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Abstract

Pretraining a neural network on a large dataset
is becoming a cornerstone in machine learning
that is within the reach of only a few communities
with large-resources. We aim at an ambitious goal
of democratizing pretraining. Towards that goal,
we train and release a single neural network that
can predict high quality ImageNet parameters of
other neural networks. By using predicted param-
eters for initialization we are able to boost training
of diverse ImageNet models available in PyTorch.
When transferred to other datasets, models ini-
tialized with predicted parameters also converge
faster and reach competitive final performance.

1. Introduction
Training a neural network f initialized with parameters w
is typically done by running a stochastic gradient descent
(SGD) optimization algorithm on a dataset D:

w∗ = SGD(f,w,D). (1)

Novel neural architectures, e.g. Vision Transformer (Doso-
vitskiy et al., 2020), are usually first pretrained by Eq. (1)
on some large D such as ImageNet (Russakovsky et al.,
2015) or, some in-house data such as JFT-300M, and then
transferred to other downstream tasks (Kornblith et al., 2019;
Zhai et al., 2019; Dosovitskiy et al., 2020). With the growing
size of networks f and with multiple runs needed (e.g. for
hyperparameter tuning), the cost of pretraining is becoming
unsustainable (Strubell et al., 2019; Thompson et al., 2020;
Zhai et al., 2022). Therefore, pretraining is becoming one of
the key factors increasing the gap between a few privileged
communities (often big industries) and many low-resource
communities (often academics and small companies).
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Figure 1. We introduce GHN-3 models of a significantly larger
scale and larger training meta-batch size (m) compared to GHN-
2 (Knyazev et al., 2021). Scaling up GHNs leads to consistent
improvements in the quality of predicted parameters when used as
initialization on ImageNet. This plot is based on the accuracies of
the PYTORCH-10 models in Table 2.

We aim at an ambitious goal of democratizing the cost of
pretraining. To do so, we follow recent works where one
network (HyperNetwork) parameterized by θ is trained
to predict good parameters wpred for unseen network
architectures f (Zhang et al., 2018; Knyazev et al., 2021;
Shang et al., 2022) or datasets D (Zhmoginov et al.,
2022). We focus in this paper on generalization to new
architectures f in a large-scale ImageNet setting so that the
HyperNetwork HD is used as:

wpred = HD(f, θ). (2)

We use the parameters wpred predicted on ImageNet (D) as
initialization, so by fine-tuning them on D we can reduce
pretraining cost or we can transfer them to another dataset
Dtransfer by fine-tuning them on Dtransfer with Eq. (1):

w∗ = SGD(f,wpred,D or Dtransfer). (3)

While training HD is more expensive than training f from
scratch, we train HD only once and publicly release it
to move towards democratized pretraining. This way,
new architectures (including very large ones) designed
by different research communities may be boosted “for
free” by initializing them with wpred by a simple forward
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INITIALIZATION: GHN-2 GHN-3-XL/m16 (ours) RAND INIT
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Figure 2. ResNet-50 first layer parameters predicted with the baseline GHN-2, our GHN-3-XL/m16 and optimized with SGD on
ImageNet for 1 and 90 epochs. For the GHNs, ResNet-50 is an unseen architecture, i.e. not present in the training dataset of
architectures (Knyazev et al., 2021). The “Time” row shows a rough time estimation to obtain all the parameters of ResNet-50 (for SGD
the time is based on Knyazev et al. (2021)). The “ImageNet acc” row shows top-1 validation accuracy on ImageNet ILSVRC-2012. Our
GHN-3 predicts parameters as fast as GHN-2, but significantly improves the quality of predicted parameters making their performance
higher, fine-tuning easier and visual appearance similar to those trained with SGD for 90 epochs. See Section 5 for experiment details.

pass through HD. Our proposed HD is built on Graph
HyperNetworks (GHNs) (Zhang et al., 2018), in particular
GHN-2 (Knyazev et al., 2021) which previously often fell
short to improve over random initializations1. The GHN-3
we introduce predicts parameters of a significantly better
quality (Fig. 2). We make the following contributions:

1. We adopt Transformer from Ying et al. (2021) to im-
prove the efficiency and scalability of GHNs and we
modify it to better capture local and global graph struc-
ture of neural architectures (Section 4);

2. We significantly scale up our Transformer-based GHN
(GHN-3) and we release our largest model achiev-
ing the best results at https://github.com/
SamsungSAILMontreal/ghn3 (Fig. 1);

3. We evaluate GHNs by predicting parameters for around
1000 unseen ImageNet models, including all models
available in the official PyTorch framework (Paszke
et al., 2019). Despite such a challenging setting, our
GHN-3 shows high quality and performance and can
significantly improve training of neural networks on
ImageNet and other vision tasks (Section 5).

1We refer to the fine-tuning results reported by Knyazev et al.
(2021) in Appendix E and recently in (Czyzewski et al., 2022).

2. Related Work
Parameter prediction. Parameter prediction or gener-
ation is often done by hypernetworks (Ha et al., 2016).
Originally, hypernetworks were able to generate model
parameters only for a specific architecture and dataset.
Several works extended them to generalize to unseen ar-
chitectures (Brock et al., 2017; Zhang et al., 2018) and
datasets (Requeima et al., 2019; Zhmoginov et al., 2022).
We focus on the unseen architectures regime where the
most performant and flexible method so far is graph hy-
pernetworks (GHNs) (Zhang et al., 2018). Knyazev et al.
(2021) improved GHNs by introducing GHN-2 predict-
ing parameters for unseen architectures with relatively high
performance in image classification tasks. To train and eval-
uate GHNs, they introduced a diverse and large dataset of
training and evaluation architectures – DEEPNETS-1M. Our
proposed GHN-3 closely resembles GHN-2 and uses the
same training dataset. However, GHN-3 is > 100× larger,
which we show is important to increase the performance
on ImageNet. At the same time, GHN-3 is efficient during
training (and comparable during inference, see Fig. 2) due to
using transformer layers as opposed to a slow GatedGNN of
GHN-2 that required sequential graph traversal (Section 3).

Generative models of neural networks. Another line of
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work is based on first collecting a dataset of trained networks
and then learning a generative model by fitting the distribu-
tion of trained weights. Schürholt et al. (2022) train an auto-
encoder with a bottleneck representation with the ability to
sample new weights. Peebles et al. (2022) train a generative
diffusion transformer to generate weights conditioned on
random initialization for the same architecture and dataset.
Ashkenazi et al. (2022) improve the quality of generated
parameters by combining hypernetworks and generative
models, but their model is architecture-specific and unable
to generate weights for unseen architectures as GHNs.

Data-driven initialization. GHNs can be viewed as a data-
driven initialization method. Predicted parameters are gen-
erally inferior than those trained with SGD for many epochs,
so using the predicted ones as initialization (Eq. 2) followed
by fine-tuning with SGD (Eq. 3) is a logical approach. Gra-
dInit (Zhu et al., 2021) and MetaInit (Dauphin & Schoen-
holz, 2019) are methods to initialize a given neural network
on a given dataset by adjusting the weights to improve the
gradient flow properties. Neural initialization optimiza-
tion (NIO) (Yang et al., 2022) further improves on them.
These methods generally outperform a standard random-
based initialization (He et al., 2015) and carefully designed
architecture-specific initialization rules (Zhang et al., 2019).
Compared to these, in our work the initial parameters are
predicted by a GHN given a computational graph of the
neural network. Our approach leverages a million of train-
ing architectures making the predicted parameters better
for initialization as we show. Another recent initialization
method (Czyzewski et al., 2022) requires a source network
and the quality of the initialization depends on how similar
are the source and target networks. Their work is related
to Net2Net (Chen et al., 2015) and GradMax (Evci et al.,
2022) that require a smaller variant of the network or a cer-
tain growing scheduler. Our GHN-based approach is more
flexible as we can initialize a larger variety of networks
without the need of source networks or growing schedules.
Additional related work is also discussed in Section A.4.1.

3. Background
3.1. Graph HyperNetworks

A Graph HyperNetwork (GHN) (Zhang et al., 2018;
Knyazev et al., 2021) is a neural network HD parameterized
by θ and trained on a dataset D. The input to the GHN
is a computational graph fG of a neural network f ; the
output is its parameters wpred: wpred = HD(f

G; θ). In our
context, D can be an ImageNet classification task, f can
be ResNet-50 while wpred are parameters of ResNet-50’s
convolutional, batch normalization and classification layers.
Knyazev et al. (2021) train the GHN HD by running SGD
on the following optimization problem over M training ar-
chitectures {fG

a }Ma=1 and N training samples {xj , yj}Nj=1:

arg min
θ

1

NM

N∑
j=1

M∑
a=1

L
(
fa

(
xj ;HD(f

G
a ; θ)

)
, yj

)
. (4)

During training HD, a meta-batch of m training architec-
tures is sampled for which HD predicts parameters. Simul-
taneously, a mini-batch of b training samples x is sampled
and forward propagated through the predicted parameters
for m architectures to predict m × b sample labels ŷ. For
classification, the cross-entropy loss L is computed between
ŷ and ground truth labels y of x, after which the loss is back-
propagated to update the parameters θ of HD with gradient
descent. In GHN-2 and in this work, training architectures
are sampled from DeepNets-1M – a dataset of 1 million
architectures (Knyazev et al., 2021). Training samples x
represent images and y are their labels.

The input computational graph fG = (V,E) is a directed
acyclic graph (DAG), where the nodes V correspond to op-
erations (convolution, pooling, self-attention, etc.), while
the edges E correspond to the forward pass flow of inputs
through the network f . GHNs take d-dimensional node fea-
tures H(1) ∈ R|V |×d as input obtained using an embedding
layer for each i-th node: h(1)

i = Embed(h(0)
i ), where h

(0)
i

is a one-hot vector denoting an operation (e.g. convolution).
The graph fG is traversed in the forward and backward di-
rections and features H(1) are sequentially updated using a
gated graph neural network (GatedGNN) (Li et al., 2015).
After the GatedGNN updates node features, the decoder uses
them to predict the parameter tensor of the predefined shape.
In GHN-2, this shape is equal to 2d×2d×16×16. The final
predicted parameters wpred associated with each node are
obtained by copying or slicing this tensor as necessary.

3.2. Transformers

Transformers are neural networks with a series of self-
attention (SA)-based layers applied to d-dimensional fea-
tures H ∈ Rn×d (Vaswani et al., 2017). In a Trans-
former layer, SA projects H using learnable parameters
WQ,WK ,WV followed by the pairwise dot product, soft-
max and another dot product (for simplicity we omit the
layer superscript (l) in our notation unless necessary):

Q = HWQ,K = HWK , V = HWV , (5)

A =
QKT

√
d

, SA(H) = softmax(A)V. (6)

A Transformer layer consists of multi-head SA (MSA) with
k heads, and a series of fully-connected and normalization
layers (Vaswani et al., 2017; Dosovitskiy et al., 2020).

3.3. Transformers on Graphs

A vanilla Transformer defined above can in principle be
applied to graph features H(1) ∈ R|V |×d, but it does not
have ingredients to capture the graph structure (edges). Sev-
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eral variants of Transformer layers on graphs have been
proposed (Dwivedi & Bresson, 2020; Ying et al., 2021; Kim
et al., 2022; Chen et al., 2022). We rely on Graphorm-
ers (Ying et al., 2021) due to its simplicity and strong ability
to capture local and global graph structure. In Graphormers,
node features are augmented with node degree (centrality)
embeddings. For directed graphs, such as DAGs, these are
in-degree zdeg+(i) and out-degree embeddings zdeg−(i), so

an embedding h
(1)
i for the i-th node is defined as:

h
(1)
i = Embed(h(0)

i ) + zdeg+(i) + zdeg−(i), (7)

where Embed(h(0)
i ) are some initial node embeddings, e.g.

see in Section 3.1. When self-attention in Eq. (6) is applied
to graphs, we can interpret Aij as a scalar encoding the
relationship between nodes i and j. To incorporate the
graph structure in Transformers, Graphormer layers add an
edge embedding e(i, j) to Aij in self-attention:

Ãij =
(hiWQ)(hjWK)T√

d
+ e(i, j), (8)

where Ã replaces A in Eq. (6) without changing the other
components of the Transformer layer. Graphormers model
e(i, j) as a learnable scalar dependant on the shortest
path distance between nodes i and j, shared across all
Graphormer layers. While for SA e(i, j) is a scalar, for
MSA e(i, j) is a vector of length equal to the number of
heads k. See further details in (Ying et al., 2021).

4. Scalable Graph HyperNetworks: GHN-3
Our GHN-3 model modifies GHN-2 (Knyazev et al.,
2021) in three key ways: (1) replacing a GatedGNN with
Graphormer-based layers; (2) improving the training loss
of GHNs; (3) increasing the scale and meta-batch of GHNs.

4.1. Transformer on Computational Graphs

In GHN-3, we replace a GatedGNN with a stack of L
Graphormer-based layers built based on Eq. (8) and applied
to H(1) defined in Eq. (7). Since the information in computa-
tional graphs can flow in the forward (i → j) and backward
(j → i) directions, we explicitly separate edge embeddings
into two terms, so that our self-attention is based on:

Ãij =
(hiWQ)(hjWK)T√

d
+ ϕ([e(i, j), e(j, i)]). (9)

where ϕ is a series of fully connected layers. While in
principle multiple Graphormer layers (Eq. 8) could infer
that the backward pass is the inverse of the forward pass, we
found that explicitly separating the embeddings and adding
ϕ facilitates learning as we confirm in Ablations (Section 5).

4.2. Predicted Parameter Regularization

Knyazev et al. (2021) showed that the parameters predicted
by GHNs can lead to a higher variance of activations com-

pared to the variances of activations for parameters opti-
mized with SGD (see their Appendix B). Too high variances
may lead to instabilities during training GHNs as well as
to negative effects in applications. For example, if such
predicted parameters are used for initialization, their fine-
tuning can be challenging. To alleviate this issue, we add a
group ℓ1−ℓ2 regularization (Scardapane et al., 2017) on the
predicted parameters wpred during training GHN-3, so that
the total GHN-3 training loss becomes:

L = LCE + γ
∑

i
||wpred,i||2, (10)

where LCE is the cross-entropy loss (same as in the baseline
GHN-2), γ is a tunable coefficient controlling the strength
of the penalty and i is the layer index of the training neu-
ral network fa (see Eq. 4). Our regularization encourages
smaller values in predicted parameters and consequently
smaller variances of activations that are expected to be more
aligned with the activations of models trained with SGD
(see Fig. 6-bottom). Besides Eq. (10), we also experimented
with other forms of regularization including

∑
i w

2
pred,i, but

Eq. (10) overall worked the best (see ablations in Table 5).

4.3. Increased Scale

Once we replace GatedGNN with Graphormer-based layers,
scaling up GHNs becomes straightforward by increasing the
number of the Graphormer-based layers L and hidden size
d. The decoder of our GHN-3 has the same architecture
as in GHN-2 with the hidden size increasing proportionally
to d (see Appendix A.1). The decoder takes the output node
features of the last Graphormer layer to predict parameters.
In contrast to our approach, scaling up GHN-2 is not trivial
since a single GatedGNN layer is computationally expensive
as it requires sequential graph traversal, so stacking such
layers is not feasible (see Section 5). Instead, Graphormer
layers update all node features in parallel making our
GHN-3 efficient and scalable. Increasing the meta-batch
size m (see Section 3.1) is also straightforward, so when
training a GHN on g GPU devices, each device processes
m/g architectures and the gradients of the GHN parameters
θ are averaged on the main device (Knyazev et al., 2021).

Despite the simple modifications outlined in this Section,
GHN-3 brings GHNs to a significantly better level in the
quality of predicted parameters with important practical
implications as we empirically show next.

5. Experiments
We evaluate if neural networks initialized with the param-
eters wpred predicted by GHNs obtain high performance
without any training (Eq. 2) and after fine-tuning (Eq. 3).
We focus on a large-scale ImageNet setting, but also evalu-
ate in a transfer learning setting from ImageNet to few-shot
image classification and object detection tasks.
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Table 1. Details of GHNs. Train time is for GHNs with m = 8 and
is measured on 4xNVIDIA-A100 GPUs. *GHN-3-XL requires 8
GPUs, so its training time is not directly comparable. GHN-2-S is
a larger version of the baseline GHN-2 that we attempted to train
but were unable to complete due to poor training efficiency.

NAME LAYERS L HIDDEN SIZE d HEADS k PARAMS TRAIN TIME

GHN-2 1 32 − 2.3M 11.5 DAYS
GHN-2-S 2 128 − 35.0M 20.5 DAYS

GHN-3-T 3 64 8 6.9M 3.7 DAYS
GHN-3-S 5 128 16 35.8M 3.8 DAYS
GHN-3-L 12 256 16 214.7M 4.7 DAYS

GHN-3-XL 24 384 16 654.4M 4.8* DAYS

Training GHN-3. We train the GHNs on the ILSVRC-2012
ImageNet dataset (Russakovsky et al., 2015) with 1.28M
training and 50K validation images of the 1k classes. All
GHNs are trained for 75 epochs using AdamW (Loshchilov
& Hutter, 2017), initial learning rate 4e-4 decayed using
the cosine scheduling, weight decay λ=1e-2, predicted
parameter regularization γ=3e-5 (Eq. 10), batch size b=128
and automatic mixed precision in PyTorch (Paszke et al.,
2019). We train the GHNs on the same training split of
1 million architectures, DEEPNETS-1M, used to train
GHN-2 (Knyazev et al., 2021).

GHN-3 variants. We train GHN-3 models of four scales
(Table 1). We begin with a tiny scale GHN-3-T that has
the same order of parameters (6.9M) as GHN-2 (2.3M).
We then gradually increase the number of layers, hidden
size and heads in the Graphormer-based layers following a
common style in Transformers (Dosovitskiy et al., 2020; Liu
et al., 2021). We train all variants with meta-batch size m=8
and 16 and denote the GHNs with the /m8 and /m16 suffixes.

Efficient distributed implementation. We build on the
open-source implementation of GHN-2 (Knyazev et al.,
2021) and improve its efficiency by using a distributed
training pipeline and removing redundant computations.
Our implementation reduces the training time of GHNs by
around 50% (see Appendix A.3). However, despite our best
efforts GHN-2 still takes more than 11 days to train (Fig. 3).
Larger versions of GHN-2, e.g. by stacking two GatedGNN
layers, are estimated to require > 20 days making it expen-
sive to train. In contrast, our GHN-3 is significantly faster to
train while achieving stronger results (Fig. 3). For example,
one of our best performing models (GHN-3-L/m16) is
about 2× faster to train and is more than 2× better in
accuracy. The cost of training our GHNs is still higher than
training a single network (e.g. full training of ResNet-50
takes about 0.4 days on 4xNVIDIA-A100). However, we
train each GHN only once and we publicly release them, so
that they can predict parameters for many diverse and large
ImageNet models in ≈ 1 second even on a CPU (Fig. 2).

Baselines. Our main baselines are GHN-2, released
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Figure 3. ImageNet accuracy of fine-tuning predicted parameters
vs training speed of GHNs. Our GHN-3 is efficient to train and at
the same time the predicted parameters achieve higher accuracy.
All measurements are made on 4xNVIDIA-A100 GPUs.

by Knyazev et al. (2021), random initialization (RANDINIT)
implemented by default in PyTorch, typically based
on He et al. (2015). In full training experiments, we also
compare our approach to more advanced initializations,
GRADINIT (Zhu et al., 2021) and NIO (Yang et al., 2022).
For reference, we also compare to the SOTA results
reported in prior literature. However, this baseline is not a
fair comparison since it requires 90-600 epochs of training
on ImageNet and often relies on advanced optimization
algorithms, augmentations and other numerous tricks.

Evaluation architectures. For evaluation of GHNs we use
two splits of neural network architectures. (1) The evalua-
tion splits of DEEPNETS-1M: 900 in-distribution (Test split)
and out-of-distribution (Wide, Deep, Dense and BN-Free
splits) architectures (Knyazev et al., 2021). (2) PYTORCH:
74 architectures for which trained ImageNet weights are
available in PyTorch-v1.13 (Paszke et al., 2019). As shown
by Knyazev et al. (2021), all the evaluation architectures of
DEEPNETS-1M are different from the ones used to train
GHNs. The architectures of PYTORCH are even more dif-
ferent, diverse and on average of a significantly larger scale
than the ones in DEEPNETS-1M (Table 3).

5.1. Experiments on DEEPNETS-1M and PYTORCH

Setup. Using trained GHNs we first predict ImageNet
parameters for all 900 + 74 evaluation architectures in
DEEPNETS-1M and PYTORCH and evaluate their ImageNet
classification accuracy (top-1) by propagating validation
images. We then initialize the networks (1) with parame-
ters predicted by GHNs or (2) randomly (RANDINIT), and
fine-tune them using SGD on ImageNet to compare con-
vergence dynamics between (1) and (2). Since fine-tuning
all the 974 networks for all initialization approaches is pro-
hibitive, we choose top-10 networks in each split, denoted
as DEEPNETS-1M-10 and PYTORCH-10 respectively. For
the GHNs, the top-10 networks are chosen based on the
accuracy obtained by directly evaluating (no fine-tuning)
predicted parameters on ImageNet. For RANDINIT, the top-
10 networks are chosen based on the network accuracy after
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Table 2. ImageNet top-1 accuracy (%) after predicting parameters and fine-tuning them for 1/10 (1k SGD steps) and 1 (10k steps) epoch.
Average and standard deviation of accuracies for top-10 networks in the DEEPNETS-1M and PYTORCH splits are reported. SOTA results
denote accuracies reported in the official PyTorch documentation and require 90-600 epochs, advanced optimizers and numerous tricks.

INITIALIZATION NO FINE-TUNING 1/10 EPOCH OF SGD 1 EPOCH OF SGD SOTA
DEEPNETS1-1M-10 PYTORCH-10 DEEPNETS1-1M-10 PYTORCH-10 DEEPNETS1-1M-10 PYTORCH-10 PYTORCH-10

RANDINIT 0.2±0.0 0.2±0.0 5.2±0.7 1.1±0.3 34.7±1.1 25.9±1.3 84.2±0.7
GHN-2/M8 24.6±0.4 0.7±0.4 15.9±1.3 7.6±2.7 24.9±1.3 16.0±3.2

90
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GHN-3-T/M8 31.3±0.3 3.9±3.9 31.9±1.9 15.3±3.4 33.6±1.5 23.9±1.0
GHN-3-T/M16 30.0±0.2 5.3±4.5 31.6±1.1 16.1±3.8 32.8±1.0 23.6±1.6

GHN-3-S/M8 41.1±0.7 6.0±6.3 42.1±1.8 22.5±5.0 43.4±1.5 32.1±1.4
GHN-3-S/M16 41.3±0.6 7.8±7.0 41.9±2.5 22.0±5.9 43.5±1.7 31.8±2.0

GHN-3-L/M8 43.6±1.0 10.7±9.3 44.0±2.8 26.2±5.1 46.0±2.0 37.4±1.9
GHN-3-L/M16 44.7±0.7 9.8±8.1 42.9±5.6 27.3±4.6 46.4±3.1 38.0±2.3

GHN-3-XL/M8 43.8±0.8 8.5±8.1 45.7±2.5 28.2±6.1 47.5±2.3 36.9±3.8
GHN-3-XL/M16 47.1±0.9 11.5±8.4 48.1±3.7 30.6±7.2 50.1±3.0 40.3±3.9
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Figure 4. ImageNet results for all PYTORCH models after 1 and 10 epochs of SGD, and after SOTA training for at least 90 epochs. The
left and right figures show the models for which GHN-3-XL/m16+SGD-1ep outperforms and underperforms RANDINIT+SGD-1ep.
See accuracies and rank correlation results in Table 20.

Table 3. The evaluation splits of neural architectures. The average,
standard deviation and range of property values are shown. Graph
degrees and paths are computed based on Knyazev et al. (2021).

EVAL. SPLIT NETS PARAMS (M) GRAPH DEGREE GRAPH PATH

DEEPNETS-1M 900 9±16 (2.2 - 102) 2.3±0.1 (2.1 - 2.8) 15±7 (5.1 - 72)
PYTORCH 74 56±64 (1.2 - 307) 2.5±1.2 (1.9 - 9.1) 16±6 (6.8 - 37)

1 epoch of SGD (denoted as SGD-1ep). For DEEPNETS-
1M, the accuracies of RANDINIT+SGD-1ep are taken
from (Knyazev et al., 2021). For PYTORCH we trained
all networks for 1 epoch using SGD with a range of learning
rates (0.4, 0.1, 0.04, 0.01, 0.001), momentum 0.9, weight de-
cay 3e-5 and batch size 128. We choose the networks achiev-
ing the best validation accuracy among all the learning rates
and report the average accuracy (Table 2). For the GHNs,
we fine-tune top-10 networks initialized with predicted pa-
rameters using SGD for 1 epoch using the same range of hy-
perparameters as for training from RANDINIT. For our best
GHN-3-XL/m16 we also fine-tune all PYTORCH networks.

Results of fine-tuning top-10 models for 1 epoch. As
reported in Table 2, our GHN-3-based initialization consis-
tently improves ImageNet performance compared to RAN-
DINIT and the GHN-2-based initialization for all training
regimes and for both DEEPNETS-1M-10 and PYTORCH-
10 architecture splits. Moreover, GHN-3 results gracefully
improve with the GHN scale. For larger GHN-3 models,

Table 4. Summary of the results presented in Fig. 4. “Wins” de-
notes a fraction of networks for which a GHN-3-based init. outper-
formed RANDINIT+SGD-1ep. “Avg gain/loss” denotes an average
gain/loss versus RANDINIT+SGD-1ep when GHN-3 wins/loses.

METHOD WINS AVG GAIN AVG LOSS

GHN-3-XL/M16 NO FINE-TUNE 5% 1.6% -16.4%
GHN-3-XL/M16 + SGD-1/10EP 14% 11.0% -12.0%
GHN-3-XL/M16 + SGD-1EP 74% 12.3% -4.2%

increasing meta-batch size (m) is important. For example,
when m is increased from 8 to 16, ImageNet accuracy on PY-
TORCH-10 after 1 epoch increases by 3.4 points for GHN-3-
XL versus a -0.3 point decrease for GHN-3-T. The overall
trend indicates that further increase of the GHN-3 scale and
meta-batch size should yield more gains (Fig. 1). Our best
model, GHN-3-XL/m16, when used as an initializer for PY-
TORCH-10 models leads to fast convergence. For example,
after fine-tuning predicted parameters for just 1/10 epoch (1k
SGD steps) we achieve 30.6% while RANDINIT achieves
only 1.1% after 1/10 epoch and 25.9% after 1 epoch. The
GHN-2-based initialization is considerably worse than RAN-
DINIT leading to 16.0% after 1 epoch. Thus, our GHN-3
models and in particular GHN-3-XL/m16 make a major
step from GHN-2 by making GHNs useful for initialization.

Results of fine-tuning all PyTorch models for 1-10 epochs.
Using our best model, GHN-3-XL/m16, we initialized and
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Table 5. Ablations. ImageNet validation accuracy after 1 training
epoch for the PYTORCH-10 models initialized with GHN-3-T/m8.

MODEL SA FW BW γ PARAMS ACC

GHN-3-T/M8 ✓ ✓ ✓ 3E-5 6.91M 23.9±1.0

γ
∑

i w
2
PRED,i REG. IN EQ. (10) ✓ ✓ ✓ 3E-5 6.91M 22.5±2.2

NO PRED. PAR. REG. IN EQ. (10) ✓ ✓ ✓ 0 6.91M 19.9±4.7
NO BW EMBED. IN EQ. (9) ✓ ✓ ✗ 3E-5 6.90M 20.4±6.9
NO EGDE EMBED., SA EQ. (6) ✓ ✗ ✗ 3E-5 6.88M 18.9±4.1
NO EGDE EMBED., MLP ✗ ✗ ✗ 3E-5 6.74M 13.4±0.8

then fine-tuned for 1 epoch all 74 PYTORCH models and
compared to RANDINIT (Fig. 4). GHN-3-XL/m16 im-
proves RANDINIT in 74% (55 out of 74) cases with an
average accuracy gain of 12.3% in absolute points (Table 4,
Fig. 4-left). While our initialization is inferior in 26% cases,
the accuracy drop is relatively small and is -4.2% on average
(Table 4, Fig. 4-right). Most of the lost cases correspond
to the networks with a squeeze and excitation operation
(EfficientNet, MobileNet), indicating a potential problem of
GHNs to predict good parameters in that case. Nevertheless,
when fine-tuning for 10 epochs, all PYTORCH models initial-
ized using GHN-3-XL/m16 improve their performance fast
and in some cases approach SOTA training from RANDINIT
for ≥90 epochs. For example, RegNet-y-32gf achieves 68%
after 10 epochs outperforming six SOTA-trained models.

Ablations. We study which components of GHN-3, besides
the scale and meta-batch size, are important for the perfor-
mance. To do so, we apply our previous setup from Table 2
to ablated GHN-3-T/m8 models (Table 5). First, we show
that our predicted parameter regularization (Eq. 10) is im-
portant. It explicitly enforces smaller values in predicted
parameters which facilitates their fine-tuning (Fig. 6). Sec-
ond, adding separate edge embeddings for the backward
pass of computational graphs (Eq. 9) also improves results
(from 20.4% to 23.9%) with almost no increase in the GHN
size. Finally, the accuracy drops the most when edge embed-
dings and self-attention are removed. Self-attention without
edge embeddings (Eq. 6) still allows for the exchange of
information between the nodes of graphs, therefore the accu-
racy is not as low (18.9%) as when self-attention is removed
(13.4%). These last two results confirm the importance of
capturing the graph structure of neural architectures and that
our GHN-3 is an effective model to achieve that. Additional
ablations are shown and discussed in Appendix A.2.

Generalization. When predicted parameters are evaluated
without fine-tuning, GHN-2 showed good generalization
to unseen architectures of DEEPNETS-1M, including the
out-of-distribution splits: Wide, Deep, Dense and BN-Free
(Knyazev et al., 2021). However, the performance of GHN-
2 is still lower compared to RANDINIT+SGD-1ep (Fig. 5).
Our GHN-3-XL/m16 without any fine-tuning not only
matches but outperforms training with SGD for 1 epoch on
all evaluations splits of DEEPNETS-1M by a large margin.
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Figure 5. Generalization results of GHNs without fine-tuning pre-
dicted parameters on five evaluation splits of DEEPNETS-1M
using ImageNet accuracy. The number in parentheses indicates
the number of architectures in each split. See the numerical results
for these and other GHNs in Table 11 in Appendix.

5.2. Full Training

Setup. We explore if the benefits of a GHN-3-based ini-
tialization still hold when the networks are trained for many
epochs as in SOTA training. We compare the GHN-3-
XL/m16-based initialization to GHN-2, RANDINIT and
stronger initialization baselines, GRADINIT (Zhu et al.,
2021) and NIO (Yang et al., 2022). We consider three
architectures, ResNet-50, ResNet-152 (He et al., 2016) and
Swin Transformer (Liu et al., 2021) (its tiny variant denoted
as Swin-T), achieving strong performance in vision tasks.
We use standard training settings for ResNets: 90 epochs of
SGD with momentum 0.9 and batch size 128. A standard
(well-tuned) initial learning rate 0.1 is used for RANDINIT,
GRADINIT and NIO, while for GHN-based initializations
we perform light tuning of the initial learning rate among
(0.1, 0.025, 0.01), since predicted parameters may need only
slight fine-tuning. In all cases, the learning rate is decayed
every 30 epochs. For Swin-T we follow Liu et al. (2021)
and train with AdamW and the cosine learning rate schedul-
ing, but use computationally light settings to make training
feasible. In particular, we use batch size 512 and train for
90 epochs and only using standard augmentation methods
as for the ResNets. For Swin-T each initialization method is
tuned: initial learning rate is chosen from (1e-3, 6e-4, 3e-4)
and the weight decay from (0.01, 0.05). For all the networks
when using the GHN initialization, to break the symmetry
of identical parameters, we add a small amount of noise
with β=1e-5 to all parameters following Knyazev (2022).
We repeat training runs for 3 random seeds in all cases.

Results. As shown in Fig. 6-top and Table 6, our
GHN-3-based initialization speeds up convergence for
all the three networks compared to all other initialization
methods, including GRADINIT and NIO. The gap between
our GHN-3 and others is especially high during the first
few epochs and particularly for ResNets. After training for
longer, the gap between the methods gradually shrinks and
all the initialization methods show comparable performance
with two exceptions. First, on Swin-T the final accuracy
of our GHN-3-based initialization is noticeably better than
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Figure 6. (top) Validation accuracy curves of ResNet-50, ResNet-152 and Swin-T on ImageNet. See the training accuracy curves in
Fig. 8 in Appendix. Standard learning rate schedules are used for ResNets (decay every 30 epochs) and Swin-T (cosine decay). (bottom)
Variance of activations in the networks initialized with the methods we compare (see Section 5.4 for the details).

Table 6. Comparison of initialization methods for ResNet-50,
ResNet-152 and Swin-T on ImageNet. Average accuracies over
3 runs are reported. For all methods, a standard deviation after
1 epoch is ≤ 2, after 45 epochs is ≤ 0.3 and after 90 epochs is
≤ 0.1. Initialization time is measured on 1xNVIDIA-A100 in
seconds; average time over the three networks is reported. We also
compare to FixUp (Zhang et al., 2019) in Table 16.

INIT. INIT. RESNET-50 RESNET-152 SWIN-T
METHOD TIME 1 EP 45 EP 90 EP 1 EP 45 EP 90 EP 1 EP 45 EP 90 EP

RANDINIT 0.2 20.6 67.3 76.0 19.7 70.5 78.2 18.4 72.7 75.6
GRADINIT 1700 21.1 67.9 76.2 22.5 70.5 78.2 20.3 72.1 75.0
NIO 85 21.0 68.1 76.1 − − − − − −
GHN-2 1.3 12.8 66.5 75.6 13.9 69.2 77.4 15.8 70.3 75.8
GHN-3 1.2 35.0 73.5 76.2 34.3 75.9 78.1 27.1 73.7 76.4

all other methods (76.4% vs 75.8% of the best baseline).
Second, the baseline GHN-2 is generally worse than other
initialization methods converging slowly and underper-
forming at the end. Overall, our GHN-3 brings GHNs to
a significantly better level by improving convergence versus
other methods in the first epochs. Advanced initialization
methods, NIO and GRADINIT, performed similarly to each
other in our ResNet-50 experiments, and we were unable to
run NIO for the other networks (Table 6). Compared to NIO
and GRADINIT, GHN-3 has an extra advantage besides
converging faster in the beginning. Specifically, NIO and
GRADINIT require propagating and computing gradients
for 100-2000 mini-batches on ImageNet to initialize each
network, which can be inconvenient in practice (Zhu et al.,
2021; Yang et al., 2022). In contrast, our trained GHN-3
predicts ImageNet parameters for each network in ≈ 1
second (even on a CPU) and without accessing ImageNet.

Modern training recipes. While we used standard training
recipes with 90 epochs, modern training recipes require

up to 600 epochs with stronger regularizations and other
tricks to reach higher accuracy at a higher computational
cost (Wightman et al., 2021). However, the goal of this
work is not to achieve SOTA at a high cost, but to achieve
competitive performance at a low computational cost (in
a few epochs) by leveraging GHN-3. As we report in
Table 6, the final 90 epoch accuracies of the GHN-3-based
initialization are generally similar to RANDINIT and we
expect this trend to maintain if the modern recipes are used.

5.3. Transfer Learning

Setup. We explore if the parameters predicted by our GHNs
for ImageNet can be transferred to other tasks. We consider
three architectures: ResNet-50, Swin-T and the base variant
of ConvNeXt (Liu et al., 2022). We compare the following
initialization approaches: (1) RANDINIT, (2) orthogonal
initialization (Saxe et al., 2013), (3) parameters predicted by
GHNs, (4) RANDINIT or predicted parameters trained/fine-
tuned on ImageNet for 1 epoch and (5) RANDINIT trained
on ImageNet for 90-600 epochs. The latter requires
significant computational resources and therefore is not
considered to be a fair baseline. We fine-tune the networks
initialized with one of these approaches on the few-shot vari-
ants of the CIFAR-10 and CIFAR-100 image classification
tasks (Krizhevsky et al., 2009). Following (Zhai et al., 2019;
Knyazev et al., 2021) we consider 1000 training samples
in each task, which is well suited to study transfer learning
abilities. To transfer ImageNet parameters to CIFAR-10 and
CIFAR-100, we re-initialize the classification layer with
RANDINIT with 10 and 100 outputs respectively and fine-
tune the entire network. We tune hyperparameters for each
method in a fair fashion following (Knyazev, 2022). We also
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Table 7. Transfer learning from ImageNet to few-shot CIFAR-10
and CIFAR-100 with 1000 training labels with 3 networks: ResNet-
50 (R-50), ConvNext-B (C-B) and Swin-T (S-T). Average accura-
cies over 3 runs are reported; std in all cases is generally ≤ 0.5.

INITIALIZATION IMAGENET CIFAR-10 CIFAR-100
PRETRAIN R-50 C-B S-T R-50 C-B S-T

RANDINIT NO 61.6 48.0 46.0 14.5 11.6 12.2
ORTH NO 61.1 52.4 47.8 14.8 13.6 12.5
GHN-2 NO 61.8 52.3 48.2 18.3 13.7 12.7
GHN-3-XL/M16 NO 72.9 55.3 51.8 27.8 13.8 11.9

RANDINIT 1 EPOCH 74.0 69.1 62.1 33.1 19.9 24.2
GHN-2 1 EPOCH 68.4 69.1 58.6 26.6 28.0 21.4
GHN-3-XL/M16 1 EPOCH 77.8 71.3 64.3 37.2 31.0 26.5

RANDINIT 90-600 EP 88.7 95.6 93.4 56.1 69.7 62.5

Table 8. Transfer learning results (average precision at IoU=0.50
measured in %) for the Penn-Fudan object detection dataset.

INITIALIZATION IMNET PRETR. RESNET-50 RESNET-101 RESNET-152

RANDINIT NO 21.3±4.9 14.9±1.1 18.4±1.9
GHN-2 NO 54.9±1.4 55.1±3.2 55.8±5.7
GHN-3-XL/M16 NO 61.7±3.8 60.2±7.6 60.0±5.2

RANDINIT 90 EPOCHS 87.6±1.1 88.2±4.8 89.3±5.1

evaluate on the Penn-Fudan object detection task (Wang
et al., 2007) containing only 170 images. We closely follow
the setup and hyperparameters from (Knyazev et al., 2021;
PyTorchTutorial) and evaluate on three common backbones,
ResNet-50, ResNet-101 and ResNet-152 (He et al., 2016).
In all cases, we repeat experiments 3 times and report an
average and standard deviation.

Results. The parameters predicted by our GHNs show
better transferability compared to GHN-2 in all but one
of the transfer learning experiments (Tables 7 and 8). We
also significantly improve on RANDINIT. By fine-tuning
the predicted parameters on ImageNet for 1 epoch before
transferring them to the CIFAR datasets we achieve further
boosts and outperform RANDINIT+SGD-1ep. While the gap
with full ImageNet pretraining is still noticeable (e.g. 77.8%
vs 88.7% for ResNet-50 on CIFAR-10), we narrow this gap
compared to GHN-2 (68.4%) and RANDINIT (74.0%).

5.4. Qualitative Analysis and Discussion

We analyze the diversity of predicted parameters following
experiments in (Knyazev et al., 2021). We predict
parameters for all PYTORCH models and from them collect
all the parameter tensors of one of the three frequently
occurring shapes. We then compute the absolute cosine
distance between all pairs of parameter tensors of the same
shape and report the mean of the pairwise matrix (Table 9).
In general the parameters predicted by our GHN-3 are more
diverse than the ones predicted by GHN-2 even though
we did not enforce the diversity during training GHN-3.
One exception is parameters of the shape 64×3×7×7 used
in the first convolutional layer of many models. However,
in both GHN-2 and GHN-3 the diversity of this tensor is

Table 9. Diversity of the parameters predicted by GHNs vs SOTA
trained by SGD from RANDINIT measured on the PYTORCH split.
*Since the parameters in the SOTA trained models are not ordered
in a canonical way, we employ the Hungarian matching (Kuhn,
1955) before computing the distance between a pair of tensors.

METHOD PARAMETER TENSOR SHAPE
64×3×7×7 256×256×3×3 1024×1024×1×1

MLP 0.0 0.174 0.020
GHN-2 1E-3 0.283 0.070
GHN-3-XL/M16 2E-4 0.310 0.095

SOTA TRAINING* 0.388 0.917 0.895

small, while GHN-3 improves the quality visually (Fig. 2).

We also evaluate the quality of predicted parameters by
computing the variance of activations when propagating a
mini-batch of images through the network. We initialize
the networks with random-based methods, SOTA trained
parameters or parameters predicted by GHNs and propagate
the same mini-batch of images through the network to com-
pute activations and their variances (Fig. 6-bottom). For the
ResNets, the GHN-3 initialization leads to the variances
well aligned with SOTA trained models. Our predicted pa-
rameter regularization (Section 4.2) is important to enable
this behavior. However, our activations are not always well
aligned with pretrained models as we show for ViT and Ef-
ficientNet (Fig. 9 in Appendix), which may explain a lower
fine-tuning accuracy for these networks (Fig. 4-right).

Finally, GHNs can be used to efficiently estimate the per-
formance of architectures making them a potentially useful
approach for neural architecture search (NAS). However,
GHNs are not explicitly trained to perform the NAS task and
in our experiments underperformed compared to other NAS
methods (Appendix A.4). At the same time, our GHN-3-
XL/m16 outperformed GHN-2 and a smaller scale GHN-3
indicating the promise of large-scale GHNs for NAS.

We provide additional results and discussion in Appendix A.

6. Conclusion
We improve Graph HyperNetworks by considerably scal-
ing them up. By evaluating on realistic and challenging
ImageNet architectures, we found that scaling up gradu-
ally increases the overall performance. This is encouraging
as further scaling GHNs can make them a powerful tool.
Our GHN-3 improves random-based and advanced initial-
izations in vision experiments and makes a big step in the
quality of predicted parameters compared to the prior GHNs.
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A. APPENDIX
A.1. GHN Details

The decoder of our GHN-3 has the same architecture as in
GHN-2, however when we scale GHN-3 we set the final out-
put dimensionality of the decoder to d×d×16×16 instead
of 2d×2d×16×16. This final output dimensionality deter-
mines the maximum size of the predicted parameter tensor
and larger/smaller tensors are obtained by tiling/slicing the
largest one following the implementation in (Knyazev et al.,
2021). See Section A.3 for an empirical analysis of this
design choice.

In addition to the in-degree and out-degree (centrality) node
embeddings (Eq. 7) our GHN-3 models add one extra em-
bedding to nodes. In particular, to each node we add the
embedding corresponding to the distance from the input
node i = 0. This embedding is not important for our results,
and we empirically analyze the usefulness of the centrality
and input distance embeddings in Section A.3.

For a few recent architectures (e.g. ConvNeXt) in the PY-
TORCH split, some layers are not supported by GHNs (not
available during training). We do not predict the parameters
of those layers and use standard initialization for them.

A.2. Predicted Parameter Regularization Ablations

Alternatively to applying our predicted parameter regular-
ization (Eq. 10), it is possible to apply a higher weight decay
λ on the GHN parameters to implicitly enforce it predict
smaller values. We verified that increasing λ by a factor of
10 only slightly improved the results of the GHN with γ=0
(from 19.9% to 21.3%, see Table 10), while further increas-
ing λ to 0.3 worsens results (from 19.9% to 18.9%). The
results with increased λ confirm the advantage of explicitly
regularizing predicted parameters (23.9%). Tuning γ is also
important and using a larger value (1e-4 instead of 3e-5)
worsens results (20.0% vs 23.9%).

Table 10. Additional ablation results following Table 5.

MODEL PARAMS ACC

GHN-3-T/M8 (γ=3E-5, λ=0.01) 6.91M 23.9±1.0

NO PREDICTED PARAM. REG. (γ=0) IN EQ. (10) 6.91M 19.9±4.7
NO PREDICTED PARAM. REG. (γ=0) IN EQ. (10), λ=0.1 6.91M 21.3±1.9
NO PREDICTED PARAM. REG. (γ=0) IN EQ. (10), λ=0.3 6.91M 18.9±1.1
PREDICTED PARAM. REG. γ=1E-4 IN EQ. (10) 6.91M 20.0±3.0

A.3. Additional Results

A.3.1. ADDITIONAL GHN VARIANTS

In Table 11 we report the results for more GHN variants on
DEEPNETS-1M without fine-tuning predicted parameters.

First, we retrained GHN-2 using our implementation and
hyperparameters (see iii in Table 11), including predicted
parameter regularization (Eq.10). It performed slightly bet-
ter than the GHN-2 released by Knyazev et al. (2021) (ii)
implying that our hyperparameters (optimizer, learning rate,
etc.) are preferable. At the same time, due to our imple-
mentation improvements it takes two times less time to train
it. We also trained a smaller variant of our GHN-3-T (iv)
with the same hidden size d and same decoder output shape
(2d×2d×16×16) as in GHN-2, which has a comparable
number of trainable parameters as the baseline GHN-2.
This GHN-3 variant performs slightly better than the re-
trained GHN-2, but takes 3.5 times less time to train than
GHN-2 (iii).

We also trained GHN-2 with a larger hidden size (d=128,
seex in Table 11), which has about the same number of
parameters as our GHN-3-S (xii). It performed worse than
GHN-3-S and is about three times longer to train. Overall,
GHN-3 is much faster to train than GHN-2 and is more
performant due to a deep Graphormer-based architecture
rather than a shallow GatedGNN-based architecture. These
two factors allow us to scale up GHN-3 and obtain signif-
icant improvements. We also compared GHN-3-T with
our default output dimensionality d×d×16×16 (xii) to a
GHN with a larger output dimensionality, 4d×4d×16×16
(xi). The latter performed worse compared to GHN-3-S
with around the same number of parameters validating our
approach to scale up GHNs.

Finally, we evaluate a GHN without centrality node embed-
dings introduced in Graphormers (Eq. 7) and found that its
usefulness is limited (see v and vii in Table 11). Regarding
the input distance embedding (Section A.1), we found it to
be useful in the initial experiments. However similarly to the
centrality embedding, in our final experiments it provided
only marginal gains compared to the GHN-3-T without the
input distance embedding (see v and vii). At the same time,
these node embeddings become very useful when edge em-
beddings are removed (see viii and ix and vii). Apparently,
these node embeddings provide some noisy information
about the graph structure, but this information becomes less
useful when edge embeddings are added. Since both the
centrality and input distance embeddings do not introduce
significantly more trainable parameters or computational
demands while provide small gains in some cases, we keep
them in our final GHNs.

A.3.2. RESULTS SUMMARY

Table 12 reports the results of GHNs vs RANDINIT on all
900 + 74 evaluation networks without and with fine-tuning.
These results summarize the histograms in Fig. 4. The
distribution of accuracies on DEEPNETS-1M is shown in
Fig. 7.
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Table 11. Generalization results on the evaluation architecture splits of DEEPNETS-1M using ImageNet top-1 accuracy. *Days on
4xNVIDIA-A100 for 75 epochs. **Days on 8xNVIDIA-A100 for 75 epochs.

# METHOD SGD STEPS PARAMS (M) TRAIN TIME* TEST WIDE DEEP DENSE BN-FREE ALL

# ARCHITECTURES 500 100 100 100 100 900

(I) RANDINIT 10K (1EP) − − 17.7±7.7 18.9±9.9 9.1±7.3 16.8±7.7 3.2±5.2 15.1±9.2
(II) GHN-2/M8 0 2.32 21.9 12.1±7.6 7.9±7.2 10.6±7.1 11.3±6.7 2.2±1.9 10.3±7.6
(III) GHN-2/M8 (OUR IMPLEM. AND HYPERPARAMS AND EQ.(10)) 0 2.32 11.6 14.3±6.5 15.2±6.4 12.7±6.5 12.2±6.5 2.9±3.0 12.7±7.2
(IV) GHN-3/M8 (d = 32, DECODER OUTPUT: 2d×2d×16×16) 0 2.37 3.2 14.3±7.4 15.5±7.3 13.0±6.8 12.8±6.7 2.1±2.4 12.8±7.9

(V) GHN-3-T/M8-NO CENTR. EMBED. (EQ. 7) 0 6.89 3.8 18.6±7.7 20.2±7.4 17.8±7.7 16.9±8.1 6.4±3.6 17.1±8.3
(VI) GHN-3-T/M8-NO INPUT DIST. EMBED. (SECTION A.1) 0 6.84 3.8 19.0±7.7 20.1±8.2 18.0±7.9 17.0±8.4 6.5±3.8 17.4±8.5
(VII) GHN-3-T/M8 0 6.91 3.8 19.0±7.6 20.5±7.5 18.0±7.7 16.9±8.3 6.9±4.1 17.5±8.3

(VIII) GHN-3-T/M8, NO FW/BW EMBED. IN EQ. (9) 0 6.88 3.7 14.7±6.5 15.3±7.0 13.5±6.2 13.0±6.6 4.4±3.8 13.3±7.1
(IX) GHN-3-T/M8, NO FW/BW/CENTR/INPUT DIST. EMBED 0 6.80 3.7 10.2±5.5 9.5±6.0 9.5±4.8 9.3±4.8 4.0±3.0 9.3±5.5

(X) GHN-2/M8 (d=128) (OUR IMPLEM. AND HYPERPARAMS) 0 34.73 11.9 22.4±9.8 22.2±11.3 21.7±9.3 18.5±9.9 6.8±6.0 20.1±10.8
(XI) GHN-3-T/M8 (DECODER OUTPUT: 4d×4d×16×16) 0 38.86 3.8 23.9±10.8 21.5±13.7 22.9±9.6 20.2±10.5 7.6±6.2 21.3±11.7
(XII) GHN-3-S/M8 0 35.81 3.8 24.2±10.0 25.7±11.3 23.8±9.5 21.2±10.1 10.3±5.2 22.4±10.7

(XIII) GHN-3-XL/M16 0 654.37 7.1** 29.8±11.2 26.8±15.6 28.8±9.5 26.2±10.9 15.1±9.7 27.3±12.3

Table 12. ImageNet top-1 accuracy for all 900 + 74 evaluations
networks in DEEPNETS-1M and PYTORCH. Average and standard
deviation of accuracies for all networks in each split are reported.

SGD STEPS DEEPNETS-1M PYTORCH

GHN-2 0 10.3±7.6 0.2±0.3
GHN-3-XL/M16 0 27.3±12.3 1.7±5.0

RANDINIT 10K (1EP) 15.1±9.2 17.4±7.2
GHN-3-XL/M16 1K (1/10EP) − 8.3±10.2
GHN-3-XL/M16 10K (1EP) − 25.4±12.3

A.3.3. HUGE RESNET AND VIT

The main value of our GHN-3 is in strong initialization for
many networks that do not have ImageNet weights. For ex-
ample, for all the 900 evaluation architectures in DeepNets-
1M there are no pretrained ImageNet weights and our GHN-
3 achieves strong results for them (see Table 12). To further
support our argument, we show that we can predict good
parameters for huge ResNet-1000 with > 400M parame-
ters and ViT-1.2B with > 1.2 billion parameters (the ViT is
based on the “no distribution shift” experiment described in
Section A.3.4). No pretrained weights are available for them.
We train them for 1 epoch (due to high cost) with RANDINIT
and our GHN-3 init. using two learning rates. We found
that GHN-3 can initialize well such huge networks despite
being trained on much smaller ones (Table 13). On average,
our GHN-3 init is better for both the 0.1 and 0.01 learning
rates and both architectures, in some cases by a large margin,
further confirming the strength of our GHN in such a chal-
lenging setting. Potentially, this can lead to significant cost
reductions. GHN-3 also provides more stable gradient norm
at initialization (very large gradient norm of RANDINIT for
ResNet-1000 may lead to numerical overflow and training
instabilities). Finally, the GHN-3-based initialization can
be less sensitive to the learning rate (also see Table 18 for
additional learning rate sensitivity results).
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Figure 7. ImageNet top-1 accuracy on all the 900 architectures
of DEEPNETS-1M for GHNs without fine-tuning vs RAN-
DINIT+SGD-1ep.

Table 13. ImageNet top-1 accuracy for huge ResNet and ViT after
1 epoch of training (averaged for 3 runs).

MODEL INIT. INITIAL GRAD NORM 1 EPOCH
LR=0.1 LR=0.01

RESNET-1000 RANDINIT 99121.9 21.0±1.0 15.5±0.7
GHN-3 72.0 23.1±1.9 32.2±1.1

VIT-1.2B RANDINIT 4.8 2.0±0.5 16.5±0.3
GHN-3 6.9 11.8±0.8 17.4±0.6

A.3.4. ARCHITECTURE DISTRIBUTION SHIFT

For some PyTorch architectures, in particular ViT and Ef-
ficientNet, there is a certain distribution shift from the
DeepNets-1M training architectures used to train GHNs
and their specification in PyTorch.

We focus on ViT and EfficientNet as concrete examples:

• ViT: ViTs in PyTorch use a classification token, which
is never used in the DeepNets-1M architectures. In
DeepNets-1M, global average pooling (GAP) is used
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instead to obtain the last layer features.

• EfficientNet: EfficientNets in PyTorch have a squeeze
and excitation operation with a SiLU activation, while
in DeepNets-1M only ReLU is used in those layers.

These distribution shifts can be fixed by either includ-
ing a PyTorch based classification token and SiLU in
the DeepNets-1M training set or by slightly adjusting
ViT/EfficientNet architectures in PyTorch. To support our
argument, we follow the latter approach. For ViT we replace
the classification token with GAP, while for EfficientNet we
replace SiLU with ReLU. We report the results after 1 epoch
with distr. shift (original PyTorch architectures) and no distr.
shift (our adjusted architectures) in Table 14. We show
that when the distribution shift is removed, the GHN-based
initialization outperforms RANDINIT. We note that the
distribution shift issue is inherent to neural network based
methods and it is likely to come up with examples where
a neural net fails. We did not alter the original PyTorch
ViT/EfficientNet architectures in our main experiments in
Table 2 to show this limitation of GHNs. But here we show
that the distribution shift problem can be mitigated if needed.
We believe future work can focus on designing more diverse
training architectures than DeepNets-1M, so that the issue
of the distribution shift is less pronounced.

Table 14. ImageNet top-1 accuracy for ViT/EfficientNet with and
without the distribution shift.

MODEL INIT. METHOD WITH DISTR. SHIFT NO DISTR. SHIFT

VIT-B/16 RANDINIT 11.06 9.87
GHN-3 8.49 11.47

EFFICIENTNET-B0 RANDINIT 24.64 23.29
GHN-3 22.19 32.00

A.3.5. ENSEMBLING

We evaluated if the predicted parameters of different archi-
tectures can be ensembled to improve performance. We
chose three networks for which GHN-3 predicts the pa-
rameters that achieve good accuracy without any training
(Table 15). We construct an ensemble by averaging the
logits from the three networks when we propagate the val-
idation images of ImageNet. As another experiment, we
also fine-tuned the three networks with SGD for 1 epoch
and ensembled them to see how the results change after
fine-tuning. We compare to the baseline GHN-2, MLP,
GHN-3-T (our tiny GHN-3) and RANDINIT. We report
the validation accuracy of individual networks and their
ensemble (Table 15). We found that our best model (GHN-
3) predicts somewhat diverse parameters as the results of
the ensemble slightly improve even without any training.
While the baselines (GHN-2, MLP and GHN-3-T) do no
gain from ensembling, it may or may not be due to less

diverse parameters. Evaluation of ensembles of predicted
parameters is challenging, because some networks with pre-
dicted parameters can be of very poor quality weakening
the ensemble. Therefore, we also evaluated the ensemble
after fine-tuning predicted parameters which have a smaller
variance of accuracy. RANDINIT gains the most from en-
sembling, perhaps because RANDINIT leads to more diverse
parameters (see Table 9). However, GHN-3+SGD-1ep is
still much stronger than RANDINIT+SGD-1ep in terms of
final performance with 48.39 vs 27.45. We believe large
ensembles of GHN-3+SGD-1ep networks is a promising
avenue for future research.

Table 15. Ensembling results on ImageNet (top-1 accuracy).

METHOD RESNET-50 RESNET-101 WIDE-RESNET-101 ENSEMBLE

GHN-2 1.08 1.46 0.70 1.06
MLP 2.52 1.91 2.51 2.61
GHN-3-T 10.59 5.41 6.17 8.63
GHN-3 19.92 18.86 18.60 21.07
RANDINIT+SGD-1EP 16.63 20.46 19.97 27.45
GHN-3+SGD-1EP 43.33 42.61 43.11 48.39

A.3.6. COMPARISON TO FIXUP

Methods such as FixUp (Zhang et al., 2019) provide better
initialization than RANDINIT in some cases and so they are
related to our work. We compare to FixUp in Table 16 using
ResNet-50 without batch normalization. Our GHN-3 based
initialization significantly improves convergence compared
to FixUp and all the other initializations by a large margin
(Table 16). In addition, our GHN-3 has a broader scope
improving initialization for the networks with batch norm
as well (Table 6), whereas FixUp and normalization-free
networks are focused on training the networks without batch
norm and do not improve results with batch norm.

Table 16. Comparison of initialization methods for ResNet-50
without batch normalization on ImageNet after 1 epoch of training.

INIT. METHOD INIT. TIME 1 EPOCH

RANDINIT 0.2 10.8
GRADINIT 1700 19.2
FIXUP 0.2 18.0
GHN-2 1.3 5.9
GHN-3 1.2 31.7

A.3.7. CHOICE OF OPTIMIZERS

Depending on the optimizer, different initialization methods
may be more performant. To study that, we train Swin-T
with AdamW (as in Section 5.2) and SGD with momentum
and compare our GHN-3-based initialization to RANDINIT
after 1 epoch of training (Table 17). The results show better
performance of our GHN-3 in all cases.
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Table 17. ImageNet top-1 accuracy of Swin-T after 1 epoch for
different optimizers and initializations.

INIT. METHOD ADAMW SGD (LR=0.05) SGD (LR=0.025) SGD (LR=0.01)

RANDINIT 18.4 12.7 10.6 6.8
GHN-3 27.1 19.4 19.2 16.1

A.3.8. LEARNING RATE SENSITIVITY

An intriguing question to ask is: does initializing ImageNet
models using GHN-3 makes them more robust to hyper-
parameters? To verify this, we computed the fraction of
networks (%) in the PyTorch split for which the best accu-
racy (after 1 epoch) can be achieved using SGD with the
same learning rate (Table 18). We found that with the GHN-
3 initialization the same learning rate could achieve strong
results more frequently than with RANDINIT, so our GHN-3
initialization can make hyperparameter tuning easier.

Table 18. The fraction of networks (%) in the PyTorch split for
which the best accuracy (after 1 epoch) can be achieved using
SGD with the same learning rate.

INIT. METHOD BEST ACC±0% BEST ACC±1% BEST ACC±2%

RANDINIT (LR=0.1 IS BEST ON AVERAGE) 62.2 75.7 79.7
GHN-3 (LR=0.01 IS BEST ON AVERAGE) 66.2 78.4 86.5

A.4. Neural Architecture Search

A.4.1. RELATED WORK ON META-LEARNING AND NAS

Several works extended hypernetworks to generalize to both
architectures and datasets (Lian et al., 2020; Elsken et al.,
2020; Chen et al., 2020). These works are generally based
on combining meta-learning, e.g. MAML (Finn et al., 2017),
and differentiable NAS, e.g. DARTS (Liu et al., 2018).
These works focus on NAS, i.e. finding a strong architecture
on a given dataset. To achieve this goal, they significantly
constrain the flexibility of architectures for which they pre-
dict parameters. While GHNs can also perform NAS by
predicting parameters for candidate architectures, the ca-
pabilities of GHNs extend beyond NAS. At the same time,
GHNs are not explicitly trained to perform NAS, therefore
high performance of GHNs in NAS is not expected.

A.4.2. NAS RESULTS

While GHNs are not explicitly trained to rank architectures
according to their performance of training with SGD, we
verify if GHN-3 improves on GHN-2 and how it compares
to strong NAS methods (Abdelfattah et al., 2021). We com-
pute Kendall’s Tau rank correlation between the ImageNet
accuracies obtained using predicted parameters and trained
from RANDINIT with SGD on the DEEPNETS-1M and

Table 19. NAS results measured as Kendall’s Tau Rank Correlation
between ImageNet accuracies and accuracies obtained by GHNs or
metrics obtained by other methods from (Abdelfattah et al., 2021).

METHOD DEEPNETS-1M PYTORCH
RANDINIT+SGD-1EP RANDINIT+SGD-1EP SOTA

RAND RANKING -0.00 0.03 0.07
GHN-2/M8 0.16 0.08 -0.08
GHN-3-T/M8 0.22 0.14 -0.05
GHN-3-XL/M16 0.24 0.26 -0.06
RANDINIT+SGD-1EP 1.00 1.00 0.07

METHODS TUNED FOR NAS FROM (ABDELFATTAH ET AL., 2021)
GRADNORM 0.13 0.19 0.34
SNIP 0.16 0.20 0.34
FISHER 0.12 0.17 0.24
JACOBCOV 0.23 − −
PLAIN 0.20 -0.23 -0.13
SYNFLOW-BN -0.31 -0.09 -0.08
SYNFLOW -0.02 0.42 0.24

PYTORCH splits. We first consider RANDINIT+SGD-1ep
as the ground truth ranking. In that case, our GHN-3-
XL/m16 provides better rank correlation than GHN-2 on
both DEEPNETS-1M (0.24 vs 0.16) and PYTORCH (0.26 vs
0.08), see Table 19. Our GHN-3 also beats all the methods
from (Abdelfattah et al., 2021) for DEEPNETS-1M (0.24
vs 0.23), but is inferior on PYTORCH (0.26 vs 0.40). How-
ever, when we consider SOTA training as the ground truth
ranking, all GHNs provide no or low negative correlation.
RANDINIT+SGD-1ep also provides only 0.07 correlation
with SOTA training. In contrast, the methods from (Ab-
delfattah et al., 2021) perform well (best correlation is 0.34)
showing that GHNs may not be the best approach for NAS.
The “jacobcov” and “grasp” methods from (Abdelfattah
et al., 2021) failed for many architectures due to missing
gradient implementations for some layers, so their results
are not reported in some cases.

A.5. Limitations

We highlight the following main limitations of our work.
Note that these limitations are expected, since GHNs are
not specifically trained to address them.

• NAS. As discussed in Section A.4, GHNs are not ex-
plicitly trained to perform the NAS task and in our
experiments underperformed compared to other NAS
methods. At the same time, our GHN-3-XL/m16 out-
performed GHN-2 and a smaller scale GHN-3 indicat-
ing the promise of large-scale GHNs for NAS.

• Diversity of predicted parameters. Currently, GHNs
are not generative, so they deterministically predict
relatively similar parameters for different architectures
(Section 5.4). This also explains low gains of ensem-
bling in Table 15. Making GHNs generative is an
interesting avenue for future research.
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Figure 8. Training (top row) and validation (bottom row) accuracy curves for ResNet-50, ResNet-152 and Swin-T on ImageNet. Standard
learning rate schedules are used for ResNets (He et al., 2016) (decay every 30 epochs) and Swin-T (cosine decay) (Liu et al., 2021). These
plots supplement Fig. 6 in the main text.
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Figure 9. Variance of activations in ViT-B/16 (top) and EfficientNet-B0 (bottom) when initialized with different methods. As in Fig. 6-
bottom, we compute the variance of activations only after convolutional or linear layers. To avoid clutter, we plot the variance only for
every third layer. These plots supplement the discussion in Section 5.4 of the main text and are also related to the distribution shift issue
discussed in Section A.3.4.

• Generalization. For some architectures with unusual
connectivity and unseen layers, the GHNs might not
predict useful parameters. There are several general-
ization axes (evaluated in detail in the GHN-2 paper
by Knyazev et al. (2021)) and since GHNs are neural
networks trained on a limited set of training architec-
tures, some generalization gap is likely to be present.
See Section A.3.4 for the related discussion and results.

• SOTA final performance. To achieve SOTA Ima-
geNet results using our initialization, the GHN-3-
based initialization generally requires about the same
number of training epochs. However, compared to
RANDINIT our initialization leads to faster conver-
gence, so that the performance slightly worse than
SOTA is achieved relatively fast (see Fig. 8, Table 6).
Therefore, our approach may be more optimal with low
computational budgets.
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Table 20. ImageNet top-1 accuracy for 74 PyTorch architectures using the GHN-3-based initialization (GHN-3-XL/m16) vs RANDINIT.
These results are also available at https://github.com/SamsungSAILMontreal/ghn3/blob/main/ghn3_results.
json. Top-10 architectures in each column are bolded, top-1 is bolded and underlined. Sorted by the last column. *Kendall’s Tau
correlation (see the last row) in each column is computed w.r.t. the accuracies in the first column. See Fig. 4 for histograms.

ARCHITECTURE GHN-3 GHN-3+SGD-1EP GHN-3+SGD-10EP RANDINIT+SGD-1EP SOTA

ALEXNET 0.10 11.87 36.96 6.24 56.52
SQUEEZENET1-0 0.11 4.06 35.12 5.04 58.09
SQUEEZENET1-1 0.10 3.33 33.99 3.73 58.18
SHUFFLENET-V2-X0-5 0.12 19.82 37.37 14.61 60.55
MOBILENET-V3-SMALL 0.11 15.74 40.31 17.42 67.67
MNASNET0-5 0.13 26.90 47.41 17.51 67.73
VGG11 0.12 22.91 54.03 12.15 69.02
SHUFFLENET-V2-X1-0 0.10 30.44 49.82 20.54 69.36
RESNET18 2.21 41.63 56.67 22.39 69.76
GOOGLENET 2.12 36.64 57.41 21.07 69.78
VGG13 0.12 24.04 40.47 12.14 69.93
VGG11-BN 0.11 24.91 56.28 12.27 70.37
MNASNET0-75 0.13 29.80 52.77 18.21 71.18
VGG13-BN 0.09 26.99 57.86 10.89 71.59
VGG16 0.12 21.38 54.31 9.17 71.59
MOBILENET-V2 0.12 27.87 51.37 22.32 71.88
VGG19 0.09 16.31 51.83 6.06 72.38
REGNET-X-400MF 0.10 30.14 54.15 17.07 72.83
SHUFFLENET-V2-X1-5 0.07 31.43 53.81 22.76 73.00
RESNET34 1.70 41.25 59.64 21.23 73.31
VGG16-BN 0.11 22.67 57.66 12.06 73.36
MNASNET1-0 0.08 28.79 54.42 21.09 73.46
MOBILENET-V3-LARGE 0.14 18.39 43.15 23.93 74.04
REGNET-Y-400MF 0.12 30.88 56.04 20.30 74.05
VGG19-BN 0.11 20.42 56.64 11.96 74.22
DENSENET121 0.14 31.91 59.26 25.13 74.43
REGNET-X-800MF 0.12 31.41 58.31 21.18 75.21
DENSENET169 0.15 31.53 61.92 24.56 75.60
VIT-B-32 0.13 6.30 27.18 8.00 75.91
RESNET50 20.00 43.69 59.23 18.19 76.13
SHUFFLENET-V2-X2-0 0.14 32.05 56.78 22.35 76.23
REGNET-Y-800MF 0.09 31.91 59.23 23.45 76.42
MNASNET1-3 0.12 29.34 57.90 23.82 76.51
DENSENET201 0.14 32.13 62.26 25.03 76.90
VIT-L-32 0.12 6.53 26.35 7.25 76.97
REGNET-X-1-6GF 0.28 34.35 59.96 23.51 77.04
DENSENET161 0.20 33.75 63.72 25.12 77.14
INCEPTION-V3 0.37 40.61 62.57 8.11 77.29
RESNET101 18.85 43.15 60.02 17.45 77.37
RESNEXT50-32X4D 0.16 32.38 61.89 20.81 77.62
EFFICIENTNET-B0 0.12 22.83 53.84 24.64 77.69
REGNET-Y-1-6GF 0.17 32.35 62.01 23.36 77.95
RESNET152 17.07 43.27 60.02 16.89 78.31
REGNET-X-3-2GF 0.87 35.36 61.89 22.46 78.36
WIDE-RESNET50-2 22.64 44.02 62.20 19.65 78.47
EFFICIENTNET-B1 0.08 19.79 54.82 24.00 78.64
WIDE-RESNET101-2 18.59 43.11 62.63 20.77 78.85
REGNET-Y-3-2GF 0.27 38.02 64.13 26.72 78.95
RESNEXT101-32X8D 0.16 35.27 54.15 21.35 79.31
REGNET-X-8GF 0.37 42.01 64.70 24.54 79.34
VIT-L-16 0.10 8.92 27.77 11.15 79.66
REGNET-Y-8GF 0.14 41.26 66.01 28.34 80.03
REGNET-X-16GF 10.46 41.76 66.02 24.54 80.06
REGNET-Y-16GF 0.24 43.90 67.40 27.52 80.42
EFFICIENTNET-B2 0.09 20.06 55.34 24.36 80.61
REGNET-X-32GF 0.16 38.62 66.45 24.96 80.62
REGNET-Y-32GF 0.12 43.19 68.05 27.27 80.88
VIT-B-16 0.12 8.50 34.91 11.06 81.07
SWIN-T 0.10 19.20 45.49 10.25 81.47
EFFICIENTNET-B3 0.12 20.70 55.16 23.89 82.01
CONVNEXT-TINY 0.12 11.45 33.39 3.25 82.52
SWIN-S 0.09 17.23 43.58 9.89 83.20
RESNEXT101-64X4D 0.10 34.29 63.71 22.36 83.25
EFFICIENTNET-B4 0.12 17.88 55.10 22.01 83.38
EFFICIENTNET-B5 0.10 10.00 46.71 18.44 83.44
SWIN-B 0.06 15.13 40.28 6.60 83.58
CONVNEXT-SMALL 0.10 8.85 31.75 2.57 83.62
EFFICIENTNET-B6 0.12 6.88 43.70 16.22 84.01
CONVNEXT-BASE 0.12 5.08 28.20 2.67 84.06
EFFICIENTNET-B7 0.09 9.62 43.98 14.84 84.12
EFFICIENTNET-V2-S 0.10 10.58 47.23 21.14 84.23
CONVNEXT-LARGE 0.10 5.39 25.66 2.00 84.41
EFFICIENTNET-V2-M 0.09 10.57 46.36 16.50 85.11
EFFICIENTNET-V2-L 0.09 6.43 43.68 12.60 85.81

AVG 1.66±4.97 25.42±12.31 51.79±11.26 17.36±7.18 76.33±6.33
KENDALL’S TAU CORRELATION* 1.00 0.53 0.38 0.26 -0.06
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