
Deep Laplacian-based Options for Temporally-Extended Exploration

Martin Klissarov 1 * Marlos C. Machado † 2 3 4

Abstract
Selecting exploratory actions that generate a rich
stream of experience for better learning is a funda-
mental challenge in reinforcement learning (RL).
An approach to tackle this problem consists in
selecting actions according to specific policies
for an extended period of time, also known as
options. A recent line of work to derive such ex-
ploratory options builds upon the eigenfunctions
of the graph Laplacian. Importantly, until now
these methods have been mostly limited to tab-
ular domains where (1) the graph Laplacian ma-
trix was either given or could be fully estimated,
(2) performing eigendecomposition on this ma-
trix was computationally tractable, and (3) value
functions could be learned exactly. Additionally,
these methods required a separate option discov-
ery phase. These assumptions are fundamentally
not scalable. In this paper we address these limita-
tions and show how recent results for directly ap-
proximating the eigenfunctions of the Laplacian
can be leveraged to truly scale up options-based
exploration. To do so, we introduce a fully on-
line deep RL algorithm for discovering Laplacian-
based options and evaluate our approach on a va-
riety of pixel-based tasks. We compare to several
state-of-the-art exploration methods and show that
our approach is effective, general, and especially
promising in non-stationary settings.

1. Introduction
In reinforcement learning (RL), an agent interacts with an
unknown environment in order to maximize the sum of re-
wards. At each step of this interaction the agent receives
an observation, a reward signal, and it takes an action. Im-

*Work done during an internship at DeepMind.†Work mostly
done while at DeepMind. 1Mila, McGill University 2Alberta Ma-
chine Intelligence Institute (Amii) 3Department of Computing Sci-
ence, University of Alberta 4Canada CIFAR AI Chair. Correspon-
dence to: Martin Klissarov <martin.klissarov@mail.mcgill.ca>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

portantly, the actions the agent takes do not only impact
the reward it receives but also its stream of experience, that
is, its future observations and affordances. Thus, there are
two types of actions the agent can take: actions that exploit
what it has learned so far and actions, known as exploratory
actions, that are seemingly suboptimal but that can lead to
additional information about the environment. A fundamen-
tal challenge in RL resides in selecting exploratory actions
that generate a rich stream of experience for better learning.

In this paper we build on the idea of promoting exploration
by explicitly considering courses of actions within the
environment. That is, the agent explores by selecting
actions according to a specific (not random) policy for
an extended period of time. This temporally-extended
exploration allows the agent to be purposeful and to ensure
that parts of the environment that are unlikely to be visited
by chance can be visited more often (Machado & Bowling,
2016; Jinnai et al., 2019; Ecoffet et al., 2021). We model
temporally-extended exploration through options (Precup,
2000; Sutton et al., 1999), a well-known formalism for
representing behaviour at different timescales. Methods
based on these ideas have been quite successful: domains of
application include Atari 2600 games (Ecoffet et al., 2021;
Dabney et al., 2021), continuous control on the MuJoCo
simulator (Park et al., 2022), and real-world problems such
as balloon navigation (Bellemare et al., 2020).

A central question around temporally-extended exploration
methods is how one should define such temporal abstrac-
tions. Put differently, how should one discover options
for exploration? Solutions often revolve around extremely
simple approaches such as action repetition (e.g., Dabney
et al., 2021) or approaches that exploit domain-specific in-
formation (e.g., Bellemare et al., 2020; Ecoffet et al., 2021).
Potentially more general methods for temporally-extended
exploration have not been convincingly shown to truly scale
beyond small domains (e.g., Machado et al., 2017; 2018b;
Jinnai et al., 2019; 2020; Bar et al., 2020); we do so here.

Specifically, we consider the line of work that discovers
exploratory options by leveraging a diffusion model that
encodes the flow of information in the environment’s under-
lying graph (c.f. Machado et al., 2023). The diffusion model
of choice is the graph Laplacian (Chung, 1997) as its eigen-
functions are known to capture the topology of the environ-

1

Deep Laplacian-based Options for Temporally-Extended Exploration

ment at various timescales (Mahadevan & Maggioni, 2007).
The studied methods ground the option discovery process in
the eigenfunctions of the Laplacian to encourage the agent
to follow the principal directions of the state space in an
attempt to obtain effective temporally-extended exploration.

Importantly, as aforementioned, some of the most com-
pelling empirical results around Laplacian-based methods
are limited to tabular domains. It is uncommon to see simi-
lar gains with deep function approximation (Machado et al.,
2018b; Jinnai et al., 2020). This performance gap could be
attributed to several factors, including the need to perform
an eigendecomposition on the |S| × |S| graph Laplacian
matrix, where |S| is the number of states in the environ-
ment. In large domains, obtaining this matrix is difficult
and the cost of performing its eigendecomposition is pro-
hibitive. Additionally, these tabular methods often rely on
strong assumptions, such as access to the full eigenspec-
trum of the graph Laplacian matrix and, in order to define
options, access to accurate value estimates. Naturally, these
things are impossible under function approximation. Finally,
most methods rely on multiple well-defined stages, such as
pre-training a full set of Laplacian-based options only to
later maximize the environment reward (Bar et al., 2020;
Machado et al., 2023). This adds extra complexity and can
be impractical when considering real-world domains.

In this paper, we extend, in a general way, the Laplacian-
based options framework to deep function approximation,
presenting solutions to all the aforementioned difficulties.
Specifically, we (1) validate, for option discovery, the fea-
sibility of using objectives that approximate the eigenfunc-
tions of the Laplacian with neural networks (Wu et al., 2019;
Wang et al., 2021). This does not only allow us to circum-
vent the cubic cost of performing eigendecomposition but
it gives us an anytime approach for approximating these
eigenfunctions. We (2) introduce a fully online algorithm
for discovering Laplacian-based options that promote explo-
ration. This algorithm, termed deep covering eigenoptions,
also gracefully deals with conditions for option termination
and value function approximation. We validate the proposed
approach by (3) benchmarking, for the first time, Laplacian-
based methods beyond navigation tasks against several state-
of-the-art exploration methods such as count-based (Belle-
mare et al., 2016), diversity-based (Eysenbach et al., 2019)
and prediction-based methods (Burda et al., 2019). Finally,
we (4) illustrate the effectiveness of Laplacian-based option-
driven exploration when faced with non-stationary environ-
ments, opening the way for continual exploration.

2. Preliminaries
We consider an agent interacting with an environment in
which at time step t the agent is in state St ∈ S, selects an
action At ∈ A, and in response the environment emits a

scalar reward Rt+1 and transitions to a new state, St+1 ∈ S,
according to a transition probability kernel p(s′|s, a) =
Pr(St+1 = s′|St = s,At = a). The agent’s goal is to find
a policy π : S → ∆(A) that maximizes the expected dis-
counted sum of rewards, Eπ

[∑∞
i=t γ

i−tRi+1

]
≡ Eπ [Gt],

where γ ∈ [0, 1) is the discount factor.

We focus on value-based methods that obtain the policy π
by estimating the state-action value function qπ(s, a) =
Eπ [Gt|St = s,At = a]. Q-learning (Watkins & Dayan,
1992) is likely the most used algorithm to estimate the opti-
mal policy, π∗. In the tabular case, where we assign a value
to each state, its update rule is Q(St, At) ← Q(St, At) +
α [Rt+1 + γmaxa∈A Q(St+1, a)−Q(St, At)].

As the complexity of the tasks we tackle increases, we
need to approximate the optimal value function through a
parameterized function Qθt

(s, a). We use neural networks
for parameterizing Q, as in the Deep Q-Networks (DQN)
algorithm (Mnih et al., 2013; 2015). An important property
of DQN is that it is off-policy, that is, it does not rely on data
generated by the current policy π to improve its performance.
Instead it uses a replay buffer (Lin, 1992) of stored past
experience from which it samples batches of transitions.

In this paper we use the Double DQN algorithm (van Hasselt
et al., 2016) with n-step targets (Sutton & Barto, 2018;
Hessel et al., 2018), which are improvements over DQN.
Double DQN uses an alternative double estimator method
to address the issue DQN has of overestimating the action
values, and n-step targets consist in explicitly accumulating
rewards over multiple steps instead of bootstrapping from
the action value at time t+ 1. The update rule we use after
integrating both Double DQN and n-step targets is

θt+1 ← θt + α
[
Y

(n)
t −Qθt(St, At)

]
∇θtQθt(St, At)

(1)

Y
(n)
t = R

(n)
t+1 + γnQθ−

t
(St+n, arg max

a′∈A
Qθt

(St+n, a
′)),

where R
(n)
t+1=̇

∑n−1
i=1 γiRt+i+1, and θ−

t denotes the param-
eters of a duplicate network, which are updated less often
for stability purposes.

Options. The agent-environment interaction occurs at dis-
crete low-level timesteps, which we index by t. However,
an intelligent agent will pursue a variety of goals and rea-
son over a hierarchy of timescales. The options framework
(Sutton et al., 1999) provides a formalism for such abstrac-
tions over time and is one of the most common frameworks
in hierarchical reinforcement learning (HRL). An option
within the option set O is composed of an intra-option pol-
icy π(a|s, o) to select actions, a termination function β(s, o)
to determine when an option stops executing, and an ini-
tiation set I(s, o) to restrict the states in which an option
may be selected. We may also choose which option to

2

Deep Laplacian-based Options for Temporally-Extended Exploration

execute in a specific state through the policy over options
πO : S → ∆(O). The options’ policies are often learned
through an intrinsic reward function ro(s, a, s′).

3. Covering Eigenoptions
Although the options framework provides a useful formal-
ism for temporal abstraction, it does not specify how we
may obtain useful abstractions. Indeed, option discovery
remains a fundamental challenge in HRL for which a wide
variety of strategies exists, whether it be through feudal RL
(Dayan & Hinton, 1992; Vezhnevets et al., 2017), directly
maximizing the environment’s reward with policy-gradients
(Bacon et al., 2017; Harb et al., 2018), maximizing
mutual-information-based objectives (Gregor et al., 2017;
Eysenbach et al., 2019; Kim et al., 2021), skill chaining
(Konidaris & Barto, 2009; Bagaria & Konidaris, 2020), or
probabilistic inference (Smith et al., 2018; Wulfmeier et al.,
2021). In this paper we leverage a particular class of meth-
ods that ground the option discovery process in a learned
representation of the environment, the eigenfunctions of
the graph Laplacian. Specifically, we focus on the recently
introduced covering eigenoptions (Machado et al., 2023).

Covering eigenoptions (CEO) are obtained by an iterative
process called the representation-driven option discovery
(ROD) cycle. The cycle has 3 mains steps: 1. The agent
collects samples from the environment and uses them to
learn a representation. 2. This representation is used to
define intrinsic rewards, which are used to learn the options.
3. The options empower the agent such that, when back to
the first step, it can behave in ways it was not likely to behave
before. As a consequence, it can refine and improve its
representations from which new options will be derived and
later executed, continuing in a never-ending virtuous cycle.

CEO instantiates the ROD cycle by using as representation
the eigenfunctions of the graph Laplacian. The graph Lapla-
cian is a diffusion model that encodes the way information
flows on a graph. In RL, the Laplacian encodes the environ-
ment’s underlying graph, where nodes represent states and
edges encode transitions between such states. Of particular
interest are the eigenfunctions of the Laplacian, which cap-
ture the dynamics of the environment at different timescales
(Mahadevan, 2005). A set of eigenfunctions can then be
used to obtain a rich representation of the environment, to
which we refer to as the Laplacian representation. CEO
defines option oi as the policy that maximizes the intrinsic
reward defined by the eigenfunction ei of the Laplacian:

rei(s, s′) = ei(s′)− ei(s).

The option terminates in every state s where qei
π (s, a) ≤ 0

for all a ∈ A, where qei
π is defined w.r.t. rei(·, ·).

The empirical results pertaining CEO show that it is more
efficient at covering the classic Four rooms domain (Sutton

Figure 1. Environments: Nine rooms, Maze, and a subset of states
in Rubik’s cube 2x2. Their underlying topologies are quite dif-
ferent and they present different challenges in terms exploration.
All environments are stochastic: the agent’s actions are randomly
overwritten with probability 0.15.

et al., 1999) by more than an order of magnitude when com-
pared to a random walk. However, that is the extent in which
CEO has been empirically evaluated. It is not clear, for ex-
ample, whether CEO’s strong performance can generalize
to different environments, or whether it can be leveraged
within a reward maximization algorithm. This validation is
important before we try to scale up such an algorithm.

We provide answers to the questions above in Appendix C.
We evaluate CEO in environments with different topolo-
gies (c.f. Figure 1 and detailed description in Appendix B)
while comparing its performance against well-established
exploration algorithms. We also extend CEO beyond state
coverage, obtaining an efficient reward maximizing method.
We show, across environments with different topologies, that
CEO is extremely effective in covering the state space, that
it does so in a much more purposeful way, and that it does
lead to faster reward maximization, even when considering
the initial cost of option discovery. Besides a random policy,
we used count-based exploration and ϵz-greedy (Dabney
et al., 2021) as baselines.

4. Approximate Laplacian-based Options
As aforementioned, a fundamental limitation of CEO is that,
in order to define the intrinsic rewards used in the option dis-
covery process, it relies on performing a costly eigendecom-
position operation to obtain the eigenfunctions of the graph
Laplacian. Estimating the full Laplacian matrix in environ-
ments with large state spaces is impractical and, even if such
a matrix was available, performing its eigendecomposition
would not be scalable due to its cubic cost. This is a problem
Laplacian-based option discovery methods need to face in
order to be broadly applicable. In this section we show how
recent methods that use neural networks to approximate the
eigenfunctions of the Laplacian (e.g., Wu et al., 2019; Wang
et al., 2021) can be used in this framework.

Specifically, we use a direct approximation of the eigenfunc-

3

Deep Laplacian-based Options for Temporally-Extended Exploration

O
pt

io
n

di
sc

ov
er

y

DIAYN

DCEO
RND

Counts

εz-greedy

DDQN

O
pt

io
n

di
sc

ov
er

y

DCEO

RND

Counts

εz-greedy DDQN

O
pt

io
n

di
sc

ov
er

y

DCEO

Counts

εz-greedy

RND

DDQN

Figure 2. Reward maximization. DCEO uses a two-phased algorithm where it first pretrains a set of options through intrinsic motivation
before leveraging them for reward maximization. DCEO’s curve is delayed by the amount of time spent in the first phase of option
discovery. Despite this additional cost, we notice that it produces strong performance across all domains. When the curves of different
methods are not visible inside the shaded region it is because the exploration strategy used by the baseline method did not lead to a single
positive reward during the whole period. Results show the mean and standard deviation across 30 seeds.

tions1 of the Laplacian through an objective borrowed from
graph theory (Koren, 2005). It was first proposed by Wu
et al. (2019) to be adapted to the RL setting, and recently
extended by Wang et al. (2021). We consider the objective

min
f1,...fd

d∑
i=1

cif
⊤
i Lf i s.t. f⊤

i f j = δij∀i, j

where {f i}di=1 are approximations to the d smallest eigen-
functions of the Laplacian, ci are their associated coeffi-
cients, and δij is the delta Dirac that is 1 only when i = j
and it is 0 otherwise. We refer to this objective as the gen-
eralized Laplacian. If the coefficients ci are chosen to be
strictly decreasing, Wang et al. (2021) has shown that its op-
timal solution are the eigenfunctions of the graph Laplacian.

To make this objective amenable to online RL, we define a
loss function by rewriting this objective as an expectation:

G(f1, ..., fd) =
1

2
Eπ

[
d∑

i=1

i∑
k=1

(
fk(s)− fk(s

′)
)2]

+

β

d∑
i=1

i∑
j=1

i∑
k=1

(
Eπ

(
[fj(s)fk(s)− δjk)

])2

, (2)

where β is the Lagrange multiplier and the coefficients are
defined as ci = d− i+ 1. Intuitively, the first part ensures
smoothness while the second incentivizes orthogonality be-
tween eigenfunctions.

Importantly, Wang et al. (2021) has already used the gener-
alized Laplacian to discover options, evaluating the agent’s
capacity to navigate between rooms in a gridworld. Nev-
ertheless, besides the small scale of the experiments, they
were conducted with random restarts throughout the envi-
ronment, providing the agent, at no cost, with a complete

1Eigenfunctions can be understood as a generalization of eigen-
vectors that allow for the same objective to be derived for the case
of a continuous state space. See derivation by Wu et al. (2019).

picture of the task, side-stepping the problem of exploration.
Indeed, recent results suggest that random restarts are quite
important to guarantee the good performance reported by
methods that use graph drawing objectives to approximate
the eigenfunctions of the Laplacian (Erraqabi et al., 2022).
Moreover, the inputs to the neural network optimizing the
generalized Laplacian consisted of the agent’s (x, y) coordi-
nates, which significantly simplifies the problem.

Thus, until now it has been an open question whether the
generalized Laplacian objective could be leveraged within
an algorithm that iteratively seeks to discover unknown parts
of the state space; or whether it was effective with different
types of inputs (e.g., pixels). Importantly, the discovered
options were also never evaluated in their ability to improve
the agent’s capacity to maximize reward. In the next
section we introduce an algorithm that extends CEO to deep
function approximation, and we present empirical results
showing how it addresses the limitations aforementioned.

5. A Two-Phased Scalable Method
We first ask whether the generalized Laplacian is conducive
to be used by option discovery methods. This is not nec-
essarily trivial because Laplacian-based options are mostly
defined by the intrinsic rewards generated by the eigen-
functions of the Laplacian and it is not clear whether the un-
avoidable approximation errors lead to bad reward functions.
Moreover, when also using deep function approximation for
learning both the main policy and the options’ policies it is
not clear whether these different sources of approximation
can render learning unfeasible. Finally, how should one
deal with option termination? As previously mentioned,
Laplacian-based option discovery methods rely on very ac-
curate value estimates to define termination, which can be
impossible with function approximation.

In this section we introduce deep covering eigenoptions
(DCEO), a two-phased algorithm that extends CEO to use
deep function approximation in all of its steps. We vali-

4

Deep Laplacian-based Options for Temporally-Extended Exploration

Random
Policy

µ1 - µ

Main PolicyOptions
Laplacian

Representation

Intrinsic Rewards

rfi(s,s’) = fi(s’) - fi(s)

Actions

Rewards and
 Observations

ε 1 - ε
τ

Phase 1 Phase 2

Figure 3. Deep Covering Eigenoptions (DCEO) algorithm. The agent receives rewards an observations and leverages them to learn the
Laplacian representation which encodes the environment’s topology at different timescales (Mahadevan, 2005; Mahadevan & Maggioni,
2007). Using this representation the agent derives a set of intrinsic rewards to learn exploratoy options. It then selects actions either by
being greedy w.p. 1− ϵ, or by exploring w.p. ϵ. When taking exploratory actions these may come either from a random policy w.p. 1− µ,
or from the set of options w.p. µ. Once selected, the agent acts according to the option’s policy until termination, which we denote by τ .

date its efficacy on pixel-based versions of the environments
in Figure 1. Our results demonstrate that the generalized
Laplacian is indeed conducive to be used by option discov-
ery methods, at least when also considering the algorithmic
choices we propose (c.f. Figure 2). In fact, DCEO often
outperforms several other baselines considered to be state-
of-the-art methods. Below we properly introduce DCEO
before going into details about the empirical methodology.

Deep Covering Eigenoptions. DCEO has two phases:
the agent first interacts with the environment while learning
the Laplacian representation and its corresponding set of
options for Tdiscovery steps. These options are then fixed
and used by the agent to explore and maximize return.

Specifically, in the discovery phase, the agent learns options
by maximizing intrinsic rewards based on the approximated
eigenfunctions of the graph Laplacian. When learning op-
tion oi, following transition s to s′, the agent is rewarded
with rfi(s, s′) = fi(s

′)− fi(s), where f is obtained from
optimizing Equation 2, with fi denoting the ith eigenfunc-
tion according to the order induced by the eigenvalues. For
the termination function, instead of relying on perfectly
accurate value estimates, we define option termination to
be uniformly random with probably 1/D, where D is the
expected option length. We use D = 10 in all experiments.

For the reward maximization phase, the DCEO agent learns
to maximize reward with DDQN and n-step targets (c.f.
Eq. 1), and it uses ϵ-greedy as the exploration strategy. The
discovered options have an impact when the agent takes an
exploratory step: with probability µ the agent does not take
only a simple random primitive action, but it instead acts
according to a sampled option’s policy until it terminates,
denoted by τ , thus exploring in a temporally-extended way.

Figure 3 presents an overview of DCEO and Algorithm 3,
in Appendix K, is a more precise description of DCEO.

Evaluation Procedure. As aforementioned, we validate
DCEO’s efficacy on pixel-based versions of the environ-
ments in Figure 1, with episodes being at most 100 steps
long. In the navigation tasks the agent is given pixel im-
ages of the grid which are processed through a three-layered
convolutional network. For the Rubik’s cube, the agent ob-
serves the usual sticker colors, which are concatenated in a
vector (Agostinelli et al., 2019). The agent processes this
input with a three-layered fully connected network.

Besides a random policy, which we label DDQN, we use
count-based exploration, ϵz-greedy (Dabney et al., 2021),
RND (Burda et al., 2019), and DIAYN (Eysenbach et al.,
2019) as baselines. Count-based exploration consists in
providing the agent with an intrinsic reward of 1/

√
n(s) at

each step, where n(s) is the number of times the agent has
visited state s — in all experiments we assume the agent
has access to perfect counts, in fact making this an unfair
baseline. We consider ϵz-greedy because it is an option-
based exploration algorithm that uses action repetition to
obtain temporally-extended exploration, and it has shown
significant performance improvements on Atari 2600 games
(Bellemare et al., 2013; Machado et al., 2018a). We consider
DIAYN as another representative method that uses options
for exploration, but based on a mutual information objective.
Finally, we also consider RND, an error prediction-based
exploration method with state-of-the-art performance across
many environments. For the experiments on reward maxi-
mization, all methods are implemented on top of an n-step
Double DQN (DDQN) baseline with n = 5. Details on
parameter tuning for each method, and the parameters used,
are available in Appendix I.

Importantly, we implemented DCEO such that the networks
used to learn options and to learn the Laplacian represen-
tation do not share weights with the network maximizing
the environment rewards. This design choice ensures the

5

Deep Laplacian-based Options for Temporally-Extended Exploration

auxiliary task effect (Sutton et al., 2011; Lyle et al., 2021)
does not benefit DCEO. Therefore, DCEO’s improvements
in performance may only come from leveraging a set of
Laplacian-based options that generate a rich and diverse
stream of experience for learning.

Empirical Analysis We evaluate DCEO in terms of its
effectiveness in covering the state space and in empowering
agents to learn to maximize the environment reward faster.

For state coverage, we considered DCEO’s performance
during the pretraining phase. The results depicted in Fig-
ure 12 in Appendix D show that DCEO is either significantly
better or on-par to the other baselines. These results are the
first evidence to indicate that approximating the eigenfunc-
tions of the Laplacian through the generalized Laplacian
objective is an effective approach, even without random
restarts and when using high dimensional inputs.

We present the results for reward maximization in Figure 2. 2

Overall, DCEO performs at least as well as well-established
baselines such as Counts and RND. The performance of
DIAYN is only shown for the Nine rooms domain as it was
not able to improve upon the DDQN baseline despite having
access to the same amount of pretraining as DCEO. The
difference in performance between DCEO and all baselines
is the greatest on the Maze experiment, which highlights the
importance of temporally-extended exploration. More than
outperforming baseline methods, these results are important
because they establish Laplacian-based options as viable
and competitive solutions for exploration problems.

6. A Single Continuous Cycle
The results in the previous section provide the first strong
evidence as to the effectiveness of Laplacian-based options
for exploration under deep function approximation. How-
ever, the performance crucially relies on an initial phase
dedicated to option discovery. This can be problematic as it
implicitly assumes there are special phases in the learning
period and that the world will not change after this phase,
precluding further learning and reducing the agent’s ability
to adapt to the latest stream of experience; not to mention
the introduction of additional hyperparameters. In this sec-
tion, we go beyond these limitations and introduce a fully
online and generally applicable algorithm.

6.1. Online Discovery of Laplacian-based Options

We preserve the general structure of the method depicted in
Figure 3, but we get rid of the two phases, instead perform-
ing all steps simultaneously. The agent starts by randomly

2The results on the Rubik’s cube were obtained with a tabular
actor as the DDQN agent was not able to learn with any exploration
method, whether it was DCEO or not. The generalized Laplacian
was still optimized with neural networks, attesting to its robustness.

Algorithm 1 Fully Online DCEO Algorithm
1: for i = 1 to T do
2: if i == 1 ∨ ⊥ then
3: τ ← True # Option termination
4: o← −1 # No active option
5: Reset environment and observe state s
6: end if
7: τ ← U(0, 1) < 1/D ∨ τ
8: if τ then
9: if U(0, 1) < ϵ then

10: if U(0, 1) < µ then
11: o← U(O); τ ← False; a ∼ πo(·|s)
12: else
13: o← −1; τ ← True; a ∼ U(A)
14: end if
15: else
16: a← maxa∈A Q(s, a)
17: end if
18: else
19: a ∼ πo(·|s)
20: end if
21: Execute a, observe r, s′,⊥ # (⊥ is episode termination)
22: Store transition (s, a, r, s′) in buffer B; s← s′

23: Sample a minibatch of transitions (sj , aj , rj+1, sj+1)
24: Train each option with intrinsic reward (Eq. 1)
25: Minimize the generalized Laplacian (Eq. 2)
26: Train main learner on extrinsic reward (Eq. 1)
27: end for

initializing the Laplacian representation, a set of options,
and the main DDQN learner. As such, the options will
initially maximize an essentially random intrinsic reward
signal. As the Laplacian becomes more accurate the cor-
responding options are also adjusted. Importantly, such
an approach also addresses another common criticism of
Laplacian-based methods: that they are policy-dependent. It
addresses this concern by being online since it simply tracks
the changing policy learned by the agent. A more precise
description of our algorithm is depicted in Algorithm 1.

Empirical Analysis. We evaluate our online algorithm in
the same pixel-based environments we have been using so
far. As the results in Figure 4 show, the online version of
DCEO continues to be competitive or outperform the other

DCEO

Counts

εz-greedy

DDQN

RND

RND

Counts

DCEO

εz-greedy
DDQN

Figure 4. Return maximization using a fully online DCEO algo-
rithm. Starting from a randomly initialized option set and Lapla-
cian representaion, it learns to maximize reward as effectively as
the two-phased algorithm. Results show the mean and standard
deviation across 30 seeds.

6

Deep Laplacian-based Options for Temporally-Extended Exploration

baselines. Moreover, this fully online algorithm is even
competitive with the two-phased algorithm, as shown in
Figure 14 in Appendix F. Because online DCEO performs
similarly to the two-phased DCEO, and because it is simpler,
we use the online DCEO algorithm in the rest of the paper,
labeling its curves simply as DCEO.

6.2. Exploration in the Face of Non-stationarity

An important benefit of using options for exploration is that,
by encoding temporally extended behaviours into a set of
options, the agent can later leverage a collection of diverse
and purposeful behaviours in other tasks. This is particu-
larly important in the face of non-stationary, or continual
learning (Khetarpal et al., 2022), and is in direct contrast
to several other exploration techniques. Methods such as
count-based or error prediction-based methods are more tied
to the agent’s state visitation distribution and are not that
flexible in the face of non-stationarity. It is often argued
that options could allow agents to adapt more efficiently to
non-stationarity through task decomposition, where a set
of tasks share a similar structure. Here we show that op-
tions can also encode reusable exploratory behaviour and
be leveraged for continual exploration.

To evaluate the discussed approaches in this setting, we
introduce a variation of our Nine rooms where the environ-
ment changes after a certain number of timesteps. We first
consider the setting where only the agent’s starting location
and the goal location change. Importantly, the agent gets no
information about this change as the goal is not visible in the
input feature space and the agent does not get to reset any of
its components. It simply must adapt online to the change
and discover the new task. We also consider the much more
challenging setting where the topology of the environment
also changes—after the switch most of the hallways are
closed, changing significantly the underlying graph of the
environment, which is shown in Figure 16 in Appendix H.
Because the options learned by DCEO are defined through
the eigenfunctions of the graph Laplacian, which depend
mainly on the environment’s topology, this could arguably
be a particularly difficult task for DCEO.

The empirical results are presented in Figure 5. In both
problems we notice that DCEO adapts much more quickly
compared to other baselines as the gap in performance is
significantly increased after transfer. The results on the right
panel are particularly exciting as they show that DCEO’s
performance remains robust to drastic changes in the en-
vironment’s topology, also attesting to the benefits of an
online method and of having reusable artifacts, since some
options are still useful after the environment changes.

DCEO

RND

Counts
εz-greedyDDQN

DCEO DCEO

RND

Countsεz-greedy
DDQN

Figure 5. Continual exploration in Nine rooms. Results show
mean and standard deviation averaged over 30 random seeds.

6.3. Objects, Obstacles and Complex Interactions

So far we have investigated environments with different
topologies and we have shown that our fully online DCEO
algorithm is an effective method for exploration and that it
has appealing properties in terms of continual exploration.
We now apply the same algorithm to a set of challenging
environments in which a combinatorial relation exists be-
tween the agent, objects, and their interactions. These envi-
ronments are built on the Minigrid framework (Chevalier-
Boisvert et al., 2018) and require different levels of abstrac-
tion to succesfully solve them. Importantly, all transitions
are stochastic: the agent’s action is overwritten by a ran-
dom action with probability 0.15. These environments are
depicted as inset visualizations in Figure 6.

Specifically, in Escape room the agent has to pick a key that
is located in a separate room before returning to its starting
location and escaping from the door. The agent receives
a +1 only for escaping the room and 0 otherwise. In Rooms
with obstacles the agent has to reach the goal location on
the other end of the environment. In between are a set of
dynamic obstacles with random spawning location that
move up and down. If the agent collides with one of these
obstacles it receives a−1 reward and the episode terminates.
The agent receives a +1 only for reaching the goal. Finally,
in Obstructed Key the agent has to pick a key before escap-
ing through a door located a few rooms away. However, the
key is not directly accessible: the agent first has to break one
(or more) tiles of the blue wall. The agent only receives a
+1 for escaping the room through the door and 0 otherwise.
It is important to note that the last domain requires the
agent to effectively change the environment topology.

The results in Figure 6 continue to attest to DCEO’s general-
ity as it also naturally extends to these challenging domains.
In the most complex environment, Obstructed Key, the gap
in performance between DCEO and other baselines is the
most significant. It is important to recall that the count-
based baseline is still unfair as we give the agent access to
perfect counts, not pseudo-counts, which maybe explains it
outperforming the other baselines in this task.

Additionally, we use these experiments to provide some in-
tuition as to what is encoded in the Laplacian representation

7

Deep Laplacian-based Options for Temporally-Extended Exploration

DCEO

Counts
RND

εz-greedy

DDQN

DDQN

Counts

RND

εz-greedyDCEO DCEO

RND

Counts

εz-greedy DDQN

Figure 6. Return maximization in hard exploration domains that require different levels of abstraction to succeed. DCEO scales naturally
to this challenging setting. Results show mean and standard deviation across 30 seeds.

in the presence of interactive objects. We present a visualiza-
tion of the first (approximated) eigenfunction in Figure 15
in Appendix G. We witness an interesting property: the
first eigenfunction seeks to pick the key and traverse, in the
opposite way, the state space. In this environment, when the
agent picks up the key the observations change in a consis-
tent way, leading to a whole new part in feature space. This
important transition is naturally encoded in the Laplacian
representation and it is essential for effectively exploring the
environment. Furthermore, in Appendix J we present visual-
izations of how the Laplacian representation evolves as the
agent covers the state space and learns to maximize reward.

7. Scaling Up Further
We now investigate the scalability of the Laplacian repre-
sentation to even higher dimensional environments and to
partial observability. In particular, we perform experiments
on the Atari 2600 game Montezuma’s Revenge through
the Arcade Learning Environment (Bellemare et al., 2013;
Machado et al., 2018a), a well-known hard exploration prob-
lem; and in the MiniWorld domain (Chevalier-Boisvert,
2018), a 3D navigation task with first-person view. In the
latter we explore two tasks with different degrees of diffi-
culty: the MiniWorld-FourRooms-v0, which recreates the
Four rooms domain (Sutton et al., 1999) in a 3D nagivation
setting under partial-observability, and the more challeng-
ing MiniWorld-MyWayHomeSparse-v0, which recreates
the classic VizDoom (Kempka et al., 2016) navigation task.

We provide qualitative results in Fig. 7, where we plot
the values of the first two (approximate) eigenfunctions
of the Laplacian representation for different observations.
In these experiments, trajectories are obatined from
random walks in the environemnt. For Montezuma’s
Revenge, this is achieved by coloring the pixels occupied
by Panama Joe (the agent) in a set of randomly collected
transitions. In MiniWorld-FourRooms (MW-FR), we spawn
the agent at different locations and we save the value of
the eigenfunction given the observation available at that
position. The agent’s orientation is fixed which allows for
a bird’s eye view plot of the eigenfunctions.

Montezuma’s Revenge Eigenfunction #1 Eigenfunction #2

Eigenfunction #1 Eigenfunction #2MiniWorld-FourRooms

Figure 7. First two eigenfunctions obtained by the generalized
Laplacian. In Montezuma’s Revenge, we plot the value of an
eigenfunction for each of the agent’s positions in the first room.
In MW-FR, we plot the first two eigenfunctions for each of the
agent’s position in the map. The agent’s point of view is a 3D
first-person observation but we show values from a bird’s eye view.

Note that, in Montezuma’s Revenge, the first eigenfunctions
point to important stepping stones to get the key. Moreover,
because meaningful locations are the first to be discovered,
these results are quite different from previous results that
required one to inspect dozens of eigenfunctions to find the
interesting ones (Machado et al., 2018b). In MW-FR, as
expected, the first eigenfunction seeks to traverse the obser-
vation space, leading the agent to cross the different rooms.

These qualitative results continue to highlight the potential
of Laplacian-based methods. They suggest that the first op-
tions to be discovered in such environments, without any do-
main knowledge, just by capturing the topology of the envi-
ronment as experienced by the agent, would be meaningful.

We now verify, in a quantitative way, whether these discov-
ered eigenfunctions can improve the exploration capabilities
of a learning agent. Note once again that in DCEO the
agent learns such eigenfunctions online through its own
experience. We present these results in Figure 8 where
we compare DCEO to both RND and to a state-of-the-art
diversity-based HRL algorithm, Contrastive Intrinsic Con-

8

Deep Laplacian-based Options for Temporally-Extended Exploration

Figure 8. Return maximization in high dimensional hard exploration domains. The first two figures are tasks from the 3D Navigation
domain MiniWorld, whereas the rightmost figure depict performance in the Atari 2600 game Montezuma’s Revenge. DCEO once again
scales naturally to these problems. Results show (from left to right) the mean and standard deviation across 10, 10 and 5 seeds.

trol (CIC) (Laskin et al., 2022), which was shown to out-
perform a set of diversity-based skill learning algorithms in
continuous control problems. We also include the learning
algorithm used by DCEO but with a standard random ex-
ploration strategy—DDQN for the 3D Navigation tasks and
Rainbow (Hessel et al., 2018) for Montezuma’s Revenge.

DCEO’s benefits are very clear in the 3D navigation tasks,
where it is the only algorithm to learn a policy able to con-
sistently accumulate positive rewards. In Montezuma’s Re-
venge, DCEO reaches a score of 2500 in only a few million
steps. Note that, when introduced, RND was run for 2
billion timesteps, and within that timeframe it surpasses
DCEO’s performance in 200 million steps; we did not have
the resources to evaluate DCEO in 2 billion steps.

8. Conclusion
In this paper we have introduced a scalable and generally
applicable algorithm for Laplacian-based option discovery.
Through a series of improvements, we have extended a tab-
ular approach into an online method fully compatible with
deep function approximation. We have proposed an effective
strategy for incorporating option discovery and reward max-
imization and we have shown that our algorithm performs
significantly better when compared to several state-of-of-the-
art baselines on a wide variety of environments and settings.
This is the first time that a Laplacian-based method has done
so. The results in non-stationarity environments are particu-
larly promising as they highlight the benefits of options and
they suggest a new path for continual exploration.

There remains a variety of research directions for future
improvement. The integration in our approach is minimal
by design. We do not learn option-value functions for credit
assignment, we do not leverage the auxiliary task effect
for representation learning nor we use options for planning.
All of these directions capture long-held promises of the
options framework: we believe that the same overarching
Laplacian-based algorithm could be a way to achieve them.

Acknowledgements
The authors would like to thank Adam White, Andre Bar-
reto, Tom Zahavy, Michael Bowling, Diana Borsa and Doina
Precup for constructive feedback throughout this project,
Andy Patterson, Josh Davidson and the whole DeepMind
Alberta team for helpful and inspiring discussions. A special
thanks to Kaixin Wang for sharing the code of the general-
ized Laplacian and Kris de Asis for the availability of the
Rubik’s Cube 2x2 implementation. The authors would also
like to thank NSERC for partially funding this research.

References
Agostinelli, F., McAleer, S., Shmakov, A., and Baldi, P.

Solving the Rubik’s cube with deep reinforcement learn-
ing and search. Nature Machine Intelligence, 1:356–363,
2019.

Bacon, P.-L., Harb, J., and Precup, D. The option-critic ar-
chitecture. In AAAI Conference on Artificial Intelligence,
2017.

Bagaria, A. and Konidaris, G. Option discovery using deep
skill chaining. In International Conference on Learning
Representations, 2020.

Bar, A., Talmon, R., and Meir, R. Option discovery in the ab-
sence of rewards with manifold analysis. In International
Conference on Machine Learning, 2020.

Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M.
The Arcade Learning Environment: An evaluation plat-
form for general agents. Journal of Artificial Intelligence
Research, 47:253–279, 2013.

Bellemare, M. G., Srinivasan, S., Ostrovski, G., Schaul, T.,
Saxton, D., and Munos, R. Unifying count-based explo-
ration and intrinsic motivation. In Neural Information
Processing Systems, 2016.

Bellemare, M. G., Candido, S., Castro, P. S., Gong, J.,
Machado, M. C., Moitra, S., Ponda, S. S., and Wang, Z.

9

Deep Laplacian-based Options for Temporally-Extended Exploration

Autonomous navigation of stratospheric balloons using
reinforcement learning. Nature, 588:77–82, 2020.

Burda, Y., Edwards, H., Storkey, A., and Klimov, O. Explo-
ration by random network distillation. In International
Conference on Learning Representations, 2019.

Chevalier-Boisvert, M. Miniworld: Minimalistic 3d environ-
ment for RL & robotics research. https://github.
com/maximecb/gym-miniworld, 2018.

Chevalier-Boisvert, M., Willems, L., and Pal, S. Minimalis-
tic gridworld environment for OpenAI Gym. https://
github.com/Farama-Foundation/Minigrid,
2018.

Chung, F. R. K. Spectral Graph Theory. Conference Board
of the Mathematical Sciences, 1997.

Dabney, W., Ostrovski, G., and Barreto, A. Temporally-
extended ϵ-greedy exploration. In International Confer-
ence on Learning Representations, 2021.

Dayan, P. and Hinton, G. E. Feudal reinforcement learning.
In Neural Information Processing Systems, 1992.

de Asis, K. py222. https://github.com/
MeepMoop/py222, 2018.

Deng, Z., Shi, J., Zhang, H., Cui, P., Lu, C., and Zhu,
J. Neural eigenfunctions are structured representation
learners. CoRR, abs/2210.12637, 2022.

Ecoffet, A., Huizinga, J., Lehman, J., Stanley, K. O., and
Clune, J. First return, then explore. Nature, 590:580–586,
2021.

Erraqabi, A., Machado, M. C., Zhao, M., Sukhbaatar, S.,
Lazaric, A., Denoyer, L., and Bengio, Y. Temporal
abstractions-augmented temporally contrastive learning:
An alternative to the Laplacian in RL. In Conference on
Uncertainty in Artificial Intelligence, 2022.

Eysenbach, B., Gupta, A., Ibarz, J., and Levine, S. Diversity
is all you need: Learning skills without a reward function.
In International Conference on Learning Representations,
2019.

Farebrother, J., Greaves, J., Agarwal, R., Lan, C. L.,
Goroshin, R., Castro, P. S., and Bellemare, M. G. Proto-
value networks: Scaling representation learning with aux-
iliary tasks. In International Conference on Learning
Representations, 2023.

Gregor, K., Rezende, D., and Wierstra, D. Variational in-
trinsic control. In International Conference on Learning
Representations, Workshop track, 2017.

Harb, J., Bacon, P., Klissarov, M., and Precup, D. When
waiting is not an option: Learning options with a deliber-
ation cost. In AAAI Conference on Artificial Intelligence,
2018.

Hessel, M., Modayil, J., van Hasselt, H., Schaul, T., Ostro-
vski, G., Dabney, W., Horgan, D., Piot, B., Azar, M. G.,
and Silver, D. Rainbow: Combining improvements in
deep reinforcement learning. In AAAI Conference on
Artificial Intelligence, 2018.

Jinnai, Y., Park, J. W., Abel, D., and Konidaris, G. Discov-
ering options for exploration by minimizing cover time.
In International Conference on Machine Learning, 2019.

Jinnai, Y., Park, J. W., Machado, M. C., and Konidaris, G.
Exploration in reinforcement learning with deep cover-
ing options. In International Conference on Learning
Representations, 2020.

Kempka, M., Wydmuch, M., Runc, G., Toczek, J., and
Jaśkowski, W. ViZDoom: A Doom-based AI research
platform for visual reinforcement learning. In IEEE Con-
ference on Computational Intelligence and Games, 2016.

Khetarpal, K., Klissarov, M., Chevalier-Boisvert, M., Ba-
con, P., and Precup, D. Options of interest: Temporal
abstraction with interest functions. In AAAI Conference
on Artificial Intelligence, 2020.

Khetarpal, K., Riemer, M., Rish, I., and Precup, D. To-
wards continual reinforcement learning: A review and
perspectives. Journal of Artificial Intelligence Research,
75:1401–1476, 2022.

Kim, J., Park, S., and Kim, G. Unsupervised skill discovery
with bottleneck option learning. In International Confer-
ence on Machine Learning, 2021.

Klissarov, M. and Precup, D. Reward propagation using
graph convolutional networks. In Neural Information
Processing Systems, 2020.

Klissarov, M. and Precup, D. Flexible option learning. In
Neural Information Processing Systems, 2021.

Konidaris, G. and Barto, A. Skill discovery in continuous
reinforcement learning domains using skill chaining. In
Neural Information Processing Systems, 2009.

Koren, Y. Drawing graphs by eigenvectors: Theory and
practice. Computers & Mathematics with Applications,
49(11):1867–1888, 2005.

Laskin, M., Liu, H., Peng, X. B., Yarats, D., Rajeswaran,
A., and Abbeel, P. CIC: Contrastive intrinsic control
for unsupervised skill discovery. In Neural Information
Processing Systems, 2022.

10

https://github.com/maximecb/gym-miniworld
https://github.com/maximecb/gym-miniworld
https://github.com/Farama-Foundation/Minigrid
https://github.com/Farama-Foundation/Minigrid
https://github.com/MeepMoop/py222
https://github.com/MeepMoop/py222

Deep Laplacian-based Options for Temporally-Extended Exploration

Lin, L.-J. Self-improving reactive agents based on reinforce-
ment learning, planning and teaching. Machine Learning,
8(3–4):293–321, 1992.

Lyle, C., Rowland, M., Ostrovski, G., and Dabney, W. On
the effect of auxiliary tasks on representation dynamics.
In International Conference on Artificial Intelligence and
Statistics, 2021.

Machado, M. C. and Bowling, M. Learning purposeful
behaviour in the absence of rewards. In ICML Workshop
on Abstraction in Reinforcement Learning, 2016.

Machado, M. C., Bellemare, M. G., and Bowling, M. A
Laplacian framework for option discovery in reinforce-
ment learning. In International Conference on Machine
Learning, 2017.

Machado, M. C., Bellemare, M. G., Talvitie, E., Veness,
J., Hausknecht, M., and Bowling, M. Revisiting the
Arcade Learning Environment: Evaluation protocols and
open problems for general agents. Journal of Artificial
Intelligence Research, 61:523–562, 2018a.

Machado, M. C., Rosenbaum, C., Guo, X., Liu, M., Tesauro,
G., and Campbell, M. Eigenoption discovery through the
deep successor representation. In International Confer-
ence on Learning Representations, 2018b.

Machado, M. C., Barreto, A., Precup, D., and Bowling, M.
Temporal abstraction in reinforcement learning with the
successor representation. Journal of Machine Learning
Research, 24:1–69, 2023.

Mahadevan, S. Proto-value functions: Developmental re-
inforcement learning. In International Conference on
Machine Learning, 2005.

Mahadevan, S. and Maggioni, M. Proto-value functions:
A Laplacian framework for learning representation and
control in markov decision processes. Journal of Machine
Learning Research, 8:2169–2231, 2007.

Mall, R., Langone, R., and Suykens, J. Kernel spectral
clustering for big data networks. Entropy, 2013.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,
Antonoglou, I., Wierstra, D., and Riedmiller, M. Playing
Atari with deep reinforcement learning. In NeurIPS Deep
Learning Workshop. 2013.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidje-
land, A. K., Ostrovski, G., Petersen, S., Beattie, C., Sadik,
A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D.,
Legg, S., and Hassabis, D. Human-level control through
deep reinforcement learning. Nature, 518:529–533, 2015.

Nadler, B., Lafon, S., Coifman, R. R., and Kevrekidis, I. G.
Diffusion maps, spectral clustering and reaction coordi-
nates of dynamical systems. Applied and Computational
Harmonic Analysis, 21(1):113–127, 2006.

Oja, E. Simplified neuron model as a principal component
analyzer. Journal of Mathematical Biology, 1982.

Park, S., Choi, J., Kim, J., Lee, H., and Kim, G. Lipschitz-
constrained unsupervised skill discovery. In International
Conference on Learning Representations, 2022.

Pfau, D., Petersen, S., Agarwal, A., Barrett, D. G. T., and
Stachenfeld, K. L. Spectral inference networks: Unifying
deep and spectral learning. In International Conference
on Learning Representations, 2019.

Precup, D. Temporal Abstraction in Reinforcement Learning.
PhD thesis, University of Massachusetts Amherst, 2000.

Ren, T., Zhang, T., Lee, L., Gonzalez, J. E., Schuurmans,
D., and Dai, B. Spectral decomposition representation
for reinforcement learning. In International Conference
on Learning Representations, 2023.

Smith, M., van Hoof, H., and Pineau, J. An inference-
based policy gradient method for learning options. In
International Conference on Machine Learning, 2018.

Sutton, R., Precup, D., and Singh, S. Between MDPs and
semi-MDPs: A framework for temporal abstraction in
reinforcement learning. Artificial Intelligence, 112(1–2):
181 – 211, 1999.

Sutton, R., Modayil, J., Delp, M., Degris, T., Pilarski, P. M.,
White, A., and Precup, D. Horde: A scalable real-time
architecture for learning knowledge from unsupervised
sensorimotor interaction. In International Conference on
Autonomous Agents & Multiagent Systems, 2011.

Sutton, R. S. and Barto, A. G. Reinforcement Learning: An
Introduction. The MIT Press, second edition, 2018.

Touati, A., Rapin, J., and Ollivier, Y. Does zero-shot rein-
forcement learning exist? In International Conference on
Learning Representations, 2023.

van Hasselt, H., Guez, A., and Silver, D. Deep reinforce-
ment learning with double Q-learning. In AAAI Confer-
ence on Artificial Intelligence, 2016.

Vezhnevets, A., Osindero, S., Schaul, T., Heess, N., Jader-
berg, M., Silver, D., and Kavukcuoglu, K. Feudal net-
works for hierarchical reinforcement learning. In Interna-
tional Conference on Machine Learning, 2017.

Wang, K., Zhou, K., Zhang, Q., Shao, J., Hooi, B., and
Feng, J. Towards better Laplacian representation in rein-
forcement learning with generalized graph drawing. In
International Conference on Machine Learning, 2021.

11

Deep Laplacian-based Options for Temporally-Extended Exploration

Watkins, C. J. C. H. and Dayan, P. Technical note: Q-
learning. Machine Learning, 8(3-4), May 1992.

Wu, Y., Tucker, G., and Nachum, O. The Laplacian in RL:
learning representations with efficient approximations. In
International Conference on Learning Representations,
2019.

Wulfmeier, M., Rao, D., Hafner, R., Lampe, T., Abdol-
maleki, A., Hertweck, T., Neunert, M., Tirumala, D.,
Siegel, N., Heess, N., and Riedmiller, M. Data-efficient
hindsight off-policy option learning. In International
Conference on Machine Learning, 2021.

12

Deep Laplacian-based Options for Temporally-Extended Exploration

A. Related Work
The graph Laplacian has been introduced in RL through the Proto-Value Functions (PVFs) framework (Mahadevan, 2005;
Mahadevan & Maggioni, 2007) in which the eigenfunctions of the Laplacian are used as a solution to the problem of
representation learning. The same quantity was leveraged to learn eigenoptions (Machado & Bowling, 2016; Machado
et al., 2017), that is, options that follow the eigenfunctions of the graph Laplacian. The full eigenspectrum was later used by
Bar et al. (2020) to define options that leverage the diffusion distance (Nadler et al., 2006). Another line of work defines
options through a single eigenfunction of the Laplacian and show that options obtained by maximizing this vector lead to
better state coverage (Jinnai et al., 2019). An important limitation of these approaches is that they are not naturally scalable
because they are evaluated or derived using the true eigenfunctions of the graph Laplacian, which requires performing an
eigendecomposition on an |S| × |S| matrix that is not readily available.

In machine learning, there are various approaches that advocate for avoiding the costly eigendecomposition operation and
approximating the eigenfunctions. This line of work dates back to Oja’s rule (Oja, 1982), a Hebbian learning rule. Other
alternatives include more scalable approaches such as sampling subgraphs that preserve a local structure (Mall et al., 2013),
and using specific optimization objectives that approximate the eigenfunctions of the Laplacian (Deng et al., 2022).

Recently, Wu et al. (2019) proposed a stochastic approximation to the graph drawing objective, leading to a series of
publications on learning options by approximating the eigenfunctions of the Laplacian (Jinnai et al., 2019; Wang et al.,
2021). An important distinction from Jinnai et al.’s work is that DCEO learns a diverse set of options in parallel, which we
have shown to be key for good performance. Arguments for diversity were also presented in work where the options are
learned through mutual information-based objectives (Gregor et al., 2017; Eysenbach et al., 2019; Laskin et al., 2022). A
shared characteristic between our work and these approaches is the reliance on acting in an off-policy manner. Indeed, each
option’s experience is leveraged to update any of the agent’s components. Alternatively, there is a long line of HRL methods
derived for the on-policy regime (Bacon et al., 2017; Harb et al., 2018; Khetarpal et al., 2020). Future work could be to
employ methods that reconcile off-policy and on-policy methods in the HRL setting (Klissarov & Precup, 2021) or to revise
the way options are currently executed.

In RL, there exists a diverse body of works that propose to approximate the eigenfunctions of the graph Laplacian in different
ways. Farebrother et al. (2023) propose to leverage the concept of random indicator functions to learn Proto-Value Networks,
which are an extension of proto-value functions to the deep learning setting. The authors show strong performance in the
offline RL setting on Atari 2600 games. Closer to the graph drawing objective is the work by Pfau et al. (2019), who
introduces Spectral Inference Networks for recovering eigenfunctions of linear operators (and therefore the graph Laplacian).
The authors show results in learning interpretable representations from video data. Finally, Ren et al. (2023) propose a
spectral method that is independent of the policy. More work is required to investigate the properties of each of these
approximations. The graph Laplacian and its eigenfunctions knows a variety of use-cases in RL, such as credit assignment
(Klissarov & Precup, 2020), reward shaping (Wu et al., 2019), and offline representation learning (Touati et al., 2023).

B. Environments Description
Each of the environments depicted in Figure 1 present a different challenge in terms of exploration. Nine rooms, a larger
variant of the classic Four rooms (Sutton et al., 1999), connects rooms through bottleneck states (hallways). Maze is a
corridor that turns onto itself and requires persistent exploration for coverage—similar versions of it have been used to
highlight the issue of detachment (Ecoffet et al., 2021) some exploration methods face. Finally the Rubik’s cube 2x2 has
an underlying topology that is significantly different from traditional grid navigation tasks where all states have the same
connectivity and progressing towards the solution state (shown in the middle) requires a discontinuous sequence of actions
(i.e. repeating the same action a certain number of times in the cube will bring the agent back to where it started). We use
the open source implementation made available by de Asis (2018). All environments are stochastic: the agent’s action is
overwritten by a random action with probability 0.15.

Episodes are at most 100 steps long in order to stress the exploration challenge they pose. In each environment, the agent
starts from a particular position, shown in blue in Figure 1. In the state coverage setting, the agent interacts with the
environment until the episode terminates, which happens after 100 steps. In the reward maximization setting, we add a
goal in the bottom left in Nine rooms, one goal at each extremity of Maze, and one goal for the solution state of the Rubik’s
cube 2x2 (located in the middle of Figure 1). When the agent reaches the goal it receives a +1 reward (everywhere else
is 0) and the episode terminates. Finally, given that the dimensionality of the Rubik’s cube’s state space is on the order of

13

Deep Laplacian-based Options for Temporally-Extended Exploration

106, it is computationally impossible to perform eigendecomposition of an |S| × |S| matrix. For this reason, in the tabular
experiments, we restrict the state space to be all the states that are at most three moves away from the solution state. In the
experiments with function approximation, none of the tested baselines were able to learn to maximize reward. This is likely
due to the fact that the Rubik’s Cube is a very challenging domain from the point of view of (1) perception as a single action
changes the input features significantly, (2) topology as most of the actions (6/9) do not move the agent in a direction towards
the solution state. For this reason we also restrict in the function approximation case the total amount of states available to
the agent as all states five moves away from the solution state, and we use a tabular algorithm to learn to maximize rewards.
Notice that the Laplacian representation is still learned using deep networks which shows the robustness of such an objective.

C. Tabular Option-driven Exploration
C.1. Experimental Setup

Besides a random policy, we use count-based exploration and ϵz-greedy (Dabney et al., 2021) as baselines. Count-based
exploration consists in providing the agent with an intrinsic reward of 1/

√
n(s) at each step, where n(s) is the number of

times the agent has visited state s. Aside from random exploration, it is likely the most established (and used) algorithm for
exploration in RL. We also consider ϵz-greedy because it is an option-based exploration algorithm that uses action repetition
to obtain temporally-extended exploration, and it has shown significant performance improvements on the Arcade Learning
Environment (Bellemare et al., 2013; Machado et al., 2018a). We also considered the Deep Covering Options baseline
(Jinnai et al., 2020), however we did not include these results as DCEO was significantly outperforming this baseline.

Across all domains, we used a step size of 0.1 following the experiments by Machado et al. (2023). In the state coverage
experiments, the agent either takes an action with respect to a random policy or with respect to the exploration approach
(CEO, Counts, or ϵz-greedy). This trade-off was controlled by a hyperparameter which we searched over in the values
{0.05, 0.1, 0.5, 0.7}. For all environments we report the curve for the best performing configuration. The CEO algorithm
further introduces two hyperparameters: the size of the option set and the number of options we add/replace at each iteration
(this is equal to one episode in our experiments). Machado et al. (2023) report that an option set size of 1 and replacing 1
option per iteration is optimal for the Four rooms domains. We perform a search over the following values {1, 3, 5} for each
hyperparameter. Preliminary experiments showed that it is more efficient to replace all options at each iteration, therefore
we bind the value of the number of options to be replaced with the size of the option set. In the state coverage experiments
we found that an option set of size 5 works best for Nine rooms and Maze, whereas a size of 1 was best for Rubik’s cube.

In the reward maximization experiments, we leverage each exploration strategy within the Q-learning algorithm (Watkins &
Dayan, 1992). The behavior policy is defined to be the ϵ-greedy policy with ϵ = 0.1. When the agent chooses an exploratory
action it can either execute a primitive action or choose an option. Similarly to the coverage experiments, this trade-off is
defined by a hyperparameter that is searched over with the same values as before. We found the option set size of 5 to be
best for all environments. Finally, the option termination for CEO was defined following Theorem 3.1 by Machado et al.
(2017), that is, whenever the agent reaches the (local) maximum value of the option value function.

C.2. Results

State coverage. We first report results in terms of state coverage in Figure 9. Across all environments, CEO performs either
significantly better or is on par with the evaluated baselines. Given the distinct nature of the topology of each environment,
this indicates that CEO is robust to different topologies, not being constrained to grid-like navigation tasks.

To better understand CEO’s behavior, in Figure 10 we illustrate the state visitation obtained by some of the baselines after 100
episodes. Darker shades of red represent a higher visitation count for a particular state. We notice that CEO covers the environ-
ment in a fundamentally different way when compared to other approaches. While count-based exploration tends to diffuse
from a starting state, CEO is much more purposeful, traversing the state space by following the directions defined by the eigen-
functions of the Laplacian, as highlighted by the dark red paths in the left plot of Figure 10. This directed nature of exploration
is useful in order to cross bottleneck states, as in the Nine rooms. It is also especially important in the Maze environment as it
will incite the agent to reach the limits of the explored state space, thus avoiding the issue of detachment in exploration (Ecof-
fet et al., 2021). Notice that it is also in the Maze environment that the gap is the greatest between CEO and the baselines.

14

Deep Laplacian-based Options for Temporally-Extended Exploration

CEO

Counts

εz-greedy

Random walk

90% state visit. coverage

CEO

Counts

εz-greedy

Random walk

90% state visit. coverage

Random walk

εz-greedy

Counts
CEO90% state visit. coverage

Figure 9. State coverage in tabular environments. Number of states visited at least once while the agent is acting according to the policy
induced by each algorithm. The extrinsic reward is 0 at every time step. Results show the mean and standard deviation across 30 seeds.

Figure 10. State visitation after 100 episodes in the Nine rooms domain. State visitation is depicted from white to red (low to high
visitation) while gray shows states that were not visited. The paths CEO’s options take to efficiently explore the environment leave dark
red traces. Count-based exploration is more diffusive in nature and covers states more uniformly from a starting state.

C.3. Reward maximization

We now evaluate the performance of our method in terms of reward maximization. In this setting we are faced with a wide
range of possibilities as to how the agent may leverage options to maximize reward. In this work, we opt for straightforward
solution presented in Algorithm 2. In particular, we do not learn the value of each option for any given state. Additionally,
each option only learns from the intrinsic reward function derived from its associated eigenfunction, making options agnostic
to the underlying task. These choices are made such that CEO’s improvements in performance may only come from the fact
that it leverages a set of options that generate a rich and diverse stream of experience for learning.

The empirical setup is the same as in the state coverage experiments, except for the addition of a goal which gives +1 reward
while all other states give 0. We provide a detailed description in Appendix B. For all environments, we first learn a set of
five options in a reward-free setting for Tdiscovery steps before fixing them. These options are then executed by the CEO
agent in order to explore the environment and learn a reward maximizing policy. To account for the time CEO spent in the
option discovery phase (shaded region in Figure 11), we delay the start of CEO’s performance curve by for Tdiscovery steps.
Figure 11 shows that, even when considering the delay induced by the option discovery phase, CEO is not only able to learn
faster than other methods but it also learns better policies across all environments.

CEO

Counts

εz-greedy

Random walk

O
pt

io
n

di
sc

ov
er

y

O
pt

io
n

di
sc

ov
er

y

CEO

Counts

εz-greedy
Random walk

O
pt

io
n

di
sc

ov
er

y

CEO

Counts
Random walkεz-greedy

Figure 11. Reward maximization in tabular environments. CEO uses a two-phased algorithm where it first pretrains a set of options
through intrinsic motivation before leveraging them for reward maximization. CEO’s curve is delayed by the amount of time spent in the
first phase of option discovery. Despite this additional cost, we notice that it produces strong performance across all domains. When the
curves of different methods are not visible inside the shaded region it is because the exploration strategy used by the baseline method did
not lead to a single positive reward during the whole period. Results show the mean and standard deviation across 30 seeds.

15

Deep Laplacian-based Options for Temporally-Extended Exploration

Algorithm 2 Two-phased CEO Algorithm
1: ϵ← 1.0
2: Reset environment and observe state s
3: ⊥ = True # Episode termination
4: for i = 1 to T do
5: if ⊥ then
6: τ ← True # Option termination
7: o← −1 # No active option
8: end if
9: τ ← U(0, 1) < 1/D ∨ τ

10: if τ then
11: if U(0, 1) < ϵ then
12: if U(0, 1) < µ then
13: o ∼ U(|O|)
14: τ ← False
15: a ∼ πo(·|s)
16: else
17: o← −1
18: τ ← True
19: a ∼ U(A)
20: end if
21: else
22: a← maxa∈A Q(s, a)
23: end if
24: else
25: a ∼ πo(·|s)
26: end if
27: Execute action a, observe r, s′,⊥
28: Store transition (s, a, r, s′) in buffer B
29: Sample a minibatch of transitions (sj , aj , rj+1, sj+1)
30: if t < Tdiscovery ∧ ⊥ then
31: ∀oi ∈ O, rj ← fi(s

′)− fi(s)
32: Perform eigendecomposition to obtain the eigenfunctions
33: Train each option until convergence using its intrinsic reward
34: else
35: ϵ← 0.1
36: Train main learner on extrinsic reward using Q-Learning
37: end if
38: s← s′

39: end for

16

Deep Laplacian-based Options for Temporally-Extended Exploration

D. Coverage Results Using Deep Neural Networks
We present the results for state coverage using the DCEO algorithm in Figure 12. We notice that DCEO is either significantly
more efficient or on-par at covering the state space.

DCEO

Counts
εz-greedy

Random walk

RND90% state visit. coverage
DCEO

εz-greedy

Random walk
CountsRND

90% state visit. coverage
Counts

εz-greedy

Random walkRNDRND
DCEO

90% state visit. coverage

Figure 12. State coverage under deep function approximation. We show the number of states visited at least once while the agent acts
according to the policy induced by each algorithm. The environment reward is 0 at every time step. Results show the mean and standard
deviation across 30 seeds.

E. Comparison Between Different Laplacian Objectives
In our experience, maximizing the generalized Laplacian instead of the original objective proposed Wu et al. (2019) was
crucial for obtaining the performance we report. We illustrate this point in Figure 13 where only the generalized Laplacian
objective recovers accurate approximations to the eigenfunctions of the Laplacian.

Generalized Laplacian
(Wang et al., 2021)

Laplacian
(Wu et al., 2019)

Laplacian
(Wu et al., 2019)

Generalized Laplacian
(Wang et al., 2021)

Figure 13. Comparison between Laplacian (Wu et al., 2019) and Generalized Laplacian (Wang et al., 2021).

F. Comparison Between the Fully Online DCEO algorithm and DCEO with phases
In Figure 14 we compare the performance of the fully online DCEO algorithm (shown simply as DCEO) with the two-phased
version of DCEO (shown as DCEO w/ stages) that has access to a pretraining phase for option discovery. We notice that the
fully online DCEO is a strong algorithm that performs relatively well when compared to the two-phased version. This online
version removes the additional complexities of having a pretraining phase, is more generally applicable and scales naturally.

DCEO

DCEO w/ stages

O
pt

io
n

di
sc

ov
er

y
st

ag
e

DCEO

DCEO w/ stages

O
pt

io
n

di
sc

ov
er

y
st

ag
e

Figure 14. Comparison between learning DCEO fully online vs the staged one.

17

Deep Laplacian-based Options for Temporally-Extended Exploration

G. Visualizations in Escape Room
We present a visualization of the first eigenfunction of the generalized Laplacian in Figure 15 and we show its value for each
agent position before picking up the key (figure on the left), as well as after picking up the key (figure on the middle). We
witness an interesting property: the first eigenfunction, which encodes the principal direction in the environment, seeks to
pick the key and traverse, in the opposite way, the state space. In this environment, when the agent picks up the key, the
observation features change in a consistent way and the agent is led to a whole new part in the feature space. This important
transition is naturally encoded in the Laplacian representation and helps the agent to effectively explore its environment.
Picking up the key therefore could be seen as traversing a bottleneck state.

Figure 15. Visualization of the first eigenfunction in Escape Room. On the left we show its values for all agent positions before picking up
the key. In the middle we show its values for all agent positions after picking the key. On the right we show the environment.

H. Non-Stationary Environments

(a) Changing the goal position (b) Changing the topology and goal

Figure 16. Visualization of the non-stationary tasks evaluated in Section 6.2. In the first experiment, both the location of the agent and
the goal are changed. The agent does not get to observe where the new goal location is (it is invisible in input space). In the second
experiment, the location of the agent and the goal are changed, and the topology of the environment is altered as well. Some of the
bottleneck states are closed off, forcing the agent to find a different path to the goal.

I. Experimental Details
RND and count-based exploration produce a bonus for exploration that is added to the environment reward. This
bonus is multiplied by a hyperparameter β, for which we searched over the following values: {0.25, 0.5, 0.75, 1.0} for
RND and {0.0001, 0.001, 0.01, 0.1, 1.0} for Counts. We report the best performing curve for each environment. For
ϵz-greedy the parameter for the ζ distribution was taken to be k = 2 following best results by Dabney et al. (2021).
On initial experiments, different values of k did not lead to significantly better performance. In the case of the other
option-based algorithms (DIAYN, ϵz-greedy, and DCEO), we execute options with a certain probability µ whenever
the DDQN algorithm is not acting greedily (i.e. when U(0, 1) < ϵ). For each algorithm we searched over values
in {0.2, 0.7, 0.9} or {0.2, 0.7, 0.8}. Additionally, when leveraging options we must define the size of the option set
N , which was searched over in {3, 5, 10}. Across all environments an option set of 10 performed well, except for
Rubik’s Cube where a value of 3 was better. For the values of µ for DCEO, ϵz-greedy, and DIAYN (where applicable):
in Figure 2 from left to right, we used 0.9, 0.9, 0.7; in Figure 4 from left to right, we used 0.8; in Figure 5 we used
0.7, 0.8; in Figure 6 we used 0.9, 0.2, 0.7. It is important to note that the algorithm performed generally well for high
values of µ. However, since we also tuned all the other baselines for each environment, we present the best performing
choice of hyperparameters for all methods. An important detail of the count-based baseline is that we do not estimate
pseudo-counts (Bellemare et al., 2016), we instead provide the agent with perfectly accurate state counts, which provide a sig-
nificant advantage to this baseline. The results present the mean and standard deviation obtained across 30 independent seeds.

18

Deep Laplacian-based Options for Temporally-Extended Exploration

For all deep learning experiments we used a step size of 0.0001. This was chosen after a first investigation over the range
{0.001, 0.0005, 0.0003, 0.0001, 0.00005} on the simpler environments (Nine rooms and Maze).

The networks used were the following. The convolutional networks were a two layered convolutional network of channels
32, kernel 3 by 3 and stride 2. This was followed by a fully connected layer of size 256, followed by the outputs of the
networks. All activations were ReLUs. For the Rubik’s experiments, we used a stacked of 3 fully connected layers of size
256 before the outputs. All activations were ReLUs.

In the high dimensional experiments from Section 7, we simply use the best performing hyperparameter configuration from
previous experiments to obtain results for DCEO, that is the option selection probabiliy µ is 0.9 and the option duration D is
10. The number of options is reduced to 5 to allow for a faster algorithm iteration. The networks used is the standard Nature
DQN convolutional network for the 3D Navigation experiments whereas we use the standard Rainbow network for Atari.

J. Visualizing the Eigenfunction Through Time
In this section we present visualizations of the first 10 dimensions of the Laplacian representation as the agent learns to
reach the goal. We present such visualizations on the Nine rooms environments which we previously described and used as
a benchmark to compare DCEO to other algorithms. Additionally, we present results on the GridMaze environment which
was previously used by Wang et al. (2021). We do so to contrast the way the Laplacian representation evolves and converges
in our setting, where the agent has to discover the state space (as each episode starts from the bottom left) and where it seeks
to reach a goal state, which was not the case of previous work.

Figure 17. Visualization of the first 10 dimensions of the Laplacian presentation (the first 10 eigenfunctions) learned by the DCEO agent
as learning progresses. We notice that at first, all representations are random. As the agent covers more states, the objective’s orthogonality
constraint leads to representations that point in different directions on a subset of the state space. Finally, as the agent has discovered the
goal and learns to maximize for it, the representations take the agent’s policy into consideration as well as the general topology of the
environment. This is in contrast to the representaion found by previous work (Wang et al., 2021) where the agent can respawn anywhere
in the grid and do not seek to maximize a reward.

19

Deep Laplacian-based Options for Temporally-Extended Exploration

K. Deep Covering Eigenoptions: A Two-Phased Version

Algorithm 3 Two-phased DCEO Algorithm
1: ϵ← 1.0
2: Reset environment and observe state s
3: ⊥ = True # Episode termination
4: for i = 1 to T do
5: if ⊥ then
6: τ ← True # Option termination
7: o← −1 # No active option
8: end if
9: τ ← U(0, 1) < 1/D ∨ τ

10: if τ then
11: if U(0, 1) < ϵ then
12: if U(0, 1) < µ then
13: o ∼ U(|O|)
14: τ ← False
15: a ∼ πo(·|s)
16: else
17: o← −1
18: τ ← True
19: a ∼ U(A)
20: end if
21: else
22: a← maxa∈A Q(s, a)
23: end if
24: else
25: a ∼ πo(·|s)
26: end if
27: Execute action a, observe r, s′,⊥
28: Store transition (s, a, r, s′) in buffer B
29: Sample a minibatch of transitions (sj , aj , rj+1, sj+1)
30: if t < Tdiscovery then
31: ∀oi ∈ O, rj ← fi(s

′)− fi(s)
32: Train each option using its intrinsic reward (Eq. 1)
33: Minimize the generalized Laplacian (Eq. 2)
34: else
35: ϵ← LinearDecay(ϵ)
36: Train main learner on extrinsic reward (Eq. 1)
37: end if
38: s← s′

39: end for

20

