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Abstract

Denoising diffusion probabilistic models are be-
coming the leading generative modeling paradigm
for many important data modalities. Being the
most prevalent in the computer vision community,
diffusion models have recently gained some atten-
tion in other domains, including speech, NLP, and
graph-like data. In this work, we investigate if the
framework of diffusion models can be advanta-
geous for general tabular problems, where data
points are typically represented by vectors of het-
erogeneous features. The inherent heterogeneity
of tabular data makes it quite challenging for ac-
curate modeling since the individual features can
be of a completely different nature, i.e., some of
them can be continuous and some can be discrete.
To address such data types, we introduce TabD-
DPM — a diffusion model that can be universally
applied to any tabular dataset and handles any fea-
ture types. We extensively evaluate TabDDPM
on a wide set of benchmarks and demonstrate its
superiority over existing GAN/VAE alternatives,
which is consistent with the advantage of diffu-
sion models in other fields. The source code of
TabDDPM is available at GitHub.

1. Introduction
Denoising diffusion probabilistic models (DDPM) (Sohl-
Dickstein et al., 2015; Ho et al., 2020) have recently become
an object of great research interest in the generative model-
ing community since they often outperform the alternative
approaches both in terms of the realism of individual sam-
ples and their diversity (Dhariwal & Nichol, 2021). The
most impressive successes of DDPM were demonstrated in
the domain of natural images (Dhariwal & Nichol, 2021;
Saharia et al., 2022; Rombach et al., 2022), where the ad-
vantages of diffusion models are successfully exploited in
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applications, such as colorization (Song et al., 2021), in-
painting (Song et al., 2021), segmentation (Baranchuk et al.,
2021), super-resolution (Saharia et al., 2021; Li et al., 2021),
semantic editing (Meng et al., 2021) and others. Beyond
computer vision, the DDPM framework is also investigated
in other fields, such as NLP (Austin et al., 2021; Li et al.,
2022), waveform signal processing (Kong et al., 2020; Chen
et al., 2020b), molecular graphs (Jing et al., 2022; Hooge-
boom et al., 2022), time series (Tashiro et al., 2021), testify-
ing the universality of diffusion models across a wide range
of problems.

Our work aims to investigate if the universality of DDPM
can be extended to the case of general tabular problems,
which are ubiquitous in various industrial applications that
include data described by a set of heterogeneous features.
For many such applications, the demand for high-quality
generative models is especially acute because of the modern
privacy regulations, like GDPR, which prevent publishing
real user data, while the synthetic data produced by gen-
erative models can be shared. However, training a high-
quality model of tabular data can be more challenging than
in computer vision or NLP due to the heterogeneity of indi-
vidual features and relatively small sizes of typical tabular
datasets. This paper shows that despite these two intricacies,
the diffusion models can successfully approximate typical
distributions of tabular data, leading to state-of-the-art per-
formance on most of the benchmarks. In more detail, the
main contributions of this work are the following:

1. We introduce TabDDPM — a simple design of DDPM
for tabular problems that can be applied to any tabular
task and work with mixed data types including numeri-
cal and categorical features.

2. We demonstrate that TabDDPM outperforms the alter-
native approaches designed for tabular data, including
GAN-based and VAE-based methods, and illustrate the
sources of this advantage on several datasets.

3. We observe that shallow interpolation-based methods,
e.g., SMOTE (Chawla et al., 2002), produce surprisingly
effective synthetic data that provides competitively high
ML efficiency. Compared with SMOTE, we show that
TabDDPM’s data is preferable for privacy-concerned
scenarios when synthetic data are used to substitute the
real user data that cannot be shared.
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2. Related Work
Diffusion models (Sohl-Dickstein et al., 2015; Ho et al.,
2020) is a paradigm of generative modeling that aims to
approximate the target distribution by the endpoint of the
Markov chain, which starts from a given parametric distri-
bution, typically a standard Gaussian. Each Markov step is
performed by a deep neural network that effectively learns
to invert the diffusion process with a known Gaussian ker-
nel. Ho et al. demonstrated the equivalence of diffusion
models and score matching (Song & Ermon, 2019; 2020),
showing them to be two different perspectives on the grad-
ual conversion of a simple known distribution into a target
distribution via the iterative denoising process. Several re-
cent works (Nichol, 2021; Dhariwal & Nichol, 2021) have
developed more powerful model architectures as well as
different advanced learning protocols, which led to the “vic-
tory” of DDPM over GANs in terms of generative quality
and diversity in the computer vision field. In this work, we
demonstrate that one can also successfully use diffusion
models for tabular problems.

Generative models for tabular problems are currently an
active research direction in the machine learning community
since high-quality synthetic data is in great demand for
many tabular tasks. First, the tabular datasets are often
limited in size, unlike in vision or NLP problems, for which
massive “extra” data is available on the Internet. Second,
proper synthetic datasets do not contain actual user data.
Therefore, they are not subject to GDPR-like regulations
and can be publicly shared without violating anonymity.
The recent works have developed a large number of models,
including tabular VAEs (Xu et al., 2019) and GAN-based
approaches (Xu et al., 2019; Engelmann & Lessmann, 2021;
Jordon et al., 2018; Fan et al., 2020; Torfi et al., 2022; Zhao
et al., 2021; Kim et al., 2021; Zhang et al., 2021; Nock
& Guillame-Bert, 2022; Wen et al., 2022). By extensive
evaluations on a large number of public benchmarks, we
show that TabDDPM surpasses the existing alternatives,
often by a large margin.

“Shallow” synthetics generation. Unlike unstructured im-
ages or natural texts, tabular data is typically structured,
i.e., the individual features are often interpretable and it is
unclear if their modeling requires several layers of “deep” ar-
chitectures. Therefore, the simple interpolation techniques,
like SMOTE (Chawla et al., 2002) (originally proposed to
address class imbalance) can serve as simple and powerful
solutions as demonstrated in (Camino et al., 2020), where
SMOTE is shown to outperform tabular GANs for minor
class oversampling. In the experiments, we demonstrate
the advantage of TabDDPM’s synthetics over synthetics
produced with interpolation techniques from the privacy-
preserving perspective.

3. Background
Diffusion models (Sohl-Dickstein et al., 2015; Ho et al.,
2020) are likelihood-based generative models that handle
the data through forward and reverse Markov processes. The
forward process q (x1:T |x0)=

∏T
t=1 q (xt|xt−1) gradually

adds noise to an initial sample x0 from the data distribu-
tion q (x0) sampling noise from the predefined distributions
q (xt|xt−1) with variances {β1, ..., βT }.

The reverse process p (x0:T )=
∏T

t=1 p (xt−1|xt) gradually
denoises a latent variable xT∼q (xT ) and allows generating
new data samples from q(x0). Distributions p (xt−1|xt) are
usually unknown and approximated by a neural network
with parameters θ. These parameters are learned from the
data by optimizing a variational lower bound:

log q (x0) ≥ Eq(x0)

[
log pθ (x0|x1)︸ ︷︷ ︸

L0

−KL (q (xT |x0) |q (xT ))︸ ︷︷ ︸
LT

−

−
T∑

t=2

KL (q (xt−1|xt, x0) |pθ (xt−1|xt))︸ ︷︷ ︸
Lt

]
(1)

Gaussian diffusion models operate in continuous spaces
(xt ∈ Rn) where forward and reverse processes are charac-
terized by Gaussian distributions:

q (xt|xt−1) := N
(
xt;
√

1− βtxt−1, βtI
)

q (xT ) := N (xT ; 0, I)

pθ (xt−1|xt) := N (xt−1;µθ (xt, t) ,Σθ (xt, t))

Ho et al. (2020) suggest using diagonal Σθ (xt, t) with a
constant σt and computing µθ (xt, t) as a function of xt and
ϵθ(xt, t):

µθ (xt, t) =
1

√
αt

(
xt −

βt√
1− ᾱt

ϵθ (xt, t)

)
where αt := 1−βt, ᾱt :=

∏
i≤t αi and ϵθ(xt, t) predicts a

“groundtruth” noise component ϵ for the noisy data sample
xt. In practice, the objective Equation 1 can be simplified
to the sum of mean-squared errors between ϵθ(xt, t) and ϵ
over all timesteps t:

Lsimple
t = Ex0,ϵ,t∥ϵ− ϵθ(xt, t)∥22 (2)

Multinomial diffusion models (Hoogeboom et al., 2021)
are designed to generate categorical data where xt ∈
{0, 1}K is a one-hot encoded categorical variable with K
values. The multinomial forward diffusion process defines
q (xt|xt−1) as a categorical distribution that corrupts the
data by uniform noise over K classes:

q(xt|xt−1) := Cat (xt; (1− βt)xt−1 + βt/K)

q (xT ) := Cat (xT ; 1/K)

q (xt|x0) = Cat (xt; ᾱtx0 + (1− ᾱt) /K)
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Figure 1. TabDDPM scheme for classification problems; t, y and ℓ denote a diffusion timestep, a class label, and logits, respectively.
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From the equations above, the posterior q(xt−1|xt, x0) can
be derived:

q (xt−1|xt, x0) = Cat

(
xt−1;π/

K∑
k=1

πk

)
, where

π = [αtxt + (1− αt)/K]⊙ [ᾱt−1x0 + (1− ᾱt−1)/K]

The reverse distribution pθ (xt−1|xt) is parameterized as
q (xt−1|xt, x̂0(xt, t)), where x̂0 is predicted by a neural
network. Then, the model is trained to maximize the varia-
tional lower bound Equation 1.

4. TabDDPM
In this section, we describe the design of TabDDPM as
well as its main hyperparameters, which affect the model’s
effectiveness.

TabDDPM uses the multinomial diffusion to model the
categorical and binary features, and the Gaussian diffusion
to model the numerical ones. In more detail, for a tabu-
lar data sample x = [xnum, xcat1 , ..., xcatC ], that consists of
Nnum numerical features xnum ∈ RNnum and C categorical
features xcati with Ki categories each, our model takes one-
hot encoded versions of categorical features as an input (i.e.
xohe

cati ∈ {0, 1}Ki ) and normalized numerical features. There-
fore, the input x0 has a dimensionality of (Nnum +

∑
Ki).

For preprocessing, we use the gaussian quantile transforma-
tion from the scikit-learn library (Pedregosa et al., 2011).
Each categorical feature is handled by a separate forward
diffusion process, i.e., the noise components for all features
are sampled independently. The reverse diffusion step in
TabDDPM is modeled by a multi-layer neural network that
has an output of the same dimensionality as x0, where the
first Nnum coordinates are the predictions of ϵ for the Gaus-
sian diffusion and the rest are the predictions of xohe

cati for the
multinomial diffusions.

The TabDDPM model for the classification problems is
schematically presented on Figure 1. The model is trained

by minimizing a sum of mean-squared error Lsimple
t (Equa-

tion 2) for the Gaussian diffusion term and the KL diver-
gences Li

t for each multinomial diffusion term (Equation 1).
The total loss of multinomial diffusions is additionally di-
vided by the number of categorical features.

LTabDDPM
t = Lsimple

t +

∑
i≤C Li

t

C
(3)

For classification datasets, we use a class-conditional model,
i.e., pθ(xt−1|xt, y) is learned. For regression datasets, we
consider a target value as an additional numerical feature,
and the joint distribution is learned.

To model the reverse process, we use a simple MLP archi-
tecture adapted from (Gorishniy et al., 2021):

MLP(x) = Linear (MLPBlock (. . . (MLPBlock(x))))

MLPBlock(x) = Dropout(ReLU(Linear(x)))
(4)

As in (Nichol, 2021; Dhariwal & Nichol, 2021), a tabular
input xin, a timestep t, and a class label y are processed as
follows:

t emb = Linear(SiLU(Linear(SinTimeEmb(t))))

y emb = Embedding(y)

x = Linear(xin) + t emb+ y emb
(5)

where SinTimeEmb refers to a sinusoidal time embedding
as in (Nichol, 2021; Dhariwal & Nichol, 2021) with a di-
mension of 128. All Linear layers in Equation 5 have a
fixed projection dimension 128.

Hyperparameters in TabDDPM are essential since, in the
experiments, we observed them having a strong influence
on the model effectiveness. Table 1 lists the main hyper-
parameters and the search spaces for each of them, which
we recommend using. The process of tuning is described in
detail in the experimental section.
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Table 1. The list of main hyperparameters for TabDDPM.

Hyperparameter Search space

Learning rate LogUniform[0.00001, 0.003]
Batch size Cat{256, 4096}
Diffusion timesteps Cat{100, 1000}
Training iterations Cat{5000, 10000, 20000}
# MLP layers Int{2, 4, 6, 8}
MLP width of layers Int{128, 256, 512, 1024}
Proportion of samples Float{0.25, 0.5, 1, 2, 4, 8}
Dropout 0.0
Scheduler cosine (Nichol, 2021)
Gaussian diffusion loss MSE

Number of tuning trials 50

Table 2. Details on the datasets used in the evaluation.

Abbr Name # Train # Validation # Test # Num # Cat Task type

AB Abalone 2672 669 836 7 1 Regression
AD Adult 26048 6513 16281 6 8 Binclass
BU Buddy 12053 3014 3767 4 5 Multiclass
CA California Housing 13209 3303 4128 8 0 Regression
CAR Cardio 44800 11200 14000 5 6 Binclass
CH Churn Modeling 6400 1600 2000 7 4 Binclass
DE Default 19200 4800 6000 20 3 Binclass
DI Diabetes 491 123 154 8 0 Binclass
FB Facebook Comm. Vol. 157638 19722 19720 50 1 Regression
GE Gesture Phase 6318 1580 1975 32 0 Multiclass
HI Higgs Small 62751 15688 19610 28 0 Binclass
HO House 16H 14581 3646 4557 16 0 Regression
IN Insurance 856 214 268 3 3 Regression
KI King 13832 3458 4323 17 3 Regression
MI MiniBooNE 83240 20811 26013 50 0 Binclass
WI Wilt 3096 775 968 5 0 Binclass

5. Experiments
In this section, we extensively evaluate TabDDPM against
existing alternatives.

Datasets. For systematic investigation of the performance
of tabular generative models, we consider a diverse set of 15
real-world public datasets. These datasets have various sizes,
nature, number of features, and their distributions. Most
datasets were previously used for tabular model evaluation
in (Zhao et al., 2021; Gorishniy et al., 2021). The full list of
datasets and their properties are presented in Table 2.

Baselines. Since the number of generative models proposed
for tabular data is enormous, we evaluate TabDDPM only
against the leading approaches from each paradigm of gen-
erative modeling. Also, we consider only the baselines with
the published source code.

• TVAE (Xu et al., 2019) — the state-of-the-art varia-
tional auto-encoder for tabular data generation. To the
best of our knowledge, there are no alternative VAE-
like models that outperform TVAE and have public
source code.

• CTGAN (Xu et al., 2019) — arguably the most popular
and well-known GAN-based model for synthetic data
generation.

• CTABGAN (Zhao et al., 2021) — a recent GAN-based
model that is shown to outperform the existing tabular
GANs on a diverse set of benchmarks. This approach
cannot handle regression tasks.

• CTABGAN+ (Zhao et al., 2022) — an extension of
the CTABGAN model that was published in the very
recent preprint. We are unaware of the GAN-based
model for tabular data proposed after CTABGAN+
and has a public source code.

• SMOTE (Chawla et al., 2002) — a “shallow”
interpolation-based method that ”generates” a synthetic
point as a convex combination of a real data point and
its k-th nearest neighbor from the dataset. This method
was originally proposed for minor class oversampling.
Here, we generalize it to synthetic data generation as
a simple sanity check, i.e., a new synthetic sample
is ”generated” by interpolating two samples from the
same class. For regression problems, we split data into
two classes by the median of the target variable.

Evaluation measure. Our primary evaluation measure is
machine learning (ML) efficiency (or utility) (Xu et al.,
2019). In more detail, ML efficiency quantifies the per-
formance of classification or regression models trained on
synthetic data and evaluated on the real test set. Intuitively,
models trained on high-quality synthetics should be compet-
itive (or even superior) to models trained on real data. In our
experiments, we use two evaluation protocols to compute
ML efficiency. In the first protocol, which is more common
in the literature (Xu et al., 2019; Zhao et al., 2021; Kim
et al., 2022), we compute an average efficiency w.r.t. a set of
diverse ML models (logistic regression, decision tree, and
others). In the second protocol, we evaluate ML efficiency
only w.r.t. the CatBoost model (Prokhorenkova et al., 2018),
which is arguably the leading GBDT implementation provid-
ing state-of-the-art performance on tabular tasks (Gorishniy
et al., 2021). In our experiments in subsection 5.2, we show
that it is crucial to use the second protocol, while the first
one can often be misleading.

Tuning process. To tune the hyperparameters of TabDDPM
and the baselines, we use the Optuna library (Akiba et al.,
2019). The tuning process is guided by the values of the ML
efficiency (w.r.t. Catboost) of the generated synthetic data
on a hold-out validation dataset (the score is averaged over
five different sampling seeds). The search spaces for all
hyperparameters of TabDDPM are reported in Table 1 (for
baselines — in Appendix E). Additionally, we demonstrate
that tuning the hyperparameters using the CatBoost guid-
ance does not introduce any sort of “Catboost-biasedness”,
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Figure 2. The individual feature distributions for the real data and the data generated by TabDDPM, CTABGAN+, and TVAE. TabDDPM
produces more realistic feature distributions than alternatives in most cases.
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Figure 3. Absolute difference between correlation matrices com-
puted on real and synthetic datasets. A more intensive red color
indicates a higher difference between the real and synthetic correla-
tion values. In most cases, TabDDPM captures feature correlations
better.
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and the Catboost-tuned TabDDPM produces synthetics that
are also superior for other models, like MLP. These results
are reported in Appendix A.

5.1. Qualitative comparison

Here, we qualitatively investigate the ability of TabDDPM
to model the individual and joint feature distributions com-
pared with the TVAE and CTABGAN+ baselines. In partic-
ular, for each dataset, we produce synthetic datasets from
TabDDPM, TVAE, and CTABGAN+ of the same size as

a real train set in a particular dataset. For classification
datasets, each class is sampled according to its proportion
in the real dataset. Then, we visualize the typical individual
feature distributions for real and synthetic data in Figure 2.
For completeness, the features of different types and distri-
butions are presented.

In most cases, TabDDPM produces more realistic feature
distributions compared with TVAE and CTABGAN+. The
advantage is more pronounced (1) for numerical features,
which are uniformly distributed, (2) for categorical features
with high cardinality, and (3) for mixed-type features that
combine continuous and discrete distributions. Then, we
also visualize the differences between the correlation ma-
trices computed on real and synthetic data for different
datasets, see Figure 3. To compute the correlation matrices,
we use the Pearson correlation coefficient for numerical-
numerical correlations, the correlation ratio for categorical-
numerical cases, and Theil’s U statistic between categori-
cal features. In comparison with CTABGAN+ and TVAE,
TabDDPM generates synthetic datasets with more realistic
pairwise correlations. These illustrations indicate that our
TabDDPM model is more flexible than alternatives and pro-
duces superior synthetic data. We also follow (Zhao et al.,
2021) and measure the Wasserstein distance between numer-
ical features and the Jensen–Shannon divergence between
categorical ones. Additionally, we report an L2 distance
between correlation matrices (quantitative results for Fig-

5



TabDDPM: Modelling Tabular Data with Diffusion Models

Table 3. Average ranks (lower is better) over all datasets in
terms of Wasserstein distance (WD) between numerical features,
Jensen–Shannon divergence between categorical features and L2
distance between correlation matrices. Distances are calculated
between generated data and real data.

WD (Num.) JS (Cat.) L2 (Corr. matrix)

CTGAN 3.33 4.77 3.47
TVAE 4.20 3.92 4.40
CTABGAN+ 3.87 2.54 3.40
SMOTE 1.67 2.15 2.00
TabDDPM 1.93 1.62 1.73

ure 3). The results are presented in Table 3 as an average
rank across all datasets (lower is better). Lower rank indi-
cates lower WD, JS divergence and L2 distance. The exact
numbers can be found in Appendix B.

5.2. Machine Learning efficiency

In this section, we compare TabDDPM to alternative gener-
ative models in terms of machine learning efficiency. From
each generative model, we sample a synthetic dataset with
the size of a real train set in proportion from Table 1. This
synthetic data is then used to train a classification/regression
model, which is then evaluated using the real test set. In our
experiments, classification performance is evaluated by the
F1 score, and regression performance is evaluated by the R2
score. We use two protocols:

1. First, we compute average ML efficiency for a diverse
set of ML models, as performed in previous works (Xu
et al., 2019; Zhao et al., 2021; Kim et al., 2022). This
set includes Decision Tree, Random Forest, Logistic
Regression (or Ridge Regression) and MLP models
from the scikit-learn library (Pedregosa et al., 2011)
with the default hyperparameters except for: “max-
depth” equals to 28 for Decision Tree and Random
Forest, “maximum iterations” equals to 500 for Logis-
tic and Ridge regressions, and “maximum iterations”
equals to 100 for MLPs.

2. Second, we compute ML efficiency w.r.t. the current
state-of-the-art model for tabular data. Specifically,
we consider CatBoost (Prokhorenkova et al., 2018)
and MLP architecture from (Gorishniy et al., 2021)
for evaluation. CatBoost and MLP hyperparameters
are thoroughly tuned on each dataset using the search
spaces from (Gorishniy et al., 2021). We argue that this
evaluation protocol demonstrates the practical value of
synthetic data more reliably since in most real scenar-
ios practitioners are not interested in using weak and
suboptimal classifiers/regressors.

Main results. The ML efficiency values computed by both
protocols are presented in Tables 4, 5. The ML efficiency for

the tuned MLP is reported in Appendix A. To compute each
value, we average the results over five random seeds for syn-
thetics generation, and for each generated dataset, we aver-
age over ten random seeds for training classifiers/regressors.
The key observations are described below:

• In both evaluation protocols, TabDDPM significantly
outperforms TVAE and CTABGAN+ on most datasets,
which highlights the advantage of diffusion models for
tabular data as well as demonstrated for other domains
in prior works.

• The interpolation-based SMOTE method demonstrates
the performance competitive to TabDDPM and often
significantly outperforms the GAN/VAE approaches.
Interestingly, most of the prior works on genera-
tive models for tabular data do not compare against
SMOTE, while it appears to be a simple baseline,
which is challenging to beat.

• While many prior works use the first evaluation pro-
tocol to compute the ML efficiency, we argue that
the second one (which uses the state-of-the-art model)
is more appropriate. Tables 4, 5 show that the abso-
lute values of classification/regression performance are
much lower for the first protocol, i.e., weak classi-
fiers/regressors are substantially inferior to CatBoost
on the considered benchmarks. Therefore, one can
hardly use these suboptimal models instead of Cat-
Boost and their performance values are uninformative
for practitioners. Moreover, in the first protocol, train-
ing on synthetic data is often advantageous compared
to training on real data. This creates an impression
that the data produced by generative models are more
valuable than the real ones. However, it is not the case
when one uses the tuned ML model, as in most practi-
cal scenarios. Appendix A confirms this observation
for the properly tuned MLP model.

Overall, TabDDPM provides state-of-the-art generative per-
formance and can be used as a source of high-quality syn-
thetic data. Interestingly, in terms of ML efficiency, a sim-
ple “shallow” SMOTE method is competitive to TabDDPM,
which raises the question if sophisticated deep generative
models are needed. In the section below, we provide an
affirmative answer to this question.

5.3. Privacy

Here, we investigate TabDDPM in privacy-concerned set-
tings, e.g., sharing the data without disclosure of personal
or sensitive information. In these setups, one is interested in
high-quality synthetic data that does not reveal the records
from the original dataset.

We measure the privacy of the generated data as a mean Dis-
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Table 4. The values of machine learning efficiency computed w.r.t. five weak classification/regression models. Negative
scores denote negative R2, which means that performance is worse than an optimal constant prediction.

AB (R2) AD (F1) BU (F1) CA (R2) CAR (F1) CH (F1) DE (F1) DI (F1)

TVAE 0.238±.012 0.742±.001 0.779±.004 −13.0±1.51 0.693±.002 0.684±.003 0.643±.003 0.712±.010

CTABGAN – 0.737±.007 0.786±.008 – 0.684±.003 0.636±.010 0.614±.007 0.655±.015

CTABGAN+ 0.316±.024 0.730±.007 0.837±.006 −7.59±.645 0.708±.002 0.650±.008 0.648±.008 0.727±.023

SMOTE 0.400±.009 0.750±.004 0.842±.003 0.667±.006 0.693±.001 0.690±.003 0.649±.003 0.677±.013

TabDDPM 0.392±.009 0.758±.005 0.851±.003 0.695±.002 0.696±.001 0.693±.003 0.659±.003 0.675±.011

Real 0.423±.009 0.750±.006 0.845±.004 0.663±.002 0.683±.002 0.679±.003 0.648±.003 0.699±.012

FB (R2) GE (F1) HI (F1) HO (R2) IN (R2) KI (R2) MI (F1) WI (F1)

TVAE ≪ 0 0.372±.006 0.590±.004 0.174±.012 0.470±.024 0.666±.006 0.880±.002 0.497±.001

CTABGAN – 0.339±.009 0.539±.006 – – – 0.856±.003 0.656±.011

CTABGAN+ ≪ 0 0.373±.009 0.598±.004 0.222±.042 0.669±.018 0.197±.051 0.867±.002 0.653±.027

SMOTE 0.651±.002 0.478±.005 0.664±.003 0.394±.006 0.709±.008 0.751±.005 0.860±.001 0.793±.004

TabDDPM 0.527±.005 0.462±.005 0.670±.002 0.426±.007 0.734±.007 0.611±.013 0.850±.004 0.792±.004

Real 0.645±.005 0.431±.005 0.663±.002 0.415±.007 0.708±.007 0.768±.013 0.850±.004 0.684±.004

Table 5. The values of machine learning efficiency computed w.r.t. the state-of-the-art tuned CatBoost model.

AB (R2) AD (F1) BU (F1) CA (R2) CAR (F1) CH (F1) DE (F1) DI (F1)

CTGAN 0.420±.004 0.789±.001 0.867±.003 0.686±.003 0.730±.001 0.723±.006 0.699±.002 0.459±.096

TVAE 0.433±.008 0.781±.002 0.864±.005 0.752±.001 0.717±.001 0.732±.006 0.656±.007 0.714±.039

CTABGAN – 0.783±.002 0.855±.005 – 0.717±.001 0.688±.006 0.644±.011 0.731±.022

CTABGAN+ 0.467±.004 0.772±.003 0.884±.005 0.525±.004 0.733±.001 0.702±.012 0.686±.004 0.734±.020

SMOTE 0.549±.005 0.791±.002 0.891±.003 0.840±.001 0.732±.001 0.743±.005 0.693±.003 0.683±.037

TabDDPM 0.550±.010 0.795±.001 0.906±.003 0.836±.002 0.737±.001 0.755±.006 0.691±.004 0.740±.020

Real 0.556±.004 0.815±.002 0.906±.002 0.857±.001 0.738±.001 0.740±.009 0.688±.003 0.785±.013

FB (R2) GE (F1) HI (F1) HO (R2) IN (R2) KI (R2) MI (F1) WI (F1)

CTGAN 0.443±.005 0.333±.013 0.575±.006 0.433±.005 0.745±.009 0.772±.005 0.783±.005 0.749±.015

TVAE 0.685±.003 0.434±.006 0.638±.003 0.493±.006 0.784±.010 0.824±.003 0.912±.001 0.501±.012

CTABGAN – 0.392±.006 0.575±.004 – – – 0.889±.002 0.906±.019

CTABGAN+ 0.509±.011 0.406±.009 0.664±.002 0.504±.005 0.797±.005 0.444±.014 0.892±.002 0.798±.021

SMOTE 0.803±.002 0.658±.007 0.722±.001 0.662±.004 0.812±.002 0.842±.004 0.932±.001 0.913±.007

TabDDPM 0.713±.002 0.597±.006 0.722±.001 0.677±.010 0.809±.002 0.833±.014 0.936±.001 0.904±.009

Real 0.837±.001 0.636±.007 0.724±.001 0.662±.003 0.814±.001 0.907±.002 0.934±.000 0.898±.006

tance to Closest Record (DCR) (Zhao et al., 2021). Specif-
ically, for each synthetic sample, we get the minimum L2
distance to the real records. Mean DCR averages these
distances over all generated samples.

Low DCR values indicate that synthetic samples essentially
mimic some real datapoints and can violate privacy require-
ments. Higher DCR values denote that the generative model
can produce “new” records rather than just near duplicates
of the real data. Note that out-of-distribution data, e.g., ran-
dom noise, will also provide high DCR. Therefore, DCR
needs to be considered along with ML efficiency together.

Table 7 presents the DCR values for TabDDPM, SMOTE,
CTABGAN+ and TVAE. We observe that TabDDPM is
more private than SMOTE and less private than GAN/VAE
alternatives. We attribute this to significantly lower ML
utility of GAN/VAE-based baselines.

Since SMOTE computes convex combinations of the real
records, the original DCR measure can pessimize SMOTE’s
privacy. To address this issue, we pretrain an MLP model
on each dataset using real data. Then, we use this model to
extract features from synthetic data and measure DCR in
the latent space of the pretrained model. Table 14 provides
mean DCR values on MLP features. The results are mostly
consistent with Table 7 and do not alter our conclusions.

We also visualize histograms of the minimal synthetic-to-
real distances in Figure 4. For SMOTE, most distance values
are concentrated around zero, while TabDDPM samples are
noticeably farther from real datapoints.

In addition, following (Chen et al., 2020a; Lee et al., 2021),
we measure a success rate of a full black-box privacy attack
(see Table 6). The attack aims to infer whether a record
belongs to its original training data. The results show that
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TabDDPM is more resistant to this full black-box attack
than SMOTE. All these experiments confirm that TabDDPM
significantly outperforms SMOTE in privacy-concerned sce-
narios and still provides state-of-the-art ML efficiency.

Figure 4. Histograms of minimal synthetic-to-real distances for
TabDDPM and SMOTE. SMOTE values are concentrated around
zero and, thus, SMOTE generates less private synthetic data.

TabDDPM

SMOTE

AB DI

CA CH

HO BU

HI IN

Limitations and discussion
The proposed method does not pretend to be an all-in-one
solution providing high privacy and high ML utility. Our
experiments show that TabDDPM is more private than “shal-
low” SMOTE but do not give a definite answer if TabD-
DPM’s data can satisfy real-world privacy-concerned ap-
plications. Therefore, the privacy problem of the DDPM-
produced data needs to be further investigated. Moreover,
DCR, used in this paper, is not an ultimate privacy measure
and does not cover some critical use cases. For example,
the L2 distance between records does not consider the im-
portance of individual features and cannot detect leakage if
some sensitive features coincide.

Also, in our work, we process categorical features using
multinomial diffusion. However, alternative approaches ex-
ist, e.g., (Chen et al., 2022; Campbell et al., 2022; Zheng &
Charoenphakdee, 2022). Each of these techniques is appli-
cable to TabDDPM and can be an interesting direction to

Table 6. Success rate of a full black-box privacy attack in terms of
ROCAUC. A higher score indicates the higher success of attack.
TabDDPM is significantly more robust than SMOTE.

SMOTE TabDDPM

AB 0.967 0.505
AD 0.619 0.511
BU 0.710 0.569
CA 0.986 0.516
CAR 0.721 0.506
CH 0.891 0.721
DE 0.679 0.497
DI 0.610 0.510
GE 0.864 0.533
HI 0.999 0.527
HO 0.826 0.546
IN 0.712 0.868
KI 0.748 0.517
MI 0.990 0.500
WI 0.954 0.516

Table 7. Comparison in terms of mean Distance to Closest Record
(DCR) (higher is better). TabDDPM provides better DCR values
compared with SMOTE but underperforms compared with TVAE
and CTABGAN+. We attribute this to significantly lower ML
efficiency of GAN/VAE-based alternatives.

AB AD BU CA CAR CH DE DI

TVAE 0.088 0.220 0.226 0.056 0.010 0.241 0.096 0.146
CTABGAN+ 0.081 0.400 0.242 0.070 0.020 0.235 0.131 0.204
SMOTE 0.018 0.082 0.080 0.016 0.007 0.099 0.054 0.074
TabDDPM 0.061 0.295 0.168 0.045 0.016 0.166 0.061 0.308

FB GE HI HO IN KI MI WI

TVAE 1.418 0.171 0.497 0.127 0.102 0.200 0.025 0.020
CTABGAN+ 0.666 0.169 0.533 0.129 0.124 0.390 10.761 0.027
SMOTE 0.264 0.041 0.209 0.066 0.050 0.090 0.012 0.009
TabDDPM 0.785 0.076 0.473 0.096 0.050 0.252 0.574 0.023

investigate. As for numerical features, the possible exten-
sion of TabDDPM can be inspired by (Nazabal et al., 2020)
that distinguish different types of numerical variables, i.e.,
real-valued, positive real-valued or ordinal.

6. Conclusion
In this paper, we have investigated the prospect of the dif-
fusion modeling framework in the field of tabular data. In
particular, we describe the DDPM design that can handle
mixed data types consisting of numerical and categorical
features. For the most considered benchmarks, the synthetic
data produced by TabDDPM has consistently higher quality
compared with the GAN/VAE-based rivals. Interestingly,
shallow interpolation techniques like SMOTE have demon-
strated competitive ML utility and need to be considered
as a simple yet effective baseline. Nevertheless, TabDDPM
outperforms SMOTE for the setups where the privacy of the
data must be ensured.
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Appendix

A. MLP evaluation and tuning
Here, we show that tuning the hyperparameters using the CatBoost guidance results in the TabDDPM models that produce
synthetics that is also optimal for other classifiers/regressors. The results for a subset of datasets are presented on Table 8.
The methods denoted with ”-CB” and ”-MLP” denote the CatBoost guidance and different types of evaluation (CatBoost
and MLP, respectively). The ”-MLP-tune” suffix stands for the MLP guidance tuning and MLP evaluation.

Table 8. ML utility score with MLP evaluation and MLP tuning compared with CatBoost evaluation and CatBoost tuning. The table
shows that tuning with CatBoost model provides useful synthetic for MLP.

AB (R2) AD (F1) BU (F1) CA (R2) CAR (F1) CH (F1) DE (F1) DI (F1)

TabDDPM-CB 0.550±.010 0.795±.001 0.906±.003 0.836±.002 0.737±.001 0.755±.006 0.691±.004 0.740±.020

Real-CB 0.556±.004 0.815±.002 0.906±.002 0.857±.001 0.738±.001 0.740±.009 0.688±.003 0.785±.013

TabDDPM-MLP 0.569±.010 0.794±.002 0.903±.003 0.809±.003 0.737±.001 0.750±.005 0.679±.008 0.754±.020

Real-MLP 0.581±.005 0.795±.001 0.905±.003 0.808±.002 0.739±.001 0.741±.006 0.688±.004 0.754±.017

TabDDPM-MLP-tune 0.559±.009 0.792±.002 0.901±.003 0.803±.004 0.737±.001 0.749±.006 0.674±.013 0.741±.018

FB (R2) GE (F1) HI (F1) HO (R2) IN (R2) KI (R2) MI (F1) WI (F1)

TabDDPM-CB 0.713±.002 0.597±.006 0.722±.001 0.677±.010 0.809±.002 0.833±.014 0.936±.001 0.904±.009

Real-CB 0.837±.001 0.636±.007 0.724±.001 0.662±.003 0.814±.001 0.907±.002 0.934±.000 0.898±.006

TabDDPM-MLP – 0.595±.006 0.717±.002 0.643±.010 0.794±.008 0.804±.015 0.938±.001 0.921±.006

Real-MLP – 0.607±.007 0.717±.002 0.614±.006 0.800±.003 0.882±.004 0.936±.001 0.905±.006

TabDDPM-MLP-tune – – – 0.626±.009 0.800±.004 0.799±.018 – 0.914±.006

B. Additional results
Here, we follow (Zhao et al., 2021) and provide an additional quantitative comparison that shows how well individual
feature distributions are modeled (Table 9, Table 10, Table 11). Also, we include density and coverage metrics from (Naeem
et al., 2020) that are improved alternatives of precision and recall, respectively (Table 12, Table 13).

Table 9. Wasserstein distance between numerical features.

AB AD BU CA CAR CH DE DI

CTGAN 0.008 0.010 0.015 0.004 0.004 0.009 0.004 0.085
TVAE 0.020 0.016 0.039 0.007 0.027 0.049 0.009 0.044
CTABGAN+ 0.008 0.011 0.016 0.019 0.003 0.046 0.022 0.016
SMOTE 0.002 0.003 0.005 0.002 0.001 0.006 0.002 0.020
TabDDPM 0.005 0.002 0.003 0.002 0.000 0.005 0.012 0.008

FB GE HI HO IN KI MI WI

CTGAN 0.004 0.010 0.003 0.005 0.021 0.022 0.004 0.013
TVAE 0.008 0.009 0.076 0.007 0.025 0.012 0.004 0.016
CTABGAN+ 0.078 0.007 0.052 0.008 0.025 0.021 0.006 0.006
SMOTE 0.000 0.004 0.009 0.005 0.011 0.004 0.000 0.002
TabDDPM 0.089 0.011 0.003 0.004 0.006 0.014 0.001 0.002
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Table 10. Jensen-Shannon divergence between categorical features.

AB AD BU CA CA CH DE DI

CTGAN 0.276 0.085 0.168 nan 0.076 0.039 0.120 nan
TVAE 0.027 0.095 0.072 nan 0.181 0.019 0.157 nan
CTABGAN+ 0.035 0.052 0.037 nan 0.009 0.018 0.030 nan
SMOTE 0.005 0.074 0.072 nan 0.069 0.030 0.058 nan
TabDDPM 0.007 0.019 0.026 nan 0.011 0.017 0.009 nan

FB GE HI HO IN KI MI WI

CTGAN 0.017 nan nan nan 0.071 0.296 nan nan
TVAE 0.246 nan nan nan 0.033 0.098 nan nan
CTABGAN+ 0.051 nan nan nan 0.023 0.044 nan nan
SMOTE 0.027 nan nan nan 0.013 0.102 nan nan
TabDDPM 0.046 nan nan nan 0.008 0.060 nan nan

Table 11. L2 distance between correlation matrices.

AB AD BU CA CA CH DE DI

CTGAN 0.471 0.390 0.492 0.606 0.712 0.239 1.355 1.735
TVAE 0.517 0.636 0.569 0.753 2.437 0.564 1.965 0.736
CTABGAN+ 0.283 0.576 0.164 0.749 0.738 0.727 1.496 0.435
SMOTE 0.185 0.482 0.245 0.127 0.599 0.147 0.642 0.838
TabDDPM 0.333 0.133 0.068 0.090 0.202 0.161 0.934 0.186

FB GE HI HO IN KI MI WI

CTGAN 5.651 5.301 1.413 0.742 0.196 1.530 43.815 0.538
TVAE 5.960 2.996 2.759 0.902 0.224 1.004 44.692 0.550
CTABGAN+ 6.782 1.977 1.241 0.978 0.207 3.898 31.704 0.319
SMOTE 1.596 0.560 0.354 0.452 0.301 0.569 0.258 0.059
TabDDPM 16.120 1.192 0.233 0.336 0.077 3.623 9.185 0.375

Table 12. Density of synthetic data.

AB AD BU CA CA CH DE DI

CTGAN 0.224 0.708 0.780 0.586 0.938 0.865 0.698 0.238
TVAE 0.347 1.126 1.032 0.746 0.845 1.043 0.808 1.565
CTABGAN+ 0.380 0.867 0.998 0.569 0.957 0.974 0.730 0.974
SMOTE 1.389 1.415 1.226 1.329 1.200 1.238 1.282 1.413
TabDDPM 0.904 1.008 1.116 1.027 1.011 1.148 0.810 0.831

FB GE HI HO IN KI MI WI

CTGAN 0.147 0.035 0.702 0.467 0.927 0.719 0.361 0.763
TVAE 0.005 0.248 0.960 0.604 1.072 0.868 0.747 0.919
CTABGAN+ 0.187 0.448 0.730 0.565 1.052 0.186 0.110 0.831
SMOTE 0.926 1.531 1.682 1.595 1.213 1.335 1.308 1.251
TabDDPM 0.633 1.460 1.152 1.195 1.150 0.884 0.972 1.009

Table 13. Coverage of synthetic data.

AB AD BU CA CA CH DE DI

CTGAN 0.654 0.948 0.966 0.759 0.920 1.000 0.777 0.572
TVAE 0.769 0.886 0.585 0.922 0.208 0.991 0.672 0.978
CTABGAN+ 0.960 0.951 0.999 0.459 0.960 0.830 0.841 1.000
SMOTE 1.000 0.970 0.968 1.000 0.866 1.000 0.962 0.841
TabDDPM 1.000 0.994 1.000 0.998 0.978 1.000 0.967 0.955

FB GE HI HO IN KI MI WI

CTGAN 0.238 0.029 0.871 0.839 0.986 0.739 0.576 0.986
TVAE 0.014 0.669 0.255 0.875 0.987 0.874 0.823 0.867
CTABGAN+ 0.222 0.640 0.557 0.952 1.000 0.479 0.241 0.994
SMOTE 0.928 1.000 0.999 1.000 0.995 0.945 0.991 1.000
TabDDPM 0.782 0.997 0.980 1.000 1.000 0.969 0.956 1.000
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C. Additional visualizations

Figure 5. The individual feature distributions for the real data and the data generated by TabDDPM, CTABGAN+, and TVAE. TabDDPM
often models feature distributions more accurately than CTABGAN+ and TVAE.
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Real CTABGAN+Real CTABGAN+ Real TVAEReal TVAE

Figure 6. The absolute difference between correlation matrices computed on real and synthetic datasets. More intense red color indicates
higher difference. Overall, TabDDPM captures correlations better.
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D. Distance to Closest Record using pretrained MLP features
This section addresses the problem that DCR in the original feature space can be an unsuitable privacy measure for SMOTE.
We pretrain the feature extractor on each dataset and compute DCR in the latent space of the MLP model. According to
the results in Table 14, DCR calculated on MLP features brings similar conclusions to Table 7. SMOTE still significantly
underperforms compared with TabDDPM.

Table 14. Comparison in terms of mean Distance to Closest Record (DCR) calculated on pretrained MLP features (higher is better). The
results are consistent with Table 7.

AB AD BU CA CAR CH DE DI

TVAE 0.282 1.055 0.381 0.373 0.173 2.869 0.271 0.508
CTABGAN+ 0.257 1.466 0.382 0.332 0.177 2.998 0.366 0.669
SMOTE 0.081 0.526 0.216 0.200 0.147 1.367 0.172 0.409
TabDDPM 0.195 1.246 0.330 0.290 0.160 2.240 0.168 1.232

FB GE HI HO IN KI MI WI

TVAE 3.642 5.484 3.256 0.393 0.276 0.513 0.449 0.45
CTABGAN+ 11.44 5.375 4.396 0.365 0.305 0.833 12.026 0.76
SMOTE 1.045 1.673 2.657 0.332 0.162 0.294 0.374 0.377
TabDDPM 30.46 3.85 3.557 0.336 0.172 0.889 7.993 0.620

E. Hyperparameters Search Spaces

Table 15. CatBoost hyperparameters space from (Gorishniy et al., 2021)
Parameter Distribution

Max depth UniformInt[3, 10]
Learning rate LogUniform[1e-5, 1]
Bagging temperature Uniform[0, 1]
L2 leaf reg LogUniform[1, 10]
Leaf estimation iterations UniformInt[1, 10]

Number of tuning trials 100

Table 16. MLP hyperparameters space from (Gorishniy et al., 2021)
Parameter Distribution

# Layers UniformInt[1, 8]
Layer size Int{64, 128, 256, 512, 1024}
Dropout {0,Uniform[0, 0.5]}
Learning rate LogUniform[1e-5, 1e-2]
Weight decay {0,LogUniform[1e-6, 1e-3]}
Number of tuning trials 100

Table 17. SMOTE hyperparameters search space. λrange denotes the range of interpolation coefficient to sample from

Parameter Distribution

k neighbours Int[5, 20]
λrange Float[0, 1]
Proportion of samples Float{0.25, 0.5, 1, 2, 4, 8}
Number of tuning trials 50

4https://github.com/Team-TUD/CTAB-GAN-Plus
4https://github.com/sdv-dev/CTGAN
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Table 18. CTABGAN and CTABGAN+ hyperparameters search space. See an official implementation2

Parameter Distribution

# claassif. layers UniformInt[1, 4]
Classif. layer size Int{64, 128, 256}
Training iterations Cat{1000, 5000, 10000}
Batch Size Int{512, 1024, 2048}
random dim Int{16, 32, 64, 128}
num channels Int{16, 32, 64}
Proportion of samples Float{0.25, 0.5, 1, 2, 4, 8}
Number of tuning trials 35

Table 19. TVAE hyperparameters search space. See an official implementation4

Parameter Distribution

# claassif. layers UniformInt[1, 6]
Classif. layer size Int{64, 128, 256, 512}
Training iterations Cat{5000, 20000, 30000}
Batch Size Cat{456, 4096}
embedding dim Int{16, 32, 64, 128, 256, 512, 1024}
loss factor LogUniform[0.01, 10]
Proportion of samples Float{0.25, 0.5, 1, 2, 4, 8}
Number of tuning trials 50

F. Datasets
We used the following datasets:

• Abalone (OpenML)

• Adult (income estimation, (Kohavi, 1996))

• Buddy (Kaggle)

• California Housing (real estate data, (Kelley Pace & Barry, 1997))

• Cardiovascular Disease dataset (Kaggle)

• Churn Modeling (Kaggle)

• Diabetes (OpenML)

• Facebook Comments Volume (Singh et al., 2015)

• Gesture Phase Prediction (Madeo et al., 2013)

• Higgs (simulated physical particles, (Baldi et al., 2014); we use the version with 98K samples available at the OpenML
repository (Vanschoren et al., 2014))

• House 16H (OpenML)

• Insurance (Kaggle)

• King (Kaggle)

• MiniBooNE (OpenML)

• Wilt (OpenML)

15

https://www.openml.org/d/183
https://www.kaggle.com/datasets/akash14/adopt-a-buddy
https://www.kaggle.com/datasets/sulianova/cardiovascular-disease-dataset
https://www.kaggle.com/shrutimechlearn/churn-modelling
https://www.openml.org/d/37
https://www.openml.org/d/574
https://www.kaggle.com/datasets/mirichoi0218/insurance
https://www.kaggle.com/datasets/harlfoxem/housesalesprediction
https://www.openml.org/d/41150
https://www.openml.org/d/40983


TabDDPM: Modelling Tabular Data with Diffusion Models

G. Environment and Runtime
Experiments were conducted under Ubuntu 20.04 on a machine equipped with GeForce RTX 2080 Ti GPU and Intel(R)
Core(TM) i7-7800X CPU @ 3.50GHz. We used Pytorch 10.1, CUDA 11.3, scikit-learn 1.1.2 and imbalanced-learn 0.9.1
(for SMOTE).

As for runtime of the proposed method, it depends on the dataset and hyperparameters. We provide 3 examples below. All
three examples use T = 1000 and batch size = 4096. Note that hyperparameters tuning contains 50 runs and takes usually
8-10 hours. ”Sample time” is for the all n to sample number of samples.

Table 20. Training and sampling time for TabDDPM.

Dataset input dim model layers train steps n to sample train time sample time

CH 16 [256,1024,1024, 1024,1024,512] 30k 26k 670s 6s
HI 28 [512,1024,1024, 1024,1024,512] 30k 502k 502s 430s
FB 146 [512,1024] 30k 1264k 783s 470s
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