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Abstract
In this paper, we propose an adaptive entropy-
regularization framework (ADER) for multi-agent
reinforcement learning (RL) to learn the adequate
amount of exploration of each agent for entropy-
based exploration. In order to derive a metric for
the proper level of exploration entropy for each
agent, we disentangle the soft value function into
two types: one for pure return and the other for
entropy. By applying multi-agent value factor-
ization to the disentangled value function of pure
return, we obtain a metric to determine the rele-
vant level of exploration entropy for each agent,
given by the partial derivative of the pure-return
value function with respect to (w.r.t.) the policy
entropy of each agent. Based on this metric, we
propose the ADER algorithm based on maximum
entropy RL, which controls the necessary level of
exploration across agents over time by learning
the proper target entropy for each agent. Exper-
imental results show that the proposed scheme
significantly outperforms current state-of-the-art
multi-agent RL algorithms.

1. Introduction and Motivation
RL is an effective approach to solving decision-making
problems such as robot control (Hester et al., 2012; Ebert
et al., 2018), traffic light control (Wei et al., 2018; Wu
et al., 2020) and games (Mnih et al., 2015b; Silver et al.,
2017). The goal of RL is to find an optimal policy that
maximizes expected return. To guarantee convergence of
model-free RL, the assumption that each element in the
joint state-action space should be visited infinitely often is
required (Sutton & Barto, 2018), but this is impractical due
to large state-action spaces in real-world problems. Thus,
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efficient exploration has been one of the core problems of
RL. Furthermore, the given time for learning is limited in
real-world problems. Hence, the learner cannot just do
exploration only but needs to exploit its own policy based
on its experiences so far. For better overall learning, the
learner should balance exploration and exploitation over
time. This is called exploration-exploitation trade-off in
RL, which has been a challenging topic in single-agent RL.

The problem of exploration-exploitation trade-off becomes
more challenging in multi-agent RL (MARL) because the
volume of state-action space grows exponentially as the
number of agents increases. Furthermore, the necessity and
benefit of exploration at a gvien time can be different across
agents and even one agent’s exploration can hinder other
agents’ exploitation, resulting in a situation in which simul-
taneous exploration of multiple agents can make learning
unstable. Thus, the balance of exploration and exploitation
across multiple agents should also be considered for MARL
in addition to that across the typical time dimension. We
refer to this problem as multi-agent exploration-exploitation
trade-off. In order to handle the problem of multi-agent
exploration-exploitation trade-off, we need to control the
amount of exploration of each agent adaptively and learn
this amount across agents (i.e., agent dimension) and over
time (i.e., time dimension).

Figure 1. Reward surface in the con-
sidered matrix game.

To see the ne-
cessity of such
adaptive exploration-
exploitation trade-off
control in MARL,
let us consider a
modified continuous
cooperative matrix
game (Peng et al.,
2021), described in
Fig. 1. As seen in
Fig. 1, there is a
connected narrow path
from the origin (0, 0) to (0.6, 0.55), consisting of two
subpaths: one from (0, 0) to (0.6, 0) and the other from
(0.6, 0) to (0.6, 0.55). There is a circle with center at
(0.6, 0.6) and radius 0.05. The goal of this game is to
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move the 2-D position a = (a1, a2) from (0, 0) to the
target circle at (0.6, 0.6) along the narrow path. The 2-D
position is controlled by two agents, where Agent i controls
ai ∈ [−1, 1] as its action, i = 1, 2. The shared reward is
determined by the joint action a = (a1, a2), and the reward
surface is given in Fig. 1. The reward increases only along
the path as the position (a1, a2) approaches the center of
the target circle and the maximum reward is 5. There is a
penalty if the joint action yields the position outside the
path or the target circle, and the penalty value increases as
the outside position is farther from the origin (0, 0). Then,
the agents should learn to reach the circle along the path,
starting from the origin with initial action pair a = (0, 0).
Even though this game is stateless, exploration in the action
space is required to find the action (0.6, 0.6). One may
think that one can find the optimal joint action all at once
when the action near the circle is selected. However, the
action starting with (0,0) cannot jump to (0.6, 0.6) since
we use function approximators for the policies and train
them based on stochastic gradient descent with a small
step size. The action should be trained to reach the circle
along the two subpaths sequentially. In the beginning, to
go through the first subpath, a2 (i.e., y-axis movement)
should not fluctuate from 0, and a1 should be trained to
increase up to 0.6. In this phase, if a2 explores too much,
the positive reward is rarely obtained. Then, a1 is not
trained to increase up to 0.6 because of the penalty. Once
the joint action is trained to (0.6, 0), on the other hand, the
necessity and benefit of exploration are changed. In this
phase, a1 should keep its action at 0.6, whereas a2 should
be trained to increase up to 0.6. Thus, it is necessary to
control the trade-off between exploitation and exploration
across agents. In addition, we need to update this trade-off
over time because the required trade-off changes during the
learning process. We will see that such adaptive control
of the trade-off between exploitation and exploration is
beneficial not only to this particular example but also to
many general MARL tasks in Sec. 4.

Although there exist many algorithms for better exploration
in MARL (Mahajan et al., 2019; Liu et al., 2021a; Zhang
et al., 2021; Kim et al., 2023), the research on the aforemen-
tioned multi-agent exploration-exploitation trade-off has not
been investigated much yet. In this paper, we propose a
new framework that can adaptively learn appropriate levels
of exploration for multiple agents over time, considering
the time-varying multi-agent exploration-exploitation trade-
off. To build a framework for such adaptive multi-agent
exploration-exploitation trade-off, we employ the widely-
used entropy-based exploration (Haarnoja et al., 2018a;b).
Under the entropy-based exploration, we allocate higher
target entropy values to the agents who have larger benefits
from exploration and need more exploration, and allocate
lower target entropy values to the agents who have less ben-

efits from exploration, inclining to more exploitation. Then,
under the constraint of fixed total target entropy value sum
across all agents, such target entropy value assignment will
realize multi-agent exploration-exploitation trade-off.

The key question of this approach is how to measure the
benefit of more exploration for each agent. To devise a
metric for this, one can exploit value functions. However,
we believe that soft value functions associated with entropy-
based RL are not appropriate since these functions estimate
the sum of reward and policy entropy, and thus we cannot
pinpoint the impact of the policy entropy on the pure re-
ward sum which is the ultimate goal of RL. Hence, in order
to devise a metric for the benefit of more exploration, we
adopt the method of disentanglement between exploration
and exploitation (Beyer et al., 2019; Han & Sung, 2021) to
decompose the joint soft value function into two types: one
for the return and the other for the entropy sum. Based on
this disentanglement, we propose the partial derivative of
the joint value function of pure return w.r.t. policy action
entropy as the metric for the benefit of more exploration
for each agent. The intuition behind this choice is clear for
entropy-based exploration: Agents with higher gradient of
joint pure-return value w.r.t. their action entropy should
increase their target action entropy resulting in higher explo-
ration level in order to contribute more to pure return. Then,
under the constraint of total target entropy sum across all
agents, which we will impose, the target entropy of agents
with lower gradient of joint pure-return value w.r.t. their
action entropy will be reduced, leading towards exploita-
tion. Thus, multi-agent exploration-exploitation trade-off
can be achieved. However, the computation of the partial
derivative of the joint value function w.r.t. policy action
entropy is not trivial in the discrete-action case. We circum-
vent this difficulty successfully by adopting an actor-critic
architecture and value decomposition and exploiting the im-
posed architecture. The details will follow in the upcoming
sections.

2. Background
Basic setup We consider a decentralized par-
tially observable MDP (Dec-POMDP), which describes
a fully cooperative multi-agent task (Oliehoek & Am-
ato, 2016). A Dec-POMDP is defined by a tuple <
N ,S, {Ai},P, {Ωi},O, r, γ >, where N = {1, · · · , N}
is the set of agents, S is the set of states, Ai is the set of
actions of Agent i, P is the transition probability, Ωi is
the set of observations of Agent i, O is the observation
function, r is the reward function. and γ is the discount
factor. At time step t, Agent i ∈ N makes its own ob-
servation oit ∈ Ωi according to the observation function
O(s, i) : S × N → Ωi : (st, i) 7→ oit, where st ∈ S is the
global state at time step t. Agent i selects action ait ∈ Ai
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to form a joint action at = {a1t , a2t , · · · , aNt }. The joint
action yields the next global state st+1 according to the
transition probability P(·|st,at) and a joint shared reward
rt = r(st,at). Each agent i has an observation-action his-
tory τ i ∈ (Ωi ×Ai)

∗ and trains its policy πi(ai|τ i) to max-
imize the return E[

∑∞
t=0 γ

trt]. We consider the framework
of centralized training with decentralized execution (CTDE),
where decentralized policies are trained with additional in-
formation including the global state in a centralized way
during the training phase (Oliehoek et al., 2008). Thus, the
joint policy πt is given as the product form πt =

∏N
i=1 π

i
t.

Maximum Entropy RL and Entropy Regularization
Maximum entropy RL aims to promote exploration by find-
ing an optimal policy that maximizes the cumulative sum of
reward and entropy (Haarnoja et al., 2017; 2018a;b). The
objective function of maximum entropy RL is given by

JMaxEnt(π) = Eπ

[ ∞∑
t=0

γt(rt + αH(π(·|st)))

]
, (1)

where H(·) is the entropy function and α is a temper-
ature parameter. Soft actor-critic (SAC, Haarnoja et al.
(2018a)) is an off-policy actor-critic algorithm which ef-
ficiently solves the maximum entropy RL problem (1)
based on soft policy iteration, composed of soft pol-
icy evaluation and soft policy improvement. For this,
the soft Q-function is defined as the sum of the re-
turn and the total future entropy, i.e., Qπ(st, at) :=

rt + Eτt+1∼π

[∑∞
l=t+1 γ

l−t(rl +
∑N

i=1 αH(π(·|sl)))
]
. In

the soft policy evaluation step, for a given policy π,
the soft Q-function is estimated by repeatedly apply-
ing the soft Bellman backup operator T π

sac to an es-
timate function Q : S × A → R, where the soft
Bellman backup operator is given by T π

sacQ(st, at) =
rt + γEst+1

[V (st+1)] with V (st) = Eat∼π[Q(st, at) −
α log π(at|st)]. In the soft policy improvement step, the
policy is updated with the evaluated soft Q-function as
πnew = argmaxπ Eat∼π [Qπold(st, at)− α log π(at|st)]. By
iterating the soft policy evaluation and the soft policy im-
provement, SAC converges to an optimal policy that maxi-
mizes (1) within the considered policy class in the case of
finite MDPs. SAC also works effectively for large MDPs
with function approximation.

One issue with SAC is the adjustment of the hyperparam-
eter α in (1), which controls the relative importance of the
entropy w.r.t. the reward. The magnitude of the reward
depends not only on tasks but also on the policy which im-
proves over time during the training phase. Thus, Haarnoja
et al. (2018b) proposed a method to adjust the temperature
parameter α over time to guarantee the minimum average
entropy at each time step. For this, they reformulated the
maximum entropy RL as the following entropy-regularized

optimization:

JER(π0:T ) = Eπ0:T

[
T∑

t=0

rt

]
(2)

s.t. E(st,at)∼πt
[− log(πt(at|st))] ≥ H0,

where H0 is the target entropy. In order to optimize the
objective (2), the technique of dynamic programming can
be used (Haarnoja et al., 2018b), i.e., maxπt:T

E[
∑T

i=t ri] =

maxπt

{
E[rt] + maxπt+1:T

E[
∑T

i=t+1 ri]
}

. Starting from
time step T , we obtain the optimal policy π∗

0:T and α∗
0:T by

applying backward recursion. That is, we begin with the
constrained optimization at time step T , given by

max
πT

E[rT ] s.t. E(sT ,aT )∼πT
[− log(πT (aT |sT ))] ≥ H0

and convert this problem into the Lagrangian dual problem
as

min
αT

max
πT

E[rT − αT log πT (aT |sT )]− αTH0

= min
αT

E[−αT log π∗
T (aT |sT )− αTH0]. (3)

Thus, the optimal temperature parameter α∗
T at time step

T , which corresponds to the Lagrangian multiplier, can be
obtained by solving the problem (3). Then, the backward
recursion can be applied to obtain optimal α at time step t
based on the Lagrange dual problem:

α∗
t = argmin

αt

Eat∼π∗
t
[−αt log π

∗
t (at|st)− αtH0]︸ ︷︷ ︸

:=J(αt)

, (4)

where π∗
t is the maximum entropy policy at time step t.

Here, by minimizing the loss function J(α), α is updated
to increase (or decrease) if the entropy of policy is lower (or
higher) than the target entropy H0. In the infinite-horizon
case, the discount factor γ is included and π∗

t is replaced
with the current approximate maximum entropy solution by
SAC. In this way, the soft policy iteration of SAC is com-
bined with the α adjustment based on the loss function J(α)
defined in (4). This algorithm effectively handles the reward
magnitude change over time during training (Haarnoja et al.,
2018b). Hence, one needs to set only the target entropyH0

for each task and then α is automatically adjusted over time
for the target entropy.

Related Works We here focus on the entropy-based
MARL. Other related works regarding multi-agent explo-
ration are provided in Appendix E. There exist previous
works on entropy-based MARL. Zhou et al. (2020) pro-
posed an actor-critic algorithm, named LICA, which learns
implicit credit assignment and regularizes the action en-
tropy by dynamically controlling the magnitude of the gra-
dient regarding entropy to address the high sensitivity of the
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temperature parameter caused by the curvature of deriva-
tive of entropy. LICA allows multiple agents to perform
a consistent level of exploration. However, LICA does
not maximize the cumulative sum of entropy but regular-
ize the action entropy. Zhang et al. (2021) proposed an
entropy-regularized MARL algorithm, named FOP, which
introduces a constraint that the entropy-regularized optimal
joint policy is decomposed into the product of the optimal
individual policies. FOP introduced a weight network to
determine individual temperature parameters. Zhang et al.
(2021) considered individual temperature parameters for up-
dating policy, but in practice, they used the same value (for
all agents) which is annealed during training for the temper-
ature parameters. This encourages multiple agents to focus
more on exploration in the beginning of training, which
considers exploration-exploitation only in time dimension
in a heuristic way.

The key point is that the aforementioned algorithms max-
imize or regularize the entropy of the policies to encour-
age the same level of exploration across the agents. Such
exploration is still useful for several benchmark tasks but
cannot handle the multi-agent exploration-exploitation trade-
off. Furthermore, in the previous methods, the joint soft
Q-function defined as the total sum of return and entropy
is directly factorized by value decomposition, and hence
the return is not separated from the entropy in the Q-value.
From the perspective of one agent, however, the contribu-
tion to the reward and that to the entropy can be different.
What we actually need to assess the goodness of a policy
is the return estimate, which is difficult to obtain by such
unseparated factorization.

3. Methodology
To address the aforementioned problems, we propose
an ADaptive Entropy-Regularization framework (ADER),
which can balance exploration and exploitation across mul-
tiple agents by learning the target entropy for each agent.

3.1. Adaptive Entropy-Regularized MARL

For entropy-based exploration in MARL, one can adopt the
entropy-constrained objective defined in (2) and extend it
to multi-agent systems. A simple extension is to maximize
the team reward while keeping the policy entropy of each
agent above the same target entropy. For the sake of conve-
nience, we call this scheme simple entropy-regularization
for MARL (SER-MARL). However, SER-MARL cannot
handle the multi-agent exploration-exploitation trade-off
because the amounts of exploration for all agents are the
same. One can also consider the use of different but fixed
target entropy values for multiple agents. However, this
case cannot handle the time-varying behavior of multi-agent
exploitation-exploration trade-off, discussed in Sec. 1 with
Fig. 1. Hence, to realize the time-varying multi-agent

exploration-exploitation trade-off, we consider the follow-
ing optimization problem:

max
π

Eπ

[ ∞∑
t=0

γtrt

]
s.t. E(st,at)∼π

[
− log(πi

t(a
i
t|τ it ))

]
≥ Hi, ∀i ∈ N ,

N∑
j=1

Hj = H0, (5)

where π = (π1, · · · , πN ),Hi is the target entropy of Agent
i, and H0 is the total sum of all target entropies. The key
point here is that we fix the target entropy sum as H0 but
each Hi is adaptive and learned over time. Note that the
total entropy budgetH0 is shared by all agents. Therefore,
when some agents’ target entropy values are high for more
exploration, the target entropy values of other agents should
be low, leading to more exploitation, due to the fixed total
entropy budget. Thus, the exploitation-exploration trade-off
across agents (i.e., agent dimension) can be captured. The
main challenge in this approach is how to learn individ-
ual target entropy valuesH1, · · · ,HN over time (i.e., time
dimension) as the learning progresses.

The learning of H1, · · · ,HN is closely related to the way
how the problem (5) is solved. To solve (5), one can sim-
ply extend the method in (Haarnoja et al., 2018b) to the
MARL case. That is, one can first consider a finite-horizon
case with terminal time step T , apply approximate dynamic
programming and the Lagrange multiplier method, obtain
the update formula at time step t, and then relax to the
infinite-horizon case by introducing the discount factor, as
in (Haarnoja et al., 2018b). For soft policy iteration involved
in this approach, one can define the joint soft Q-function as

QJT (st, τt,at) := (6)

rt + Eτt+1∼π

[ ∞∑
l=t+1

γl−t(rl +

N∑
i=1

αiH(πi(·|τ il )))

]
.

Then, one can estimate this joint soft Q-function based on
the following Bellman backup operator:

T π
JTQJT (st, τt,at) := rt+γEτt+1 [V (st+1, τt+1)] ,

where VJT (st, τt) = Eat∼π

[
QJT (st, τt,at) −

∑N
i=1

αi log π(ait|τ it )
]
. However, solving (5) directly based on

the joint reward-entropy-aggregated soft Q-function in (6)
and the corresponding Bellman operator T π

JT does not suit
our purpose. Note that the value function is an effective in-
dicator of the goodness of a policy-generated action. When
the reward-entropy-aggregated soft value function is used, it
is difficult to pinpoint each agent’s contribution, i.e., credit,
to the return, i.e., the pure reward sum, which is the ultimate
goal of RL, due to the inseparability of reward and entropy.
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3.2. Disentangled Exploration and Exploitation

In order to measure the impact of each agent’s policy on the
joint global return and enable us to derive a metric for the
benefit of more exploration for each agent, we disentangle
the return from the entropy (Beyer et al., 2019; Han & Sung,
2021). Specifically, we decompose the joint soft Q-function
into two types: One for the return and the other for the
entropy. That is, the joint soft Q-function is decomposed as

QJT (st, τt,at)

= QR
JT (st, τt,at) +

N∑
i=1

αiQH,i
JT (st, τt,at), (7)

where QR
JT (st, τt,at) is the joint action value function for

the return and QH,i
JT (st, τt,at) is the joint action value func-

tion for the future entropy of Agent i’s policy:

QR
JT (st, τt,at) = rt + Eτt+1∼π

[ ∞∑
l=t+1

γl−trl

]
, (8)

QH,i
JT (st, τt,at) = Eτt+1∼π

[ ∞∑
l=t+1

γl−tH(πi(·|τ it ))

]
,

for i = 1, · · · , N . Then, for QR
JT (st, τt,at) and

QH,i
JT (st, τt,at), we define their corresponding Bellman

backup operators as

T π
RQR

JT (st, τt,at) := rt + γE
[
V R
JT (st, τt+1)

]
T π
H,iQ

H,i
JT (st, τt,at) := γE

[
V H,i
JT (st, τt+1)

]
, (9)

where V R
JT (st, τt) = Eat

[
QR

JT (st, τt,at)
]

and

V H,i
JT (st, τt) = Eat

[
QH,i

JT (st, τt,at) − αi log π(ait|τ it )
]

are the joint value functions regarding return and entropy,
respectively.

Proposition 3.1. The disentangled Bellman operators T π
R

and T π
H,i in (15) are contractions.

Proof: See Appendix A.

Due to Proposition 3.1, the disentangled value functions
can be estimated by repeatedly applying their corresponding
Bellman operators.

Let us postpone the explanation of how to learn the target
entropies H1, · · · ,HN to the next subsection and explain
how to obtain the policy and the temperature parameters
for given target entropy values with the disentangled action
value functions here.

Policy and Temperature Parameters for Given Target
Entropies: With the disentangled joint action value func-
tions and their estimates, the joint policy πt =

∏N
i=1 π

i

and the temperature parameters can be obtained as func-
tions of H1, · · · ,HN by using a similar technique to that

in (Haarnoja et al., 2018b) based on dynamic programming
and Lagrange multiplier. That is, we first consider the finite-
horizon case and apply dynamic programming with back-
ward recursion:

max
πt:T

E

[
T∑
i=t

ri

]
= max

πt

(
E[rt] + max

πt+1:T

(
E[

T∑
i=t+1

ri],
))

s.t. E(st,at)∼πt

[
− log(πi

t(a
i
t|τ it ))

]
≥ Hi, ∀t,∀i.

We can obtain the optimal policy and the temperature pa-
rameters by recursively solving the dual problem from the
last time step T by using the technique of Lagrange multi-
plier. At time step t, the optimal policy is obtained for given
temperature parameters, and the optimal temperature param-
eters are computed based on the obtained optimal policy as
follows:

π∗
t = argmax

πt=
∏

i π
i
t

Eat∼πt

[
QR∗

JT (st, τt,at)︸ ︷︷ ︸
(a)

+

N∑
i=1

αi
t (Q

H,i∗
JT (st, τt,at)− log πi

t(a
i
t|τ it ))︸ ︷︷ ︸

(b)

]
(10)

αi∗
t = argmin

αi
t

Eat∼π∗
t

[
−αi

t log π
i∗
t (ait|τ it )− αi

tHi

]
,∀i.

(11)

where QR∗
JT and QH,i∗

JT are Agent i’s joint action value
function for the return and the future entropy at time
step t, respectively. In the infinite-horizon case, (10)
and (11) provide the update formulae at time step t, and
the optimal policy is replaced by the current approximate
multi-agent maximum-entropy solution with estimated ac-
tion value functions, which can be obtained by extend-
ing SAC to MARL. Note that maximizing the term (a)
in (10) corresponds to the ultimate goal of MARL, i.e.,
the expected return. On the other hand, maximizing the
term (b) in (10) corresponds to enhancing exploration of
Agent i. Note that the optimization (10) is equivalent to
π∗
t = argmaxπt

Eat∼πt
[Q∗

JT (st, τt,at)− logπt(at|τt)]
because of (7). Thus, (10) and (11) are an extension of
(Haarnoja et al., 2018a;b) to MARL with the joint action
value function being disentangled.

3.3. Learning Individual Target Entropy Values

Now, we describe how to learn the target entropy for each
agent over time, which is the main contribution of this paper.

In our formulation (5), the amount of exploration of Agent
i is controlled by the target entropy value Hi under the
sum constraint

∑N
j=1Hj = H0. Note that the ulti-

mate control variables of our method are H1, · · · ,HN

since the policy and the temperature parameters are given
once H1, · · · ,HN are determined as seen in (10) and
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(11). Here, we want higher targe entropy values to be as-
signed to the agents with higher benefits from more ex-
ploration. Then, the target entropy values of the agents
with lower benefit from exploration are reduced due to the
sum constraint. If Hi is reduced from the balance point
Eat∼πi∗

t
[− log πi∗

t ] = Hi, then αi
t will be reduced due to

the form of argminαi
t
αi
t(Eat∼πi

t
[− log πi∗

t ]−Hi) in (11)
since Eat∼πi

t
[− log πi∗

t ]−Hi > 0 for the reducedHi. Then,
in turn, the policy objective (10) with reduced αi

t will focus
more on the pure return term Eat∼πt

[QR∗
JT (st, τt,at)], i.e.,

exploitation.

For such control of multi-agent exploration-exploitation
trade-off, we need to measure the benefit of higher target
entropy value for each agent. Considering the fact that the
ultimate goal of RL is to maximize the return and the entropy
intrinsic reward is added to achieve this ultimate goal in the
end, we propose the partial derivative ∂V R

JT /∂H(πi
t) at

time t to assess the benefit of increasing the target entropy
Hi of Agent i for more exploration at time t, where the value
function of return V R

JT is readily obtained from QR
JT due

to disentanglement. Note that ∂V R
JT /∂H(πi

t) is a natural
metric to assess the benefit of more exploration for entropy-
based exploration. It denotes the change in the joint pure-
return value w.r.t. the differential increase in Agent i’s
policy action entropy, and can be viewed as the credit of the
differential increase of Agent i’s policy entropy to the joint
return. Suppose that ∂V R

JT /∂H(πi
t) > ∂V R

JT /∂H(π
j
t ) for

two agents i and j. Then, if we update two policies πi
t and

πj
t to two new policies so that the entropy of each of the two

policies is increased by the same amount ∆H, then Agent
i contributes more to the pure return than Agent j. Then,
under the total entropy sum constraint, the target entropy of
Agent i should be assigned higher than that of Agent j for
higher return. Furthermore, when this quantity for a certain
agent is highly negative, increasing the target entropy for
this agent can decrease the joint (return) value significantly,
which implies that exploration of this agent can hinder other
agents’ exploitation. Therefore, we allocate higher target
entropy to agents whose ∂V R

JT /∂H(πi
t) is larger.

On top of this basic assignment principle, we add some
countermeasure to prevent the case in which most ofH0 is
assigned to a few dominant agents, and the target entropy
values of the remaining agents reduce to zero and they lose
the opportunity of exploration in the early stage of learning.
One way to prevent this is to set a lower bound on Hi so
thatHi ≥ Hmin,∀i for someHmin throughout the update
ofHi. Another way is more direct. Note thatHi affects αi

t,
and αi

t affects the policy through the αi
t in the soft policy

update formula (10). For αi
t = 0, there is no exploration

by entropy for Agent i. Hence, we can lower bound αi
t

itself above zero, i.e., we clip αi
t from below to guarantee

a certain level of exploration and the softness of the policy

for every agent. We choose the latter option in this paper.

With the above guidelines, we construct the adaptation
method forHi,∀i as follows. At each time step t, we com-
pute the following N -dimensional vector from the samples
in the replay buffer:

βt =
[
β1
t , · · · , βN

t

]
=

Softmax
[
E
[ ∂V R

JT (s, τ )

∂H(π1
t (·|τ1))

]
, · · · ,E

[ ∂V R
JT (s, τ )

∂H(πN
t (·|τN ))

]]
.

(12)

Note that
∑N

i=1 β
i
t = 1 due to the softmax operation, and

the vector βt captures the relative benefit of policy entropy
increase for all agents. Then, to prevent the target entropy
from changing abruptly, we apply exponential moving aver-
age (EMA) filtering for smoothing. The EMA filtered βt is
given by

βt ← (1− ξ)βt + ξβt (13)

where ξ ∈ [0, 1]. Finally, the target entropy for Agent i at
time step t is given by Hi = β

i

tH0 in the case of H0 ≥ 0,
where β

i

t is the i-th element of βt. Then, the entropy sum
constraint

∑N
i=1Hi = H0 is satisfied due to

∑N
i=1 β

i

t = 1.

Summarizing the above, the procedure of ADER is com-
posed of the policy evaluation based on Proposition 1, the
policy update and the temperature parameter update in (10)
and (11), and the target entropy update Hi = β

i

tH0 (for
H0 > 0) with (12) and (13). Throughout the update, the
temperature parameter clipping is applied to guarantee a
minimum level of exploration for every agent.

The implementation details and Pseudocode are provided
in Appendix B. The source code is available at https:
//github.com/wjkim1202/ader.

Computation of The Partial Derivative: The final
ingredient to complete our algorithm is the computation
of the partial derivative w.r.t. individual policy entropy
∂V R

JT /∂H(πi).

For this, we adopt an actor-critic structure and thus, for
each agent we have a separate actor, i.e., policy, in both
continuous-action and discrete-action cases. The compu-
tation of ∂V R

JT (s,τ)

∂H(πi
t(·|τ i))

depends on the overall structure, es-
pecially on the structure of the critic network. To facil-
itate the computation of ∂V R

JT (s,τ)

∂H(πi
t(·|τ i))

, we further employ
value decomposition with a mixing network (Rashid et al.,
2018) to represent each of the disentangled joint action-
value and value functions as a mixture of individual value
functions. For example, the joint value function for pure
return V R

JT (s, τ ) is decomposed as

V R
JT (s, τ ) = fV,R

mix(s, V
R
1 (τ1), · · · , V R

N (τN )), (14)
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where V R
i (τ i) is the individual local value function of Agent

i, and fV,R
mix is the mixing network generating the joint value

V R
JT from the individual local values V R

1 , · · · , V R
N . Simi-

larly, we apply value decomposition and mixing network to
V H,i
JT (s, τ), QR

JT (st, τt,at) and QH,i
JT (st, τt,at), ∀i ∈ N .

The overall structures for continuous-action and discrete-
action cases are shown in Appendix B.

The Continuous-Action Case: In this case, we adopt a
Gaussian policy for each agent. Then, the policy neural
network of Agent i with trainable parameter θi takes current
trajectory τ i as input and generates the mean µi and the
log variance log σi as output. Based on these outputs and
the reparameterization trick, the action of Agent i is gen-
erated as ai = µi + exp(log σi)Zi, where Zi ∼ N(0, I).
The action ai and trajectory τ i are applied as input to the
return critic network QR

j (τ
i, ai) of Agent i, which gen-

erates the local Q-value QR
i (τ

i, ai) due to our imposed
value factorization structure. Then, all local Q-values
QR

1 (τ
1, a1), · · · , QR

N (τN , aN ) from all agents are applied
as input to the mixing network for global return value QR

JT .
Due to the connected tensor structure of the overall network,
at the time of learning, the gradient of QR

JT w.r.t. Gaussian
policy entropy log σi can be computed by deep learning
libraries such as Pytorch. V R

JT can be obtained by sampling
multiple ai’s from the same policy πi

t, computing the corre-
sponding multiple Q-values and taking the average over the
multiple ai samples. The gradient of V R

JT can be obtained
from the gradients of the corresponding multiple QR

JT .

The Discrete-Action Case: In the discrete-action case,
the critic network typically uses the DQN structure (Mnih
et al., 2015a), which takes the trajectory τ i as input and
generates all QR

i (τ
i, ai1), · · · , QR

i (τ
i, ai|A|) as output. In

the discrete-action case, action is over a finite action
set A = {a1, · · · , a|A|}, and the policy πi is described

by a categorical distribution pi =
[
pi1, · · · , pi|A|

]
over

A for each trajectory. Hence, our actor, i.e, policy πi

for Agent i is a deep neural network which takes the
observation τ i as input and generates probability vector
pi =

[
pi1, · · · , pi|A|

]
as output. Let us denote the pol-

icy deep neural network parameter by θi and denote the
policy πi by πi

θi , showing the current parameter explic-

itly. Using the output pi =
[
pi1, · · · , pi|A|

]
of the policy

network and the output QR
i (τ

i, ai1), · · · , QR
i (τ

i, ai|A|) of
the critic network, we compute the local return value as
V R
i (τ i) =

∑|A|
j=1 p

i
j(τ

i)QR
i (τ

i, aij). Then, all local return
values V R

1 (τ1), · · · , V R
N (τN ) are fed to the mixing network

to yield the global return value V R
JT as in (14).

In this discrete-action case, the policy entropy is given by
H(πi

θi(·|τ i)) = −
∑N

j=1 p
i
j log p

i
j . On the contrary to the

continuous-action case in which the policy entropy log σi

is an explicit node value in the overall architecture and
hence the output V R

JT gradient w.r.t. the node log σi is
directly available, in the discrete-action case there is no
node in the learing architecture corresponding to the value
H(πi

θi(·|τ i)) = −
∑N

j=1 p
i
j log p

i
j . Hence, the gradient

∂V R
JT

∂H(πi
θi

)
is not readily available from the architecture. Note

that we only have nodes for pi1, · · · , pi|A| in the architec-

ture, but the gradient of V R
JT w.r.t. pij is not ∂V R

JT

∂H(πi
θi

)
. Fur-

thermore, it is not easy to compute ∂V R
JT

∂H(πi
θi

)
from ∂V R

JT

∂pi
j

,

j = 1, · · · , |A| with
∑

j p
i
j = 1 for general cardinality |A|.

To circumvent this difficulty and compute the metric
∂V R

JT

∂H(πi
θi

)
, we exploit the policy network parameter θi and

numerical computation. For the current policy network
parameter θi, we have the corresponding policy network
output pi1, · · · , pi|A|. Now, we consider the scalar objective
function H(πi

θi) for the policy network, and compute the
gradient of H(πi

θi) w.r.t. the policy parameter θi. Let us

denote this gradient by
∂H(πi

θi
)

∂θi , which is the direction of
θi for maximum policy entropy increase. With this gradi-

ent, we update the policy parameter as θ̃i = θi + δ
∂H(πi

θi
)

∂θi ,
where δ is a positive stepsize. Then, for the updated policy
πi
θ̃i

, we compute the corresponding pi1, · · · , pi|A| and the
corresponding entropy. Using the local Q-values QR

i (τi, a
i
j)

and the updated probability values, we compute the up-
dated local value V R

i . Using the values before and after

the update, we compute ∆V R
i (τ i)

∆H(πi) =
V R
i (τ i;πi

θ̃i
)−V R

i (τ i;πi
θi

)

H(πi
θ̃i

)−H(πi
θi

)
.

Finally, the metric ∂V R
JT

∂H(πi
θi

)
can be computed based on the

chain rule exploiting the imposed value factorization struc-
ture. That is, ∂V R

JT

∂H(πi
θi

)
=

∂V R
JT (s,τ )

∂V R
i (τ i)

· ∂V
R
i (τ i)

∂H(πi
θi

)
, where the

first term ∂V R
JT (s,τ )

∂V R
i (τ i)

is available from deep learning libraries

since V R
JT and V R

i are nodes of the learning architecture.

The second term ∂V R
i (τ i)

∂H(πi
θi

)
can be approximated by ∆V R

i (τ i)
∆H(πi)

above. Note that the policy update θ̃i = θi + δ
∂H(πi

θi
)

∂θi is
only for computation of the metric, and is not done for actual
learning update. Note that the role of value decomposition
in addition to disentanglement is critical to compute the
desired metric, i.e., credit of differential entropy increase of
Agent i to the global return. This is another meaningful use
case of value decomposition.

4. Experiments
Here, we provide numerical results and ablation studies.

Continuous Cooperative Matrix Game As mentioned
in Sec.1, the goal of this environment is to learn two actions
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(a) Averaged test return (b) Target entropy

Figure 2. (a) The performance of ADER and the baselines on the
considered matrix game and (b) The learned target entropy values
during the training.

a1 and a2 so that the position (a1, a2) starting from (0, 0)
to reach the target circle along a narrow path, as shown in
Fig. 1. The maximum reward 5 is obtained if the position
reaches the center of the circle. We compare ADER with
four baselines. One is SER-MARL with the same target
entropy for all agents. The second is SER-MARL with
different-but-constant target entropy values for two agents
(SER-DCE). Here, we set a higher target entropy for a1
than a2. The third is Reversed ADER, which reversely
uses the proposed metric −∂V R

JT /∂H(πi
t) for the level of

required exploration. The fourth is FOP, which is an entropy-
regularized MARL algorithm.

Fig. 2(a) shows the performance of ADER and the baselines
averaged over 5 random seeds. It is seen that the considered
baselines fail to learn to reach the target circle, whereas
ADER successfully learns to reach the circle. Here, the
different-but-constant target entropy values of SER-DCE
are fixed as (H1,H2) = (−0.7,−1.3), which are the max-
imum entropy values in ADER. It is observed that SER-
DCE performs slightly better than SER-MARL but cannot
learn the task with time-varying multi-agent exploration-
exploitation trade-off. Fig. 2(b) shows the target entropy
values H1 and H2 for a1 and a2, respectively, which are
learned with the proposed metric during training, and shows
how ADER learns to reach the target circle based on adap-
tive exploration. The black dotted lines in Figs. 2(a) and (b)
denote the time when the position reaches the junction of
the two subpaths. Before the dotted line (phase 1), ADER
learns so that the target entropy of a1 increases whereas
the target entropy of a2 decreases. So, Agent 1 and Agent
2 are trained so as to focus on exploration and exploita-
tion, respectively. After the black dotted line (phase 2), the
learning behaviors of target entropy values of a1 and a2 are
reversed so that Agent 1 now does exploitation and Agent 2
does exploration. That is, the trade-off of exploitation and
exploration is changed across the two agents. In the con-
sidered game, ADER successfully learns the time-varying
trade-off of multi-agent exploration-exploitation by learning
appropriate target entropies for the two agents.

Starcraft II We evaluated ADER on the StarcraftII micro-
management benchmark (SMAC) environment (Samvelyan
et al., 2019). To make the problem more difficult, we modi-
fied the SMAC environment to be sparse. The considered
sparse reward setting consisted of a dead reward and time-
penalty reward. The dead reward was given only when
an ally or an enemy died. Unlike the original reward in
SMAC which gives the hit-point damage dealt as a reward,
multiple agents did not receive a reward for damaging the
enemy immediately in our sparse reward setting. We com-
pared ADER with six state-of-the-art baselines: DOP (Wang
et al., 2020), FACMAC (Peng et al., 2021), FOP (Zhang
et al., 2021), LICA (Zhou et al., 2020), QMIX (Rashid et al.,
2018), VDAC(Su et al., 2021) and MAPPO (Yu et al., 2021).
For evaluation, we conducted experiments on the different
SMAC maps with 5 different random seeds. Fig. 3 shows
the performance of ADER and the considered seven base-
lines on the modified SMAC environment. It is seen that
ADER significantly outperforms other baselines in terms of
training speed and final performance. Especially in the hard
tasks with imbalance between allies and enemies such as
MMM2, and 8m vs 9m, it is difficult to obtain a reward due
to the simultaneous exploration of multiple agents. Thus,
consideration of multi-agent exploration-exploitation trade-
off is required to solve the task, and it seems that ADER
effectively achieves this goal.

Continuous Action Tasks We evaluated ADER on two
complex continuous action tasks: multi-agent HalfCheetah
(Peng et al., 2021) and heterogeneous predator-prey (H-
PP). The multi-agent HalfCheetah divides the body into
disjoint sub-graphs and each sub-graph corresponds to an
agent. We used 6 × 1-HalfCheetah, which consists of six
agents with one action dimension. Next, the H-PP consists
of three agents, where the maximum speeds of an agent and
other agents are different. In both environments, each agent
has a different role to achieve the common goal and thus
the multi-agent exploration-exploitation trade-off should
be considered. Here, we used two baselines: SER-MARL
and FACMAC (Peng et al., 2021). In Fig. 4, showing the
performance of ADER and the baselines averaged over 9
random seeds, ADER outperforms the considered baselines.

Additional experiment results on the original SMAC tasks,
SMAC v2 (Ellis et al., 2022), and Google Research Football
(GRF) task (Kurach et al., 2020) are provided in Appendix
D, also showing significant improvement by our algorithm.

Ablation Study We conducted an ablation study on the
key factors of ADER in the SMAC environment. First, we
compared ADER with SER-MARL. As in the continuous
action tasks, Fig. 5 shows that ADER outperforms SER-
MARL. From the result, it is seen that consideration of the
multi-agent exploration-exploitation trade-off yields better
performance. Second, we compared ADER with and with-
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(a) MMM2 (b) 8m vs 9m (c) 1c3s5z (c) 3m

Figure 3. Average test win rate on the SMAC maps. More results are provided in Appendix D.

(a) HalfCheetah(6× 1) (b) H-PP

Figure 4. Performance on multi-agent HalfCheetah and H-PP

out the EMA filter. As seen in Fig. 5, it seems that the EMA
filter enhances the stability of ADER. Third, we conducted
an experiment to access the effectiveness of disentangling
exploration and exploitation. We implemented ADER based
on one critic which estimates the sum of return and entropy.
As seen in Fig. 5, using two types of value functions yields
better performance. Lastly, we compare ADER with and
without the monotonic constraint on the value decomposi-
tion to see the necessity of the monotonic constraint. It is
seen that enforcing the constraint improves performance.

The training details for all considered environments and
further ablation studies are provided in Appendix C and D,
respectively.

5. Conclusion and Dicussion
We have proposed the ADER framework for MARL to han-
dle multi-agent exploration-exploitation trade-off. The pro-
posed method is based on entropy regularization with learn-
ing proper target entropy values across agents over time by
using a newly-proposed metric to measure the relative ben-
efit of more exploration for each agent. Numerical results
on various tasks show that ADER can handle time-varying
multi-agent exploration-exploitation trade-off effectively
and outperforms other state-of-the-art baselines. Further-
more, we expect the key ideas of ADER can be applied to
other problems such as intrinsic reward design for MARL.

(a) MMM2 (b) 8m vs 9m

Figure 5. Ablation study: Disentangled exploration (DE), EMA fil-
ter (ξ = 0), SER-MARL (fixed target entropy) and the monotonic
constraint (MC)

In particular, our adaptive entropy control method can be
applied to many conventionally ”single-agent” RL tasks
with multiple action dimensions by viewing each action di-
mension as one agent and controling dimension-wise target
entropy under the total entropy constraint on the overall
multi-dimensional action. Such application can be helpful
when each action dimension of single agent can significantly
affect other action dimensions. Up to now, we assumed
fixedH0, which is the main hyperparameter of our method.
Learning ofH0 remains as a future research work.
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Appendix A: Proofs
Proposition .1. The decomposed soft Bellman operators T π

R and T π
H,i are contractions.

Proof: The action value functions QR
JT (τt,at) and QH,i

JT (τt,at) can be estimated based on their corresponding Bellman
backup operators, defined by

T π
RQR

JT (st, τt,at) := rt + γE
[
V R
JT (st+1, τt+1)

]
, where (15)

V R
JT (st, τt) = E

[
QR

JT (st, τt,at)
]

T π
H,iQ

H,i
JT (st, τt,at) := γE

[
V H,i
JT (st+1, τt+1)

]
, where (16)

V H,i
JT (st, τt) = E

[
QH,i

JT (st, τt,at)− αi log π(ait|τ it )
]
.

Here, V R
JT (st, τt) and V H,i

JT (st, τt) are the joint value functions regarding reward and entropy, respectively.

First, let us consider the decomposed Bellman operator regarding reward, T π
R . For the sake of simplicity, we abbreviate

(QR
JT , Q

H,i
JT , V R

JT , V
H,i
JT ) as (QR, QH,i, V R, V H,i). From (15), we have

T π
RQR(st, τt,at) = rt + γEst+1,τt+1,at+1

[
QR(st+1, τt+1,at+1)

]
. (17)

Then, we have

∥T π
R (q1t )− T π

R (q2t )∥∞
= ∥(rt + γ

∑
st+1, τt+1

at+1

π(at+1|τt+1)p(st+1, τt+1|st, τt,at) · q1t+1)

− (rt + γ
∑

st+1, τt+1
at+1

π(at+1|τt+1)p(st+1, τt+1|st, τt,at) · q2t+1)∥∞

= ∥γ
∑

st+1, τt+1
at+1

π(at+1|τt+1)p(st+1, τt+1|st, τt,at) · (q1t+1 − q2t+1))∥∞

≤ ∥γ
∑

st+1, τt+1
at+1

π(at+1|τt+1)p(st+1, τt+1|st, τt,at)∥∞∥q1t+1 − q2t+1∥∞

≤ γ∥q1t+1 − q2t+1∥∞

for q1t =
[
QR

1 (st, τt,at)
]

st ∈ S,at ∈ A
τt ∈ (Ω × A)∗

and q2t =
[
QR

2 (st, τt,at)
]

st ∈ S,at ∈ A
τt ∈ (Ω × A)∗

since

∥
∑

st+1, τt+1
at+1

π(at+1|τt+1)p(st+1, τt+1|st, τt,at)∥∞ ≤ 1. Thus, the operator T π
R is a γ-contraction.

Next, let us consider the decomposed Bellman operator regarding entropy, T π
H,i. From (16), we have

T π
H,iQ

H,i(st, τt,at) = γE
[
QH,i(st+1, τt+1,at+1)− αi log π(ait+1|τ it+1))

]
. (18)
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Then, we have

∥T π
H,i(q

1
t )− T π

H,i(q
2
t )∥∞

= ∥(γ
∑

st+1, τt+1
at+1

π(at+1|τt+1)p(st+1, τt+1|st, τt,at) · (q1t+1 − αi log π(ait+1|τ it+1))

− (γ
∑

st+1, τt+1
at+1

π(at+1|τt+1)p(st+1, τt+1|st, τt,at) · (q2t+1 − αi log π(ait+1|τ it+1))∥∞

= ∥γ
∑

st+1, τt+1
at+1

π(at+1|τt+1)p(st+1, τt+1|st, τt,at) · (q1t+1 − q2t+1))∥∞

≤ ∥γ
∑

st+1, τt+1
at+1

π(at+1|τt+1)p(st+1, τt+1|st, τt,at)∥∞∥q1t+1 − q2t+1∥∞

≤ γ∥q1t+1 − q2t+1∥∞

for q1t =
[
QR

1 (st, τt,at)
]

st ∈ S,at ∈ A
τt ∈ (Ω × A)∗

and q2t =
[
QR

2 (st, τt,at)
]

st ∈ S,at ∈ A
τt ∈ (Ω × A)∗

since

∥
∑

st+1, τt+1
at+1

π(at+1|τt+1)p(st+1, τt+1|st, τt,at)∥∞ ≤ 1. Thus, the operator T π
H,i is a γ-contraction.
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Appendix B: Detailed Implementation
Here, we describe the implementation of ADER for discrete action tasks based on SAC-discrete (Christodoulou, 2019).
The learning process consists of the update of both temperature parameters and target entropies and the approximation of
multi-agent maximum entropy solution, which consists of the update of the joint policy and the critics. To do this, we first
approximate the policies {πi

ϕi
}Ni=1, the joint action value functions QR

JT,θR
and QH,i

JT,θH,i
by using deep neural networks

with parameters, {ϕi}Ni=1, θR and {θH,i}Ni=1.

First, the joint policy is updated based on Eq. (12) and the loss function is given by

L(ϕ) = E(st,τt)∼D,{ai
t∼πi(·|τ i

t )}N
i=1

[
N∑
i=1

αi(log πi
ϕi
(ait|τ it )−QH,i

JT,θH,i
(st, τt,at))

−QR
JT,θR(st, τt,at)

]
, (B.1)

where ϕ = {ϕi}Ni=1 is the parameter for the joint policy. Next, the joint action value functions are trained based on the
disentangled Bellman operators defined in Eq. (10) and the loss functions are given by

L(θR) = E(st,τt,at,st+1,τt+1)∼D

[
1

2
(QR

JT,θR(st, τt,at)− (rt + γV R
JT,θ̄R

(st+1, τt+1)))
2

]
(B.2)

L(θH,i) = E(st,τt,at,st+1,τt+1)∼D

[
1

2
(QH,i

JT,θi
(st, τt,at)− γV H,i

JT,θ̄H,i
(st+1, τt+1)))

2

]
(B.3)

where V R
JT,θ̄R

and V H,i

JT,θ̄H,i
are defined as follows:

V R
JT,θ̄R

(st, τt) = E
[
QR

JT,θ̄R
(st, τt,at)

]
(B.4)

V H,i

JT,θ̄H,i
(st, τt) = E

[
QH,i

JT,θ̄H,i
(st, τt,at)− αi log π(ait|τ it )

]
. (B.5)

Note that θ̄R and θ̄H,i are obtained based on the EMA of the parameters of the joint action-value functions.

Although the definitions of the state value functions are given by (B.4) and (B.5), we do not use this definition to compute
the state value functions. This is because the marginalization over joint action becomes complex as the number of agents
increases. For the practical computation of V R

JT and V H,i
JT , we do the following for reduced complexity. We first marginalize

the individual Q-function based on individual action to get V R
i . Then, we feed V R

1 , · · · , V R
N of all agents to the mixing

network fV,R
mix to obtain the joint state value function as V R

JT (s, τ ) = fV,R
mix(s, V

R
1 (τ1), · · · , V R

N (τN )). Here, fV,R
mix is learned

such that fV,R
mix follows the definition by the TD loss eq. (B.2) and the Bellman equation. In addition, we share the mixing

network for QH,i
JT for all i ∈ N and inject the one-hot vector which denotes the agent index i to handle the scalability.

We update the temperature parameters based on Eq. (13) and the loss function is given by

L(αi) = Eτt∼D,{ai
t∼πi(·|τ i

t )}N
i=1

[
−αi logπt(a

i
t|τ it )− αiHi

]
, ∀i ∈ N . (B.6)

Finally, we update the target entropy of each agent. ForH0 ≥ 0, we set the coefficients βi for determining the individual
target entropyHi as β =

[
β1, · · · , βi, · · · , βN

]
=

Softmax

[
E
[ ∂V R

JT (s, τ )

∂H(π1
t (·|τ1))

]
, · · · ,E

[ ∂V R
JT (s, τ )

∂H(πi
t(·|τ i))

]
, · · · ,E

[ ∂V R
JT (s, τ )

∂H(πN
t (·|τN ))

]]
, (B.7)

where the computation of ∂V R
JT (s,τ)

∂H(πi
t(·|τ i))

is explained in Sec. 5.

Note that we change the sign of the elements in Eq. (B.7) ifH0 < 0 to satisfy the core idea of ADER, which assigns a high
target entropy to the agent whose benefit to the joint value is small.
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In addition, before the softmax layer, we normalize the elements in Eq. (B.7). Based on the coefficients, the target entropy is
given byHi = βEMA

i ×H0 where βEMA
i is computed recursively as

βEMA ← (1− ξ)βEMA + ξβ (B.8)

B1. Computation of the metric ∂V R
JT (s,τ)

∂H(πi
t(·|τ i))

We adopted an actor-critic structure for our algorithm. Hence, for each agent we have a separate actor, i.e., policy in both
continuous-action and discrete-action cases, as seen in Figures 6 and 7, which show the overall structure for continuous-
action and discrete-action cases, respectively. The computation of the partial derivative ∂V R

JT (s,τ)

∂H(πi
t(·|τ i))

in Eq. (B.7) depends on
the overall structure, especially on the structure of the individual critic network.

First, consider the continuous-action case. In this case, we used a Gaussian policy for each agent. Then, the policy neural
network of Agent i with trainable parameter θi takes trajectory τ it as input and generates the mean µi and the log variance
log σi as output, as shown in Figure 6. Based on these outputs and the reparameterization trick, the action of Agent i is
generated as ai = µi + exp(log σi)Zi, where Zi is Gaussian-distributed with zero mean and identity covariance matrix,
i.e., Zi ∼ N(0, I). The action ai and trajectory τ i are applied as input to both return and entropy critic networks for Agent
i, as seen in Figure 6. Now, focus on the return critic network of Agent i, which is relevant to the computation of our metric.
The return critic of Agent i generates the local Q-value QR

i (τ
i, ai). All local Q-values QR

1 (τ
1, a1), · · · , QR

N (τN , aN ) from
all agents are applied as input to the mixing network for global return value QR

JT , as seen in Figure 6. Due to the connected
tensor structure in Figure 6, at the time of learning, the gradient of QR

JT with respect to log σi can be computed by deep
learning libraries such as Pytorch. Note that log σi is simply a scaled version of the Gaussian policy entropy. So, we can
just obtain this value ∂QR

JT /∂ log σi from deep learning libraries. Furthermore, V R
JT can be obtained by sampling multiple

ai’s from the same policy πi
t, computing the corresponding multiple Q-values and taking the average over the multiple ai

samples. However, we simplify this step and just use ∂QR
JT /∂ log σi as our estimate for the metric ∂V R

JT (s,τ)

∂H(πi
t(·|τ i))

. Indeed,
many algorithms use single-sample average for obtaining expectations for algorithm simplicity.

Second, consider the discrete-action case. In this case, we again use an actor-critic structure for our algorithm. The structure
of the critic network of Agent i in the discrete-action case is different from that in the continuous-action case. Whereas the
critic network takes the trajectory τ i and the action ai as input, and generates QR

i (τ
i, ai) in the continuous-action case, the

critic network typically uses the DQN structure (Mnih et al. 2015), which takes the trajectory τ i as input and generates
all QR

i (τ
i, ai1), · · · , QR

i (τ
i, ai|A|) as output in the discrete-action case. In the discrete-action case, action is over a finite

action set A = {a1, · · · , a|A|}, and the policy is described by a categorical distribution pi =
[
pi1, · · · , pi|A|

]
over A for

each state (or trajectory). Hence, our actor, i.e, policy πi for Agent i is a deep neural network which takes the observation
τ i as input and generates probability vector pi =

[
pi1, · · · , pi|A|

]
as output. Here, let us denote the policy deep neural

network parameter by θi and denote the policy πi
t by πi

θi , showing the current parameter explicitly. Then, using the output

pi =
[
pi1, · · · , pi|A|

]
of the policy network and the output QR

i (τ
i, ai1), · · · , QR

i (τ
i, ai|A|) of the critic network, we compute

the local return value as

V R
i (τ i) =

|A|∑
j=1

pij(τ
i)QR

i (τ
i, aij). (19)

Then, all local return values V R
1 (τ1), · · · , V R

N (τN ) are fed to the mixing network for global return value V R
JT , as seen in

Figure 7.

In this discrete-action case, the policy entropy is given by H(πi
θi(·|τ i)) = −

∑N
j=1 p

i
j log p

i
j . On the contrary to the

continuous-action case in which the policy entropy log σi is an explicit node value in the overall structure and hence
the output V R

JT gradient with respect to the node log σi is directly available, in the discrete-action case there is no node

corresponding to the value H(πi
θi(·|τ i)) = −

∑N
j=1 p

i
j log p

i
j . Hence, the gradient ∂V R

JT

∂H(πi
θi

)
is not readily available from

the architecture. Note that we only have nodes for pi1, · · · , pi|A| in the architecture, but the gradient of V R
JT with respect to

pij is not ∂V R
JT

∂H(πi
θi

)
. Furthermore, it is not easy to compute ∂V R

JT

∂H(πi
θi

)
from ∂V R

JT

∂pi
j

, j = 1, · · · , |A| with
∑

j p
i
j = 1 for general

cardinality |A|.
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To circumvent this difficulty and compute the metric ∂V R
JT

∂H(πi
θi

)
, we exploit the policy network parameter θi and numer-

ical computation. When the current policy network parameter is θi, we have the corresponding policy network output
pi1, · · · , pi|A|. Then, consider the temporary scalar objective functionH(πi

θi) for the policy network. We can compute the

gradient ofH(πi
θi) with respect to the policy parameter θi. Let us denote this gradient by

∂H(πi
θi

)

∂θi , which is the direction

of θi for maximum policy entropy increase. Then, we update the policy parameter as θ̃i = θi + δ
∂H(πi

θi
)

∂θi , where δ is
a positive stepsize. Then, for the updated policy πi

θ̃i
, we compute the corresponding pi1, · · · , pi|A|. Using these updated

probability values, we compute the local value V R
i by using eq. (19). Using the values before and after the update, we

compute ∆V R
i (τ i)

∆H(πi) =
V R
i (τ i;πi

θ̃i
)−V R

i (τ i;πi
θi

)

H(πi
θ̃i

)−H(πi
θi

)
.

Now, the metric ∂V R
JT

∂H(πi
θi

)
can be computed based on the chain rule. That is, we have ∂V R

JT

∂H(πi
θi

)
=

∂V R
JT (s,τ )

∂V R
i (τ i)

× ∂V R
i (τ i)

∂H(πi
θi

)
. Here,

the first term ∂V R
JT (s,τ )

∂V R
i (τ i)

is available from deep learning libraries since V R
JT and V R

i are nodes of the learning architecture.

The second term ∂V R
i (τ i)

∂H(πi
θi

)
can be approximated by ∆V R

i (τ i)
∆H(πi) in the above.

Note that the policy update θ̃i = θi + δ
∂H(πi

θi
)

∂θi is only for computation of the metric. It is not done for the actual learning
update.

B2. Overall Architecture and Algorithm Pseudocode

We summarize the proposed algorithm in Algorithm 1 and illustrate the overall architecture of the proposed ADER in
Figures 6 and 7.

Algorithm 1 ADaptive Entropy-Regularization for multi-agent reinforcement learning (ADER)

Initialize parameters {ϕi}Ni=1, θR, {θH,i}Ni=1, θ̄R, {θ̄H,i}Ni=1

Generate a trajectory τ by interacting with the environment by using the joint policy π and store τ in the replay memory
for episode = 1, 2, · · · do

Generate a trajectory τ by using the joint policy π and store τ in the replay memory D
for each gradient step do

Sample a minibatch from D
Update {ϕi}Ni=1 by minimizing the loss function Eq. (B.1)
Update θR, {θH,i}Ni=1 by minimizing the loss functions Eq. (B.2) and Eq. (B.3)
Update αi by minimizing the loss function Eq. (B.6)
Update {Hi}Ni=1 by computing Eq. (B.7) and Eq. (B.8)
Update θ̄R and {θ̄H,i}Ni=1 by EMA based on θR and {θH,i}Ni=1

end for
end for
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Figure 6. Overall architecture of ADER in continuous action cases
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Figure 7. Overall architecture of ADER in discrete action cases
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Appendix C: Training details

We compute the joint value function as V R
JT (s, τ) = fV,R

mix(s, V
R
1 (τ1), · · · , V R

N (τN )). To compute this, as similar in (Zhang
et al., 2021), we first obtain the local value functions as V R

i (τ i) = Eai [QR(τ i, ai)] and then input the obtained local value
functions into the mixing network. For discrete action environments, we share the mixing network for both V R

JT and QR
JT ,

and thus the mixing network is trained to minimize the TD error of QR
JT . It works well as the reviewer can see in the

experimental results. For continuous action environments, we use two mixing networks for V R
JT and QR

JT which are trained
separately as in SAC (Haarnoja et al., 2018a). In addition, we need N mixing networks for QH,i

JT . To handle the scalability,
we share the mixing network for QH,i

JT for all i ∈ N and inject the one-hot vector which denotes the agent index i as QMIX
shares the local Q-functions with one parameterized neural network.

C1. Environment Details

Multi-agent HalfCheetah We considered the multi-agent HalfCheetah introduced in (Peng et al., 2021). The multi-agent
HalfCheetah divides the body into disjoint sub-graphs and each sub-graph corresponds to an agent. We used 6 × 1-
HalfCheetah, which consists of six agents with one action dimension. We set the maximum graph distance k = 1, where k
denotes the distance each agent can observe. We set the maximum episode length as Tmax = 1000.

Heterogeneous Predator-Prey (H-PP) We modified the continuous predator-prey environment considered in (Peng
et al., 2021) to be heterogeneous. The considered heterogeneous predator-prey consists of three predator agents, where the
maximum speeds of an agent (v1max = 1.0) and other agents (v2max = 0.75) are different, three preys with the maximum
speed (v3max = 1.25) is faster than all predators and the landmarks. The preys move away from the nearest predator
implemented in (Peng et al., 2021) and thus the predators should be trained to pick one prey and catch the prey together.
Each agent observes the relative positions of the other predators and the landmarks within view range and the relative
positions and velocities of the prey within view range. The reward +10 is given when one of the predators collides with the
prey. We set the maximum episode length as Tmax = 50.

Starcraft II We evaluated ADER on the StarcraftII micromanagement benchmark (SMAC) environment (Samvelyan
et al., 2019). To make the problem more difficult, we modified the SMAC environment to be sparse. The considered sparse
reward setting consists of a death reward and time-penalty reward. The time-penalty reward is −0.1 and the death reward is
given +10 and −1 when one enemy dies and one ally dies, respectively. Additionally, the dead reward is given +200 if all
enemies die.

C2. Training Details and Hyperparameters

We implemented ADER based on (Samvelyan et al., 2019; Peng et al., 2021; Zhang et al., 2021) and conducted the
experiments on a server with Intel(R) Xeon(R) Gold 6240R CPU @ 2.40GHz and 8 Nvidia Titan xp GPUs. Each experiment
took about 12 to 24 hours. We used the implementations of the considered baselines provided by the authors.

Multi-agent HalfCheetah In the multi-agent halfcheetah environment, the architecture of the policies and critics for
ADER follows (Peng et al., 2021). We use an MLP with 2 hidden layers which have 400 and 300 hidden units and ReLU
activation functions. The final layer uses tanh activation function to bound the action as in (Haarnoja et al., 2018a). We also
use the reparameterization trick for the policy as in (Haarnoja et al., 2018a). The replay buffer stores up to 106 transitions
and 100 transitions are uniformly sampled for training. As in (Haarnoja et al., 2018b), we set the sum of target entropy as

H0 = N × (−dim(A)) = 6× (−1) = −6,

where N is the number of agents. We set the hyperparameter for EMA filter as ξ = 0.9 and initialize the temperature
parameters as αi

init = e−2 for all i ∈ N .

Heterogeneous Predator-Prey In the heterogeneous predator-prey environment, the architecture of the policies and
critics for ADER follows (Peng et al., 2021). To parameterize the policy, we use a deep neural network which consists of a
fully-connected layer, GRU and a fully-connected layer which have 64 dimensional hidden units. The final layer uses tanh
activation function to bound the action. Next, for the critic network, we use a MLP with 2 hidden layers which have 64
hidden units and ReLU activation function. The replay buffer stores up to 5000 episodes and 32 episodes are uniformly
sampled for training. As in (Haarnoja et al., 2018b), we set the sum of target entropy as

H0 = N × (−dim(A)) = 3× (−2) = −6.
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We set the hyperparameter for EMA filter as ξ = 0.9 and initialize the temperature parameters as αi
init = e−2 for all i ∈ N .

Starcraft II For parameterization of the policy we use a deep neural network which consists of a fully-connected layer,
GRU and a fully-connected layer which have 64 dimensional hidden units. For the critic networks we use a MLP with 2
hidden layers which have 64 hidden units and ReLU activation function. The replay buffer stores up to 5000 episodes and
32 episodes are uniformly sampled for training. For the considered maps in SMAC, we use different hyperparameters. We
set the sum of target entropy based on the maximum entropy, which can be achieved if the policy is uniform distribution, as

H0 = N ×H∗ × kratio = N × log(dim(A))× kratio.

The values of kratio, ξ, and initial temperature parameter for each map are summarized Table 1.

Table 1. Hyperparameters for the considered SMAC environment

MAP kratio ξ αi
init

1c3s5z 0.05 0.9 e−3

3m 0.1 0.9 e−2

3s5z 0.05 0.9 e−3

3s vs 3z 0.1 0.9 e−3

MMM2 0.1 0.9 e−2.5

8m vs 9m 0.1 0.9 e−3

In all the considered environments, we apply the value factorization technique proposed in (Rashid et al., 2018). The
architecture of the mixing network for ADER, which follows (Rashid et al., 2018), takes the output of individual critics as
input and outputs the joint action value function. The weights of the mixing network are produced by the hypernetwork
which takes the global state as input. The hypernetwork consists of a MLP with a single hidden layer and an ELU activation
function. Due to the ELU activation function, the weights of the mixing network are non-negative and this achieves the
monotonic constraint in (Rashid et al., 2018). We expect that ADER can use other value factorization technique to yield
better performance.
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Appendix D: Further experiments
D1. Experiments on the original SMAC environments

We here provide the experiments on the original SMAC environments. We compared ADER with three baselines including
FACMAC (Peng et al., 2021), FOP (Zhang et al., 2021) and QMIX (Rashid et al., 2018). For all the considered maps, ADER
outperforms the baselines, as shown in Fig. 8. Thus, the proposed adaptive entropy-regularization method performs well in
both original and sparse SMAC environments.

(a) MMM2 (b) 8m vs 9m (c) 3s5z

Figure 8. Average test win rate on the original SMAC maps.

D2. Experiments on google research football environment

We evaluated ADER on the google research football (GRF) environment, which is known as hard exploration tasks. We
consider one scenario in GRF named Academy 3 vs 1 with keeper. In this environment, the agents receive a reward only
when they succeed in scoring, which requires hard exploration. Thus, it is difficult to obtain the reward if all agents focus on
exploration simultaneously.

We compared ADER with four baselines: QMIX, FOP, FACMAC, and SER-MARL. Fig. 9 shows the performance of
ADER and the baselines, and the y-axis in Fig. 9 denotes the median winning rate over 7 random seed. It is seen in Fig. 9
that ADER outperforms the baselines significantly. Since ADER handles multi-agent exploration-exploitation trade-off
across multiple agents and over time, ADER performs better than SER-MARL, which keeps the same level of exploration
across agents.

(a) Academy 3 vs 1 with keeper

Figure 9. Median test winning rate on Academy 3 vs 1 with keeper
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D3. Experiments on the modified SMAC environments

Fig. 10 shows the performance of ADER and the considered seven baselines on the modified SMAC environment. It is seen
that ADER outperforms all the considered baselines. Especially, on the hard tasks shown in Fig. 10 , ADER significantly
outperforms other baselines in terms of training speed and final performance. This is because those hard maps require
high-quality adaptive exploration across agents over time. In the maps 3s vs 3z, the stalkers (ally) should attack a zealot
(enemy) many times and thus the considered reward is rarely obtained. In addition, since the stalker is a ranged attacker
whereas the zealot is a melee attacker, the stalker should be trained to attack the zealot at a distance while avoiding the zealot.
For this reason, if all stalkers focus on exploration simultaneously, they hardly remove the zealot, which leads to failure in
solving the task. Similarly, in the hard tasks with imbalance between allies and enemies such as MMM2, and 8m vs 9m, it
is difficult to obtain a reward due to the simultaneous exploration of multiple agents. Thus, consideration of multi-agent
exploration-exploitation trade-off is required to solve the task, and it seems that ADER effectively achieves this goal.

(a) 3s vs 3z (b) 1c3s5z (c) MMM2

(d) 8m vs 9m (e) 3m (f) 3s5z

Figure 10. Average test win rate on the sparse SMAC maps.
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D4. Comparison with MAVEN

We additionally provide the comparsion of ADER with MAVEN (Mahajan et al., 2019), which is known as improved
multi-agent exploration QMIX-based algorithm, on the sparse SMAC environment. It is observed that ADER significantly
outperforms MAVEN on the considered environment, as shown in Fig. 11.

(a) 3m (b) 1c3s5z (c) MMM2 (d) 8m vs 9m

Figure 11. Comparison with MAVEN on the sparse SMAC maps.

D5. Experiments on SMACv2 environments

We evaluated ADER with QMIX in the three tasks in SMACv2 environments, which is newly introduced to tackle the
lackness of stochasticity in the SMAC environment. As shown in Fig. 12, ADER outperforms QMIX on the considered
tasks. In addition, ADER also outperforms MAPPO since it was shown that QMIX outperforms MAPPO on SMACv2 (Ellis
et al., 2022).

(a) Zerg 5 vs 5 (b) Terran 5 vs 5 (c) Protoss 5 vs 5

Figure 12. Peformances of ADER (red) and QMIX (gray) on three SMACv2 tasks. y-axis denotes the test return.
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Appendix E: Further Related Works
For effective exploration in single-agent RL, several approaches such as maximum entropy/entropy regularization (Haarnoja
et al., 2017; 2018a), intrinsic motivation (Chentanez et al., 2004; Badia et al., 2019; Burda et al., 2018), parameter noise
(Plappert et al., 2018; Fortunato et al., 2018) and count-based exploration (Ostrovski et al., 2017; Bellemare et al., 2016)
have been considered. Also in MARL, exploration has been actively studied in various ways. MAVEN introduced a latent
variable and maximized the mutual information between the latent variable and the trajectories to solve the poor exploration
of QMIX caused by the representational constraint (Mahajan et al., 2019). Wang et al. (2019) proposes a coordinated
exploration strategy by considering the interaction between agents. Liu et al. (2021b) proposes an efficient coordinated
exploration method based on restricted space selection to encourage multiple agents to explore worthy state space. Zheng
et al. (2021) extends the intrinsic motivation-based exploration method to MARL and utilizes the episodic memory which
stores highly rewarded episodes to boost learning. Gupta et al. (2021) promotes joint exploration by learning different tasks
simultaneously based on multi-agent universal successor features to address the problem of relative overgeneralization. The
aforementioned methods successfully improve exploration in MARL. However, to the best of our knowledge, none of the
works address the multi-agent exploration-exploitation tradeoff, which is the main motivation of this paper.

Appendix F: Limitation
In this paper, we only considered a fully cooperative setting where multiple agents share the global reward and showed
that the proposed method successfully addresses the multi-agent exploration-exploitation tradeoff in such setting. However,
the metric to measure the benefit of exploration can differ in other MARL settings such as mixed cooperative-competitive
settings. Thus, we believe finding the metric in other MARL settings can be a good research direction.
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