.

B.2. Comparison between different types of preference labels

As generative, extractive, and subjective preferences come from different sources of knowledge, they are naturally expected
to have different characteristics. To this end, we first compare the distribution of preference labels with 5,000 pair of samples
on DynaSent-R2, which are exactly used to collect the subjective preference labels; as shown in Figure 8(a), they have
clearly different label distributions. This discrepancy is more clearly verified when we measure the coincidence between the
preference labels (Figure 8(b)); three preference labels output the same label for only 10.72 % of pairs, while outputting the
mutually exclusive one for 19.78 % of pairs. To further investigate the effectiveness of each preference label, we fine-tuned
RoBERTa model only using those pair of samples with the different preference labels for each method; as shown in Figure
8(c), the subjective preference shows the best performance, while the generative preference shows the worst performance.
It implies the importance of the quality of preference labels and the effectiveness of generative preference could be from
approximating extractive or subjective ones in a cheap way.

B.3. More examples of preference labels

In Table 8, we present more examples in our extractive, subjective, and generative preference labels on DynaSent-R2 dataset,
similar to Table 1.
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Table 8. More examples in our extractive, subjective, and generative preference labels on DynaSent-R2.

A: I noticed when I walked in they looked at me, the eyes of them
reflecting.

B: I’ve been to the restaurant a more times and I can understand
why this dichotomy may exist.

Sentiment: Neutral, Generative Preference: No preference, Extractive Preference: B ≻ A, Subjective Preference: B ≻ A

A: The pet clinic was very unprofessional. B: Fast forward to today 2 months later and still I have not received
my plates that I paid for and I am driving around on their temp
paper plate. I was angry.

Sentiment: Negative, Generative Preference: B ≻ A, Extractive Preference: No preference, Subjective Preference: No preference

A: The fresh bread of the bagel available here. B: Since it isn’t a big restaurant, to get the attention from the
waitress isn’t that hard.

Sentiment: Positive, Generative Preference: A ≻ B, Extractive Preference: B ≻ A, Subjective Preference: A ≻ B

A: I expect everything to turn out well. B: We tried a new place. We couldn’t recommend them more
highly.

Sentiment: Positive, Generative Preference: B ≻ A, Extractive Preference: A ≻ B, Subjective Preference: A ≻ B

A: But his humor isn’t for everyone. I love humor. B: That may have been the norm, but they were above average.
Sentiment: Positive, Generative Preference: B ≻ A, Extractive Preference: A ≻ B, Subjective Preference: No Preference

A: Management is an embarrassement. B: I saw table of guys feasting on a whole pigs head and having a
great time, but it made me pretty sick.

Sentiment: Negative, Generative Preference: B ≻ A, Extractive Preference: No Preference, Subjective Preference: B ≻ A

A: they put one inside the grocery store. B: We moved here based on reviews and selected South shores with
distance of hours

Sentiment: Neutral, Generative Preference: B ≻ A, Extractive Preference: No Preference, Subjective Preference: No Preference

C. More Ablation Study
In this section, we provide more ablation studies on the design choices of P2C. Here, all experiments are conducted on
DynaSent-R2 (Potts et al., 2021) and Offensive (Leonardelli et al., 2021) datasets with extractive preference labels, as same
as we have done in Section 4.3. The values and error bars are the mean and standard deviation across five random seeds.
The results with the chosen design in Section 4.3 are indicated in bold.

Multiple preference heads for preference learning. In Section 2.2, we introduce multi-preference heads with diversity
regularization (Eq. 3) to effectively learn the given preference labels. To see the effect, we compare it with two different
designs for preference heads: 1) single-preference head and 2) multi-preference heads without diversity regularization.
Remark that the other components, consistency regularization, and inconsistency-based sampling, are still applied to
separately verify the effect from different designs of the preference head. As shown in Table 9, one can verify that a single
preference head is not enough to exploit the given preference labels fully; hence, the empirical gain is relatively small
compared to multi-preference heads. Also, it is observable that the proposed regularization is more effective to impose
diversity than only relying on random initialization.

Table 9. Effect of different designs for preference head.

Single-Pref Multi-Pref Heads Multi-Pref Heads
Dataset Head without diversity with diversity

DynaSent-R2 72.22±0.55 72.75±0.42 73.06±0.31

Offensive 77.08±0.57 77.25±0.92 77.81±0.21

Auxiliary loss for preference learning. As described in Section 2.2, we use a consistency regularization (Eq. 5 and
6) between classification and preference learning as an auxiliary loss for learning preference; specifically, consistency
regularization with margin (Eq. 6) is used in Section 4.3. To clarify the effectiveness of this regularization, we compare
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it with 1) consistency regularization without margin (Eq. 5). We also compare it to 2) soft-labeling, which also uses the
annotation records to construct soft-labels instead of the preference and margin. Here, we use random sampling instead of
inconsistency-based sampling since it is designed explicitly for consistency regularization while using the multi-preference
heads. Table 10 shows the results of these auxiliary losses; although consistency regularization is effective in improving the
performance without margin, the gain is smaller than the consistency regularization with margin since the latter utilizes the
additional knowledge about the given preference label. In addition, the result with soft-labeling validates that the gain from
our consistency loss is not from the use of the annotation records but from the regularization that imposes the following
intuition: more preferred instance should have higher confidence from the classifier.

Table 10. Effect of different auxiliary losses to learn.

Soft Consistency Consistency
Dataset -labeling without margin with margin

DynaSent-R2 72.29±0.88 72.40±0.71 72.67±0.89

Offensive 77.04±1.05 77.54±0.95 77.67±0.99

Sampling of pairs for preference learning. To improve the efficiency of preference learning by sampling the informa-
tive pairs during the training, we introduce two advanced sampling methods: (1) disagreement-based sampling and (2)
inconsistency-based sampling in Section 2.2. Remark that the other components, consistency regularization with margin and
multi-preference heads, are still applied to verify the effect from different sampling methods separately. In Table 11, we
compare both sampling methods to random sampling. Here, one can verify that both ways are more effective than random
sampling, and inconsistency-based sampling is slightly better than disagreement-based sampling. Hence, we commonly
used inconsistency-based sampling in Section 4.3.

Table 11. Effect of different sampling methods.

Dataset Random Disagreement Inconsistency

DynaSent-R2 72.67±0.89 72.73±0.66 73.06±0.31

Offensive 77.67±0.99 77.75±1.49 77.81±0.21

Sensitivity to Ldiv. To verify the sensitivity of our method with Ldiv, we conduct the experiments by introducing λdiv,
a coefficient of Ldiv, and varying it to investigate its effect. In Table 12, one can observe that KL divergence does not
dominate the entire loss until the certain level of λdiv including the original value (λdiv=1), but it can diverge with too large
value (e.g., λdiv = 10). Hence, we recommend using the original value or investigating λdiv with smaller than 1.

Table 12. Effect of diversity regularization between multi-preference heads with λdiv.

Dataset λdiv = 0 λdiv = 1 λdiv = 2 λdiv = 10

DynaSent-R2 72.75±0.42 73.06±0.31 71.44±0.68 57.05±2.14

Offensive 77.25±0.92 77.81±0.21 75.35±1.03 65.05±6.70
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D. Additional Experimental Results
Smaller training samples. Here, we validate the effectiveness of P2C with extractive preferences for the smaller training
samples. Specifically, we control the number of training samples (N ) of the DynaSent-R2 dataset from N = 250 to
N = 4000 and compare our method with three representative baselines with high performance: Vanilla, Soft-labeling, and
Multi-annotator. As shown in Table 13, P2C shows significant improvement, especially when the dataset size is smaller. We
also remark that P2C shows consistent improvement for all cases while other baselines do not.

Table 13. Results with the smaller training samples.

Method N = 250 N = 500 N = 1000 N = 2000 N = 4000

Vanilla 54.89±2.46 60.36±2.98 63.61±0.92 66.50±0.76 68.69±1.41

Soft-labeling 57.75±2.35 60.03±1.46 62.81±1.45 66.78±1.16 68.17±1.09

Multi-annotator 57.33±3.23 61.39±1.76 63.00±0.87 66.19±0.84 68.78±1.46

P2C (Ours) 58.94±1.16 61.83±1.15 64.13±1.04 67.72±0.46 69.83±0.64

Compatibility with other types of models. While we have previously used a model built over RoBERTa-base (Liu
et al., 2019), the proposed P2C is not limited to the specific model. To verify this, we conduct additional experiments
based on DynaSent-R2 with extractive preference labels from the annotation records. As shown in Table 14, the proposed
P2C consistently improves the test accuracy of classifiers of other language models: BERT-base (Devlin et al., 2019),
ALBERT-base (Lan et al., 2020), and RoBERTa-large.

Table 14. Results with other types of language models.

Method BERT-base ALBERT-base RoBERTa-large

Vanilla 67.26±1.15 62.72±0.73 75.62±0.60

P2C (Ours) 68.26±0.56 65.00±1.13 77.71±0.36
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