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Abstract
Variational autoencoders (VAEs) are one of the
deep generative models that have experienced
enormous success over the past decades. How-
ever, in practice, they suffer from a problem called
posterior collapse, which occurs when the encoder
coincides, or collapses, with the prior taking no
information from the latent structure of the input
data into consideration. In this work, we intro-
duce an inverse Lipschitz neural network into the
decoder and, based on this architecture, provide a
new method that can control in a simple and clear
manner the degree of posterior collapse for a wide
range of VAE models equipped with a concrete
theoretical guarantee. We also illustrate the effec-
tiveness of our method through several numerical
experiments.

1. Introduction
1.1. Background and Organization

Over the past decades, generative models that aim to capture
the distribution of a given data have intensively contributed
to the creation of many performant algorithms in the field
of machine learning and artificial intelligence. The recent
surge of interest in incorporating expressive neural networks
into statistical and probabilistic methods has even more en-
hanced their ability to handle high-dimensional data such as
image, text and speech. Especially, variational autoencoders
(VAEs) are one of these deep generative models that have
experienced enormous success (Kingma & Welling, 2014;
Rezende et al., 2014). They can draw low-dimensional la-
tent random variables from a predefined prior distribution
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and transform them into meaningful data using deep neural
networks trained on a tractable objective function called the
evidence lower bound (ELBO).

While VAEs are nowadays omnipresent in the field of ma-
chine learning, it is also widely recognized that there remain
in practice some major challenges that still require effec-
tive solutions. Notably, they suffer from the problem of
posterior collapse, which occurs when the distribution cor-
responding to the encoder coincides, or collapses, with the
prior taking no information from the latent structure of the
input data into consideration. Also known as KL vanishing
or over-pruning, this phenomenon makes VAEs incapable
to produce pertinent representations and has been reportedly
observed in many fields (e.g., Bowman et al. (2016); Fu et al.
(2019); Wang & Ziyin (2022); Yeung et al. (2017)). There
exists now a large body of literature that examines its under-
lying causes and presents various techniques to prevent it
(e.g., Bowman et al. (2016); He et al. (2019); Razavi et al.
(2019)). Please refer to Subsection 1.3 for further details.

Despite this abundant number of studies conducted so far,
the mechanism of posterior collapse is not completely un-
derstood, and many different approaches, such as β-VAE
and δ-VAE, have been suggested over time based on var-
ied hypotheses and theories. Some blame the variational
inference (Burda et al., 2015; Bowman et al., 2016; Chen
et al., 2017; Fu et al., 2019; Huang et al., 2018; Havrylov &
Titov, 2020; Sønderby et al., 2016; Zhao et al., 2018), some
focus on the optimization procedure (He et al., 2019; Kim
et al., 2018; Li et al., 2019), and others hold the formula-
tion of the model responsible (Dai et al., 2020; Gulrajani
et al., 2017; Yang et al., 2017; van den Oord et al., 2017;
Zhao et al., 2020; Dieng et al., 2019; Yeung et al., 2017;
Razavi et al., 2019). Nevertheless, most proposed methods
are based on heuristics and crucially lack convincing theo-
retical guarantees. That is why a line of work also tries to
rigorously analyse the mechanism of posterior collapse (Dai
et al., 2020; Wang & Ziyin, 2022; Lucas et al., 2019). For
example, the recent work of Wang et al. (2021) showed
that posterior collapse and latent variable non-identifiability
are equivalent. These theoretical works have indeed helped
us recognize the primary cause of this phenomenon. How-
ever, they require the explicit formulation of the VAE and
objective function or too rigid a definition of posterior col-
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lapse. This means guarantees and suggested techniques are
either only applicable to simple problems or lack practical
usefulness.

Therefore, a technique that has both a theoretical guaran-
tee and a broad applicable spectrum is first and foremost
required. In this paper, we investigate a method that can
control in a simple and clear manner the degree of posterior
collapse for a wide range of VAE models equipped with a
concrete analysis that assures this control.

1.2. Contributions

The major contributions of this paper can be summarized as
follows:

• We introduce the concept of inverse Lipschitzness into
the underlying decoder and prove under minor assump-
tions that the degree of posterior collapse can be con-
trolled by this property.

• Based on this theoretical guarantee, we provide the
first method that can not only directly adjust the degree
of posterior collapse but is also simple and applicable
to a broad type of models.

• We explain and illustrate with experiments that our
method is effective and can outperform prior works.

1.3. Related Works

The first held responsible for posterior collapse was the
Kullback-Leibler (KL) divergence between the encoder and
prior, present in the formulation of the ELBO (Bowman
et al., 2016). It would force the model to prioritize its
minimization, leading to posterior collapse. As a result,
many previous works have tried to attenuate its influence
during the training with an annealing scheme (Huang et al.,
2018; Sønderby et al., 2016; Fu et al., 2019). These works
are often summarized as β-VAE originally created for other
goals (Higgins et al., 2017). More loosely, the problem
arises in a sense because optimization fails and is driven into
undesired minima. This has encouraged some researchers
to find tighter bounds than the ELBO (Burda et al., 2015)
or other objective functions (Zhao et al., 2018; Chen et al.,
2017; Havrylov & Titov, 2020). There have even been
attempts to find a more suited optimization procedure (He
et al., 2019; Kim et al., 2018; Li et al., 2019). Others have
pointed out that this phenomenon mainly happens when
VAEs involve high flexibility due to neural networks (Dai
et al., 2020). This point of view has incited researchers
to restrict the flexibility of VAEs (Gulrajani et al., 2017;
Yang et al., 2017) or to modify their architecture (van den
Oord et al., 2017; Zhao et al., 2020; Dieng et al., 2019;
Yeung et al., 2017; Li et al., 2022). Although posterior
collapse can be regarded as the optimization falling into

local minima, the recent theoretical investigation of Lucas
et al. (2019) underlined that these spurious stationary points
are not created by the ELBO but are actually inherent in the
exact maximization of the marginal log-likelihood.

δ-VAE (Razavi et al., 2019) is a model that constrains the
variational family of the posterior to assure a minimum dis-
tance from the prior in terms of KL-divergence. That way,
they avoid, by definition, posterior collapse. However, find-
ing parameters that satisfy this structural constraint involves
an additional tedious optimization in general. In this paper,
we will provide a method that can similarly control the dis-
crepancy between the posterior and prior but without any
calculations needed at all.

As the most relevant work to this paper, Wang et al. (2021)
showed that posterior collapse occurs if and only if latent
variables are non-identifiable in the generative model. They
proposed an architecture called latent identifiable VAE (LID-
VAE) that solves this problem of non-identifiability without
losing the flexibility of VAEs. Their definition of posterior
collapse requires the posterior and prior to be exactly equal,
which means their model cannot avoid the usual case in
practice where the posterior and prior are nearly equal. In
this paper, we will work in the same framework as Wang
et al. (2021) but provide a simple model that can handle
broader situations closer to reality.

In the context of generative adversarial networks, Yam-
aguchi & Koyama (2019) introduced into the transport map
a concept equivalent to the inverse Lipschitzness in order
to promote the entropy of the generator distribution and to
avoid a phenomenon called mode collapse. In contrast to in-
verse Lipschitzness, the role of Lipschitz continuity in VAEs
and other machine learning methods has been the subject of
much research (Yang et al., 2020; Barrett et al., 2022). For
example, Barrett et al. (2022) constrained many components
of the VAE including the encoder and the decoder to satisfy
Lipschitz continuity and showed this to be useful to increase
VAE robustness against adversarial attacks.

Organization In Section 2, we will first explain the basic
formulation of VAEs and clarify necessary mathematical
backgrounds. Section 3 will be devoted to the description of
our theoretical analysis, and Section 4 to the implementation
of our proposed model. Finally, Section 5 will illustrate its
effectiveness with synthetic and real-world data.

Notation The Euclidean norm is denoted by ‖ · ‖ for vec-
tors. The exponential family h(x) exp

{
T (x)>ξ −A(ξ)

}
,

where T (x) = (T1(x), . . . , Tt(x))> is called the sufficient
statistic, is represented as EFT (x | ξ), abbreviating the
dependence on h since it does not appear in our analysis.
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2. Preliminaries
In this section, we briefly explain the mathematical back-
ground for VAEs and posterior collapse.

2.1. Variational Autoencoders

Let x = (x1, . . . , xn) ∈ Rm×n be n i.i.d. data points in
Rm, and suppose they were generated from an underlying
structure. In other words, VAEs assume there exists a latent
variable z ∈ Rl sampled from a pre-defined prior p(z) that
creates the observed data through a conditional distribution
pθ(x | z) parameterized over θ, also called a generative
model. In short,

zi ∼ p(z), xi ∼ pθ(x | zi) ∀i = 1, . . . , n. (1)

Under this problem setting, the ultimate goal of VAE is to
maximize the following marginal log-likelihood:

log pθ(x) =

n∑
i=1

log

∫
pθ(xi | z)p(z)dz.

While this optimization can in theory determine values of
θ, it requires some intractable computations involving the
marginalization over z. Therefore, a tractable lower bound
called evidence lower bound (ELBO) has been proposed to
avoid this problem. The idea is to first introduce a recog-
nition model qφ(z | x), which will approximate the true
posterior pθ(z | x). Then, the marginal log-likelihood can
be formulated as follows:

log pθ(x) =

n∑
i=1

Lθ,φ(xi) +D(qφ(z | xi) || pθ(z | xi)),

where

Lθ,φ(x) :=Eqφ(z|x)[log pθ(x | z)]−D(qφ(z | x) || p(z)),
(2)

and D(· || ·) refers to the KL-divergence. Consequently,
we obtain the ELBO defined as the right-hand side of the
following inequality:

log pθ(x) ≥
n∑
i=1

Lθ,φ(xi).

Here, we used the fact that KL-divergence is non-negative,
and the equality holds only if D(qφ(z | xi) || pθ(z | xi)) =
0 for all xi. Via a reparameterization trick, the optimization
over the ELBO in terms of θ and φ becomes more tractable
than that of the log-likelihood (Kingma & Welling, 2014).
In this context, the recognition model qφ(z | x) is often
called an encoder, and the generative model pθ(x | z) a
decoder.

2.2. Posterior Collapse

Posterior collapse refers to the situation when the encoder
coincides, or collapses, with the prior taking no information
from the latent structure of the input data into consideration.
Mathematically, this can be translated into the following
general definition.

Definition 2.1 (ε-posterior collapse). For a given parameter
φ̂, a data set x = (x1, . . . , xn) ∈ Rm×n and a closeness
criterion d(·, ·), an ε-posterior collapse is defined for a given
ε ≥ 0 by the condition

d(qφ̂(z | xi), p(z)) ≤ ε ∀i = 1, . . . , n. (3)

For example, Razavi et al. (2019) concentrated on the case
where the closeness criterion is KL-divergence. The prob-
lem setting of Wang et al. (2021) corresponds to a par-
ticular situation with ε set to 0 (see Definition 2.2). In
fact, theoretical analyses that can treat such a level of ab-
stract definition as ε-posterior collapse are quite rare since
most use the explicit formulation of the model, ELBO
and marginal log-likelihood in order to draw conclusions.
An even broader definition was introduced by Lucas et al.
(2019) for measurement purpose named (ε, δ)-posterior col-
lapse which substitutes equation (3) with the stochastic for-
mula Prx

(
d(pθ̂(z | xi), p(z)) ≤ ε

)
> 1− δ. This formula-

tion is outside the scope of this work, while an extension to
this case is an interesting future direction.

Many elements of a VAE are held responsible for this phe-
nomenon, namely the KL term in equation (2), the vari-
ational approximation, the optimization scheme, and the
model itself. Particularly, Wang et al. (2021) showed that
the 0-posterior collapse of Definition 2.2 and latent vari-
able non-identifiability (Definition 2.3) are equivalent. This
equivalence implies that it is sufficient to make the like-
lihood function pθ(x | z) injective in terms of z for all
parameters θ in order to avoid posterior collapse of Defini-
tion 2.2. This led to the model called LIDVAE proposed
by Wang et al. (2021).

Definition 2.2 (posterior collapse, Wang et al. (2021)). For
a given parameter θ̂ and data set x = (x1, . . . , xn) ∈
Rm×n, posterior collapse occurs if pθ̂(z | x) = p(z).

Definition 2.3 (latent variable non-identifiability, Wang
et al. (2021)). For a given parameter θ̂ and data set x =
(x1, . . . , xn) ∈ Rm×n, the latent variable is non-identifiable
if pθ̂(x | z) = pθ̂(x | z

′) for all z, z′, i.e., the likelihood of
the data set x does not depend on the latent variable.

Note they assumed that the variational approximation is
exact. That is, the encoder can represent the posterior
pθ(z | x). This assumption is sensible; if the exact in-
ference already presents symptoms of posterior collapse,
this is the first problem to tackle before concentrating on the
approximated case, which can only aggravate the situation.
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In the remainder of this paper, we will treat this exact case
as well. In other words, we will investigate methods to miti-
gate the ε-posterior collapse inherent in the formulation of
the model and not that caused by any sort of approximation.

However, their definition of posterior collapse is clearly too
restrictive because it requires the posterior and prior to be
exactly equal, which means their model cannot avoid the
usual case in practice where these are nearly equal. This
motivates us to extend Definition 2.2 to the general one
(Definition 2.1) and discuss how to prevent it.

3. Theoretical Analysis
In this section, we will show that the general posterior col-
lapse of Definition 2.1 in terms of the relative Fisher infor-
mation divergence can be controlled by a simple inverse
Lipschitz constraint on the decoder network.

3.1. Assumptions and Problem Setting

Let us first clarify our problem setting.

3.1.1. GENERATIVE MODEL

We introduce the concept of inverse Lipschitzness.
Definition 3.1 (inverse Lipschitzness). Let L ≥ 0. f :
Rl → Rt is L-inverse Lipschitz if ‖f(x)− f(y)‖ ≥ L‖x−
y‖ holds for all x, y ∈ Rl.

If f is L-inverse Lipschitz with L > 0, then it is injective.
Therefore, the restriction of f on its image possesses an
inverse which is 1/L-Lipschitz. Inverse Lipschitz functions
can be regarded as a stronger condition than injectivity,
which is the property of the decoder network suggested
by Wang et al. (2021) in order to avoid latent variable non-
identifiability, and consequently posterior collapse. The
motivation to introduce this stronger concept is to capture
more nuances in the latent variable identifiability with the
inverse Lipschitz constant L, which is not possible with
simple injective functions.

Construction of inverse Lipschitz functions Inverse
Lipschitz neural networks can be generated by Brenier
maps (Ball, 2004; Wang et al., 2021). A Brenier map is a
function that is the gradient of a real-valued convex function.
The gradient of a real-valued L-strongly convex function F
(i.e., F (x)− L‖x‖2/2 is convex) becomes L-inverse Lips-
chitz. Therefore, theoretical results will be proved for this
type of inverse Lipschitz functions, derivatives of strongly
convex functions. Notably, this means we can only han-
dle functions with the same input dimension and output
dimension. Please refer to Section 4 for further details.

We can now state our main assumption.
Assumption 3.2. The generative model pθ(x | z) is an

exponential family so that pθ(x | z) = EFT (x | fθ(z)),
where fθ : Rl → Rt is constructed as follows. If l = t, fθ
is an L-inverse Lipschitz function generated from a Brenier
map, and we denote ΘL as the set of parameters θ that
achieve this property. If l < t, fθ = f

(2)
θ (B>f

(1)
θ (z)),

where f (1)
θ : Rl → Rl and f (2)

θ : Rt → Rt are respectively
inverse Lipschitz with constant L1 and L2 generated from
Brenier maps. B is a t× l diagonal matrix with all diagonal
elements with value 1. Likewise, we define the set ΘL1,L2

.

This will be the sole condition that we will impose on the
model. We restrict neither the type of prior nor the opti-
mization scheme. The assumption that the generative model
or likelihood function is an exponential family is keeping
large liberty to the model. It is even less restrictive than
some prior works on posterior collapse, which often neces-
sitate all components, including the generative model, to be
Gaussian (e.g., Dai et al. (2020); Lucas et al. (2019)). The
sole limitation is our requirement of inverse Lipschitzness,
which may restrict the expression of the likelihood function.
However, the effect of this restriction is precisely one of
the interests of this paper. Moreover, it is shown that when
fθ is only injective, EFT (x | fθ(z)) can model any distri-
butions of the form EFT (x | f(z)) where f is an arbitrary
function (Wang et al., 2021). Therefore, by adjusting this
inverse Lipschitz constant, we can cover the full spectrum,
i.e., from the case with no restriction (L → 0) to the ex-
tremely restrictive (L → ∞), which implies our problem
setting still leaves considerable freedom to the model.

3.1.2. CRITERION

As a closeness criterion, we will select the relative Fisher
information divergence.
Definition 3.3. We define the relative Fisher information
divergence F (· || ·) of p(x) with respect to q(x) as

F (p(x) || q(x)) :=

∫
‖∇ log p(x)−∇ log q(x)‖2p(x)dx.

This divergence is used for a wide range of statistical anal-
ysis and machine learning applications (Yang et al., 2019;
Otto & Villani, 2000; Elkhalil et al., 2021; Holmes &
Walker, 2017; Walker, 2016; Huggins et al., 2018). It is
also intrinsically related to the Hyvärinen score (Hyvärinen,
2005). Furthermore, many types of distributions, such as
Gaussian and Gaussian mixture, satisfy the log-Sobolev
inequality (LSI), which provides an upper bound of the KL-
divergence in terms of the relative Fisher information diver-
gence (see Appendix C for the exact formulation). Many
distributions can satisfy this inequality since LSI is robust to
bounded perturbation and Lipschitz mapping (Gross, 1975;
Holley & Stroock, 1987; Ledoux, 1999). As a consequence,
if a posterior that satisfies LSI collapses on the prior in
terms of relative Fisher divergence, so will it in terms of
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KL-divergence. On the other hand, de Bruijn’s identity re-
lates KL divergence to relative Fisher divergence. Under
some additional conditions, we can show that the control
of the latter results in that of the former (see Proposition
3.9 for further details). Hence, our choice of discrepancy is
sensible since it is necessary and sometimes even sufficient
to avoid the collapse in terms of relative Fisher divergence
in order to prevent that in terms of KL-divergence.

3.2. Theoretical Guarantee

We are now ready to state our main theorem, which shows
that under Assumption 3.2, posterior collapse can be effi-
ciently controlled by the inverse Lipschitz constant. We will
first discuss in detail the case where l = t for clarity, and
then show that similar statements hold for the general case
as well.

Theorem 3.4. Under model (1), Assumption 3.2 and l = t,
the following holds for all i and θ ∈ ΘL:

F (pθ(z | xi) || p(z))

≥ L2

∫
‖T (xi)− Epθ(x|z)[T (x)]‖2p(z)dz.

See Appendix A.1 for the proof.
Remark 3.5. The crux of this theorem is the relation

‖∇z log pθ(z | x)−∇z log p(z)‖ = ‖∇z log pθ(x | z)‖.

This equation relates posterior collapse (left-hand side) to
the latent variable non-identifiability (right-hand side). In-
deed, if the non-identifiability in Definition 2.3 holds, then
pθ(x | z) would be constant with respect to z, leading to
a zero derivative and posterior collapse in the strict sense
of the term. This use of derivatives enables us to addition-
ally capture nuances of the latent variable identifiability and
essentially contributes to our main result.

Corollary 3.6. Under model (1), Assumption 3.2 and l = t,

F (pθ(z | xi) || p(z))

≥ L2 inf
θ∈ΘL

{∫
‖T (xi)− Epθ(x|z)[T (x)]‖2p(z)dz

}
.

Therefore, the lower bound is non-decreasing in terms of L.
Moreover, if the infinimum of this lower bound is attained
by a parameter θ ∈ ΘL and p(z) has a positive variance,
then the lower bound is monotonically increasing in terms
of L.

In other words, we are guaranteed to avoid an ε-posterior
collapse as long as we take a sufficiently large L. Increasing
this value has the effect of moving away the posterior from
the prior without any limits. In this sense, we can control the
degree of posterior collapse only with the inverse Lipschitz
constant.

This theorem adjusted for an empirical version of the relative
Fisher information divergence provides additional insights
concerning another formulation of the lower bound.

Theorem 3.7. Under model (1), Assumption 3.2 and l = t
the following holds for all θ ∈ ΘL:

F̄θ(x) :=∫ ∥∥∥∥∥ 1

n

n∑
i=1

∇z log pθ(z | xi)−∇z log p(z)

∥∥∥∥∥
2

p(z)dz

≥ L2

∫ ∥∥∥∥∥ 1

n

n∑
i=1

T (xi)− Epθ(x|z)[T (x)]

∥∥∥∥∥
2

p(z)dz.

(4)

See Appendix A.2 for the proof.

Bias-Variance Decomposition Now, if we have enough
samples (i.e., n→∞), we can approximate 1

n

∑n
i=0 T (xi)

as the expectation under the true distribution p∗(x),
Ep∗(x)[T (x)]. Moreover, consider the generative model
contains the true model θ∗. This means there exists θ∗

such that p∗(x) =
∫
pθ∗(x | z)p(z)dz. Let us define

Sθ := Epθ(x|z)[T (x)]. Then, the integral of the right-hand
side of Equation (4) can be reformulated as∫

‖Epθ(x|z)[T (x)]− Ep∗(x)[T (x)]‖2p(z)dz

=

∫
‖Sθ − E[Sθ∗ ]‖2p(z)dz

=V[Sθ] + ‖E[Sθ∗ ]− E[Sθ]‖2,

where V[·] is the variance of Sθ in terms of z ∼ p(z). As a
result,

F̄θ(x) ≥L2
(
V[Sθ] + ‖E[Sθ∗ ]− E[Sθ]‖2

)
.

Interestingly, the lower bound can be written as the sum of
the variance of Sθ and its bias with the true parameter.

General Case Now, let us state a similar theorem that
holds for the general case l < t under an additional condi-
tion.

Theorem 3.8. Under Assumptions 3.2, l < t and that
ξ 7→ ∇ξA(ξ) = EEFT (x|ξ)[T (x)] is a diffeomorphism,
F (pθ(z|x)||p(z)) is lower-bounded by a term that is in-
creasing in terms of L1.

See Appendix A.3 for the precise formulation and for the
proof.

Expansion to KL divergence Finally, although it may
require stronger assumptions, we can derive a lower bound
of KL divergence between the posterior and prior from the
bound of Fisher divergence as follows.
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Proposition 3.9. Suppose that the lower bound of Fisher
divergence F (p(x)||q(x)) ≥ ε holds for any small pertur-
bations of p and q to some extent. More precisely, let pt (or
qt) denote the convolution between p (q, resp.) and N(0, t).
Assume that there is δ > 0 such that F (pt||qt) ≥ ε for any
t ∈ [0, δ]. Then, the bound D(p||q) ≥ 1

2δε holds.

See Appendix A.4 for the proof. This suggests that a lower
bound of the Fisher divergence can also control the lower
bound of KL divergence, and thus our method avoids poste-
rior collapse in terms of KL divergence as well.

3.3. Discussion

The theoretical analysis led in the previous subsection con-
siderably contributes to the research on posterior collapse
in several aspects. First of all, we proved this phenomenon,
inherent in the formulation of the model, can be controlled
by the inverse Lipschitz constant of the underlying decoder.
Indeed, increasing this constant forces the discrepancy be-
tween the prior and posterior to become larger. This kind
of analysis against the general ε-posterior collapse was pro-
vided neither in the work of Wang et al. (2021) nor in most
previous works at all. In fact, theoretical guarantee is of-
ten missing in previously proposed heuristic methods, such
as β-VAE. δ-VAE similarly requires finding parameters of
prior and decoder that satisfy a discrepancy constraint in
terms of KL-divergence, but this needs some intractable and
heavy optimization in general. On the contrary, our method
is far easier and simpler since we know in advance what
kind of parameter is required: the inverse Lipschitz constant.
Finally, while previous analyses only treated marginal or
simple cases such as the Gaussian VAE (Lucas et al., 2019),
it is also important to note that our model can be used for
the general exponential family. In short, we provided the
first solution based on an inverse Lipschitz constraint that
can control the degree of posterior collapse equipped with a
concrete theoretical guarantee, is simple and is applicable
to a broad type of models.

On the other hand, our method also presents some draw-
backs. The main limitation of our theory is that we only
assure to avoid posterior collapse in terms of the relative
Fisher information divergence, a weaker concept than that
in terms of KL-divergence. This relaxation was necessary
to proceed into rigorous analysis and derive theoretical guar-
antees. Nonetheless, we showed that posterior collapse in
terms of KL divergence can also be controlled under some
further assumptions and will show in the experiments that
our method can often alleviate this stronger posterior col-
lapse as well even though it is outside the scope of our guar-
antee. Furthermore, while increasing L can avoid posterior
collapse, this has, at the same time, the effect of contracting
the set ΘL at the risk of limiting the flexibility of the model.
It is thus essential to find a good balance. However, this

trade-off is clear thanks to our analysis, and the tuning is
quite simple.

4. Implementation
In this section, we will describe the implementation of our
model. It turns out that it is rather simple since it only
extends the model LIDVAE proposed by Wang et al. (2021).
We just have to focus on the realization of a neural network
fθ that is inverse Lipschitz with respect to its output. The
idea is to modify the Input Convex Neural Network (ICNN)
of Amos et al. (2017) and compute its Brenier map so that
it becomes an L-inverse Lipschitz function.

4.1. Brenier Maps and ICNN

As previously mentioned, a Brenier map is the gradient of a
real-valued convex function (Ball, 2004; Wang et al., 2021).
It is injective by definition. In addition, that of an L-strongly
convex function will become L-inverse Lipschitz as desired.

ICNN is a neural architecture that creates convex func-
tions (Amos et al., 2017). As long as this property is satisfied
other algorithms can be chosen, but for clarity, we will use
this as an example. Amos et al. (2017) defined the fully
connected ICNN Gθ : Rl → R with k layers and input
z ∈ Rl as follows:

yi+1 = gi(W
(y)
i yi +W

(z)
i z + bi) (i = 0, . . . , k − 1),

Gθ(z) = yk,

where {W (y)
i }i are non-negative, and all functions gi are

convex and non-decreasing. This kind of neural network is
not only convex but is also known to be a universal approx-
imator of convex function on a compact domain endowed
with the sup norm (Chen et al., 2019). Given an ICNNGθ, it
is thus not difficult to extend it to an L-strongly convex func-
tion since it suffices to add a regularization term L‖z‖2/2
to the output as follows:

yi+1 = gi(W
(y)
i yi +W

(z)
i z + bi) (i = 0, . . . , k − 1),

Gθ(z) = yk +
L

2
‖z‖2,

where {W (y)
i }i are non-negative and all functions gi are

convex and non-decreasing.

Provided an L-strongly convex ICNN Gθ, we can compute
its gradient as fθ = dGθ/dz and obtain our desired L-
inverse Lipschitz neural network.

4.2. IL-LIDVAE and its Variants

The construction in Subsection 4.1 leads to an extension of
LIDVAE, simple but with strong theoretical guarantees, as
shown in Section 3. We will call it Inverse Lipschitz LID-
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VAE (IL-LIDVAE) in order to distinguish it from LIDVAE
and other prior works.

Definition 4.1 (IL-LIDVAE). We define IL-LIDVAE with
inverse Lipschitz constants (L1, L2) as the following gener-
ative model:

z ∼ p(z), x ∼ EF(x | f (2)
θ (B>f

(1)
θ (z))),

where f (1)
θ : Rl → Rl is L1-inverse Lipschitz and f (2)

θ :
Rt → Rt is L2-inverse Lipschitz, both generated by Bre-
nier maps. B is an l × t diagonal matrix with all diagonal
elements with value 1.

When l = t, we replace f (2)
θ (B>f

(1)
θ (z)) with a single

L-inverse Lipschitz function generated by a Brenier map.

We can also establish variants of IL-LIDVAE for mix-
ture models (IL-LIDMVAE) and sequential models (IL-
LIDSVAE) as Wang et al. (2021) did.

Definition 4.2 (IL-LIDMVAE). We define IL-LIDMVAE
with inverse Lipschitz constant (L1, L2) as the following
generative model:

y ∼ Categorical(1/c), z ∼ EF(z | B>1 y),

x ∼ EF(x | f (2)
θ (B>2 f

(1)
θ (z))),

where f (1)
θ : Rl → Rl is L1-inverse Lipschitz and f (2)

θ :
Rt → Rt is L2-inverse Lipschitz, both generated by Brenier
maps. y is a one-hot vector that indicates the class. B1 and
B2 are respectively a c× l and l × t diagonal matrix with
all diagonal elements with value 1.

Definition 4.3 (IL-LIDSVAE). We define IL-LIDSVAE
with inverse Lipschitz constant (L1, L2) as the following
generative model

zi ∼ p(z), xi ∼ EF(x | f (2)
θ (B>f

(1)
θ (zi, hθ(x1:i−1)))),

where f (1)
θ : Rl → Rl is L1-inverse Lipschitz and f (2)

θ :
Rt → Rt is L2-inverse Lipschitz, both generated by Brenier
maps. B is an l × m diagonal matrix with all diagonal
elements with value 1.

4.3. Discussion

In practice, the main limitation of this method resides in its
computational cost and scalability due to the use of Brenier
maps. Since our model is only an extension of LIDVAE
Wang et al. (2021) and does not add additional calculation,
as mentioned in their paper, fitting LIDVAE or IL-LIDVAE
requires a computational complexity of O(kp2) (that of the
classical VAE isO(kp)), where k is the number of iterations,
and p the number of parameters. The training time is thus
longer than the vanilla VAE. While this is the price to pay
to assure the identifiability of latent variables and thus to

Figure 1: Accuracy of the learned posterior (left) and Rela-
tive Fisher divergence between the posterior and prior (right)
for different standard deviations σ and inverse Lipschitz con-
stants L. L = 0 is also the LIDVAE (Wang et al., 2021).
Posterior collapse is happening for LIDVAE but can be con-
trolled with IL-LIDVAE. “VAE” in the legend refers to the
GMVAE.

avoid posterior collapse, this algorithm may consequently
become difficult to scale for more challenging tasks. Nev-
ertheless, the essential aspect of our model is the inverse
Lipschitzness, and the suggested implementation is only the
most exact realization of this property. As an approximation,
we could consider to replace the Brenier maps and ICNN
with a general deep neural network subjected to regular-
ization or constraints, such as E[‖∇ log p(x|z)‖] > L or
E[‖ log p(x|z) − log p(x|z′)‖/‖z − z′‖] > L, that encour-
ages this crucial inverse Lipschitzness. This is outside the
scope of this work but we believe it is an interesting avenue
for future work.

5. Experiments
In this section, we will illustrate our theoretical result with
several numerical examples. Our goal is to empirically
verify (i) whether IL-LIDVAE can indeed control the dis-
crepancy between the posterior and prior with the inverse
Lipschitz constant and (ii) if our model can achieve bet-
ter performance than the vanilla VAE. In order to answer
these questions, we will first use toy data and then switch to
high-dimensional text and image data.

5.1. Toy Data

We generated 10,000 samples from N ((0, 0)>, σ2I2) and
from N ((10, 10)>, σ2I2) with different values of σ, where
I2 is the 2 × 2 identity matrix. With these 20,000 data
points, we trained our model IL-LIDMVAE (Definition 4.2)
defined for Gaussian mixtures with c = 2. The dimension
of the latent variables l was set to 2, and the decoder was
also Gaussian. For this case, we only need to control one
inverse Lipschitz constant as l = t. L = 0 corresponds
to the LIDMVAE of Wang et al. (2021). Intuitively, for
large σ, the two classes will overlap each other and become
similar to a single Gaussian distribution. This is expected
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Figure 2: Posterior of GMVAE (left) and IL-LIDMVAE
with L1 = L2 = 5.0 (right) for the toy data with σ =
7.5. Black points are the means of N((0, 0)>, σ2I2) and
N((10, 10)>, σ2I2), and dashed circles delimit the 2σ area
of each distributions. IL-LIDMVAE performs better. See
Figure 4 for more data.

to drive the model to represent the whole data with only
one Gaussian distribution even though we set to learn two
classes of data. IL-LIDMVAE should be able to avoid this
with adequate values of L.

Results are shown in Figure 1. We used the Gaussian mix-
ture version for VAE, called GMVAE (Dilokthanakul et al.,
2016). For these complicated settings of high variance, the
posterior of LIDVAE (L = 0.0) is collapsing on the prior
with a relative Fisher divergence of almost 0, and the ac-
curacy becomes lower than other graphs for σ ≥ 5. This
supports our claim that LIDVAE can only avoid the exact
posterior collapse, and that we need a method that can flex-
ibly avoid any degree of ε-posterior collapse. Note, the
normal VAE does not perform well at all. On the contrary,
IL-LIDVAE can adapt to any degree of posterior collapse as
higher values of L achieve higher divergence. This leads in
general to better accuracy as it is illustrated in Figure 2.

5.2. Training on Images and Text

We used two image data sets, namely Fashion-MNIST (Xiao
et al., 2017) and Omniglot (Lake et al., 2015), and one text
data set, namely the synthetic text data provided by Wang
et al. (2021). IL-LIDMVAE was applied to the image data,
and IL-LIDSVAE to the text data. All distributions were
set to Gaussian. We compared the performance in terms of
the negative log-likelihood and the KL-divergence between
the posterior and the prior. We used RealNVPs (Lake et al.,
2015) for images and LSTMs (Hochreiter & Schmidhuber,
1997) for text in order to keep the decoder as flexible as
possible. Results are shown in Tables 1 and 2.1 Further
details of the experiments, including additional results, can
be found in Appendix B and in the supplementary material.

1We did not cite the result of Wang et al. (2021) in Table 2
for Omniglot because they provided values of the negative log-
likelihood (around 600) that were too far from ours (around 100)
which are of the same order as those reported by other papers such
as Tomczak & Welling (2018).

(a) L1 = L2 = 0.0 (b) L1 = L2 = 1.5 (c) L1 = L2 = 5.0

Figure 3: Samples of Fashion-MNIST data generated with
different inverse Lipschitz parameters of IL-LIDMVAE with
c = 10, and all distributions were Gaussian. Each row
corresponds to a different category. With L1 = L2 = 1.5,
we obtain the ten true classes with varied images.

As expected, the KL divergence increases in all tables as we
augment the value of L and can effectively avoid posterior
collapse when it happens. In most cases, the negative log-
likelihood is also improved compared to other algorithms.
As for Fashion-MNIST, we presented in Figure 3 some
samples generated from the trained IL-LIDMVAE. Fashion-
MNIST contains 10 classes. We can notice that LIDVAE
(a) can outputs high-quality data but cannot learn the cate-
gory of bags, which collapses on several other classes. On
the contrary, IL-LIDVAE that achieves the best loss with
L1 = L2 = 1.5 can reproduce these 10 distinct classes with
varied data in each one. With too high inverse Lipschitz
constants, IL-LIDVAE cannot output high-quality data since
the constraint is too strong and the model cannot find good
parameters at all.

For Fashion-MNIST, the classification accuracy of the
model based on the posterior of the mixture components was
0.56 for L = 0, 0.58 for L = 0.5, 0.64 for L = 1.5 and 0.12
for L = 5.0. Our model is an unsupervised learning method,
and the clustering method for Fashion-MNIST using base-
line autoencoders achieves an accuracy of 0.54 (Agarap &
Azcarraga, 2020), and that using the classical VAE 0.12 in
our experiment. As we can observe, the appropriate choice
of the inverse Lipschitz constant (L = 1.5) improves the
accuracy over these methods too.

In short, we can not only control the degree of posterior
collapse but also find adequate parameters of inverse Lips-
chitzness that improve the performance as well.

5.3. Annealing Method

An interesting feature of our method is that we can easily
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Table 1: Results for synthetic text data. β was set to 0.2
for β-VAE. The column entitled L refers to the inverse
Lipschitz constant of f (1)

θ and f (2)
θ . NLL stands for negative

log-likelihood. See Table 5 for more data.

MODEL L NLL KL

VAE - 42.56 0.01
β-VAE (β = 0.2) - 42.34 0.08
LAGGING VAE - 45.44 2.13
LIDSVAE 0 56.67 0.24
IL-LIDSVAE 0.5 40.48 0.60
IL-LIDSVAE 1.5 44.50 3.80
IL-LIDSVAE 5.0 52.34 8.13

+ANNEALING - 39.6 0.38

Table 2: Results for Fashion-MNIST (Fashion) and Om-
niglot. The column entitled L refers to the inverse Lipschitz
constant of f (1)

θ and f (2)
θ . NLL stands for negative log-

likelihood. ∗ means that the result is cited from Wang et al.
(2021). See Table 4 for more data.

FASHION OMNIGLOT
MODEL L NLL KL NLL KL

VAE∗ - 258.8 0.2 - -
SA-VAE∗ - 252.2 0.3 - -
LAGGING VAE∗ - 248.5 0.6 - -
β-VAE∗ (β = 0.2) - 245.3 1.2 - -
LIDMVAE 0 237.3 9.5 135.0 15.8
IL-LIDMVAE 0.5 240.3 10.0 129.9 20.7
IL-LIDMVAE 1.5 234.4 11.0 126.5 25.2
IL-LIDMVAE 5.0 243.7 14.3 128.4 26.2

+ANNEALING - 235.6 8.1 117.7 26.0

consider an annealing scheme that relaxes the inverse Lips-
chitz constraint when the optimization comes at its boundary
(i.e., when the inverse Lipschitz constant of the Brenier map
of ICNN becomes close to the set value). That way, we
can avoid tuning the inverse Lipschitz constant by hand.
Results of this approach are shown in Table 1 and 2, where
the negative log-likelihoods are mainly better than results
with constant inverse Lipschitz parameters. We only calcu-
lated the inverse Lipschitz constant of the first layer f (1)

θ

and estimated it by recycling inputs and outputs acquired
during the training, which does not considerably increase
the computational complexity. The decrease rate of the in-
verse Lipschitz constant was set to 0.85. Although we did
not evaluate quantitatively, we observed that the final value
of the parameter remained around that we found with the
best negative log-likelihood without annealing.

6. Conclusion
In conclusion, starting from the recent observation that pos-

terior collapse and latent variable non-identifiability are
related to each other, we investigated a method that can
guarantee to mitigate any degree of posterior collapse en-
gendered from the formulation of the model itself. This
was achieved by introducing an inverse Lipschitz neural
network into the decoder that can freely control the degree
of latent variable identifiability, and thus that of posterior
collapse. Indeed, we theoretically proved that, as this con-
stant increases, the posterior is moved away from the prior
in terms of the relative Fisher information divergence in a
non-decreasing manner. Based on this theoretical guaran-
tee, we expanded our method to the algorithm IL-LIDVAE
and its variants, which are applicable to a broad range of
problem settings and can be easily tuned to avoid posterior
collapse. We applied them to synthetic and real-world data
and showed that they could clearly control the discrepancy
between the posterior and the prior in agreement with the
theoretical analysis, which was never explicitly realized in
any prior work. In most cases, this also had the effect of
finding better local minima with lower loss than that of the
vanilla VAE.
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A. Proof of Theorems and Propositions
In this appendix, we will prove the theorems stated in the main paper.

A.1. Proof of Theorem 3.4

Let us first state some simple lemmas to prove Theorem 3.4. While the proofs may seem simple, we will still show most of
them in order to keep our paper self-contained.

Lemma A.1. The following holds between the prior p(z), the posterior pθ(z | x), the likelihood pθ(x | z) and the marginal
likelihood pθ(x):

‖∇z log pθ(z | x)−∇z log p(z)‖ = ‖∇z log pθ(x | z)‖.

Proof. Bayes’ theorem implies

pθ(x | z) =
pθ(x, z)

p(z)
=
pθ(z | x)pθ(x)

p(z)
.

Taking logarithms on both sides,

log pθ(x | z) = log pθ(z | x) + log pθ(x)− log p(z),

which leads to
log pθ(x | z)− log pθ(x) = log pθ(z | x)− log p(z).

Now, differentiating with respect to z and taking the norm gives the desired equality since pθ(x) is independent of
z. Q.E.D

Remark A.2. Note this theorem does not need any specification on the class of distributions.

The following lemma is a fundamental property of the exponential family.

Lemma A.3. The following holds for the exponential family between the sufficient statistic and log-partition function:

Ex[T (x)] = ∇zA(z).

Furthermore, the generation of inverse-Lipschitz functions by Brenier maps implies the following property.

Lemma A.4. If f : Rl → Rl is an L-inverse Lipschitz function generated by an L-strongly convex real-valued function B,
then the following holds:

∇f(x) � LIl,

where Il is the l × l identity matrix, and A � B means that A−B is positive semi-definite.

Proof. Since f = ∇B and ∇f = ∇2B, by definition of L-strong convexity, we immediately get∇f(x) � LIl. Q.E.D

Remark A.5. This statement can be proved thanks to the use of Brenier maps in order to create inverse Lipschitz functions.

Finally, we can prove Theorem 3.4.

Theorem 3.4. Under model (1), Assumption 3.2 and l = t, the following holds for all i and θ ∈ ΘL:

F (pθ(z |xi) || p(z)) ≥ L2

∫
‖T (xi)− Epθ(x|z)[T (x)]‖2p(z)dz. (5)

Proof. Since

F (pθ(z | x) || p(z)) =

∫
‖∇z log pθ(z | x)−∇z log p(z)‖2p(z)dz,

13



Controlling Posterior Collapse by an Inverse Lipschitz Constraint on the Decoder Network

Previous lemmas imply

F (pθ(z | x) || p(z)) =

∫
‖∇z log pθ(x | z)‖2p(z)dz

=

∫
‖∇z

(
log h(x) + fθ(z)

>T (x)−A(fθ(z))
)
‖2p(z)dz

=

∫
‖∇zfθ(z)>T (x)−∇zA(fθ(z))‖2p(z)dz

=

∫
‖∇zfθ(z)>T (x)−∇zfθ(z)>∇A(fθ(z))‖2p(z)dz

=

∫
‖∇zfθ(z)> (T (x)−∇A(fθ(z))) ‖2p(z)dz

=

∫
(T (x)−∇A(fθ(z)))

>∇zfθ(z)∇zfθ(z)> (T (x)−∇A(fθ(z))) p(z)dz

≥L2

∫
‖T (x)−∇A(fθ(z))‖2p(z)dz

=L2

∫
‖T (x)− Epθ(x|z)[T (x)]‖2p(z)dz.

We used Lemma A.1 for the first equality, Lemma A.4 for the inequality, and Lemma A.3 for the last equality. Q.E.D

Corollary 3.6. Under model (1), Assumption 3.2 and l = t,

F (pθ(z | xi) || p(z)) ≥ L2 inf
θ∈ΘL

{∫
‖T (xi)− Epθ(x|z)[T (x)]‖2p(z)dz

}
.

Therefore, the lower bound is non-decreasing in terms of L. Moreover, if the infinimum of this lower bound is attained by a
parameter θ ∈ ΘL and p(z) has a positive variance, then the lower bound is monotonically increasing in terms of L.

Proof. The infimum immediately follows from equation (5) which holds for all θ ∈ ΘL. Now, since if L ≥ L′, then
ΘL ⊃ Θ′L by definition of inverse Lipschitzness, the infimum is non-decreasing in terms of L.

Concerning the second half of the statement, let us suppose that the infinimum can be attained by a parameter θ ∈ ΘL and
that p(z) has a positive variance. It is enough to show that the infinimum is not 0, or in other words, that the lower bound is
not vacuous. However if ∫

‖T (xi)− Epθ(x|z)[T (x)]‖2p(z)dz = 0,

this means the random variable Epθ(x|z)[T (x)] satisfies Epθ(x|z)[T (x)] = T (xi) for all z, which implies Epθ(x|z)[T (x)] is
constant. This is only possible if Epθ(x|z)[T (x)] does not depend on z, which means pθ(x | z) is independent of z. This
contradicts our definition of fθ which is injective. Therefore, the infimum is positive, and the lower bound is, in consequence,
increasing in terms of L. Q.E.D

A.2. Proof of Theorem 3.7

Theorem 3.7. Under model (1), Assumption 3.2 and l = t, the following holds for all θ ∈ ΘL:

F̄θ(x) :=

∫ ∥∥∥∥∥ 1

n

n∑
i=1

∇z log pθ(z | xi)−∇z log p(z)

∥∥∥∥∥
2

p(z)dz ≥ L2

∫ ∥∥∥∥∥ 1

n

n∑
i=1

T (xi)− Epθ(x|z)[T (x)]

∥∥∥∥∥
2

p(z)dz.

Proof. It suffices to note that

1

n

n∑
i=1

∇z log pθ(z | xi) =
1

n

n∑
i=1

∇z
(
log h(xi) + fθ(z)

>T (xi)−A(fθ(z))
)

=∇z

(
fθ(z)

> 1

n

n∑
i=1

T (xi)−A(fθ(z))

)
. Q.E.D
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A.3. Proof of Theorem 3.8

This subsection considers IL-LIDVAE in the general case where t > l, i.e., the latent dimension l is smaller than that of the
sufficient statistic of x (Definition 4.1), and discusses the lower bound of the relative Fisher information divergence between
the prior and posterior.

Let us first remind Assumption 3.2 and the problem setting when t > l. EF(x | ξ) is an exponential family defined by

EFT (x | ξ) = exp{T (x)>ξ −A(ξ)}h(x),

where T (x) = (T1(x), . . . , Tt(x)) is a set of sufficient statistics, ξ a natural parameter, and h(x) a base probability density.
We assume h(x) > 0 and that the natural parameter ξ is defined on an open set in Rl. The IL-LIDVAE model is defined by
pθ(x | z) = EFT (x | fθ(z)), where

fθ(z) = f
(2)
θ (B>f

(1)
θ (z))

which is given by inverse Lipschitz functions f (1)
θ and f (2)

θ with constant L1 and L2, respectively. The model can be
regarded as a curved exponential family parameterized with fθ(z).

We make a natural assumption on the exponential family.
Assumption A.6. The mapping from the natural parameter to the expectation parameter

ξ 7→ ∇ξA(ξ) = EEFT (x|ξ)[T (x)]

is a diffeomorphism.

In light of the relation
∇ξ log EFT (x | ξ) = T (x)−∇ξA(ξ) = T (x)− EEFT (x|ξ)[T (x)],

the above assumption means that the natural parameter ξ effectively changes the density function for any direction of the
parameter space. This holds for many popular exponential families, such as Gaussian distributions.

Under this problem setting, we can prove Theorem 3.8, which is restated more explicitly.
Theorem A.7 (Theorem 3.8 restated). Under Assumptions 3.2 and A.6, and l = t,

F (pθ(z|x)||p(z)) ≥ L2
1 inf
θ∈ΘL1,L2

{∫ ∥∥∥(T (x)− Epθ(x|z)[T (x)]
)>∇f (2)

θ

(
B>f

(1)
θ (z)

)
B>
∥∥∥2

p(z)dz

}
,

where the right-hand side of the inequality is increasing in terms of L1.

Proof. As in the proof of Theorem 3.4, the relative Fisher information divergence F (pθ(z|x)||p(z)) is lower bounded by

F (pθ(z|x)||p(z)) =

∫
‖∇z log pθ(x | z)‖2p(z)dz

=

∫
‖∇ξ log EFT (x | ξ)|ξ=fθ(z)∇zfθ(z)‖2p(z)dz

=

∫ ∥∥∥(T (x)− Epθ(x|z)[T (x)]
)>∇f (2)

θ

(
B>f

(1)
θ (z)

)
B>∇f (1)

θ (z))
∥∥∥2

p(z)dz

≥ L2
1

∫ ∥∥∥(T (x)− Epθ(x|z)[T (x)]
)>∇f (2)

θ

(
B>f

(1)
θ (z)

)
B>
∥∥∥2

p(z)dz.

To guarantee the lower boundedness of the divergence with the control by the inverse-Lipschitz constant L1, the integral
in the last line should be positive. We consider this positiveness under the assumption that the density of the prior p(z) is
everywhere positive and continuous. In this case, the integral is positive if and only if the latent space has an open set on
which (

T (x)− Epθ(x|z)[T (x)]
)>∇f (2)

θ

(
B>f

(1)
θ (z)

)
B> 6= 0.

Because ∇f (1)
θ is invertible, this is equivalent to

∇z log pθ(x | z) 6= 0

on that open set. This holds under the assumption because the parameter ξ = fθ(z) moves t-dimensional directions as z
changes, and it in turns changes log pθ(x | z) by Assumption A.6. This implies the desired result. Q.E.D
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Table 3: Details of Experiments

DATA MODEL DECODER LATENT DIMENSION SIZE OF HIDDEN LAYERS

TOY IL-LIDMVAE (c = 2) GAUSSIAN 2 10
FASHION-MNIST IL-LIDMVAE (c = 10) REALNVP (2 LAYERS) 64 512
OMNIGLOT IL-LIDMVAE (c = 50) REALNVP (2 LAYERS) 32 200
SYNTHETIC IL-LIDSVAE LSTM (2 LAYERS) 1024 1024

A.4. Proof of Proposition 3.9

Proposition 3.9. Suppose that the lower bound of Fisher divergence F (p(x)||q(x)) ≥ ε holds for any small perturbations
of p and q to some extent. More precisely, let pt (or qt) denote the convolution between p (q, resp.) and N(0, t). Assume
that there is δ > 0 such that F (pt||qt) ≥ ε for any t ∈ [0, δ]. Then, the bound D(p||q) ≥ 1

2δε holds.

Proof. This is a straightforward consequence of the well-known de Bruijn’s identity (Lyu, 2009) about the relation between
KL and Fisher divergences: d

dtD(pt||qt) = − 1
2F (pt||qt). By integrating both sides, we obtain D(pδ||qδ) − D(p||q) =

− 1
2

∫ δ
0
F (pt||qt)dt, and this implies D(p||q) ≥ 1

2

∫ δ
0
F (pt||qt)dt ≥ 1

2δε, which concludes the assertion. Q.E.D

B. Details of Experiments
In this appendix, we provide further details on experiments conducted in this paper.

B.1. Details of Data and Experiments

Image For image data sets, we used the IL-LIDMVAE (Definition 4.2) with the exponential family defined as Gaussian
distribution. For all other methods, we used their Gaussian mixture variant as GMVAE for VAE. The number of categories c
was set to the true number of classes of the data. Fashion-MNIST contains 10 classes (T-shirt/top, trouser, pullover, dress,
coat, sandal, shirt, sneaker, bag and ankle boot), and Omniglot 50. We parameterized the prior distribution as well. The two
Lipschitz constants L1 and L2 were equal throughout the experiments. Further details can be found in Table 3.

Text For the text data, we used IL-LIDSVAE (Definition 4.3). The synthetic data set was generated from a two-layer
sequential VAE with five-dimensional latent variables by Wang et al. (2021). The two Lipschitz constants L1 and L2 were
equal throughout the experiments. Further details can be found in Table 3.

B.2. Further Results of Experiments

B.2.1. TOY DATA

We show in Figure 4 the posterior of some trained models. All models perform well for moderate values of σ, but only
IL-LIDVAE can adapt to the more extreme cases. Data were generated from N((0, 0)>, σ2I2) and N((10, 10)>, σ2I2).
Therefore, data should be separated along the mediator of the segment connecting (0, 0)> and (10, 10)>. IL-LIDVAE with
L1 = L2 = 5.0 is the closest to this situation.

B.2.2. IMAGES

We show in Table 4 additional data with different Lipschitz constants. The mutual information (MI) between the data and
the latent variables (Hoffman & Johnson, 2016) and the percentage of active units (AU) (Burda et al., 2015), two alternatives
measure of posterior collapse, are also presented in the table. For the percentage of active units, the threshold was set to
0.01. We also show some reconstruction and sampling conducted with the trained models of IL-LIDVAE in Figures 5 and
6, respectively. While the reconstruction performance does not change a lot, we can observe that the sampling quality
declines with too high values of L1 and L2. L1 = L2 = 1.5 achieves the best loss and is the only one that learned the ten
true distinct classes.
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(a) VAE (b) LIDVAE (L1 = L2 = 0) (c) IL-LIDVAE (L1 = L2 = 5.0)

(d) VAE (e) LIDVAE (L1 = L2 = 0) (f) IL-LIDVAE (L1 = L2 = 5.0)

Figure 4: Posterior of VAE (left), LIDVAE (middle) and IL-LIDVAE (right) for the toy data with different standard deviations.
σ = 0.5 (top) and σ = 7.5 (bottom). The black points are the means of N((0, 0)>, σ2I2) and N((10, 10)>, σ2I2), and the
dashed circles delimit the 2σ area of each distributions.

B.2.3. TEXT

We show in Table 5 additional data with different Lipschitz constants.

C. Log-Sobolev Inequality
In this appendix, we briefly describe the Log-Sobolev inequality, mentioned in the main paper, and some well-known
properties as well. We only treat distributions absolutely continuous with respect to the Lebesgue measure for simplicity.

Definition C.1. Distribution ν satisfies the Log-Sobolev inequality (LSI) with a constant α if for all probability density
functions ρ absolutely continuous with respect to ν, the following holds:

D(ρ || ν) ≤ 1

2α
F (ρ || ν),

where D(ρ || ν) = Eρ
[
log ρ

ν

]
is the KL-divergence of ρ with respect to ν, and F (ρ || ν) = Eρ

[∥∥∇ log ρ
ν

∥∥2
]

is the relative
Fisher information divergence of ρ with respect to ν.

The Gaussian distribution satisfies LSI as implied by the following proposition.

Proposition C.2 (Bakry & Émery (1985)). Suppose q ∝ e−f is a probability density, where f : Rd → R is a smooth
function. If there exists a constant c > 0 such that∇2f � cId, then q(z)dz satisfies LSI with constant c.

Therefore, if we are only using Gaussian distributions in the VAE, then posterior collapse in terms of the relative Fisher
information divergence results in posterior collapse in terms of KL-divergence.

The following statements show that LSI is robust under bounded perturbations and Lipschitz mappings.

Proposition C.3 (Holley & Stroock (1987)). Suppose q is a probability density that satisfies LSI with constant α. For any
bounded function B : Rd → R, qB ∝ eBq satisfies LSI with constant αe−4‖B‖∞ .

Proposition C.4 (Vempala & Wibisono (2019)). Suppose q is a probability density that satisfies LSI with constant α. If
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(a) True Data (b) L1 = L2 = 0.0 (c) L1 = L2 = 0.5 (d) L1 = L2 = 1.5

(e) L1 = L2 = 2.5 (f) L1 = L2 = 3.5 (g) L1 = L2 = 4.5 (h) L1 = L2 = 5.0

Figure 5: Reconstruction of randomly chosen data of Fashion-MNIST for different inverse Lipschitz parameters of IL-
LIDMVAE. The number of classes was set to 10, and all distributions were Gaussian. Each row corresponds to a different
category.
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(a) L1 = L2 = 0.0 (b) L1 = L2 = 0.5 (c) L1 = L2 = 1.5 (d) L1 = L2 = 2.5

(e) L1 = L2 = 3.5 (f) L1 = L2 = 4.5 (g) L1 = L2 = 5.0

Figure 6: Samples of Fashion-MNIST data generated with different inverse Lipschitz parameters of IL-LIDMVAE. The
number of classes was set to 10, and all distributions were Gaussian. Each row corresponds to a different category. With
L1 = L2 = 1.5, we obtain the ten true distinct classes with varied images.
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Table 4: Results for Fashion-MNIST (Fashion) and Omniglot. The column entitled L refers to the inverse Lipschitz constant
of f (1)

θ and f (2)
θ . NLL stands for negative log-likelihood, MI for mutual information and AU for active units. ∗ means that

the result is cited from Wang et al. (2021).

FASHION OMNIGLOT
MODEL L NLL KL MI AU NLL KL MI AU

VAE∗ - 258.8 0.2 0.9 0.1 - - - -
SA-VAE∗ - 252.2 0.3 1.3 0.2 - - - -
LAGGING VAE∗ - 248.5 0.6 1.6 0.4 - - - -
β-VAE∗ (β = 0.2) - 245.3 1.2 2.4 0.6 - - - -
LIDVAE 0 237.3 9.5 8,7 1.0 135.0 15.8 15.2 1.0
IL-LIDVAE 0.5 240.3 10.0 9.4 1.0 129.9 20.7 20.2 1.0
IL-LIDVAE 1.5 234.4 11.0 10.7 1.0 126.5 25.2 24.8 1.0
IL-LIDVAE 2.5 236.0 12.6 12.5 1.0 126.2 25.9 25.3 1.0
IL-LIDVAE 3.5 239.7 13.0 12.9 0.5 126.5 26.3 26.2 1.0
IL-LIDVAE 4.5 241.7 13.2 13.2 0.4 127.7 26.3 26.2 1.0
IL-LIDVAE 5.0 243.7 14.3 14.2 0.3 128.4 26.2 26.1 1.0

+ANNEALING - 235.6 8.1 7.8 1.0 117.7 26.0 25.8 1.0

Table 5: Results for synthetic text data. β was set to 0.2 for β-VAE. The column entitled L refers to the inverse Lipschitz
constant of f (1)

θ and f (2)
θ . NLL stands for negative log-likelihood, MI for mutual information and AU for active units.

MODEL L NLL KL MI AU

VAE - 42.56 0.01 0.0 0.0
β-VAE (β = 0.2) - 42.34 0.08 0.0 0.0
LAGGING VAE - 45.44 2.13 1.0 1.0
LIDVAE 0 56.67 0.24 0.2 0.8
IL-LIDVAE 0.2 40.39 0.32 0.3 1.0
IL-LIDVAE 0.4 40.48 0.39 0.3 1.0
IL-LIDVAE 0.5 40.48 0.60 0.5 1.0
IL-LIDVAE 0.6 41.65 0.85 0.6 1.0
IL-LIDVAE 1.0 44.06 2.45 0.8 1.0
IL-LIDVAE 1.5 44.50 3.80 0.9 1.0
IL-LIDVAE 5.0 52.34 8.13 1.3 1.0

+ANNEALING - 39.6 0.38 0.1 1.0

H : Rd → Rd is a differentiable L-Lipschitz mapping, then the distribution of H(z) with z ∼ q(z) satisfies LSI with
constant α/L2.
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