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Abstract
Neural architectures that learn potential energy
surfaces from molecular data have undergone fast
improvement in recent years. A key driver of this
success is the Message Passing Neural Network
(MPNN) paradigm. Its favorable scaling with sys-
tem size partly relies upon a spatial distance limit
on messages. While this focus on locality is a use-
ful inductive bias, it also impedes the learning of
long-range interactions such as electrostatics and
van der Waals forces. To address this drawback,
we propose Ewald message passing: a nonlocal
Fourier space scheme which limits interactions
via a cutoff on frequency instead of distance, and
is theoretically well-founded in the Ewald sum-
mation method. It can serve as an augmentation
on top of existing MPNN architectures as it is
computationally inexpensive and agnostic to ar-
chitectural details. We test the approach with four
baseline models and two datasets containing di-
verse periodic (OC20) and aperiodic structures
(OE62). We observe robust improvements in en-
ergy mean absolute errors across all models and
datasets, averaging 10% on OC20 and 16% on
OE62. Our analysis shows an outsize impact of
these improvements on structures with high long-
range contributions to the ground truth energy.

1. Introduction
Graph neural networks (GNNs) have shown great promise
in learning molecular properties from quantum chemical ref-
erence data, speeding up inference times by several orders
of magnitude (Gilmer et al., 2017) while often preserving
the accuracy of their ground truth method. Unfortunately,
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despite recent success in understanding theoretically univer-
sal models (Gasteiger et al., 2021; Dym & Maron, 2021),
computational constraints still hamper GNNs in learning
long-ranged physical interactions between atoms: the stan-
dard notion of a molecular graph (if no hand-crafted bond
information is used) treats atoms as vertices and connects
them by an edge if their 3D distance is within a cutoff
hyperparameter (Schütt et al., 2018). This can be a prob-
lem if more remote atom interactions contribute to a target:
they are long-ranged also on the graph, potentially relating
vertices many edges apart. There is ample empirical and
theoretical evidence of limited GNN performance in this
case, e.g., due to over-squashing (Alon & Yahav, 2021).

The GNN status quo is in sharp contrast to the reality in
molecular dynamics, where long-range interactions are an
elementary ingredient. A task at the heart of the field (and
of this work in particular) is to predict the potential energy
E(x1, . . . ,xN ) based on the atom positions {x1, . . . ,xN}
in a molecule. Hand-crafted parametrizations of this map,
known as empirical force fields, distinguish between bonded
and non-bonded energy terms,E = Eb+Enb (Leach, 2001).
The bonded terms model the short-ranged nature of covalent
bonding with its complex, but highly local interactions. The
non-bonded terms, however, capture interactions with heavy-
tailed (typically power-law) decay in distance. An example
of such a term is the electrostatic interaction,

Ees =
∑
i<j

qiqj∥xi − xj∥−1, (1)

where the partial charges qi quantify net electric charge
around atom i. Their attraction or repulsion decays inversely
with distance, and the energy is the sum of all atom pair
interactions. Due to its scale-free decay, simply truncating
such a power law with a distance cutoff can induce severe
artifacts in measurable thermochemical predictions, even
at outsized cutoffs (Wells & Chaffee, 2015). Instead, the
interactions of all atom pairs have to be included in the
sum. The technique of Ewald summation achieves this
efficiently. It decomposes the actual physical interaction
into a short-range and long-range part. The short-range part
can be summed directly with a distance cutoff; the long-
range part, while slowly decaying in distance, has a quickly
decaying Fourier transform and can be efficiently evaluated
as a Fourier space sum with a frequency cutoff (cf. Fig. 1).
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Figure 1. Ewald decomposition of an interaction, exhibiting ∥xi −
xj∥−1 decay in this example, into short- and long-range parts.

This work lays out a bridge between Ewald summation
and the current landscape of GNN models. Our proposed
method of Ewald message passing (Ewald MP) is a general
framework that complements existing GNN layers in anal-
ogy to how the frequency-truncated long-range part com-
plements the distance-truncated short-range part in Ewald
summation. It is architecture-agnostic and computationally
efficient, which we demonstrate by implementing and test-
ing it as a modification on top of existing GNN models. Our
experiments on the periodic structures of the OC20 dataset
and the aperiodic structures of the OE62 dataset indicate
robust improvements in energy mean absolute errors averag-
ing 10% and 16% OC20 and OE62, respectively. Moreover,
we study the tradeoff of these improvements against runtime
and parameter count and find that it cannot be consistently
replicated by any tested baseline setting. In a closer exami-
nation of the OE62 results, we observe that Ewald message
passing recovers the effects of DFT-D3, a hand-crafted long-
range correction term. This supports our claim that the
method targets the learning of long-range interactions in
particular. In summary, our contributions are:

• The new framework of Ewald message passing, which
is readily integrated with existing GNN models.

• Insights abouts its cost-performance tradeoff in com-
parison to the wider GNN design landscape.

• A study underscoring the utility of Ewald message
passing as a long-range correction scheme.

2. Background
Message passing neural networks. MPNNs were intro-
duced by Gilmer et al. (2017) as a conceptual framework
covering many molecular GNN architectures. Molecules
are represented as graphs with atoms i as vertices. Atoms
are adjacent, j ∈ N (i), if ∥xi − xj∥ < cx, where cx is the
distance cutoff. An MPNN first featurizes atoms as embed-
dings h0i ∈ RF based on local atom properties alone. Next,
it models the complex atomic interactions by iteratively

updating the embeddings in message and update steps,

M
(l+1)
i =

∑
j∈N (i)

fint

(
h
(l)
i , h

(l)
j , e(ij)

)
, (2)

h
(l+1)
i = fupd

(
h
(l)
i ,M

(l+1)
i

)
, (3)

where the message sum M
(l+1)
i gathers information from

the neighborhood N (i), using a function fint that depends
on current embeddings and edge features e(ij) (e.g., pair-
wise distances). Next, a learnable function fupdate processes
the message sums. A readout step then generates outputs
(e.g., atom-wise energy contributions) from the embeddings.
We develop the core framework of Ewald message passing
around a particular type of message step, the continuous-
filter convolution (Schütt et al., 2018):

M
(l+1)
i =

∑
j ∈N (i)

h
(l)
j · Φ

(l)(∥xi − xj∥), (4)

where · acts component-wise in the feature dimension, and
Φ(l)(∥·∥) : R3 −→ RF is a stack of F learned, radial filters.
In every channel 1 ≤ d ≤ F , Φ(l)

d (∥·∥) learns attending to
fuzzy distance ranges around an atom, allowing regression
tasks on continuously varying molecular geometries.
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Figure 2. Schematic illustration
of periodic boundary conditions.

Periodic systems. The
inadequacy of a distance
cutoff for generic inter-
actions becomes partic-
ularly apparent in mate-
rials, where interatomic
distances are unbounded.

Periodic boundary condi-
tions (PBC) can be used
to approximate an infi-
nite system as repeating
copies of a finite atom
collection (cf. Fig. 2), tiling up space within supercells1

spanned by the lattice vectors (v1,v2,v3) ∈ R3×3. Let
S = {(h1,x1), . . . (hN ,xN )} denote the atom embeddings
and positions of one chosen supercell and let t ∈ Λ be any
integer shift on the supercell lattice Λ := {λ1v1 + λ2v2 +
λ3v3 | λ ∈ Z3}. Atoms i′ at xi′ := xi + t are called
images of i ∈ S, with the PBC fixing hi′ ≡ hi.

Under PBC, generic message sums become infinite series
as every image may contribute a message. Previous MPNN
work on materials mitigates this issue with a distance cutoff,
alongside a multigraph representation that avoids storing
redundant hi′ on separate vertices (Xie & Grossman, 2018;
Chanussot et al., 2021; Cheng et al., 2021; Xie et al., 2021).

1A supercell should not be confused with the unit cell of a
crystalline material. Unit cell translation symmetry is broken in
non-equilibrium structures, but PBC are still applied, with a typical
supercell containing multiple unit cells.
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3. Ewald Message Passing
Analogy to electrostatics. The reason why Ewald summa-
tion can be applied to MPNNs is a formal correspondence
between electrostatics-type interactions and continuous-
filter convolutions. Previous work has highlighted this anal-
ogy as a useful source of inductive bias (Anderson et al.,
2019). The connection becomes clear if we take Eq. (1) for
the electrostatic energy Ees and express it in a new notation
alluding to the continuous-filter convolution of Eq. (4):

Ees =
1

2

N∑
i=1

qi · V es
i (xi), (5)

V es
i (xi) =

∑
j ̸=i

qj · Φes(∥xi − xj∥), Φes(r) =
1

r
, (6)

where N is the total number of atoms (N := ∞ in mate-
rials) and we introduced the electric potentials {V es

i | i =
1, . . . , N} and the interaction kernel Φes. Compare the ex-
pression for V es

i to the message sum M
(l+1)
i in Eq. (4): set-

ting the cutoff cx →∞ (such thatN (i) = {1, . . . , N}\{i})
and substituting

qj ↔ h
(l)
j , Φes ↔ Φ(l), V es

i (xi)←→M
(l+1)
i (7)

puts F -dimensional embedding vectors in place of scalar-
valued partial charges as atom descriptors, and replaces
the simple, domain-informed 1/r kernel by a stack of F
learned convolution filters formally acting as interaction ker-
nels. Any continuous-filter message sum Mi (we drop the
layer superscript (l) from now on) can be canonically iden-
tified with a potential function Vi(xi) evaluated at source
atom location xi. Aggregating atomic output after just one
message-passing step would inductively bias the model to-
wards two-body interaction energies of similar form to Ees.
Several message and update steps in principle enable the
modeling of n-body terms (Batatia et al., 2022).

Conceptual outline. We now give an overview of Ewald
summation and show how it connects to our learning ap-
proach, Ewald message passing, based on the above analogy.

Ewald summation evaluates potentials (equivalently, mes-
sage sums) Vi(xi) = Mi given a PBC lattice, a generic
interaction kernel Φ: R+ → RF and generic atom “charges”
hi ∈ RF . We apply Ewald summation if Φ is long-ranged.

In this case, the naive distance cutoff approximation Mi ≈∑
j ̸=i,∥xi−xj∥<cx

hj · Φ(∥xi − xj∥) becomes inaccurate
for practically-sized values of cx. A slow distance decay
of Φ means that a significant part of its tail remains out-
side of cx, even for large cx. This long-range information
is subsequently lost by truncation. Ewald summation pre-
sumes a known decomposition Φ(r) = Φsr(r) +Φlr(r) into
a short-range and long-range kernel, where

• Φsr has fast decay in distance,

• Φlr(0) is well-defined, and Φ̂lr(∥·∥), the 3D Fourier
transform of Φlr(∥·∥), has fast decay in frequency.

By construction, atom sums over distance-truncated short-
range kernels Φsr

[0,cx]
:= Φsr · 1[0,cx] (where 1[0,cx] is the

indicator function on [0, cx]) converge quickly for growing
cx, meaning that a distance cutoff can be efficiently applied.
This cannot be the case for Φlr, the leftover fat tail of Φ.
Ewald summation deals with this long-range sum over Φlr

by rewriting it as a sum over the Fourier transform Φ̂lr. Re-
placing Φ̂lr by Φ̂lr

[0,ck]
:= Φ̂lr · 1[0,ck], i.e., truncation by a

frequency cutoff ck, now admits efficient evaluation of the
long-range sum. Adding the short-range and long-range
sums recovers the sum over the full kernel Φ. Fig. 1 summa-
rizes the approach. Convenient decompositions satisfying
the above properties for all power law kernels are provided
by Nijboer & De Wette (1957).

Ewald message passing essentially flips the rationale behind
Ewald summation: instead of starting with a known physical
kernel Φ and searching for a decomposition with the above
properties, we seek to parametrize a filter Φ that is not
short-ranged. However, we impose that it can be fitted by
an Ewald sum over cutoff-supported short-range and long-
range kernels. The kernels are learned independently of
each other, Φ̂lr

[0,ck]
is learned directly in Fourier space.

This section proceeds by rewriting the crucial long-range
sum as a sum over Fourier frequencies, bringing it into
a form that admits a frequency cutoff. This prepares a
subsequent in-depth discussion of Ewald message passing
and its implementation as part of existing GNN models.

Figure 4. Sketched surfaces of
constant phase for Fourier modes
exp(ikTx) at small k ∈ Λ′.

Frequency truncation.
From here on, we as-
sume that the long-range
sum runs over all atoms,
including target atom
i, and thereby denote
it by M lr(xi) (without
subscript-i, but highlight-
ing the dependence on
source atom position xi).
Note that this minor re-
definition turns the map
x 7→ M lr(x) into a peri-
odic function. We check
this by phrasing it as a double sum over the atoms of one
supercell S and the supercell lattice Λ:

M lr(x) =
∑
t∈Λ

∑
j∈S

hj · Φlr(∥x− (xj + t)∥)

=M lr(x+ t̃), ∀t̃ ∈ Λ.

(8)
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1. Fourier transform 2. Apply learned frequency filter

3. Inverse fourier transform
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Figure 3. Three-part structure of long-range message passing: first, structure factor embeddings {sk} are evaluated as a Fourier sum over
atoms

∑
j∈S exp(−ikxj) [ · ] and stored. Next, these are multiplied k-wise with learned filter values. Finally, an inverse Fourier sum∑

k exp(ikxi)[ · ] scatters messages back to each atom i. Note the nonlocal all-to-one character of this scheme. If PBC are explicitly
prescribed, the Fourier domain is given by {k ∈ Λ′ | ∥k∥ < ck} with frequency cutoff ck. If not, it needs to be suitably discretized.

Thus, M lr has a Fourier series expansion (we use complex
exponentials as Fourier modes for notational compactness):

M lr(xi) =
∑
k∈Λ′

M̂ lr
k exp (ikTxi) (9)

with Fourier coefficients M̂ lr
k ∈ CF (determined next).

Just as frequencies of a 1D Fourier series must be inte-
ger multiples of the basis frequency (i.e., form a 1D lat-
tice), the 3D spatial frequencies k ∈ Λ′ ⊂ R3 must
be integer combinations of three spatial basis frequen-
cies (w1,w2,w3) ∈ R3×3 spanning the reciprocal lattice
Λ′ := {λ′1w1 + λ′2w2 + λ′3w3 | λ′ ∈ Z3}. Each basis
frequency amounts to a single-period phase shift along one
supercell direction and constant phase along the others, i.e.,
wT

i vj = 1 if i = j and 0 otherwise (cf. Fig. 4). The super-
cell lattice Λ therefore fixes the reciprocal lattice Λ′, and the
relations w1 = 2π(v2 × v3)Ω

−1, w2 = 2π(v3 × v1)Ω
−1,

w3 = 2π(v1 × v2)Ω
−1 (with the cross product × and su-

percell volume Ω = vT
1 (v2 × v3)) are easily verified.

As our final ingredient leading up to a frequency cutoff,
we relate the Fourier coefficients M̂ lr

k to the 3D Fourier
transform Φ̂lr(∥·∥) : R3 → RF of Φlr(∥·∥) – the kernel is
aperiodic unlike M lr(·), implying that its frequency spec-
trum is a continuous, radial function of k ∈ R3 rather than a
discrete set of lattice coefficients. In App. A.5, we derive the
identity M̂ lr

k = 1
Ω

∑
j∈S hj exp(−ikTxj)Φ̂

lr(∥k∥). Essen-
tially, Eq. (8) periodizes

∑
j∈S hj ·Φlr(∥·−xj∥) by adding

all of its lattice shifts on Λ; in Fourier space, this periodiza-

tion maps Φ̂lr(∥·∥) onto a discrete spectrum by recording
its values only at PBC-compatible frequencies in Λ′. Insert-
ing this back into Eq. (9), and absorbing the prefactor 1

Ω

in our learned filter by redefining 1
Ω Φ̂

lr(∥k∥) 7→ Φ̂lr(∥k∥),
yields the desired long-range component of Ewald message
passing, a message sum over Fourier frequencies:

M lr(xi) =
∑
k∈Λ′

exp(ikTxi) · sk · Φ̂lr(∥k∥), (10)

sk =
∑
j∈S

hj exp(−ikTxj), (11)

with {sk ∈ CF | k ∈ Λ′}, which we call structure fac-
tor embeddings, as inspired by the analogous crystallo-
graphic quantity. If we replace Φ̂lr by a cutoff-truncated
Fourier space kernel Φ̂lr

[0,ck]
, we can limit the outer sum∑

k∈Λ′ 7→
∑

k∈Λ′,∥k∥<ck
, while the inner sum computing

sk only extends over the atoms of a single supercell. The
resulting cutoff-truncated kernel is complementary to reg-
ular continuous filters (Eq. (4)): While they have no limit
on distance, the frequency cutoff does limit how fast the
filters can change in space. More specifically, their spatial
resolution is proportional to the inverse frequency cutoff.

Structure factor embeddings. Without a k-cutoff, the set
of tuples {(sk,k) | k ∈ Λ′} would hold equivalent informa-
tion to the set {(hi,xi) | i ∈ S}, i.e., fully quantify the hid-
den state of the model on a given input structure. This is seen
by viewing {(hi,xi) | i ∈ S} equivalently as an “embed-
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ding density distribution”, ρ(x) =
∑

t∈Λ

∑
i∈S hiδ(x −

xi − t), with δ denoting the Dirac delta distribution. Its
Fourier transform (in the distributional sense) is given by
ρ̂(k) =

∑
k′∈Λ′

[∑
j∈S hi exp(−ik′Txj)

]
δ(k − k′) =∑

k′∈Λ′ sk′δ(k − k′) which corresponds to the pairs
{(sk,k)}. Disregarding all sk outside a k-cutoff removes
fine-grained resolution information about the atom encoding
distribution below a scale ∼ c−1

k . In this sense, the structure
factor representation introduced in Ewald message passing
coarse-grains the hidden model state. Moreover, the em-
bedding information is represented non-locally since each
sk is a weighted sum over all supercell embeddings. This
all-to-one relationship is another way of understanding the
long-range character of Ewald message passing.

Ewald message passing. The combined usage of regular
short-range message passing via any GNN layer and the
long-range message passing in Eqs. (10) and (11) is called
Ewald message passing. This combination enables Ewald
message passing to express interactions outside of either
limited class. We combine the two message passing schemes
simply by adding up both embedding updates during each
message-passing step, for details see Eq. (12). This way of
integration works nearly out-of-the-box in our experiments.

Aperiodic systems. Many structural datasets containing
important long-range interactions do not feature periodic
boundary conditions. In this case, a reciprocal lattice that
would discretize the Fourier domain is not provided, which
in turn means the structure factor embeddings sk turn into a
function s(k) : R3 7→ CF defined on a continuous domain.
The aperiodic case can equally well be understood as the
limit of infinite supercell size, corresponding to a continuum
limit of the reciprocal lattice as the basis frequency vectors
wi approach zero. As we can only represent s(·) and Φ̂(∥·∥)
by a finite set of numbers, we need to impose a suitable dis-
cretization scheme ourselves. In our implementation, we
tile the cutoff region by a grid of cubic voxels and replace
all continuous functions by the set of their average values
within each voxel. The discretization resolution is controlled
by the voxel sidelength ∆, a new hyperparameter that is rele-
vant for the aperiodic case. In our main experiments, we use
equal resolution ∆ = 0.2 Å

−1
for each tested model. Abla-

tion studies with other resolutions are reported in App. A.3.
Note that this approach preserves rotation invariance only if
the voxel grid sits in a coordinate frame that rotates with the
input structure. To this end, we use the orthonormal basis
obtained from a singular value decomposition, similar to
Gao & Günnemann (2022). In App. A.6 we outline a more
general mathematical framework for discretizing the struc-
ture factor, provide implementation-relevant details about
our voxel approach and discuss its relation to other possible
discretization schemes.

Frequency filters: aperiodic case. Thus far, we left open
how the frequency filters Φ̂(∥·∥) are learned. In the aperi-
odic case, we parametrize filters as linear combinations of S
radial basis functions {ψ̂i(∥·∥) : R3 → R | i = 1, . . . , S}:
Φ̂(∥k∥) = W Ψ̂(k) with Ψ̂(k) = (ψ1(∥k∥), . . . ψS(∥k∥))
and the learned weight matrix W ∈ RF×S . All basis func-
tions are supported within the k-cutoff radius ck. We use
Gaussian radial basis functions (Schütt et al., 2018).

Frequency filters: periodic case. On OC20 we pursue
a non-radial filtering strategy that allows for a more lib-
eral use of the information provided by the PBC frame
(v1,v2,v3) ∈ R3×3 of a given input structure. This infor-
mation can be meaningful: given a material surface slab,
for example, the model should clearly “know” which direc-
tion is normal to the surface. This does not break rotation
invariance as the PBC frame rotates with the structure.

Since the reciprocal lattice Λ′ varies depending on the in-
put PBC frame, the number of frequencies inside any fixed
cutoff volume would also be variable. Motivated by our em-
pirical findings (App. A.3), we instead fix the number of fre-
quencies in each reciprocal basis direction (w1,w2,w3) ∈
R3×3, dropping the notion of a direct frequency cutoff. For-
mally, we define positive integers Nx, Ny, Nz and consider
the product set I =×j=x,y,z

{−Nj , . . . , Nj} ⊂ Z3. We
limit the scope of the Fourier message sum in Eq. (10) by
only including frequencies with reciprocal lattice positions
in I . The model then learns a filter weight Φ̂λ′ ∈ RF for
each λ′ ∈ I . Since a general supercell lattice has at least
point symmetry, we moreover set Φ̂λ′ ≡ Φ̂−λ′ . This dif-
fers from the strict notion of frequency filters discussed
earlier: the filter weights Φ̂λ′ are not assigned to a fixed
point k in Fourier space, but to a position on the recipro-
cal lattice. The frequency corresponding to this position
kλ′ = λ′1w1 +λ′2w2 +λ′3w3 varies with the basis frequen-
cies of each input structure. Note that this filtering approach
is not invariant under the “supercell symmetry” that maps
any supercell to its multiple across one or several lattice
directions while keeping atom positions unchanged. We
found that this does not affect empirical performance on
OC20. Still, a filtering approach invariant to this symmetry
(e.g. radial basis filtering) might be advisable for datasets
with large variations in supercell size.

Computational complexity. The three-part procedure of
our long-range message passing scheme, illustrated in Fig. 3,
has a computational complexity of O(NatNk), where Nat is
the number of atoms in the structure (or supercell in the case
of PBC), and Nk is the number of frequencies contained
in the long-range sum. As the density of atoms in space
can be roughly assumed constant, the atom count increases
linearly with the supercell volume Ω in the periodic case. By
the definition of the reciprocal basis (w1,w2,w3) ∈ R3×3,
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the amount of frequencies k ∈ Λ′ contained within a fixed
frequency cutoff volume therefore scales linearly with the
atom count Nat. Altogether, this would amount to O(N2

at)
scaling if both cutoffs are left fixed. In the aperiodic case,
the same holds if we adapt the voxel resolution ∆ to the
finest features of s, which, by Fourier reciprocity, scale
inversely to the structural length. However, in contrast to
standard Ewald summation (Wells & Chaffee, 2015), Ewald
MP does not put any fixed relationship between cx and ck.
To achieve a computational complexity of O(Nat), we can
instead choose to fix Nk, which effectively varies ck ∝
N−1

at . Note that this approach can leave a “gap” of medium-
range interactions that are covered neither by the short-range
nor the long-range component of Ewald MP. Another way
to achieve sub-quadratic scaling would be adapting more
efficient Ewald summation variants to MPNNs (cf. Sec. 4).

4. Related Work
Hand-crafted long-range corrections. Approaches aug-
menting a short-ranged model by a long-range correction
make a frequent appearance in computational chemistry.
This often concerns corrections to density functional the-
ory (DFT), the method behind the OC20 (Chanussot et al.,
2021), OE62 (Stuke et al., 2020) and many other machine
learning benchmarks. DFT suffers from the same type of
problem as MPNN potentials: its standard functionals like
LDA (Jones & Gunnarsson, 1989) or PBE (Perdew et al.,
1996) cannot correctly express long-range effects such as
London dispersion (Jones, 2015). A zoo of interatomic dis-
persion corrections exists (Grimme, 2006; Tkatchenko &
Scheffler, 2009; Grimme et al., 2010; Caldeweyher et al.,
2019), which can be adapted for use alongside many DFT
functionals. From this historic angle, Ewald MP fills the
same demand for an inexpensive, out-of-the-box correction
in the MPNN context. Others have combined long-range
terms of various physics-based functional forms with short-
range models, including fully hand-crafted terms (Staacke
et al., 2021) and electrostatic terms with MPNN-predicted
partial charges (Unke et al., 2021). In contrast, our approach
remains entirely within the MPNN paradigm, focusing on a
fully data-driven modeling of long-range effects.

Non-local learning schemes. Ewald message passing
falls into the broader category of learning approaches tar-
geting non-local interactions in a structure. An example
of prominence well beyond quantum chemistry is atten-
tion (Vaswani et al., 2017). Whereas early approaches
in the graph domain apply the attention mechanism to
local node neighborhoods only (Veličković et al., 2018;
Dwivedi & Bresson, 2021), others soon extended it to the
fully-connected graph (Ying et al., 2021; Kreuzer et al.,
2021; Mialon et al., 2021). A drawback of such standard,
fully-connected graph attention is its O(N2) scaling in

structure size. However, models using subquadratic alter-
ations of standard attention have been proposed, including
an O(N log(N)) non-local aggregation scheme (Liu et al.,
2022), as well as linearly-scaling modified attention layers
for both chemistry (Unke et al., 2021; Frank et al., 2022) and
generic graph applications (Rampášek et al., 2022). Shallow
models such as Gaussian-process-based sGDML (Chmiela
et al., 2018) also typically use locality approximations, mo-
tivating recent effort towards their nonlocal extension by
Chmiela et al. (2023). Such approaches are mostly orthogo-
nal to the MPNN line of research and not directly informed
by a computational physics technique as with Ewald MP.

Use of long-range sums. Some MPNN-based works share
our approach of computing multiple message sums, in anal-
ogy to the physical separation of hand-crafted energies into
bonded and non-bonded terms. They likewise use a more
complex short-range part which includes higher-order geo-
metric information like bond (Zhang et al., 2020) or even di-
hedral angles (Gasteiger et al., 2022b), and a simpler, purely
radial atom-to-atom long-range part. However, the long-
range part in both works is a standard distance-truncated
message sum in a larger atomic neighborhood, thereby pre-
cluding the scaling advantage and physical inductive bias
achievable with Ewald summation. Apart from this, two
concurrent works exist which combine forms of Ewald sum-
mation with MPNN models. Lin et al. (2023) use it in a tra-
ditional sense to compute fixed-form physical potentials for
downstream use as physics-informed edge features, rather
than as a free-form ansatz for the learning of continuous-
filter messages. Yu et al. (2022) share our notion of learnable
Fourier space filters, but compute a scalar-valued structure
factor instead of structure factor embeddings. More gener-
ally, Yu et al. (2022) do not use the Ewald part as a GNN
message passing step with feedback onto the base GNN
embeddings, but rather apply it once and then combine it
with the short-range GNN output after its final layer. Both
Ewald-related works exclusively consider the periodic case.

Ewald summation. Ewald summation is a technique for
the summation of long-range interactions. The concept dates
back to work in theoretical physics from over a century ago
(Ewald, 1921) and has been adapted various times to encom-
pass more general interactions (Nijboer & De Wette, 1957;
Laino & Hutter, 2008; Mazars, 2010). Further development
has focused on the numerically efficient evaluation of the
long-range sum. While direct Ewald summation with opti-
mized distance and frequency cutoffs has N

3
2 scaling in the

atom number (Wells & Chaffee, 2015), approaches using the
Fast Fourier Transform (Darden et al., 1993; York & Yang,
1994; Essmann et al., 1995) bring it down to N log(N). In
this work, we focus on introducing the general method of
Ewald message passing, and consider numerical improve-
ments an interesting route for future work.
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5. Experiments
Datasets. The OC20 dataset (Chanussot et al., 2021)
features adsorption energies and atom forces for roughly
265 million structures, each one a snapshot from a DFT-
computed relaxation trajectory of an adsorbate-catalyst com-
bination under 3D periodic boundary conditions. We train
our models on the OC20-2M subsplit, which has been empir-
ically established as an efficient proxy for the full-size train-
ing set (Gasteiger et al., 2022b). The OE62 dataset (Stuke
et al., 2020) features, among other targets, DFT-computed
energies (in eV) for roughly 62,000 large organic molecules.
The energies account for the long-ranged London dispersion
interaction, computed via the DFT-D3 dispersion correction
(Grimme et al., 2010). Both benchmarks contain structures
with comparably large numbers of atoms (N > 100). OC20
features PBC, while structures in OE62 are aperiodic but
can reach large spatial extent (> 20 Å). This makes these
two datasets a strong testing case for the long-range im-
provements achievable with Ewald message passing.

Baseline GNN models. An overview of training and
baseline hyperparameters can be found in App. A.2. We
test Ewald message passing by modifying four mod-
els: SchNet (Schütt et al., 2017), PaiNN (Schütt et al.,
2021), DimeNet++ (Gasteiger et al., 2020) and GemNet-T
(Gasteiger et al., 2021). These are intended as a representa-
tive, but by no means exhaustive sample from the modern
GNN landscape. Guided by the settings used by Chanussot
et al. (2021), most baseline atom embedding sizes and cut-
offs are larger than the originally reported values to account
for the size and chemical diversity of our structures.

Ewald modifications. We aim to upgrade each baseline
architecture in a minimal way such that the Ewald additions
can be studied in isolation. All models except DimeNet++

update atom embeddings in each interaction block using a
skip connection. We simply add long-range message passing
using M lr

i from Eqs. (10) and (11) as another contribution,

h
(l+1)
i =

1√
2

[
h
(l)
i + f sr

upd (M
sr
i )
]

7−
→

h
(l+1)
i =

1√
3

[
h
(l)
i + f sr

upd (M
sr
i ) + f lr

upd

(
M lr

i

)]
,

(12)

where the short-range message sumM sr
i and update function

f sr
upd is specific to the short-range model, while f lr

upd is of the
same kind across models (architecture details in App. A.1).
For PaiNN, which also incorporates equivariant vector em-
beddings, we only upgrade messages between its scalar em-
beddings. As DimeNet++ does not pass messages between
atom embeddings by default, we add them to the model
with a default embedding block taken from GemNet-T and
update them purely by long-range message passing with a

skip connection, h(l+1)
i = 1√

2

[
h
(l)
i + fupd

(
M lr

i

)]
. We con-

catenate these atom embeddings with the atom-aggregated
DimeNet++ edge embeddings along the feature dimension,
prior to the atom-wise dense layer of each output block. Any
remaining differences among our Ewald modifications are
on the level of hyperparameters. Aiming for Pareto-efficient
baseline improvements, we choose numbers of included k-
vectors adequate to the cost of each baseline (see App. A.3).

Comparison studies. We test whether using Ewald mes-
sage passing alongside our baselines leads to significant and
robust improvements of the energy mean absolute errors
(EMAEs) on OC20 and OE62. We also measure the aver-
age runtime per structure (details in App. A.8) for every
model configuration and dataset to study how the benefits
of Ewald message passing compare against its runtime over-
head. Moreover, to establish a baseline for the long-range
improvements achievable by a mere change in hyperparam-
eters, we repeat the EMAE and runtime measurements in
a configuration without Ewald MP, but with increased set-
tings for the distance cutoff cx and maximum number of
message-passing neighbors Nmax (details in A.4). An ade-
quate comparison ideally means increasing these settings
to a point that roughly matches the Ewald modification in
cost. This is always possible for the periodic structures of
OC20. In the case of OE62, a setting of cx = 12 Å and
Nmax = 100 usually covers the entire molecule, meaning
that no significant cost increase can be achieved beyond this
point. We furthermore compare the Ewald improvements
against a test setting where the Ewald block, f lr

upd

(
M lr

i

)
in

Eq. (12), is instead replaced by regular pairwise message
passing with increased distance cutoff (similarly to related
work discussed in Sec. 4). Concretely, we substitute it by
a SchNet interaction block. In contrast to the increased-
cutoff variant from before, we now extend the cutoff for
this block only. As a final check, we study whether the
benefits of Ewald MP are significant beyond what follows
just from an increase in free parameters. On OE62, we mea-
sure the EMAE and runtime of baseline variants with more
atom embedding channels to recover the parameter count of
Ewald MP. For OC20, we point to the extensive hyperparam-
eter studies by Gasteiger et al. (2022a), which suggest that
changing embedding sizes by the small amounts relevant to
this work has negligible impact on OC20 EMAEs.

First off, our comparison studies on OE62 (Fig. 5) and
OC20 (Fig. 6) underscore the primary role of short-range
model choice in the GNN design landscape (consider, e.g.,
how DimeNet++ is pareto-dominated on OC20). At the
same time, the consistency of accuracy gains through Ewald
MP strongly encourages its use alongside any particular
short-range model. The associated runtime overheads are
at least comparable to, if not smaller than the runtime dif-
ferences between baselines. Meanwhile, the average Ewald
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Figure 5. Cost vs. energy MAE on OE62. Ewald MP improves the
models by 5% to 38%. Increasing the cutoff performs similarly
for DimeNet++ and GemNet-T, but is even detrimental for SchNet
and PaiNN. Using a SchNet in place of an Ewald LR block works
well for SchNet and PaiNN, but leaves DimeNet++ and GemNet-T
unaffected. Increasing the atom embedding size has little effect.
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Figure 6. Cost vs. energy MAE on OC20, averaged across test
splits. Ewald MP consistently improves all models and signifi-
cantly outperforms the two baseline settings featuring an increased
global cutoff as well as a standard pairwise (here: SchNet) block
with increased distance cutoff in place of the Ewald LR block.

improvements across all models (and all test splits in the
case of OC20) are 16.1% for OE62, and 10.3% for OC20.
Ewald MP achieves a better cost-performance tradeoff than
the large cutoff setting for all tested instances on OC20.
Interestingly, the large cutoff setting on OE62 has a very
comparable tradeoff to Ewald MP for the two baselines
which use edge embeddings, but has a detrimental effect for
the two models that only use atom embeddings. Quite the
opposite happens on OE62 if the Ewald block is replaced by
a SchNet block with increased distance cutoff: it is effective
for PaiNN and SchNet, but achieves no improvement at all
on the better DimeNet++ and GemNet-T baseline models.
Its cost cannot be further increased as the added SchNet
block already approaches full graph connectivity. On OC20,
it always has a neutral or detrimental effect. In contrast to
these two previous strategies, improvements through Ewald
MP appear robust – no detrimental effect is observed in
any tested model configuration. Finally, matching the free
parameter count of Ewald MP with larger atom embeddings
shows a negligible or even detrimental effect. Beyond these
empirical comparisons, we note in general that pairwise mes-
sage passing on a fully-connected graph (like our SchNet
LR block setting on OE62) inevitably scales quadratically
in structural size. Ewald MP, on the other hand, can prop-
agate long-range information subquadratically while also
providing a physically principled inductive bias (cf. Sec. 3).

Our results inform various design recommendations for fu-
ture use. Ewald MP appears to be more efficient on OC20:
similar relative improvements are consistently achieved at
about half the relative cost. This hints at periodic structures
as the more attractive domain of application. Given how
we integrate Ewald MP with a short-range GNN, it is rela-
tively cheaper alongside models featuring few but compute-

heavy message passing blocks (in our case, DimeNet++ and
GemNet-T). In such cases, adding a long-range message
sum to each block results in less relative overhead. Besides
energies, we also test for improvements of force MAEs on
OC20, which are consistent but small. This is to be ex-
pected, since the frequency truncation scheme of long-range
MP removes the fast-changing high-frequency contributions
to the potential energy surface, limiting its impact on the
energy gradients (forces). Further comments and numerical
results are found in App. A.7 and A.11.

Impact on long-range interactions. To test our hypoth-
esis that Ewald MP learns long-range effects in particular,
we leverage the fact that the energy targets on OE62 contain
an additive term, DFT-D3 (Grimme et al., 2010), to correct
for the long-ranged London-dispersion interaction. This
allows us to study the long-range component in isolation.
To evaluate the DFT-D3 term, we use the coefficient set rec-
ommended for Becke-Johnson damping and the PBE0 DFT
functional, as obtained from Reckien (2017). We proceed
by assigning all 6000 molecules in the OE62-val dataset
to one of 15 equally-sized bins according to the value of its
DFT-D3 correction. We disregard the two outermost bins
as they contain strong outliers. In each bin, we record the
statistics (bootstrapped means and 68% confidence intervals
with 10000 resamples) of the energy MAE for the baseline
and Ewald model variants. Fig. 7 shows that Ewald message
passing gives an outsize relative improvement for structures
with high long-range energy contributions. As an additional
check, we collect the same statistics as previously for a
model without Ewald modifications that is trained while the
DFT-D3 correction is added explicitly to the model output.
This provides a “cheating” model that only needs to learn
the short-range component, while the long-range component
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Figure 7. Energy MAE on OE62-val structures binned according
to their DFT-D3 long-range term. Ewald MP has an outsize impact
for molecules with larger long-range components, and recovers or
surpasses a “cheating” baseline that just adds the D3 ground truth
to the prediction (“Baseline + D3”).

is perfectly reconstructed. Ewald message passing keeps up
with this perfect baseline across all models, and even outper-
forms it for SchNet and DimeNet++. This analysis shows
that Ewald MP is able to recover the effects of a dispersion
correction on OE62 without any need for hand-crafting.

6. Conclusion
In this work, we show how the analogy between sums of
GNN messages and physical interactions leads to Ewald
message passing, a general message-passing framework
based on Ewald summation. Being computationally effi-
cient and model-agnostic, it brings value as a plug-and-play
addition to many existing GNN models. Our results demon-
strate robust improvements in energy targets across models
and datasets. They furthermore indicate an outsize impact
on structures with high long-range energy contributions. We
encourage using Ewald MP especially for large or periodic
structures containing a diverse set of atoms.
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Schütt, K. T., Sauceda, H. E., Kindermans, P.-J.,
Tkatchenko, A., and Müller, K.-R. SchNet – A
deep learning architecture for molecules and mate-
rials. The Journal of Chemical Physics, 148(24):
241722, March 2018. ISSN 0021-9606. doi: 10.1063/
1.5019779. URL https://aip.scitation.org/
doi/abs/10.1063/1.5019779.

11

https://link.aps.org/doi/10.1103/RevModPhys.87.897
https://link.aps.org/doi/10.1103/RevModPhys.87.897
https://link.aps.org/doi/10.1103/RevModPhys.61.689
https://link.aps.org/doi/10.1103/RevModPhys.61.689
https://openreview.net/forum?id=huAdB-Tj4yG
https://openreview.net/forum?id=huAdB-Tj4yG
https://doi.org/10.1063/1.2970887
https://openreview.net/forum?id=KaKXygtEGK
https://openreview.net/forum?id=KaKXygtEGK
https://www.sciencedirect.com/science/article/pii/B9780123743701000112
https://www.sciencedirect.com/science/article/pii/B9780123743701000112
https://dx.doi.org/10.1088/1751-8113/43/42/425002
https://dx.doi.org/10.1088/1751-8113/43/42/425002
https://www.sciencedirect.com/science/article/pii/S0031891457921249
https://www.sciencedirect.com/science/article/pii/S0031891457921249
https://link.aps.org/doi/10.1103/PhysRevLett.77.3865
https://link.aps.org/doi/10.1103/PhysRevLett.77.3865
https://proceedings.neurips.cc/paper_files/paper/2022/file/5d4834a159f1547b267a05a4e2b7cf5e-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/5d4834a159f1547b267a05a4e2b7cf5e-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/5d4834a159f1547b267a05a4e2b7cf5e-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/5d4834a159f1547b267a05a4e2b7cf5e-Paper-Conference.pdf
https://www.chemie.uni-bonn.de/pctc/mulliken-center/software/dft-d3/functionalsbj
https://www.chemie.uni-bonn.de/pctc/mulliken-center/software/dft-d3/functionalsbj
https://www.chemie.uni-bonn.de/pctc/mulliken-center/software/dft-d3/functionalsbj
https://proceedings.mlr.press/v139/schutt21a.html
https://proceedings.mlr.press/v139/schutt21a.html
http://papers.nips.cc/paper/6700-schnet-a-continuous-filter-convolutional-neural-network-for -modeling-quantum-interactions.pdf
http://papers.nips.cc/paper/6700-schnet-a-continuous-filter-convolutional-neural-network-for -modeling-quantum-interactions.pdf
http://papers.nips.cc/paper/6700-schnet-a-continuous-filter-convolutional-neural-network-for -modeling-quantum-interactions.pdf
http://papers.nips.cc/paper/6700-schnet-a-continuous-filter-convolutional-neural-network-for -modeling-quantum-interactions.pdf
https://aip.scitation.org/doi/abs/10.1063/1.5019779
https://aip.scitation.org/doi/abs/10.1063/1.5019779


Ewald-based Long-Range Message Passing for Molecular Graphs

Staacke, C. G., Heenen, H. H., Scheurer, C., Csányi,
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A. Appendix
A.1. Architecture and Implementation Details

Fig. 8 shows detailed computing steps used to obtain the
expression f lr

upd

(
M lr

i

)
(as given in Eq. (12)), which we add

to the GNN-specific short-range embedding update as part
of a skip connection during every interaction step (Eq. (12)).
The part highlighted in yellow computes the long-range sum
M lr

i that we discuss in Sec. 3. The index i denotes the target
atom, while the source index j runs over all atoms in the
structure (or the atoms of a single supercell in the case of
periodic boundary conditions).

Real and imaginary parts. While we use complex expo-
nential notation to simplify the conceptual part of this work,
our implementation handles the real and imaginary parts
of the structure factor individually. Eq. (11) gives sk =∑

j∈S hj cos(k
Txj), Im(sk) = −

∑
j∈S hj sin(k

Txj).
Plugging this into Eq. (10) and considering the real and
imaginary parts of M lr

i , we obtain

Re(M lr
i ) =

∑
n

cos(kT
nxi)

∑
j∈S

hj cos(k
T
nxj)Φ̂

lr(kn)

+
∑
n

sin(kT
nxi)

∑
j∈S

hj sin(k
T
nxj)Φ̂

lr(kn),

Im(M lr
i ) = 0.

(13)

This prescription leads to the steps outlined in Fig. 8. In
the aperiodic case in which we apply radial filtering with
a direct cutoff, the index n enumerates all frequencies
within the cutoff, {kn ∈ Λ′, ∥kn∥ ≤ ck}, and we have
Φ̂(kn) ≡ Φ̂(∥kn∥). In the periodic case, we drop the ra-
dial symmetry of Φ̂ as well as the notion of a direct cutoff,
and instead identify n ≡ λ′ ∈ I , with the index set I
enumerating reciprocal lattice sites close to the origin as
defined in Sec. 3. To obtain the above result (particularly
Im(M lr

i ) = 0), we implicitly use that the Fourier filter coef-
ficients Φ̂lr(kn) are real-valued, yet the real-valuedness of
the position-space potential Φlr alone would only guarantee
Φ̂lr(−kn) = Φ̂lr(kn)

∗, with ∗ denoting complex conjuga-
tion. The real-valuedness of all coefficients Φ̂lr(kn) follows
from the additional point symmetry constraint that we im-
pose on the Fourier space filters. In the aperiodic filtering
case, the point symmetry follows directly from radial sym-
metry, Φ̂lr(∥−kn∥) = Φ̂lr(∥kn∥). In the periodic case, we
enforce the symmetry via Φ̂λ′ ≡ Φ̂−λ′ for all λ′ ∈ I . The
reason for this constraint is that an R3 lattice spanned by an
arbitrary basis always has point symmetry around the origin
– the model should therefore give rise to the same output on
two structures that differ only by a point reflection of their
respective PBC frames while their atom positions are equal.

Damping values. In the aperiodic case, all trigonometric
functions in Eq. (13) are multiplied by a damping value
fn(x), which depends on the position x as well as the
frequency kn, and which can differ depending on the chosen
discretization scheme for the structure factor (App. A.6). In
our tested case of discretization by voxel averaging with
voxel resolution ∆, we have

fn(x) =
∏

c∈{x,y,z}

sinc
(
kcnx

c∆

2

)
, (14)

where the superscript c enumerates vector components.

Implementation of filtering schemes. Apart from damping
values, the second, implementation-related difference be-
tween the periodic and aperiodic case comes from our choice
of Fourier-space filtering scheme (Sec. 3). In the aperiodic
case, the matrix product W↑W↓ gives a weight matrix W ,
which we apply to the set of radial basis function values to
get the filter values {Φ̂lr(∥kn∥), kn ∈ Λ′, kn ≤ ck} (as
discussed in the aperiodic filtering paragraph of Sec. 3). In
the periodic case, we do not apply the product W↑W↓ di-
rectly to a vector, but rather evaluate and store the resulting
matrix given our current pair of weight matrices (W↑,W↓).
We identify the transpose (W↑W↓)

T of this matrix with
the filter coefficients {Φ̂λ′ = Φ̂lr(kλ′) = Φ̂lr(kn), λ

′ ∈ I}
(recall our identification of n with the multi-index λ′). In
both the periodic and aperiodic cases, we end up with a
matrix of shape (Nk, F ) containing F -dimensional stacks
of filter values Φ̂lr(kn), that we multiply component-wise
with the structure factor according to the prescription in
Eq. (13). We use the downprojection W↓ onto a bottleneck
layer of dimension N↓ (with shared weight values among
all interaction blocks l) to encourage generalization, as in-
spired by Gasteiger et al. (2021). Hence, W↑ has shape
(F,N↓), while W↓ has shape (N↓, Nk) (periodic case) or
(N↓, NRBF) (aperiodic case). We set N↓ = 16 for GemNet-
T and N↓ = 8 otherwise.

Update function. As the update function f lr
upd, we use

among all models a dense layer followed by Nhidden residual
layers, as specified by Gasteiger et al. (2021) in the atomic
update block of the GemNet architecture. While the authors
report using Nhidden = 2 residual blocks, we set Nhidden = 3
for all models except PaiNN, where we set Nhidden = 0,
opting for less relative overhead compared the inexpensive
short-range blocks of the PaiNN architecture.

A.2. Training and Hyperparameters

Baseline hyperparameters, unless explicitly listed here,
are the same as the values used for the baseline models in
(Chanussot et al., 2021). All differences from these original
OCP hyperparameter settings either serve a fairer assess-
ment of Ewald modifications by improving baseline per-
formance (especially on the energy MAE metric primarily
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Long-Range Block: Long-Range Message Passing: Residual:

Figure 8. The architecture of the long-range part of Ewald message passing. The long-range block on the left corresponds to the expression
f lr

upd

(
M lr

i

)
. □ denotes the input of a layer, encircled operations act component-wise. Triangular arrowheads define information flow

through layers, diamond arrowheads denote parametric dependence. Annotated in brackets are the shapes of tensors handled throughout
various parts of the computation. The steps marked by gray and dashed lines apply only to the aperiodic case.

addressed by Ewald message passing), or were introduced
to achieve more practical training times for our experimental
setup. Except for the new hyperparameters entering with
Ewald message passing, we use exactly the same model
settings for the baseline and Ewald versions. On OE62,
we use embedding sizes of 512 for the PaiNN and SchNet
models and 256 for the GemNet-T and DimeNet++ models.
On OC20, we had to reduce the DimeNet++ filter size to
192 due to memory constraints. All baselines use distance
cutoff values of 6 Å and neighbor thresholds Nmax of 50.
Our SchNet and PaiNN models use 4 interaction blocks,
DimeNet++ and GemNet-T use 3 blocks.

Training hyperparameters on OE62. We find on OE62
that smaller batch sizes improve performance for all base-
lines except SchNet. Hence, we use OE62 batch sizes of
64 (SchNet) and 8 (else). All models have an initial learn-
ing rate of 1 · 10−4 except for GemNet-T (5 · 10−4). As
in the PaiNN reference (Schütt et al., 2021), we use the
Adam optimizer with weight decay λ = 0.01, along with a
plateau scheduler (patience 10 and decay factor 0.5). For
DimeNet++ and GemNet-T, we use a milestone scheduler
with a warmup period of 250000 steps (warmup factor 0.2)
and decay factor 0.1 at 750000, 1125000 and 1500000 steps.
For SchNet, we also use a milestone scheduler, with 30000
warmup steps (warmup factor 0.2) and decay factor 0.1 at
60000, 120000 and 180000 steps. Training on OE62 con-
verges after 200 maximum epochs for PaiNN, 250 epochs
for SchNet and DimeNet++, and 300 epochs for GemNet-T.

Training hyperparameters on OC20. To reduce training
times, we increase batch sizes on OC20. GemNet-T and
DimeNet++ use batch size 16, PaiNN batch size 48 and
SchNet batch size 64. We use a plateau scheduler with
patience 3 and factor 0.8 for PaiNN, training for 25 maxi-
mum epochs. GemNet-T uses the same equal plateau sched-
uler. We train SchNet with a milestone scheduler (90000
warmup steps with warmup factor 0.2, milestones with fac-
tor 0.1 at 150000, 250000, 310000 steps) for 25 epochs,
and DimeNet++ with 250000 warmup steps (warmup fac-
tor 0.2) and factor 0.1 milestones at 750000, 1125000 and
1500000 steps for 15 epochs. In the loss function, we use
force multipliers of 33.3 for SchNet, 100 for PaiNN, 100
for GemNet-T, and 16.7 for DimeNet++.

Loss function. Like Chanussot et al. (2021), we use a
linear combination of energy and force mean absolute errors.
Using the index S to run over the |D| atom structures in the
set D (which becomes a mini-batch in practice), as well as
i to run over the |S| individual atoms in a structure S, our
loss function has the form

1

|D|
∑
S∈D

∣∣∣E(S) − E(S)
t

∣∣∣
+
λ

|D|
∑
S∈D

1

|S|

∥∥∥F (S)
i − F

(S)
i;t

∥∥∥
p
,

(15)

with the predicted/target truth energies E(S)/E(S)
t , the

predicted/target forces F
(S)
i /F (S)

i;DFT, the force multiplier
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λ ∈ R+ defining the desired tradeoff between energy and
force accuracy, and ∥·∥p denoting the Euclidean p-norm.
According with model literature, we use p = 1 for SchNet
and DimeNet++, and p = 2 for PaiNN and GemNet-T. On
OE62, where there are only energy targets, we set λ = 0.

A.3. Ewald Hyperparameters and Ablation Studies

Aperiodic case. Ewald message passing introduces two
main new hyperparameters in the aperiodic case: the fre-
quency cutoff ck and the voxel resolution ∆. An additional
source of hyperparameters is the parametrization of the
frequency filters. In the case of our implementation, the
number of Gaussian radial basis functions NRBF needs to
be fixed. In order to achieve pareto-efficient improvements
through Ewald message passing, we adapt these hyperpa-
rameters to the comparative cost of each short-range base-
line GNN. Our main experiment settings are listed in Tab. 1.

ck[Å
−1

] ∆[Å
−1

] NRBF
SchNet 0.4 0.2 48
PaiNN 0.6 0.2 128

DimeNet++ 0.8 0.2 128
GemNet-T 1.0 0.2 128

Table 1. Aperiodic Ewald hyperparameter settings.

Periodic case. In the periodic case, the main hyperparame-
ters of Ewald message passing are the numbers Nx, Ny, Nz

which define the frequencies included in the long-range
sum. In principle, they can all be varied independently,
but in our work we tie them into one independent effective
hyperparameter by the prodedure explained below.

Recall that we keep the amount of included frequencies
fixed across structures in our periodic filtering setting, which
leads to better performance empirically. This rules out sim-
ply including all reciprocal lattice frequencies within a fixed
cutoff volume, as their total number would vary across input
structures with differing reciprocal lattice supercells. Still,
we impose that the range of included frequencies does not
extend out to significantly further distance in any of the three
reciprocal lattice directions, just as it would be the case with
a spherical cutoff volume. In our setting, this is not possible
for an arbitrary input structure, as the set of included recip-
rocal lattice indices I (defined in Sec. 3, and fixed via our
hyperparameters) is mapped onto different points of Fourier
space for any structure via kλ′ = λ′1w1 + λ′2w2 + λ′3w3.
However, we can make sure that an even Fourier space dis-
tance is covered by included frequencies along all three
lattice directions for the average structure. For instance, if
the reciprocal lattice points are twice as dense on average
in one direction as compared to another, we double Ni for
this direction to have the same average Fourier space dis-
tance covered by frequencies along both axes. This single

distance effectively acts like an “average cutoff”, while the
number of included frequencies stays fixed for all structures.
On OC20, we observe that the average reciprocal space
unit cell is roughly 3 times narrower along the z direction
(the surface normal) than it is along the x and y directions.
Applying this hyperparameter tying constraint and account-
ing for different baseline model runtimes leads to our main
settings listed in Tab. 2.

Nx Ny Nz

SchNet 1 1 3
PaiNN 1 1 3

DimeNet++ 2 2 5
GemNet-T 2 2 5

Table 2. Periodic Ewald hyperparameter settings.

Additional hyperparameters. Additional hyperparameters
introduced by Ewald message passing in both the periodic
and aperiodic case are the bottleneck dimension N↓ and the
amount of residual layers Nhidden used as part of the update
function (cf. App. A.1).

Ablation studies: aperiodic case. We test OE62 EMAEs
of the DimeNet++-Ewald model with alternative settings
for ck and ∆ to probe the robustness of our approach in
hyperparameter space. We obtain EMAEs of 46.9meV

for (ck = 0.6 Å
−1

, ∆ = 0.2 Å
−1

), 47.2meV for (ck =

0.4 Å
−1

, ∆ = 0.1 Å
−1

), and 47.3meV for (ck = 1.6 Å
−1

,
∆ = 0.4 Å

−1
), all of which is a consistent improvement

over the 51.2meV baseline MAE.

We also test similar variations of the SchNet model, ob-
taining EMAEs of 83.0meV for (ck = 0.4 Å

−1
, ∆ =

0.4 Å
−1

), 85.9meV for (ck = 0.2 Å
−1

, ∆ = 0.2 Å
−1

),
and 82.8meV for (ck = 0.8 Å

−1
, ∆ = 0.4 Å

−1
) which are

again very close to our main setting results and strongly
improve the 133.5meV baseline MAE.

Ablation studies: periodic case. We test OC20 EMAEs
(averaged across all four test splits) of the SchNet-Ewald
model with different settings for (Nx, Ny, Nz), probing
whether our hyperparameter tying constraint (see above) is
a sensitive choice. We obtain EMAEs of 836meV (1, 1, 1)
and 828meV (1, 1, 2). Again, we find that our improve-
ments over the 895meV baseline MAE are robust to differ-
ent settings.

We do not use radial filters in the PBC setting as we find
them to perform worse empirically. We train our GemNet-
T-Ewald in a time-reduced setting of 30 maximum message-
passing neighbors and for 12 epochs on OC20-2M. We
record EMAEs on the four OC20-val splits. Our stan-
dard filtering approach with (Nx, Ny, Nz) = (2, 2, 5) has
137 filter weights (due to mirror symmetrization as men-
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Setting Baseline Standard Radial Cuboid
ID 305 263 264 278

OOD 455 416 447 436

Table 3. EMAEs [meV] of filtering variants on OC20.

Setting SchNet PaiNN DimeNet++ GemNet-T
Ewald 12.2M 15.7M 4.8M 16.1M
Emb. 14.4M 15.7M 5.4M 15.8M

Table 4. Parameter counts (in million parameters) for the Ewald
and increased-embedding variants on OE62.

tioned in Sec. 3). We compare this to an Ewald variant
using radial filtering with 128 Gaussian radial basis func-
tions. Furthermore, we test another filtering approach which
uses 3D Gaussian basis functions G(Σ, µi) with covariance
matrices Σ = diag(∆2

x,∆
2
y,∆

2
z) ∈ R3x3 centered on the

points µi ∈ Λ′
c of a cuboid lattice Λ′

c = {λ′x∆x(1, 0, 0)
T +

λ′y∆y(0, 1, 0)
T + λ′z∆z(0, 0, 1)

T | λ′ ∈ I}, with I =

×j=x,y,z
{−Nj , . . . , Nj} ⊂ Z3. We test (Nx, Ny, Nz) =

(3, 3, 6) and (∆x,∆y,∆z) = (0.333, 0.333, 0.167)Å
−1

.
As seen above, all variants improve the baseline, but the
radial and cuboid filtering variants generalize worse on the
OOD-both split, in which both the catalyst and adsorbate
have out-of-distribution composition (Tab. 3).

A.4. Hyperparameters for Comparison Studies

Increased cutoff setting. For the spatially infinite structures
of OC20, we assume the amount of message passing neigh-
bors for any given cutoff roughly satisfies N ∼ c3x and scale
it up accordingly. Given starting values of cx = 6 Å and
Nmax = 50 for all baselines, we find the modified OC20 set-
tings (6.25 Å, 55) for GemNet-T and DimeNet++ (7 Å, 80)
for PaiNN and (8.5 Å, 140) for SchNet which roughly match
the respective Ewald model variants in cost. On OE62, we
double the neighbor threshold from 50 to 100 (exceeding
the total size of most structures), use an increased 9 Å cutoff
for GemNet-T and a 12 Å cutoff for all other baselines. On
OE62, we double the neighbor threshold from 50 to 100 (ex-
ceeding the total size of most structures), use an increased
8 Å cutoff for GemNet-T and 12 Å for all other baselines.

Increased embedding size setting. In our OE62 increased
embedding size study, we increase sizes to 1536 for SchNet,
576 for PaiNN, 384 for DimeNet++ and 320 for GemNet-T,
which approximately matches the free parameter counts of
the Ewald variants (Tab. 4).

Pairwise long-range block setting. We replace the Ewald
block (f lr

upd

(
M lr

i

)
in Eq. (12)) by a standard SchNet block

with 200 Gaussians and 256 filters. On OE62, cost sat-
urates at 12 Å and 100 maximum neighbors, where the
molecular graph approaches full connectivity. On OC20,

long-ranged SchNet blocks cannot compete with the Ewald
cost: the Ewald overhead is already matched at 6.25 Å for
PaiNN, 6.75 Å for SchNet and DimeNet++, and 7.25 Å for
GemNet-T, where we scale up the neighbor threshold as in
the increased cutoff setting. Increasing distance cutoffs on
OC20 is more costly due to the higher atomic density.

A.5. Relationship between M̂ lr
k and Φ̂lr(∥·∥)

To derive the desired identity as done in standard Ewald
summation, we start with the Fourier coefficients M̂ lr

k ,

M̂ lr
k =

1

Ω

∫
Ω(S)

M lr(x) exp(−ikTx)d3x, (16)

where Ω(S) ⊂ R3 denotes a single supercell parallelepiped.
We now plug in Eq. (8) for M lr(x), resulting in

M̂ lr
k =

1

Ω

∫
Ω(S)

∑
t∈Λ

∑
j∈S

hjΦ
lr (∥x− xj − t∥)

· exp(−ikTx)d3x.

(17)

Assuming the lattice sum over Λ is absolutely convergent,
we can exchange it with the supercell integral such that∫

Ω(S)

∑
t∈Λ

Φlr (∥yj − t∥) exp(−ikTyj)d
3yj

=
∑
t∈Λ

∫
Ω(S)

Φlr (∥yj − t∥) exp(−ikTyj)d
3yj

=

∫
R3

Φlr (∥yj∥) exp(−ikTyj)d
3yj

(18)

holds (since the supercells form a tessellation of R3), where
we have set yj := x − xj . We now identify the obtained
integral over R3 as the Fourier transform Φ̂lr(∥k∥):

M̂ lr
k =

1

Ω

∑
j∈S

hj

[∫
R3

Φlr(∥yj∥) exp(−ikTyj)d
3yj

]
· exp(−ikTxj) =

1

Ω

∑
j∈S

hj exp(−ikTxj)Φ̂
lr(∥k∥).

(19)

A.6. Discretization of the Structure Factor

There is no unique approach to discretization and we be-
lieve our application leaves future room for more sophis-
ticated schemes, e.g., approaches based on wavelet the-
ory (Mallat, 2009). To aid such efforts, we first present a
quite general framework for discretizing the structure factor.
Afterwards, we outline our concrete implementation and
show how it arises as a special case. Assume a finite set
of Nk square-integrable, complex-valued basis functions
{fi ∈ L2(D) | 1 ≤ i ≤ Nk} on a bounded domain D
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containing the cutoff domain Bc = {k ∈ R3 | k ≤ ck},
i.e. Bc ⊂ D ⊂ R3. Further assume orthonormality
⟨ fj , fk⟩L2 =

∫
D
fj(k)

∗fk(k)d
3k = δjk, where ∗ denotes

complex conjugation. The structure factor s(k) can be
projected onto this basis set, resulting in a discrete approxi-
mate representation (Eq. (20)) in terms of basis coefficients
{si | 1 ≤ i ≤ Nk}:

s(k) ≈
Nk∑
i=1

⟨ fi, s⟩fi(k) =:
Nk∑
i=1

sifi(k) (20)

Integrating these scalar products numerically would require
knowing s(k) at high resolution. Instead, Eq. (21) takes
advantage of the appearing Fourier transform:

si = ⟨ fi, s⟩ =
∑
b∈S

hb

∫
D

fi(k)
∗ exp(−ikxb)d

3k

=
∑
b∈S

hb [̂f∗i ](xb) =
∑
b∈S

hbf̂
∗
i (−xb).

(21)

Note the analogy to sk, with f̂∗i (−xb) replacing
exp(−ikxb). We illustrate this with two examples.

(a) Auxiliary supercell. A standard literature approach
(Freysoldt et al., 2022) is to approximate an aperiodic struc-
ture as part of a supercell that is assumed finite, but suf-
ficiently large that spurious interactions can be ignored.
This reintroduces a reciprocal lattice Λ′ on which discrete
ski

:= s(ki) can be evaluated. Due to the defining prop-
erty of the delta distribution, ⟨ δ(· − ki), s⟩ = s(ki), this is
a special (i.e., limiting) case of our formalism featuring a
distributional ’basis’ and Fourier transform,

{fSC
i (k) = δ(k − ki) | ki ∈ Λ′ ∩ Bc},

f̂SC∗
i (−xb) = exp(−ikixb),

(22)

As seen above from Eq. (22), the definition of coefficient
si in Eq. (21) indeed reduces to the PBC definition of sk in
this special case.

(b) Voxel basis. In our implementation of aperiodic Ewald
message passing, we discretize s(k) by taking voxel av-
erages si on the cutoff-covering portion Λ′

∆ ∩ Bc of a
3D voxel grid Λ′

∆ = {λ′1∆(1, 0, 0)T + λ′2∆(0, 1, 0)T +
λ′3∆(0, 0, 1)T | λ′ ∈ Z3} with voxel sidelength ∆. The
elements ki ∈ Λ′

∆ ∩ Bc are the voxel center locations. In
our general framework, this corresponds to a basis set

{fV
i = ∆−3Xki | ki ∈ Λ′

∆ ∩ Bc},

f̂V∗
i (−xb) = exp(−ikixb)

∏
j∈{xyz}

sinc

(
kjix

j
b∆

2

)
,

(23)

where Xki
takes on a value of 1 the ki-centered cube∏

j∈{x,y,z}

[
kji − ∆

2 , k
j
i +

∆
2

]
and 0 otherwise. The hyper-

parameter ∆ controls the discretization resolution. Taking
the scalar product,

⟨ fV
i , s⟩ = ∆−3

∫ kx
i +

∆
2

kx
i −

∆
2

∫ ky
i +

∆
2

ky
i −

∆
2

∫ kz
i +

∆
2

kz
i −

∆
2

s(k)d3k, (24)

computes the average value of s(k) inside the voxel cube
around ki. Using the Fourier transform result from Eq. (23),
we see that si only differs from the PBC case sk by an
additional sinc damping function. Taking ∆→ 0 recovers

the continuum limit: consistently, sinc
(

xj
b∆

2

)
converges

pointwise to 1 in this limit.

So far, we have outlined how to represent the structure fac-
tor by discrete basis coefficients si. To compute long-range
messages in our voxel implementation, we proceed as fol-
lows. The continuous filter Φ̂(k) is assigned the same type
of voxel representation

∑Nk
i=1 Φ̂if

V
i in terms of coefficients

Φ̂i = ⟨ fV
i , Φ̂⟩. These coefficients are obtained by reading

out the learned radial basis combinations Φ̂(k) = W Ψ̂(k)
on the discrete grid of voxel centerpoints Λ′

∆ ∩ Bc. Now,
the complete expression for the message sum assumes the
approximate form

M lr
a =

∫
D

exp(ikxa)

[
Nk∑
i=1

siΦ̂if
V
i (k)

]
d3k

=

Nk∑
i=1

f̂V
i (−xa)

[∑
b

hbf̂
V∗
i (−xb)

]
Φ̂i,

(25)

where in the last step we substituted in the expression for
si from Eq. (21). Note the analogy to the PBC message
passing formula Eq. (10) with exp(ikxa) and exp(−ikxb)
replaced by fV

i (−xa) and fV∗
i (−xb), respectively. As these

differ only by an additional sinc damping factor for the voxel
case, our periodic and aperiodic implementations of Ewald
message passing use just marginally different code.

A.7. Impact on Force Predictions

Ewald message passing is primarily a correction scheme
for energy rather than force targets. The force on atom i is
the negative energy gradient F (xi) = −∇iE(x1, . . .xN ).
Due to the wavelength truncation used in Eq. (10), Ewald
message passing can only contribute terms to the energy
prediction which vary more slowly in space than the scale
of its inverse frequency cutoff. To see this quantita-
tively, consider the Fourier series ansatz for the function
Vi(x) := E(x1, . . .xi−1,x,xi+1,xN )|x1,xi−1,...,xi+1,xN

,
reading Vi(x) =

∑
k∈Λ′ V̂k exp (ik

Tx). In these terms,

F (xi) = −∇V (xi) = −
∑
k∈Λ′

ikV̂k exp (ik
Txi). (26)
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Contributions at low frequencies ∥k∥ ≤ ck are therefore
being suppressed compared to the gradient contributions of
higher frequencies. Hence, we hypothesize that the short-
range message sums of the model take over a major part of
the force prediction.

A.8. Runtime Measurements

We run all models on Nvidia A100 GPUs and evaluate
the runtimes of all model configurations in one session and
on the same machine. After 50 warmup batches, we average
the runtime per structure over 500 batches and repeat this
measurement three times. Afterwards, we take the minimum
of these three measurements.

A.9. Further Long-Range Binning Results

As a supplement to our analysis in the main body of this
work, we provide additional binning results similar to Fig. 7.
They give additional insights about the correlation of various
structural features with Ewald improvements.

Further OE62 analyses. We group structures by two struc-
tural size metrics: the maximum distance between any pair
of atoms, and the standard deviation σ along the princi-
pal axis for the atomic point cloud. Furthermore, we bin
according to electrostatic energy Eq. (6), obtained using
DFT-Hirshfeld atomic partial charges from the OE62 data.

Further OC20 analyses. On OC20, no obvious size metric
exists due to the periodic boundary conditions. However, we
can still bin according to electrostatic energy as for OE62
on the IS2RE-val-id split of OC20, for which Bader
partial charges are provided on all structures.

Discussion. Our additional analyses inform the following
conclusions and usage recommendations:

• Ewald MP appears to address dispersion effects. We
hope our method might also learn such effects for ref-
erence targets going beyond DFT-D3 in the cost hier-
archy, such as energies obtained from a nonlocal DFT
functional.

• We observe no increased relative improvement for
higher electrostatic energy, only a constant correction
across all bins. Apparently, standard GNNs can already
learn electrostatics fairly well on our data. It could be
valuable to repeat this study on upcoming benchmarks
in fields like interface or colloid chemistry.

• We expect the usefulness of Ewald MP to grow with
structural size due to its favorable scaling. However,
our binning plots suggest that structural size is no direct
proxy for expected model error or Ewald improvement.
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Figure 9. Energy MAE on OC20-IS2RE-val-id structures
binned according to electrostatic energy. Ewald MP has no outsize
impact on structures with a high electrostatic energy contribution.

A.10. OE62 Dataset Preprocessing

As the raw OE62 DFT energies have a large average offset
from zero, we compute least-squares-fitted targets for all
structures S of the formE

(S)
t = E

(S)
raw −

∑
Z CZN

(S)
Z −C0,

where E(S)
t /E(S)

raw are the preprocessed target / raw DFT en-
ergies, Z ∈ N enumerates atom types with type-specific
regression coefficients CZ ∈ R and bias coefficient C0,
and N (S)

Z ∈ N0 is the number of atoms belonging to type
Z in the structure S. The model only learns the resid-
uals of this fit, which have close-to-zero mean by con-
struction. We partition the data in ca. 50000 structures
for OE62-train, and ca. 6000 structures for each of
OE62-val and OE62-test.

A.11. Numerical Energy, Force and Runtime Results

Tabs. 5 and 6 provide the numerical OC20 and OE62 results
on which we base our visualizations in Sec. 5.
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Table 5. Energy MAEs and runtimes per input structure on OE62.

OE62-val OE62-test Forward Pass Forward & Backward Pass
MAE Rel. MAE Rel. Runtime Rel. Runtime Rel.

Model Variant meV ↓ % ↑ meV ↓ % ↑ ms/struct. ↓ % ↓ ms/struct. ↓ % ↓
SchNet Baseline 133.5 - 131.3 - 0.13 - 0.28 -

Embeddings 144.7 -8.4 136.7 -4.1 0.14 15.2 0.33 17.8
Cutoff 257.4 -92.8 254.8 -94.1 0.14 13.6 0.31 11.6

SchNet-LR 86.6 35.1 89.2 32.1 0.32 156.0 0.75 171.7
Ewald 79.2 40.7 81.1 38.2 0.70 461.6 1.03 271.4

PaiNN Baseline 61.4 - 63 - 1.52 - 3.16 -
Embeddings 63.5 -3.4 63.1 -0.2 1.54 1.4 3.28 3.8

Cutoff 65.1 -6.0 64.4 -2.2 1.84 20.9 3.91 23.6
SchNet-LR 58.3 5.1 58.2 7.7 1.84 20.7 4.21 33.1

Ewald 57.9 5.7 59.7 5.2 2.29 50.5 4.57 44.4
DimeNet++ Baseline 51.2 - 53.8 - 1.99 - 4.26 -

Embeddings 50.4 1.6 53.4 0.7 2.25 12.9 4.93 15.8
Cutoff 48.3 5.7 48.1 10.6 2.68 34.7 6.10 43.4

SchNet-LR 51.4 -0.5 54.4 -1.1 2.37 19.0 4.73 11.2
Ewald 46.5 9.2 48.1 10.6 2.70 35.5 5.93 39.5

GemNet-T Baseline 51.5 - 53.1 - 3.07 - 6.96 -
Embeddings 52.7 -2.3 53.9 -1.5 3.11 1.5 6.98 0.4

Cutoff 47.8 7.2 47.7 10.2 4.02 31.2 8.88 27.7
SchNet-LR 51.2 0.6 52.8 0.5 3.32 8.3 7.73 11.1

Ewald 47.4 8.0 47.5 10.5 4.05 32.0 8.86 27.4

Table 6. Energy and force mean absolute errors, as well as runtimes per input structure, averaged across all four splits of OC20-test.

Energy Forces Forward Pass Forward & Backward Pass
MAE Rel. MAE Rel. Runtime Rel. Runtime Rel.

Model Variant meV ↓ % ↑ meV Å
−1 ↓ % ↑ ms/struct. ↓ % ↓ ms/struct. ↓ % ↓

SchNet Baseline 895 - 61.1 - 0.85 - 1.83 -
Cutoff 869 3.0 60.3 1.3 1.57 84.2 3.92 114.2

SchNet-LR 984 -9.9 65.3 -6.8 1.79 110.6 5.24 186.0
Ewald 830 7.3 56.7 7.2 1.79 110.7 4.68 155.3

PaiNN Baseline 448 - 42.0 - 1.66 - 3.44 -
Cutoff 413 7.9 40.9 2.6 2.54 53.1 5.06 46.9

SchNet-LR 468 -4.3 43.3 -3.2 2.06 24.2 5.24 44.3
Ewald 393 12.3 40.5 3.5 2.08 25.4 4.24 23.1

DimeNet++ Baseline 496 - 47.1 - 5.58 - 15.68 -
Cutoff 487 1.8 46.4 1.4 6.28 12.4 17.23 9.9

SchNet-LR 504 -1.6 48.3 -2.6 6.26 12.1 16.14 2.9
Ewald 445 10.4 45.5 3.3 6.24 11.7 17.00 8.4

GemNet-dT Baseline 346 - 29.9 - 6.37 - 14.77 -
Cutoff 352 -1.7 30.2 -1.0 7.23 13.5 16.40 11.0

SchNet-LR 351 -1.5 29.8 0.3 7.19 12.1 16.35 10.7
Ewald 307 11.3 29.3 1.8 7.09 11.2 16.23 9.9
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