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Abstract

Although distributional reinforcement learning
(DRL) has been widely examined in the past few
years, very few studies investigate the validity
of the obtained Q-function estimator in the dis-
tributional setting. To fully understand how the
approximation errors of the Q-function affect the
whole training process, we do some error anal-
ysis and theoretically show how to reduce both
the bias and the variance of the error terms. With
this new understanding, we construct a new es-
timator Quantiled Expansion Mean (QEM) and
introduce a new DRL algorithm (QEMRL) from
the statistical perspective. We extensively evalu-
ate our QEMRL algorithm on a variety of Atari
and Mujoco benchmark tasks and demonstrate
that QEMRL achieves significant improvement
over baseline algorithms in terms of sample effi-
ciency and convergence performance.

1. Introduction
Distributional Reinforcement Learning (DRL) algorithms
have been shown to achieve state-of-art performance in RL
benchmark tasks (Bellemare et al., 2017; Dabney et al.,
2018b;a; Yang et al., 2019; Zhou et al., 2020; 2021). The
core idea of DRL is to estimate the entire distribution of
the future return instead of its expectation value, i.e. the
Q-function, which captures the intrinsic uncertainty of the
whole process in three folds: (i) the stochasticity of rewards,
(ii) the indeterminacy of the policy, and (iii) the inherent
randomness of transition dynamics. Existing DRL algo-
rithms parameterize the return distribution in different ways,
including categorical return atoms (Bellemare et al., 2017),
expectiles (Rowland et al., 2019), particles (Nguyen-Tang
et al., 2021), and quantiles (Dabney et al., 2018b;a). Among
these works, the quantile-based algorithm is widely used
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due to its simplicity, efficiency of training, and flexibility in
modeling the return distribution.

Although the existing quantile-based algorithms achieve
remarkable empirical success, the approximated distribu-
tion still requires further understanding and investigation.
One aspect is the crossing issue, namely, a violation of the
monotonicity of the obtained quantile estimations. Zhou
et al. (2020; 2021) solves this issue by enforcing the mono-
tonicity of the estimated quantiles using some well-designed
neural networks. However, these methods may suffer from
some underestimation or overestimation issues. In other
words, the estimated quantiles tend to be higher or lower
than their true values. Considering this shortcoming, Luo
et al. (2021) applies monotonic rational-quadratic splines to
ensure monotonicity, but their algorithm is computationally
expensive and hard to implement in large-scale tasks.

Another aspect is regard to the tail behavior of the return
distribution. It is widely acknowledged that the precision
of tail estimation highly depends on the frequency of tail
observations (Koenker, 2005). Due to data sparsity, the
quantile estimation is often unstable at the tails. To alleviate
this instability, Kuznetsov et al. (2020) proposes to truncate
the right tail of the approximated return distribution by
discarding some topmost atoms. However, this approach
lacks theoretical support and ignores the potentially useful
information hidden in the tail.

The crossing issue and tail unrealization illustrate that there
is a substantial gap between the quantile estimation and
its true value. This finding reduces the reliability of the
Q-function estimator obtained by quantile-based algorithms
and inspires us to further minimize the difference between
the estimated Q-function and its true value. In particular,
the error associated with Q-function approximation can be
decomposed into three parts:

∆ ≡ Qπ
θ (x, a)−Qπ(x, a) = EZπ

θ (x, a)− EZπ(x, a)

= EZπ
θ (x, a)− Ex′∼D[R+ γZπ

θ (x
′, a′)]︸ ︷︷ ︸

Target Approximation Error E1

+ Ex′∼D[R+ γZπ
θ (x

′, a′)]− Ex′∼P [R+ γZπ
θ (x

′, a′)]︸ ︷︷ ︸
Bellman operator Approximation Error E2

+ Ex′∼P [R+ γZπ
θ (x

′, a′)]− EZπ(x, a)︸ ︷︷ ︸
Parametrization Induced Error E3

, (1)
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where Qπ(·) is the true Q-function, Qπ
θ (·) is the approx-

imated Q-function, Zπ is the random variable with the
true return distribution, Zπ

θ is the random variable with
the approximated quantile function parameterized by a set
of quantiles θ, D is the replay buffer, and P is the transition
kernel. These errors can be attributed to different kinds of
approximations in DRL (Rowland et al., 2018), including
(i) parameterization and its associated projection operators,
(ii) stochastic approximation of the Bellman operator, and
(iii) gradient updates through quantile loss.

We elaborate on the properties of the three error terms in (1).
E1 is derived from the target approximation in quantile loss.
E2 is caused by the stochastic approximation of the Bellman
operator. E3 results from the parametrization of quantiles
and the corresponding projection operator. Among the three,
E3 can be theoretically eliminated if the representation size
is large enough, whereas E1 + E2 is inevitable in practice
due to the batch-based optimization procedure. Therefore,
controlling the variance Var(E1+E2) can significantly speed
up the training convergence (see an illustrating example in
Figure 1). Thus, one main target of this work is to reduce the
two inevitable errors E1 and E2, and subsequently improve
the existing DRL algorithms.

Figure 1. Error decay during training. (a) The parameterization-
induced error E3 (grey areas) remains constant over time with a
fixed representation size. The approximation errors E1 and E2

(blue areas) decrease slowly with time steps. (b) Increase the
size of the representation (i.e., the number of quantiles), E3 can
be theoretically eliminated. By applying the variance reduction
technique QEM estimator, E1 + E2 can be quickly decreased,
resulting in faster convergence of algorithms.

The contributions of this work are summarized as follows,

• We offer a rigorous investigation on the three error
terms E1, E2, and E3 in DRL, and find that the ap-
proximation errors result from the heteroskedasticity
of quantile estimates, especially tail estimates.

• We borrow the idea from the Cornish-Fisher Expansion
(Cornish & Fisher, 1938), and propose a statistically
robust DRL algorithm, called QEMRL, to reduce the
variance of the estimated Q-function.

• We show that QEMRL achieves a higher stability and
a faster convergence rate from both theoretical and
empirical perspectives.

2. Background
2.1. Reinforcement Learning

Consider a finite Markov Decision Process (MDP)
(X ,A, P, γ,R), with a finite set of states X , a finite set
of actions A, the transition kernel P : X × A → P(X ),
the discounted factor γ ∈ [0, 1), and the bounded reward
function R : X × A → P([−Rmax, Rmax]). At each
timestep, an agent observes state Xt ∈ X , takes an action
At ∈ A, transfers to the next state Xt+1 ∼ P (· | Xt, At),
and receives a reward Rt ∼ R (Xt, At). The state-action
value function Qπ : X×A → R of a policy π : X →P(A)
is the expected discounted sum of rewards starting from x,
taking an action a and following a policy π. P(X ) denotes
the set of probability distributions on a space X .

The classic Bellman equation (Bellman, 1966) relates ex-
pected return at each state-action pair (x, a) to the expected
returns at possible next states by:

Qπ(x, a) = Eπ [R0 + γQπ (X1, A1) | X0 = x,A0 = a] . (2)

In the learning task, Q-Learning (Watkins, 1989) employs a
common way to obtain π∗, which is to find the unique fixed
point Q∗ = Qπ∗

of the Bellman optimality equation:

Q∗(x, a) = E
[
R0 + γmax

a′∈A
Q∗ (X1, a

′) | X0 = x,A0 = a

]
.

2.2. Distributional Reinforcement Learning

Instead of directly estimating the expectation Qπ(x, a),
DRL focuses on estimating the distribution of the sum
of discounted rewards ηπ(x, a) = D(

∑∞
t=0 γ

tRt | X0 =
x,A0 = a) to sufficiently capture the intrinsic randomness,
where D extract the probability distribution of a random
variable. In analogy with Equation (2), ηπ satisfies the dis-
tributional Bellman equation (Bellemare et al., 2017) as
follows,

ηπ(x, a) = (T πηπ) (x, a)

=Eπ [(fγ,r)#ηπ(X1, A1) | X0 = x,A0 = a]

where fγ,r : R → R is defined by fγ,r(x) = r + γx, and
(fγ,r)# η is the pushforward measure of η by fγ,r. Note
that ηπ is the fixed point of distributional Bellman operator
T π : P(R)X×A →P(R)X×A, i.e., T πηπ = ηπ .

In general, the return distribution supports a wide range
of possible returns and its shape can be quite complex.
Moreover, the transition dynamics are usually unknown in
practice, and thus the full computation of the distributional
Bellman operator is usually either impossible or computa-
tionally infeasible. In the following subsections, we review
two main categories of DRL algorithms relying on paramet-
ric approximations and projection operators.
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2.2.1. CATEGORICAL DISTRIBUTIONAL RL

Categorical distributional RL (CDRL, Bellemare et al.,
2017) represents the return distribution η with a categor-
ical form η(x, a) =

∑N
i=1 pi(x, a)δzi , where δz denotes

the Dirac distribution at z. z1 ≤ z2 ≤ . . . ≤ zN are evenly
spaced locations, and {pi}Ni=1 are the corresponding proba-
bilities learned using the Bellman update,

η(x, a)← (ΠCT πη) (x, a),

where ΠC : P(R) → P({z1, z2 . . . zN}) is a categorical
projection operator which ensures the return distribution
supported only on {z1, . . . , zN}. In practice, CDRL with
N = 51 has been shown to achieve significant improvement
in Atari games.

2.2.2. QUANTILED DISTRIBUTIONAL RL

Quantiled distributional RL (QDRL, Dabney et al., 2018b)
represents the return distribution with a mixture of Diracs
η(x, a) = 1

N

∑N
i=1 δθi(x,a), where {θi(x, a)}Ni=1 are learn-

able parameters. The Bellman operator moves each atom
location θi towards τi-th quantile of the target distribution
η′(x, a) := T πη(x, a), where τi =

2i−1
2N . The correspond-

ing Bellman update form is:

η(x, a)← (ΠW1
T πη) (x, a),

where ΠW1
: P(R) → P(R) is a quantile projection op-

erator defined by ΠW1
µ = 1

N

∑N
i=1 δF−1

µ (τi)
, and Fµ is

the cumulative distribution function (CDF) of µ. F−1
η′ (τ)

can be characterized as the minimizer of the quantile re-
gression loss, while the atom locations θ can be updated by
minimizing the following loss function

LQR(θ; η
′, τ) = EZ∼η′ ([τ1Z>θ + (1− τ) 1Z≤θ] |Z − θ|) .

(3)

3. Error Analysis of Distributional RL
As mentioned in Section 1, the parametrization induced
error E3 in Equation (1) comes from quantile representation
and its projection operator, which can be eliminated as N →
∞. However, as illustrated in Figure 1, the approximation
errors E1 and E2 are unavoidable in practice and a high
variance Var(E1 + E2) may lead to unstable performance
of DRL algorithms. Thus, in this section, we further study
the three error terms E1, E2 and E3, and show why it is
important to control them in practice.

3.1. Parametrization Induced Error

We first examine the convergence of both the expectation
and the variance of the distributional Bellman operator T π .
Then, we take parametric representation and projection op-
erator into consideration.

Proposition 3.1. Suppose there are two value distribu-
tions ν1, ν2 ∈ P(R), and random variables Zk+1

i ∼
T πνi, Z

k
i ∼ νi. Then, we have∥∥EZk+1

1 − EZk+1
2

∥∥
∞ ≤ γ

∥∥EZk
1 − EZk

2

∥∥
∞ , and∥∥VarZk+1

1 −VarZk+1
2

∥∥
∞ ≤ γ2

∥∥VarZk
1 −VarZk

2

∥∥
∞ .

Based on the fact that T π is a γ-contraction in d̄p metric
(Bellemare et al., 2017), where d̄p is the maximal form of
the Wasserstein metric, Proposition 3.1 implies that T π is a
contraction for both the expectation and the variance. The
two converge exponentially to their true values by iteratively
applying the distributional Bellman operator (Sobel, 1982).

However, in practice, employing parametric representa-
tion for the return distribution leaves a theory-practice gap,
which makes neither the expectation nor the variance con-
verge to the true values. To better understand the bias in
the Q-function approximation caused by the parametric rep-
resentation, we introduce the concept of mean-preserving
to describe the relationship between the expectations of the
original distribution and the projected distribution:

Definition 3.2. (Mean-preserving) Let ΠF : P(R)→ F
be a projection operator that maps the space of probability
distributions to the desired representation. Suppose there is
a representation F ∈ P(R) and its associated projection
operator ΠF are mean-preserving if for any distribution
ν ∈ F , the expectation of ΠFν is the same as that of ν.

For CDRL, a discussion of the mean-preserving property
is given by Lyle et al. (2019) and Rowland et al. (2019).
It can be shown that for any ν ∈ FC , where FC is a N -
categorical representation, the projection ΠC preserves the
distribution’s expectation when its support is contained in
the interval [z1, zN ]. However, these practitioners usually
employ a wide predefined interval for return which makes
the projection operator typically overestimate the variance.

For QDRL, ΠW1
is not mean-preserving. Given any dis-

tribution ν ∈ FW1
, where FW1

is a N -quantile represen-
tation, there is no unique N -quantile distribution ΠW1ν in
most cases, as the projection operator ΠW1 is not a non-
expansion in 1-Wasserstein distance (See Appendix B for
details). This means that the expectation, variance, and
higher-order moments are not preserved. To make this con-
crete, a simple MDP example is used to illustrate the bias in
the learned quantile estimates.

In Figure 2 (a), rewards R1 and R2 are randomly sam-
pled from Unif(0, 1) and Unif(1/N, 1 + 1/N) at states
x1 and x2 respectively, and no rewards are received at x0.
Clearly, the true return distribution at state x0 is the mix-
ture γ

2 (R1 + R2), hence the 1
2N -th quantile is γ

N . When
using the QDRL algorithm with N quantile estimates, the
approximated return distribution η̂(x1, a) =

1
N

∑N
i=1 δ 2i−1

2N
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and η̂(x2, a) = 1
N

∑N
i=1 δ 2i+1

2N
. In this case, the 1

2N -th
quantile of the approximated return distribution at state x0

is 3γ
2N , whereas the true value is γ

N . Moreover, for each
i = 1, . . . , N , the 2i−1

2N -th quantile estimate at state x0 is
not equal to the true value.

Figure 2. (a) Example MDP, with a single action, equal transition
probability, an initial state x0, and two terminal states x1, x2 where
rewards are drawn from uniform. (b) 5-state MDP, with two actions
at initial state x0, deterministic transition, and stochastic rewards
are exponential at terminal states x3, x4. (c) We show the true
return distributions η(x0, a1) and η(x0, a2), and the expected
returns estimated by QDRL and QEMRL.

These biased quantile estimates illustrated in Figure 2 (a) are
caused by the use of quantile representation and its projec-
tion operator ΠW1

. This undesirable property in turn affects
the QDRL update, as the combined operator ΠW1T π is in
general not a non-expansion in d̄p, for p ∈ [1,∞) (Dabney
et al., 2018b), which means that the learned quantile esti-
mates may not converge to the true quantiles of the return
distribution 1. The projection operator ΠW1

is not mean-
preserving which inevitably leads to bias in the expectation
of return distribution when iteratively applying the projected
Bellman operator ΠW1T π during the training process, re-
sulting in a deviation between the estimate and the true value
of the Q-function in the end. We now derive an upper bound
to quantify this deviation, i.e. E3.

Theorem 3.3. (Parameterization induced error bound) Let
ΠW1 be a projection operator onto evenly spaced quan-
tiles τi’s where each τi = 2i−1

2N for i = 1, . . . , N , and
ηk ∈ P(R) be the return distribution of k-th iteration.
Let random variables Zk

θ ∼ ΠW1
T πηk and Zk ∼ T πηk.

Assume that the distribution of the immediate reward is

1A recent study (Rowland et al., 2023) proves that QDRL up-
date may have multiple fixed points, indicating quantiles may not
converge to the truth. Despite this, Proposition 2 (Dabney et al.,
2018b) concludes that the projected Bellman operator ΠW1T π re-
mains a contraction in d̄∞. This implies that quantile convergence
is guaranteed for all p ∈ [1,∞].

supported on [−Rmax, Rmax], then we have

lim
k→∞

∥∥Ek3 ∥∥∞ = lim
k→∞

∥∥EZk
θ − EZk

∥∥
∞ ≤

2Rmax

N(1− γ)
,

where Ek3 is parametrization induced error at k-th iteration.

Theorem 3.3 implies that the convergence of expectation
with projected Bellman operator ΠW1

T π cannot be guaran-
teed after quantile representation and its projection operator
are applied. Note that the bound will tend to zero with
N → ∞, thus it is reasonable to use a relatively large
representation size N to reduct E3 in practice.

3.2. Approximation Error

The other two types of errors E1 and E2, which determine
the variance of the Q-function estimate, are accumulated
during the training process by keeping encountering unseen
state-action pairs. The target approximation error E1 affects
action selections, while the Bellman operator approximation
error E2 leads to the accumulated error of the Q-function
estimate, which can be amplified by using the temporal
difference updates (Sutton, 1988). The accumulated errors
of the Q-function estimate with high uncertainty can make
some certain states to be incorrectly estimated, leading to
suboptimal policies and potentially divergent behaviors.

Using a simple 5-state MDP example, we illustrate how
QDRL fails to learn an optimal policy due to a high variance
of the approximation error, see Figure 2 (b). In this case,
η(x0, a1) and η(x0, a2) follow exponential distributions,
and the expectations of them are 1.2 and 1, respectively. We
consider a tabular setting, which uniquely represents the
approximated return distribution at each state-action pair.
Figure 2 (c) demonstrates that in policy evaluation, QDRL
inaccurately approximates the Q-function, as it underesti-
mates the expectation of η(x0, a1) and overestimates the
other. This is caused by the poor capture of tail events,
which results in high uncertainty in the Q-function estimate.
Due to the high variance, QDRL fails to learn the optimal
policy and chooses a non-optimal action a2 at the initial
state x0. On the contrary, our proposed algorithm, QEMRL,
employs a statistically robust estimator of the Q-function to
reduce its variance, relieves the underestimation and over-
estimation issues, and ultimately allows for more efficient
policy learning.

Different from previous QDRL studies that focus on ex-
ploiting the distribution information to further improve the
model performance, this work highlights the importance
of controlling the variance of the approximation error to
obtain a more accurate estimate of the Q-function. More
discussion about this is given in the following section.
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4. Quantiled Expansion Mean
This section introduces a novel variance reduction tech-
nique to estimate the Q-function. In traditional statistics,
estimators with lower variance are considered to be more
efficient. In RL, variance reduction is also an effective tech-
nique for achieving fast convergence in both policy-based
and value-based RL algorithms, especially for large-scale
tasks (Greensmith et al., 2004; Anschel et al., 2017). Moti-
vated by these findings, we introduce QEM as an estimator
that is more robust and has a lower variance than that of
QDRL under the heteroskedasticity assumption. Further-
more, we demonstrate the potential benefits of QEM for the
distribution approximation in DRL.

4.1. Heteroskedasticity of quantiles

In the context of quantile-based DRL, Q-function is the inte-
gral of the quantiles. To approximate this, QDRL employs
a simple empirical mean (EM) estimator 1

NΣiq̂(τi), and it
is natural to assume that the estimated quantile satisfies

q̂(τ) = q(τ) + ε(τ), (4)

where ε(τ) is a zero-mean error. In this case, considering
the crossing issue and the biased tail estimates, we assume
that the variance of ε(τ) is non-constant and depends on τ ,
which is usually called heteroskedasticity in statistics.

For a direct understanding, we conduct a simple simula-
tion using a Chain MDP to illustrate how QDRL can fail to
fit the quantile function. As shown in Figure 3(b), QDRL
fits well in the peak area but struggles at the bottom and
the tail. Moreover, the non-monotonicity of the quantile
estimates in the poorly fitted areas is more severe than the
others. As the deviations of the quantile estimates from the
truths is significantly larger in the low probability region
and the tail, we can make the heteroskedasticity assump-
tion in this case. This phenomenon can be explained since
samples near the bottom and the tail are less likely to be
drawn. In real-world situations, multimodal distributions
are commonly encountered and the heteroskedasticity prob-
lem may result in imprecise distribution approximations and
consequently poor Q-function approximations. In the next
part, we will discuss how to enhance the stability of the
Q-function estimate.

4.2. Cornish-Fisher Expansion

It is well-known that quantile can be expressed by the
Cornish-Fisher Expansion (CFE, Cornish & Fisher, 1938):

q(τ) = µ+ σx′
τ , (5)

x′
τ = zτ + (z2τ − 1)

s

6
+ (z3τ − 3zτ )

k

24
+ · · · ,

where zτ is the τ -th quantile of the standard normal distri-
bution, µ is the mean, σ is the standard deviation, s and

k are the skewness and kurtosis of the interested distribu-
tion, and the remaining terms in the ellipsis are higher-order
moments (See Appendix C for more details). The CFE the-
oretically determines the distribution with known moments
and is widely used in financial studies. Recently, Zhang
& Zhu (2023) employ CFE to estimate higher-order mo-
ments of financial time series data, which are not directly
observable. Our method utilizes a truncated version of CFE
framework and employs a linear regression model to con-
struct efficient estimators for distribution moments based
on known quantiles. Consequently, we apply this approach
within the context of quantile-based DRL.

To be more specific, we plug in the estimate q̂(τ) of the the
τ -th quantile to Equation (5) and expand it by the first order:

q̂(τ) =m1 + ω1(τ) + ε(τ), (6)

where m1 is the mean (say, 1-th moment) of the return
distribution, i.e., the Q-function, and ω1(τ) is the remaining
term associated with the higher-order (> 1-th) moments. If
ω1(τ) is negligible, m1 can be estimated by averaging the
N quantile estimates in QDRL.

When the estimated quantile is expanded to the second order,
we particularly have the following representation:

q̂(τ) =m1 + zτ
√
m2 +

√
m2ω2(τ) + ε(τ), (7)

where ω2(τ) is the remaining term associated with the
higher-order (> 2-th) moments. Assume that ω2(τ) is neg-
ligible, we can derive a regression model by plugging in the
N quantile estimates, such that

q̂(τ1)
q̂(τ2)

...
q̂(τN )

 =


1 zτ1
1 zτ2
...

...
1 zτN


(

m1√
m2

)
+


ε(τ1)
ε(τ2)

...
ε(τN )

 .

(8)

The higher-order expansions can be conducted in the same
manner. Note that the remaining term is omitted for con-
structing a regression model, and a more in-depth analysis
of the remaining term is available in Appendix C.2.

For notation simplicity, we rewrite (8) in a matrix form,

Q̂ = X2M2 + E , (9)

where Q̂ ∈ RN is the vector of estimated quantiles, X2 ∈
RN×2 and M2 ∈ R2 are the design matrix and the moments
respectively, and E is the vector of error terms.

For this bivariate regression model (9), the traditional ordi-
nary least squares method (OLS) can be used to estimate
M2 = (m1,

√
m2)

′ when the variances of the errors are
invariant across different quantile locations, also known as
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Figure 3. (a) Chain MDP, with six states, one action, γ = 0.99 and
gaussian mixture reward distribution at terminal state x5. (b) True
quantile function (top) and QDRL quantile function at state x0

after 10K steps iterate. Scatter diagram (bottom) of approximated
quantile from training process.

the homoscedasticity assumption. The estimator m̂1 is de-
noted as Quantiled Expansion Mean (QEM) in this work.
However, since the homoscedasticity assumption required
by OLS is always violated in real cases, we may consider
using the weighted ordinary least squares method (WLS)
instead. Under the normality assumption, the following re-
sults tell that the WLS estimator m̂1 has a lower variance
than the direct empirical mean.

Lemma 4.1. Consider the linear regression model Q̂ =
X2M2 + E , E is distributed on N (0, σ2V ), where V =
diag(v1, v2, · · · , vN ), vi ≥ 1, i = 1, · · · , N , and we set
noise variance σ2 = 1 without loss of generality. The WLS
estimator is

M̂2 = (X⊤
2 V

−1X2)
−1X⊤

2 V
−1Q̂, (10)

and the QEM estimator m̂1 is the first component of M̂2.

Remark: Note that it is impossible to determine the weight
matrix V for each state-action pair in practice. Hence, we
focus on capturing the relatively high variance in the tail,
specifically in the range of τ ∈ (0, 0.1]∪[0.9, 1). To achieve
this, we use a constant vi, which is set to a value greater
than 1 in the tail and equal to 1 in the rest. vi is treated as a
hyperparameter to be tuned in practice (See Appendix E).

With Lemma 4.1, the reduction of variance can be guar-
anteed by the following Proposition 4.2. Throughout the
training process, heteroskedasticity is inevitable, and thus
the QEM estimator always exhibits a lower variance than
the standard EM estimator m̂∗

1 = 1
N

∑N
i=1 q̂(τi).

Proposition 4.2. Suppose the noise εi independently fol-
lows N (0, vi) where vi ≥ 1 for i = 1, · · · , N , then,

(i) In the homoskedastic case where vi = 1 for i = 1, . . . N ,
the empirical mean estimator m̂∗

1 has a lower variance,
Var(m̂∗

1) < Var(m̂1) ;

(ii) In the heteroskedastic case where vi’s are not
eaqul, the QEM estimator m̂1 achieves a lower variance,
i.e. Var(m̂1) < Var(m̂∗

1), if and only if v̄2 − 1 −
1/(

(
∑

i vi
∑

i viz
2
τi

)

(
∑

i vizτi )
2 − 1) > 0, where v̄ = 1

N

∑
i vi. This

inequality holds when zτi = −zτN−i
, which can be guaran-

teed in QDRL.

We also try to explore the potential benefits of the variance
reduction technique QEM in improving the approximation
accuracy. The Q-function estimate with higher variance can
lead to noisy policy gradients in policy-based algorithms
(Fujimoto et al., 2018) and prevent selection optimal actions
in value-based algorithms (Anschel et al., 2017). These
issues can slow down the learning process and negatively
impact the algorithm performance. By the following theo-
rem, we are able to show that QEM can reduce the variance
and thus improve the approximation performance.
Theorem 4.3. Consider the policy π̂ that is learned pol-
icy, and denote the optimal policy to be πopt, α =
maxx′ DTV (π̂ (· | x′)∥πopt(· | x′)), and n(x, a) = |D|.
For all δ ∈ R, with probability at least 1 − δ, for any
η(x, a) ∈P(R), and all (x, a) ∈ D,

∥∥∥FT̂ π̂η(x,a) − FT πoptη(x,a)

∥∥∥
∞

≤ (α+ 1)

√
2|X |

n(x, a)
log

4|X ||A|
δ

.

Theorem 4.3 indicates that a lower concentration bound can
be obtained with a smaller α value. The decrease in α can
be attributed to the benefits of QEM. Specifically, QEM
helps to decrease the perturbations on the Q-function and
reduce the variance of the policy gradients, which allows
for faster convergence of the policy training and a more
accurate distribution approximation. To conclude, QEM re-
lieves the error accumulation within the Q-function update,
improves the estimation accuracy, reduces the risk of under-
estimation and overestimation, and thus ultimately enhances
the stability of the whole training process.

5. Experimental Results
In this section, we do some empirical studies to demon-
strate the advantage of our QEMRL method. First, a simple
tabular experiment is conducted to validate some of the theo-
retical results presented in Sections 3 and 4. Then we apply
the proposed QEMRL update strategy in Algorithm 1 to
both the DQN-style and SAC-style DRL algorithms, which
are evaluated on the Atari and MuJoCo environments. The
detailed architectures of these methods and the hyperpa-
rameter selections can be found in Appendix D, and the
additional experimental results are included in Appendix E.
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Algorithm 1 QEMRL update algorithm
1: Require: Quantile estimates q̂i(x, a) for each (x, a)
2: Collect sample (x, a, r, x′)
3: # Compute distributional Bellman target
4: Compute Q(x′, a) using Equation (10)
5: if policy evaluation then
6: a∗ ∼ π(·|x′)
7: else if Q-Learning then
8: a∗ ← argmaxa Q(x′, a)
9: end if

10: Scale samples q̂∗i (x
′, a∗)← r + γq̂i(x

′, a∗), ∀i.
11: # Compute quantile loss
12: Update estimated quantiles q̂i(x, a) by com-

puting the gradients for each i = 1, . . . , N ,
∇q̂i(x,a)

∑N
i=1 LQR(q̂i(x, a);

1
N

∑N
j=1 δq̂∗j (x′,a∗), τi).

In this work, we implement QEM using a 4-th order expan-
sion that includes mean, variance, skewness, and kurtosis
in this work. The effects of a higher-order expansion on
model estimation are discussed in Appendix C.1. Intuitively,
including more terms in the expansion improves the esti-
mation accuracy of quantiles, but the overfitting risk and
the computational cost are also increased. Hence, there is a
trade-off between explainability and learning efficiency. We
evaluate different expansion orders using the R2 statistic,
which measures the goodness of model fitting. The simu-
lation results (Figure 9) show that a 4-th order expansion
seems to be the optimal choice while a higher-order (> 4-th)
expansion does not show a significant increase in R2.

5.1. A Tabular Example

FrozenLake (Brockman et al., 2016) is a classic benchmark
problem for Q-learning control with high stochasticity and
sparse rewards, in which an agent controls the movement of
a character in an n × n grid world. As shown in Figure 4
with a FrozenLake-4× 4 task, ”S” is the starting point, ”H”
is the hole that terminates the game, ”G” is the goal state
with a reward of 1. All the blue grids stand for the frozen
surface where the agent can slide to adjacent grids based
on some underlying unknown probabilities when taking a
certain movement direction. The reward received by the
agent is always zero unless the goal state is reached.

We first approximate the return distribution under the opti-
mal policy π∗, which can be realized using the value itera-
tion approach. To be specific, we start from the ”S” state and
perform 1K Monte-Carlo (MC) rollouts. An empirical distri-
bution can be obtained by summarizing all these recording
trajectories. With the approximation of the distribution, we
can draw a curve of quantile estimates shown in Figure 5.
Both QEMRL and QDRL were run for 150K training steps
and the ϵ-greedy exploration strategy is applied in the first

1K steps. For both methods, we set the total number of
quantiles to be N = 128.

Figure 4. (a) The optimal direction of movement at each grid. (b)
Quantile estimates by MC, QDRL, and QEMRL at the start state.
(c) Approximation errors of Q-function estimate and distribution
approximation error of QEMRL and QDRL (results are averaged
over 10 random seeds).

Although both QEMRL and QDRL can eventually find the
optimal movement at the start state, their approximations
of the return distribution are quite different. Figure 4 (b)
visualizes the approximation errors of the Q-function and
the distribution for QEMRL and QDRL with respect to
the number of training steps. The Q-function estimates of
QEMRL converge correctly in average, whereas the esti-
mates of QDRL do not converge exactly to the truth. A
similar pattern can also be found when it comes to the dis-
tribution approximation error. Besides, the reduction of
variance by using QEM can be verified by the fact that the
curves of QEMRL are more stable and decline faster. In
Figure 4 (c), we show that the distribution at the start state
estimated by QEMRL is eventually closer to the ground
truth.

5.2. Evaluation on MuJoCo and Atari 2600

We do some experiments using the MuJoCo benchmark to
further verify the analysis results in Section 4. Our imple-
mentation is based on the Distributional Soft Actor-Critic
(DSAC, Ma et al., 2020) algorithm, which is a distributional
version of SAC. Figure 5 demonstrate that both DSAC and
QEM-DSAC significantly outperform the baseline SAC.
Among the two, QEM-DSAC performs better than DSAC
and the learning curves are more stable, which demonstrates
that QEM-DSAC can achieve a higher sample efficiency.

We also do some comparison between QEM and the baseline
method QR-DQN on the Atari 2600 platform. Figure 8 plots
the final results of these two algorithms in six Atari games.
At the early training stage, QEM-DQN exhibits significant
gain in sampling efficiency, resulting in faster convergence
and better performance.

7
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Figure 5. Learning curves of SAC, DSAC, and QEM-DSAC across
six MuJoCo games. Each curve is averaged over 5 random seeds
and shaded by their confidence intervals.

Extension to IQN. Some great efforts have been made by
the community of DRL to more precisely parameterize the
entire distribution with a limited number of quantile loca-
tions. One notable example is the introduction of Implicit
Quantile Networks (IQN, Dabney et al., 2018a), which tries
to recover the continuous map of the entire quantile curve by
sampling a different set of quantile values from a uniform
distribution Unif(0, 1) each time.

Our method can also be applied to IQN as it uses the EM
approach to estimate the Q-function. It is noted that the
design matrix X must be updated after re-sampling all the
quantile fractions at each training step. Moreover, one im-
portant sufficient condition zτi = −zτN−i

which ensures
the reduction of variance does not hold in the IQN case
as τ ’s are sampled from a uniform distribution. However,
according to the simulation results in Table 4, the variance
reduction still remains valid in practice. In this case, all
the baseline methods are modified to the IQN version. As
Figure 6 and Figure 7 demonstrate, QEM can achieve some
performance gain in most scenarios and the convergence
speeds can be slightly increased.

Figure 6. Learning curves of SAC, DSAC (IQN), and QEM-DSAC
(IQN) across six MuJoCo games. Each curve is averaged over 5
random seeds and shaded by their confidence intervals.

5.3. Exploration

Since QEM also provides an estimate of the variance, we
may consider using it to develop an efficient exploration

Figure 7. Learning curves of IQN and IQEM-DQN across six Atari
games. Each curve is averaged over 3 random seeds and shaded
by their confidence intervals.

Figure 8. Learning curves (top and middle) of QR-DQN and QEM-
DQN across six Atari games. Learning curves (bottom) of QR-
DQN and QEM-DQN with exploration across three games.

strategy. In some recent study studies, to more suffi-
ciently utilize the distribution information, Mavrin et al.
(2019) proposes a novel exploration strategy, Decaying
Left Truncated Variance (DLTV) by using the left trun-
cated variance of the estimated distribution as a bonus
term to encourage exploration in unknown states. The op-
timal action a∗ at state x is selected according to a∗ =

argmaxa′

(
Q (x, a′) + ct

√
σ2
+

)
, where ct is a decay fac-

tor to suppress the intrinsic uncertainty, and σ2
+ denotes

the estimation of variance. Although DLTV is effective,
the validity of the computed truncation lacks a theoretical
guarantee. In this work, we follow the idea of DLTV and
examine the model performance by using either the variance
estimate obtained by QEM or the original DLTV estimation
in some hard-explored games. As Figure 8 shows, by using
QEM, the exploration efficiency is significantly improved
compared to QR-DQN+DLTV since QEM enhances the
accuracy of the quantile estimates and thus the accuracy of
the distribution variance.

8
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6. Conclusion and Discussion
In this work, we systematically study the three error terms
associated with the Q-function estimate and propose a novel
DRL algorithm QEMRL, which can be applied to any
quantile-based DRL algorithm regardless of whether the
quantile locations are fixed or not. We found that a more ro-
bust estimate of the Q-function can improve the distribution
approximation and speed up the algorithm convergence. We
can also utilize the more precise estimate of the distribution
variance to optimize the existing exploration strategy.

Finally, there are some open questions we would like to
have further discussions here.

Improving the estimation of weight matrix V . The chal-
lenge of estimating the weight matrix V was recognized
from the outset of the method proposal since it is unlikely
to know the exact value of V in practice. In this work,
we treat V as a predefined value that can be tuned, taking
into account the computational cost of estimating it across
all state-action pairs and time steps. As for future work,
we believe a robust and easy-to-implement estimation of
weight matrix V is necessary. Given that the variance of
quantile estimation errors varies with state-action pairs and
algorithm iterations, we consider two approaches for future
investigation. The first approach considers a decay value of
vi instead of the constant. It is worth noting that the variance
of poorly estimated quantiles tends to decrease gradually as
the number of training samples increases, which motivates
us to decrease the value of vi as training epochs increase.
The second approach involves assigning different values of
vi to different state-action pairs. Ideas from the exploration
field, specifically the count-based method (Ostrovski et al.,
2017), can be borrowed to measure the novelty of state-
action pairs. Accordingly, for familiar state-action pairs,
a smaller value of vi should be assigned, while unfamiliar
pairs should be assigned a larger value of vi.

Statistical variance reduction. Our variance reduction
method is based on a statistical modeling perspective, and
the core insight of our method is that performance might
be improved through more careful use of the quantiles to
construct a Q-function estimator. While alternative ensem-
bling methods can be directly applied to DRL to reduce
the uncertainty in Q-function estimator, commonly used in
existing works (Osband et al., 2016; Anschel et al., 2017),
it undoubtedly increases model complexity. In this work,
we transform the Q value estimation into a linear regres-
sion problem, where the Q value is the coefficient of the
regression model. In this way, we can leverage the weighted
least squares (WLS) method to effectively capture the het-
eroscedasticity of quantiles and obtain a more efficient and
robust Q-function estimator.
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A. Projection Operator
A.1. Categorical projection operator

CDRL algorithm uses a categorical projection operator ΠC : P(R) → P ({z1, . . . , zN}) to restrict approximated
distributions to the parametric family of the form FC :=

{∑N
i=1 piδzi |

∑N
i=1 pi = 1, pi ≥ 0

}
⊆ P(R), where z1 <

· · · < zN are evenly spaced, fixed supports. The operator ΠC is defined for a single Dirac delta as

ΠC (δw) =


δz1 w ≤ z1
w−zi+1

zi−zi+1
δzi +

zi−w
zi−zi+1

δi+1 zi ≤ w ≤ zi+1

δzN w ≥ zN .

A.2. Quantile projection operator

QDRL algorithm uses a quantile projection operator ΠW1 : P(R)→P(R) to restrict approximated distributions to the
parametric family of the form FW1 :=

{
1
N

∑N
i=1 δzi | z1:N ∈ RN

}
⊆P(R). The operator ΠW1 is defined as

ΠW1(µ) =
1

N

N∑
k=1

δF−1
µ (τi)

,

where τi = 2i−1
2N , and Fµ is the CDF of µ. The midpoint 2i−1

2N of the interval [ i−1
N , i

N ] minimizes the 1-Wasserstein distance
W1(µ,ΠW1

µ) between the distribution, µ, and its projection ΠW1
µ (a N -quantile distribution with evenly spaced τi), as

demonstrated in Lemma 2 (Dabney et al., 2018b).

B. Proofs
In this section, we provide the proofs of the theorems discussed in the main manuscript.

B.1. Proof of Section 3

Proposition B.1. Suppose there are value distributions ν1, ν2 ∈ P(R), and random variables Zk+1
i ∼ T πνi, Z

k
i ∼ νi.

Then, we have ∥∥EZk+1
1 − EZk+1

2

∥∥
∞ ≤ γ

∥∥EZk
1 − EZk

2

∥∥
∞ , and∥∥VarZk+1

1 −VarZk+1
2

∥∥
∞ ≤ γ2

∥∥VarZk
1 −VarZk

2

∥∥
∞ .

Proof. The first statement can be proved using the exchange of ET π = T πE. By independence of R and PπZi, where Pπ

is the transition operator, we have

Zk+1
i (x, a)

D
:= R(x, a) + γPπZk

i (x, a)

Var(Zk+1
i (x, a)) = Var(R(x, a)) + γ2Var

(
PπZk

i (x, a)
)
.

Thus, we have ∥∥VarZk+1
1 −VarZk+1

2

∥∥
∞

= sup
x,a

∣∣VarZk+1
1 (x, a)−VarZk+1

2 (x, a)
∣∣

= sup
x,a

γ2
∣∣Var (PπZk

1 (x, a)
)
−Var

(
PπZk

2 (x, a)
)∣∣

= sup
x,a

γ2
∣∣E [Var (Zk

1 (X ′, A′)
)
−Var

(
Zk
2 (X ′, A′)

)]∣∣
≤ sup

x′,a′
γ2
∣∣Var (Zk

1 (x′, a′)
)
−Var

(
Zk
2 (x′, a′)

)∣∣
≤ γ2

∥∥VarZk
1 −VarZk

2

∥∥
∞ .
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Lemma B.2. Let τk = 2k−1
2K , for k = 1, . . . ,K. Consider the corresponding 1-Wasserstein projection operator ΠW1

:
P(R)→P(R), defined by

ΠW1
µi =

1

K

K∑
k=1

δF−1
µi

(τk)
,

for all µi ∈ P(R), where F−1
µi

is the inverse CDF of µi. Let random variable X ∼ µ1, X2 ∼ µ2, and η1, η2 ∈ P(R).
Suppose immediate reward distributions supported on [−Rmax, Rmax]. Then, we have:
(i) W1 (ΠW1

µ1, µ1) ≤ 2Rmax

K(1−γ) ;

(ii) W1 (ΠW1η1,ΠW1η2) ≤W1 (η1, η2) +
4Rmax

K(1−γ) ;

(iii) W1 (ΠW1
µ2, µ2) ≤ R2

max

K(1−γ) .

Proof. For proving (i), let F−1
µ1

be the inverse CDF of µ1. We have

W1 (ΠW1
µ1, µ1) =

K−1∑
i=0

1

K

∫ F−1
µ1

( i+1
K )

F−1
µ1

( i
K )

|x− F−1
µ1

(
2i+ 1

2K
)| µ1(dx)

≤ 1

K

(
F−1
µ1

(1)− F−1
µ1

(0)
)

(return distribution µ1 is bounded on [−Rmax

1− γ
,
Rmax

1− γ
])

=
2Rmax

K(1− γ)
.

For proving (ii), using the triangle inequality and statement (i):

W1 (ΠW1
η1,ΠW1

η2) ≤W1 (ΠW1
η1, η1) +W1 (η1, η2) +W1 (η2,ΠW1

η2)

≤W1 (η1, η2) +
4Rmax

K(1− γ)
.

(ii) implies the fact that the quantile projection operator ΠW1
is not a non-expansion under 1-Wasserstein distance, which is

important for the uniqueness of the fixed point and the convergence of the algorithm.

The proof of (iii) is similar to (i), using the fact that the return distribution µ2 is bounded on [0,
R2

max

1−γ ] to obtain the following
inequality:

W1 (ΠW1µ2, µ2) ≤
R2

max

K(1− γ)
.

Theorem B.3. (Parameterization induced error bound) Let ΠW1 be a projection operator onto evenly spaced quantiles τi’s
where each τi =

2i−1
2N for i = 1, . . . , N , and ηk ∈P(R) be the return distribution of k-th iteration. Let random variables

Zk
θ ∼ ΠW1

T πηk and Zk ∼ T πηk. Assume that the distribution of the immediate reward is supported on [−Rmax, Rmax],
then we have

lim
k→∞

∥∥Ek3 ∥∥∞ = lim
k→∞

∥∥EZk
θ − EZk

∥∥
∞ ≤

2Rmax

N(1− γ)
,

where Ek3 is parametrization induced error at k-th iteration.

Proof. Using the dual representation of the Wasserstein distance (Villani, 2009) and Lemma B.2, ∀(x, a), we have∣∣EZk
θ (x, a)− EZk(x, a)

∣∣ ≤W1 (ΠW1
T πηk(x, a), T πηk(x, a))

≤ 2Rmax

N(1− γ)
.
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By taking the limitation over (x, a) and iteration k on the left-hand side, we obtain

lim
k→∞

∥∥Ek3 ∥∥∞ = lim
k→∞

∥∥EZk
θ − EZk

∥∥
∞ ≤

2Rmax

N(1− γ)
.

In a similar way, the second-order moment can be bounded by,

lim
k→∞

∥∥E[Zk
θ ]

2 − E[Zk]2
∥∥
∞ ≤

R2
max

N(1− γ)
.

It suggests that higher-order moments are not preserved after quantile representation is applied.

B.2. Proof of Section 4

Lemma B.4. (expectation by quantiles). Let Z ∼ ν be a random variable with CDF Fν and quantile function F−1
ν . Then,

E[Z] =

∫ 1

0

F−1
ν (τ)dτ.

Proof. As any CDF is non-decreasing and right continuous, we have for all (τ, z) ∈ (0, 1)× R :

F−1
ν (τ) ≤ z ⇐⇒ τ ≤ Fν(z).

Then, denoting U by a uniformly distributed random variable over [0, 1],

P(F−1
ν (U) ≤ z) = P(U ≤ Fν(z)) = Fν(z),

which shows that the random variable F−1
ν (U) has the same distribution as Z. Hence,

E[Z] = E
[
F−1
ν (U)

]
=

∫ 1

0

F−1
ν (τ)dτ

Lemma B.5. Consider the linear regression model Q̂ = X2M2 + E , E is distributed on N (0, σ2V ), where V =
diag(v1, v2, · · · , vN ), vi ≥ 1, i = 1, · · · , N , and we set noise variance σ2 = 1 without loss of generality. The WLS
estimator is

M̂2 = (X⊤
2 V

−1X2)
−1X⊤

2 V
−1Q̂, (11)

and the distribution of mean estimator takes the form,

m̂1 ∼ N

m1,
1∑
i vi

+
(
∑

i vizτi∑
i vi

)2∑
i viz

2
τi −

(
∑

i vizτi )
2∑

i vi

 .

When V equals identity matrix I ,

m̂1 ∼ N
(
m1,

1

N
+

z̄2∑
i(zτi − z̄)2

)
.

Proof. Premultiplying by V −1/2, we get the transformed model

V −1/2Q̂ = V −1/2X2M2 + V −1/2E .

Now, set Q̂
∗
= V −1/2Q, X∗

2 = V −1/2X2, and E∗ = V −1/2E , so that the transformed model can be written as Q̂
∗
=

X∗
2M2 + E∗. The transformed model is a Gaussian-Markov model, satisfying OLS assumptions. Thus, the unique OLS

solution is M̂2 =
(
X⊤

2 V −1X2

)−1
X⊤

2 V −1Q̂, and M̂2 ∼ N
(
M2, σ

2(X⊤
2 V −1X2)

−1
)
. By computing (X⊤

2 V −1X2)
−1,

we derive m̂1 ∼ N

(
m1,

1∑
i vi

+
(
∑

i vizτi∑
i vi

)2∑
i viz

2
τi

−
(
∑

i vizτi
)2∑

i vi

)
.

13
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Proposition B.6. Suppose the noise εi independently follows N (0, vi) where vi ≥ 1 for i = 1, · · · , N , then,

(i) In the homoskedastic case where vi = 1 for i = 1, . . . N , the empirical mean estimator m̂∗
1 has a lower variance,

Var(m̂∗
1) < Var(m̂1) ;

(ii) In the heteroskedastic case where vi’s are not equal, the QEM estimator m̂1 achieves a lower variance, i.e. Var(m̂1) <

Var(m̂∗
1), if and only if v̄2−1−1/( (

∑
i vi

∑
i viz

2
τi

)

(
∑

i vizτi )
2 −1) > 0, where v̄ = 1

N

∑
i vi. This inequality holds when zτi = −zτN−i

,
which can be guaranteed in QDRL.

Proof. The proof of (i) comes directly from the comparison of variances, i.e. Var(m̂1) = 1
N < 1

N + z̄2∑
i(zτi−z̄)2 =

Var(m̂∗
1). Next, we prove that (ii) holds under a sufficient condition zτi = −zτN−i

. In QDRL, the quantile
levels τi = 2i−1

2N are equally spaced around 0.5. Under this setup, the condition zτi = −zτN−i
indeed holds,

where zτi is the τi-th quantile of standard normal distribution. For N = 2, we need to validate the inequality

v̄2 − 1 − 1/(
(
∑

i vi
∑

i viz
2
τi

)

(
∑

i vizτi )
2 − 1) > 0. This can be transformed into a multivariate extreme value problem. By an-

alyzing the function f(v1, v2) = (v1+v2)
2

4 − 1 − 1
(v1+v2)2

(v1−v2)2
−1

, the infimum of f(v1, v2) is 0 when v1, v2 > 1, and

f(v1, v2) reaches 0 at the limit lim(v1,v2)→(1,1) f(v1, v2) = 0. For N = 3, this case is identical to N = 2 since

z0.5 = 0. For N = 4, f(v1, v2, v3, v4) = (v1+v2+v3+v4)
2

N2 − 1 − 1
(v1+v2+v3+v4)(k2v1+v2+v3+k2v4)

(kv1+v2−v3−kv4)2
−1

, and this expres-

sion can be factored as, f(v1, v2, v3, v4) = v1+v2+v3+v4
N2C

(
(v1 + v2 + v3 + v4)C −N2(k2v1 + v2 + v3 + k2v4)

)
, where

C = (k − 1)2v1v2 + (k + 1)2v1v3 + 4k2v1v4 + 4v2v3 + (k + 1)2v2v4 + (k + 1)2v3v4, and k = Φ−1(7/8)
Φ−1(5/8) > 3. By

comparing the coefficient corresponding to the same terms, we can verify that f(v1, v2, v3, v4) > 0 when vi > 1. Finally,
the remaining cases can be proven in the same manner.

Theorem B.7. Consider the policy π̂ that is learned policy, and denote the optimal policy to be πopt, α =
maxx′ DTV (π̂ (· | x′)∥πopt(· | x′)), and n(x, a) = |D|. For all δ ∈ R, with probability at least 1 − δ, for any
η(x, a) ∈P(R), and all (x, a) ∈ D,

∥∥∥FT̂ π̂η(x,a) − FT πoptη(x,a)

∥∥∥
∞
≤ (α+ 1)

√
2|X |

n(x, a)
log

4|X ||A|
δ

.

Proof. We give this proof in a tabular MDP. Directly following from the definition of the distributional Bellman operator
applied to the CDF, we have that

FT̂ π̂η(x,a)(u)− FT πoptη(x,a)(u)

=
∑
x′,a′

P̂ (x′ | x, a)π̂(a′ | x′)FγZ(x′,a′)+R̂(x,a)(u)−
∑
x′,a′

P (x′ | x, a)πopt(a
′ | x′)FγZ(x′,a′)+R(x,a)(u).

For notation convenience, we use random variables instead of measures. P̂ and R̂ are the maximum likelihood esti-
mates of the transition and the reward functions, respectively. Adding and subtracting

∑
x′,a′ P̂ (x′ | x, a)πopt(a

′ |
x′)FγZ(x′,a′)+R(x,a)(u), then we have

∑
x′

P̂ (x′ | x, a)
∑
a′

(
π̂(a′ | x′)FγZ(x′,a′)+R̂(x,a)(u)− πopt(a

′ | x′)FγZ(x′,a′)+R(x,a)(u)
)

+
∑
x′,a′

(
P̂ (x′ | x, a)− P (x′ | x, a)

)
πopt(a

′ | x′)FγZ(x′,a′)+R(x,a)(u).

14



Variance Control for Distributional Reinforcement Learning

For the first term, note that∑
x′

P̂ (x′ | x, a)
∑
a′

(
π̂(a′ | x′)FγZ(x′,a′)+R̂(x,a)(u)− πopt(a

′ | x′)FγZ(x′,a′)+R(x,a)(u)
)

≤
∑
x′

P̂ (x′ | x, a)
∑
a′

|π̂(a′ | x′)− πopt(a
′ | x′)| ·

∣∣∣FγZ(x′,a′)+R̂(x,a)(u)− FγZ(x′,a′)+R(x,a)(u)
∣∣∣

=
∑
x′

P̂ (x′ | x, a)
∑
a′

|π̂(a′ | x′)− πopt(a
′ | x′)| ·

∫ ∣∣∣FR̂(x,a)(r)− FR(x,a)(r)
∣∣∣ dFγZ(x′,a′)(u− r)

≤
∑
x′

P̂ (x′ | x, a)
∑
a′

|π̂(a′ | x′)− πopt(a
′ | x′)| · sup

r

∣∣∣FR̂(x,a)(r)− FR(x,a)(r)
∣∣∣ ∫ dFγZ(x′,a′)(u− r)

= 2
∑
x′

P̂ (x′ | x, a)DTV (π̂ (· | x′)||πopt(· | x′)) ·
∥∥∥FR̂(x,a)(·)− FR(x,a)(·)

∥∥∥
∞

≤ 2α
∥∥∥FR̂(x,a)(·)− FR(x,a)(·)

∥∥∥
∞

.

The second term can be bounded as follows:∑
x′,a′

(
P̂ (x′ | x, a)− P (x′ | x, a)

)
πopt(a

′ | x′)FγZ(x′,a′)+R(x,a)(u)

≤
∑
x′

(
P̂ (x′ | x, a)− P (x′ | x, a)

)∑
a′

πopt(a
′ | x′)

≤
∥∥∥P̂ (· | x, a)− P (· | x, a)

∥∥∥
1
·

∥∥∥∥∥∑
a′

πopt(a
′ | ·)

∥∥∥∥∥
∞

=
∥∥∥P̂ (· | x, a)− P (· | x, a)

∥∥∥
1
.

Next, we show the two norms can be bounded. By the Dvoretzky-Kiefer-Wolfowitz (DKW) inequality, the following
inequality holds with probability at least 1− δ/2, for all (x, a) ∈ D,

∥∥∥FR̂(x,a)(·)− FR(x,a)(·)
∥∥∥
∞
≤

√
1

2n(x, a)
log

4|X∥A|
δ

.

By Hoeffding’s inequality and an l1 concentration bound for multinomial distribution2, the following inequality holds with
probability at least 1− δ/2,

max
x,a

∥∥∥P̂ (· | x, a)− P (· | x, a)
∥∥∥
1
≤

√
2|X |

n(x, a)
log

4|X∥A|
δ

.

Consequently, the claim follows from combining the two inequalities.

C. Cornish-Fisher Expansion
The Cornish-Fisher Expansion (Cornish & Fisher, 1938) is an asymptotic expansion used to approximate the quantiles of a
probability distribution based on its cumulants. To be more explicit, let X∗ be a non-gaussian variable with mean 0 and
variance 1. Then, the Cornish-Fisher Expansion can be represented as a polynomial expansion:

F−1
X∗ (τ) =

∞∑
i=0

ai(Φ
−1(τ))i,

2see https://nanjiang.cs.illinois.edu/files/cs598/note3.pdf.
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where the parameters ai depend on the cumulants of the X∗ and Φ is the standard normal distribution function. To use
this expansion in practice, we need to truncate the series. According to Cornish & Fisher (1938), the highest power of i
must be odd, and the fourth order (i = 3) approximation is commonly used in practice. The parameters for the fourth order
expansion are a2 = a0 = κ3

6 , a1 = 1 + 5(κ3

6 )2 − 3κ4

24 and a3 = κ4

24 − 2(κ3

6 )2, where κi denotes i-th cumulant. Therefore,
the fourth order expansion is

F−1
X∗ (τ) = −

κ3

6
+ (1 + 5(

κ3

6
)2 − 3

κ4

24
)Φ−1(τ) +

κ3

6
(Φ−1(τ))2 + (

κ4

24
− 2(

κ3

6
)2)(Φ−1(τ))3 + · · · .

Now, simply define the X∗ as the normalization of X , X = µ + σX∗, with mean µ and variance σ2. F−1
X (τ) can be

approximated by

F−1
X (τ) = µ+ σ

(
− κ3

6σ3
+ (1 + 5(

κ3

6σ3
)2 − 3

κ4

24σ4
)Φ−1(τ) +

κ3

6σ3
(Φ−1(τ))2 + (

κ4

24σ4
− 2(

κ3

6σ3
)2)(Φ−1(τ))3 + · · ·

)
.

Denote skewness s = κ3

σ3 , kurtosis k = κ4

σ4 and normal distribution quantile zτ = Φ−1(τ). Then, we can rewrite the above
equation

F−1
X (τ) = µ+ σ

(
zτ + (z2τ − 1)

s

6
+ (z3τ − 2zτ )

k

24
+ (−2z3τ + 5zτ )(

s

6
)2 + · · ·

)
. (12)

C.1. Regression model selection

We use the R-Squared (R2) statistic to determine the number of terms in Equation (12) that should be included in the
regression model. R2, also known as the coefficient of determination, is a statistical measure that shows how well the
independent variables explain the variance in the dependent variable. In other words, it is a measure of how well the data fit
the regression model.

Figure 9. Fitted quantile plot. (a) Normal, N (0, 1). (b) Mixture Gaussian, 0.7N (−2, 1) + 0.3N (3, 1). (c) Exponential, Exp(1) = e−x.
(d) Gumbel, G(0, 1) = e−(x+e−x).

Consider the linear regression model,

Ŷ = Xiβi + E .

The dependent variable Y = (F−1
X (τ1), . . . , F

−1
X (τN ))T is composed of the quantiles from distribution of X , and E is

the noise vector sampled from N (0, 0.25). When the design matrix X1 = (1, · · · , 1)′, this regression model reduces to a
one-sample problem, and β1 can be directly estimated by 1

N

∑N
n=1 F

−1
X (τn). We then investigate the following four types

of regression models,

Model 1:

X2 =

(
1, · · · , 1
zτ1 , · · · , zτN

)T

,β2 = (µ, σ)
T
,

Model 2:

X3 =

 1, · · · , 1
zτ1 , · · · , zτN

z2τ1 − 1, · · · , z2τN − 1

T

,β3 =
(
µ, σ, σ

s

6

)T
,
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Model 3:

X4 =


1, · · · , 1
zτ1 , · · · , zτN

z2τ1 − 1, · · · , z2τN − 1
z3τ1 − 3zτ1 , · · · , z3τN − 3zτN


T

,β4 =

(
µ, σ, σ

s

6
, σ

k

24

)T

,

Model 4:

X5 =


1, · · · , 1
zτ1 , · · · , zτN

z2τ1 − 1, · · · , z2τN − 1
z3τ1 − 3zτ1 , · · · , z3τN − 3zτN
−2z3τ1 + 5zτ1 , · · · ,−2z3τN + 5zτN


T

,β5 =

(
µ, σ, σ

s

6
, σ

k

24
, σ(

s

6
)2
)T

.

Figure 9 shows that the regression fitted values and corresponding R2 across several distributions of X . As the number
of independent variables increases, more variance in the error can be explained. However, having too many independent
variables increases the risk of multicollinearity and overfitting. Based on practical considerations, we choose Model 3 as
our regression model due to its satisfactory level of explainability. In the subsequent section, we will give a more in-depth
interpretation of this regression model.

C.2. Interpretation of the remaining term ω(τ)

In this section, we explore the role of the remaining term ω(τ) in the context of random design regression. As discussed in
Section 4, we present a decomposition of the estimate q̂(τ) of the τ -th quantile, which includes contributions from the mean,
noise error, and misspecified error. Specifically, we expressed the estimate as follows:

q̂(τ) =µ+ ω1(τ) + ε(τ).

where µ can be estimated using the mean estimator 1
N

∑
q(τi), which is commonly used in QDRL and IQN settings.

However, this simple model fails to capture important information in the ω1(τ). To address this limitation, we employ the
Cornish-Fisher Expansion to expand the equation, resulting in the following expression:

q̂(τ) =µ+ zτσ + σω2(τ) + ε(τ),

q̂(τ) =µ+ zτσ + (z2τ − 1)σ
s

6
+ σω3(τ) + ε(τ),

· · ·

where µ can be estimated by linear regression estimator given multiple quantile levels {τi}, which can be sampled from
a uniform distribution or predefined to be evenly spaced in (0, 1). In theory, higher-order expansions can capture more
misspecified information in ω(τ), leading to a more accurate representation of the quantile. However, as discussed before,
expansions are typically limited to the fourth order in practice to balance the trade-off between model complexity and
estimation accuracy.

To gain a better understanding of the remaining term ω(τ) and its impact on the regression estimator, consider the linear
model,

q̂(τ) = x′
τβ + ωτ︸︷︷︸

Misspecified error

+ ε︸︷︷︸
Noise error

,

where τ can be generally considered a uniform, xτ = (1, zτ , z
2
τ − 1, ...)′ ∈ Rd, and β = (µ, σ, σ s

6 , ...)
′ ∈ Rd. In particular,

define the random variables,

ε := q̂(τ)− E[q̂(τ) | xτ ] and ωτ := E[q̂(τ) | xτ ]− xτ
′β,

where ε corresponds to the noise with zero mean, σ2
noise variance and independent across different level of τ , and ωτ

corresponds to the misspecified error of β. Under the following conditions, we can derive a bound for the regression
estimator in the misspecified model.
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Condition 1 (Subgaussian noise). There exist a finite constant σnoise ≥ 0 such that for all λ ∈ R, almost surely:

E[exp(λε) | xτ ] ≤ exp
(
λ2σ2

noise /2
)
.

Condition 2 (Bounded approximation error). There exist a finite constant Cbias ≥ 0, almost surely:∥∥∥Σ−1/2xτωτ

∥∥∥
2
≤ Cbias

√
d,

where Σ = E[xτxτ
′].

Condition 3 (Subgaussian projections). There exists a finite constant ρ ≥ 1 such that:

E
[
exp(α⊤Σ−1/2xτ )

]
≤ exp

(
ρ · ∥α∥22/2

)
, ∀α ∈ Rd.

Theorem C.1. Suppose that Conditions 1, 2, and 3 hold. Then for any δ ∈ (0, 1) and with probability at least 1− 3δ, the
following holds:

∥∥∥β̂ols − β
∥∥∥2
Σ
≤ K2

ρ,δ,N

(
4E
∥∥Σ−1/2xτωτ

∥∥2
2
(1 + 8 log(1/δ))

N
+

3C2
bias d log

2(1/δ)

N2

)
︸ ︷︷ ︸

Misspecified error contribution

+Kρ,δ,N ·
σ2

noise · (d+ 2
√
d log(1/δ) + 2 log(1/δ))

N︸ ︷︷ ︸
Noise error contribution

,

where Kρ,δ,N is a constant depending on ρ, δ and N .

Proof. The proof of the above theorem can be easily adapted from Theorem 2 in Hsu et al. (2011).

The first term on the right-hand side represents the error due to model misspecification, which occurs when the true model
differs from the assumed model. Intuitively, incorporating more relevant information in ω(τ) into explanation variables
could decrease the quantity of E

∥∥Σ−1/2xτωτ

∥∥2
2

and Cbias. Therefore, the accuracy of the estimator may be potentially
improved by reducing the magnitude of the misspecified error. The second term represents the noise error contribution,
which is inevitable and can only be controlled by increasing the sample size N .

D. Experimental Details
D.1. Tabular experiment

The parameter settings used for tabular control are presented in Table 1. In the QEMRL case, the weight matrix V is set as
shown in the table based on domain knowledge indicating that the distribution has low probability support around its median.
The greedy parameter decreases exponentially every 100 steps, and the learning rate decrease in segments every 50K steps.

D.2. Atari experiment

We extend QEMRL to a DQN-like architecture, and we use the same architecture as QR-DQN, which we refer to as QEM-
DQN 3. Our hyperparameter settings (Table 2) are aligned with Dabney et al. (2018b) for a fair comparison. Additionally,
we extend QEMRL to the unfixed quantile fraction algorithm IQN, which embeds quantile fraction τ into the quantile value
network on the top of QR-DQN. In Atari, it is infeasible to determine the low probability supports for every state-action
pair, therefore we only consider the heteroskedasticity that occurs in the tail and treat V as a tuning parameter to select
an appropriate value. For exploration experiments, we follow the settings of Mavrin et al. (2019) and set the decay factor

ct = c
√

logt
t , where c = 50.

3Code is available at https://github.com/Kuangqi927/QEM
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Table 1. The (hyper-)parameters of QEMRL and QDRL used in the tabular control experiment.

Hyperparameter Value

Learning rate schedule {0.05,0.025,0.0125}
Discount factor 0.999
Quantile initialization Unif(−0.5, 0.5)
Number of quantiles 128
Number of training steps 150K
ϵ-greedy schedule 0.9⌊t/100⌋

Number of MC rollouts 10000
Weight matrix V (QEMRL only) diag{1, 1, · · · , 1.5, · · · , 1.5︸ ︷︷ ︸

τ∈[0.45,0.55]

, · · · , 1, 1}

Table 2. The hyperparameters of QEM-DQN and QR-DQN used in the Atari experiments.

Hyperparameter Value

Learning rate 0.00005
Discount factor 0.99
Optimizer Adam
Bath size 32
Number of quantiles 200
Number of quantiles (IQN) 32
Weight matrix V (QEM-DQN only) diag{1.5, · · · , 1.5︸ ︷︷ ︸

τ∈[0.9,1)

, · · · , 1, 1, · · · , 1.5, · · · , 1.5︸ ︷︷ ︸
τ∈(0,0.1]

}

D.3. MuJoCo experiment

We extend QEMRL to a SAC-like architecture, and we use the same architecture of DSAC, named QEM-DSAC. Similarly,
we extend QEMRL to an IQN version of DSAC. Hyperparameters and environment-specific parameters are listed in Table 3.
In addition, SAC has a variant that introduces a mechanism of fine-tuning α to achieve target entropy adaptively. While this
adaptive mechanism performs well, we follow the use of fixed α suggested in the original SAC paper to reduce irrelevant
factors.

E. Additional Experimental Results
E.1. Variance reduction for IQN

IQN does not satisfy the sufficient condition zτi = −zτN−i
since τ is sampled from a uniform distribution, rather than

evenly spaced as in QDRL. To examine the impact of this on the inequality (
∑

i vi
N )2 − 1 − 1/(

(
∑

i vi
∑

i viz
2
i )

(
∑

i vizi)
2 − 1) >

0 in Proposition 4.2, simulation experiments are conducted. We use the function f(v1, · · · , vN ) = (
∑

i vi
N )2 − 1 −

1/(
(
∑

i vi
∑

i viz
2
τi

)

(
∑

i vizτi )
2 − 1) to examine this inequality, where vi > 1 and τi are sampled uniformly. In every trial, vi are

randomly sampled from [1,M ], repeating the process 100,000 times. The minimum values of f(v1, · · · , vN ) are shown in
the following Table 4 for varying values of N and M . The results indicate that the minimum of f is always greater than 0,
which demonstrates that the inequality holds in practice.

E.2. Weight V tuning experiments

E.3. Additional Atari results
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Table 3. The hyperparameters of QEM-DSAC and DSAC used in the MuJoCo experiments.

Hyperparameter Value

Policy network learning rate 0.0003
Quantile Value network learning rate 0.0003
Discount factor 0.99
Optimization Adam
Target smoothing 0.005
Batch size 256
Minimum steps before training 10000
Number of quantiles 32
Quantile fraction embedding size (IQN) 64
Weight matrix V (QEM-DSAC only) diag{1.2, · · · , 1.2︸ ︷︷ ︸

τ∈[0.9,1)

, · · · , 1, 1, · · · , 1.2, · · · , 1.2︸ ︷︷ ︸
τ∈(0,0.1]

}

Environment Temperature Parameter

Ant-v2 0.2
HalfCheetah-v2 0.2
Hopper-v2 0.2
Walker2d-v2 0.2
Swimmer-v2 0.2
Humanoid-v2 0.05

Table 4. Minimum of f .

Minimum of f M N

0.614 2 32
4.778 5 32
43.143 20 32
0.932 2 128
7.707 5 128
76.489 20 128
1.082 2 500
9.357 5 500
96.473 20 500
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Figure 10. Comparison of different weight v in QEM-DSAC and QEM-DQN experiments

Figure 11. Comparison of QEM-DQN and QR-DQN across 9 Atari games
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Figure 12. Comparison of IQEM-DQN and IQN across 9 Atari games

Figure 13. Comparison of QEM and DLTV across 3 hard-explored Atari games
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