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Abstract
The ability to plan actions on multiple levels of ab-
straction enables intelligent agents to solve com-
plex tasks effectively. However, learning the mod-
els for both low and high-level planning from
demonstrations has proven challenging, especially
with higher-dimensional inputs. To address this
issue, we propose to use reinforcement learning
to identify subgoals in expert trajectories by asso-
ciating the magnitude of the rewards with the pre-
dictability of low-level actions given the state and
the chosen subgoal. We build a vector-quantized
generative model for the identified subgoals to
perform subgoal-level planning. In experiments,
the algorithm excels at solving complex, long-
horizon decision-making problems outperforming
state-of-the-art. Because of its ability to plan, our
algorithm can find better trajectories than the ones
in the training set.

1. Introduction
Learning from expert demonstrations has proven successful
in many sequential decision-making settings that can be
modeled with Markov decision processes (Abbeel & Ng,
2004). Imitation learning (IL) is a technique for learning to
imitate the behavior of an expert by discovering the mapping
between states and actions without access to information
such as rewards (Osa et al., 2018). IL has proven useful in
aviation (Sammut et al., 1992), autonomous driving (Chen &
Krähenbühl, 2022), robotics (Kober & Peters, 2008), video
games (Vinyals et al., 2019) and even healthcare (Mayer
et al., 2008).

Recent advances in planning with learned dynamics models
have improved our ability to solve complex long-horizon
problems when interacting with the environment is possible
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(Hafner et al., 2022; Ye et al., 2021; Schrittwieser et al.,
2020). Learning models for planning in the offline setting
is possible as well (Argenson & Dulac-Arnold, 2021), but
these model-based reinforcement learning (RL) methods
assume access to environment rewards and are not directly
applicable to the IL setting. Hierarchical RL with decision-
making at multiple time scales has succeeded in tasks where
flat RL struggles (Hafner et al., 2022; Nachum et al., 2019).
A hierarchy should also be useful in the IL setting as many
real-world problems have a natural hierarchical structure
(Sharma et al., 2019b; Jing et al., 2021). Moreover, planning
with a hierarchy may shorten the effective planning horizon
and avoid compounding model errors also in the IL setting
(Nair & Finn, 2020).

We propose a method for hierarchical planning in the IL
setting that relies on segmenting expert trajectories into sub-
tasks without any high-level supervision. Unlike prior work
that assumes a fixed number of subgoals (Pertsch et al.,
2020b), fixed-length subtasks (Czechowski et al., 2021),
or trains multiple models to deal with subtasks of differ-
ent lengths (Zawalski et al., 2022), our algorithm segments
the trajectories into a variable number of variable-length
subtasks. We use the segmentation to learn a generative
model over the subgoals and a subgoal-conditioned low-
level policy to execute the subtasks. To perform high-level
planning, we use standard search methods such as Policy-
Guided Heuristic Search (Orseau & Lelis, 2021), Monte
Carlo Tree Search (Coulom, 2006), or A* (Hart et al., 1968)
in which our generative model is used for node expansion.
Our method outperforms strong search, hierarchical IL, and
offline RL algorithms at complex long-horizon decision-
making problems. Our experiments also show that our
algorithm can handle suboptimal expert trajectories and
self-improve. In summary, the main contributions of this
work are:

1. A novel yet conceptually simple RL approach for iden-
tifying subgoals from trajectories based on the predic-
tion performance of a low-level policy.

2. A VQVAE generative model for proposing subgoals
for planning with temporal abstraction.

3. In experiments, our generative model combined with
the learned low-level policy and a suitable high-level
search algorithm solves complex problems with sparse
rewards better and with fewer node expansions than
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state-of-the-art subgoal search and outperforms offline
RL algorithms.

2. Related Work
Our method combines hierarchical discrete planning with
imitation learning to solve complex planning problems. Hi-
erarchical planning allows shortening the effective planning
horizon, which is beneficial in long-horizon tasks (Pertsch
et al., 2020a; Nair & Finn, 2020). We use offline data to
learn a VQVAE (Van Den Oord et al., 2017) that generates
adaptive horizon subgoals and a low-level policy to reach the
subgoals for high-level planning. Previous work proposes a
wide variety of different approaches for learning hierarchi-
cal behavior from data, also in combination with planning.
However, according to our knowledge, our method is the
first method that segments a trajectory into a varying num-
ber of adaptive-length subtrajectories and uses the subgoals
to learn a generative model that can solve difficult long-term
decision-making problems in a discrete setting.

Hierarchical RL. Sutton et al. (1999) proposed using
options, a set of low-level policies with termination, for
decision-making at a higher level of temporal abstraction
than standard RL. Options can be learned end-to-end with-
out supervision (Bacon et al., 2016; Bagaria & Konidaris,
2020; Sharma et al., 2020) and applied to planning (Silver &
Ciosek, 2012). Representing the hierarchy as subgoals is an
alternative to options (Dayan & Hinton, 1992), which is the
approach we adopt in our work. Our work differs from these
methods in that we assume that we cannot interact with the
environment and must learn the representation from a given
dataset.

Hierarchical Continuous Planning. In hierarchical plan-
ning with continuous control, the Cross-Entropy Method
(CEM) is typically used. With continuous controls, search
methods with convergence guarantees such as MCTS
(Coulom, 2006), PHS∗ (Orseau & Lelis, 2021), or A∗ (Hart
et al., 1968), utilized with our method in the experiments,
cannot be directly applied. HiGoC (Li et al., 2022) uses
CEM for hierarchical planning in offline RL assuming ac-
cess to rewards. HVF (Nair & Finn, 2020) adds a hierarchi-
cal structure with predicted subgoal images to Visual Model
Predictive Control (Ebert et al., 2018) that plans in image
space using CEM. Visual hierarchical methods that rely on
identifying keyframes from trajectories using variational
inference and planning with CEM include TAP (Jayaraman
et al., 2019) and KeyIn (Pertsch et al., 2020b). However,
these methods assume a fixed number of keyframes in the
trajectories and have not been successfully applied to highly
complex reasoning tasks with sparse rewards. KeyIn also
uses an environment simulator for planning.

Goal-Conditioned Hierarchical Planning (Pertsch et al.,

2020a) produces plans, executed by a learned inverse dy-
namics model, in a high-dimensional state space in an offline
setting. SGT-PT does goal-based RL in a low-dimensional
setting by planning with subgoal trees (Jurgenson et al.,
2020). However, these models require an explicit goal state
and need to generate subgoals between the initial state and
the goal state, which can be a difficult learning problem in
complex long-horizon environments.

Hierarchical IL without Planning. Unlike our method,
many model-free hierarchical imitation learning methods
assume some degree of high-level supervision (Le et al.,
2018; Fox et al., 2019; Zhang et al., 2021). As an alternative
Daniel et al. (2016) infer compositional structure in data
discovering options with expectation-maximization. Com-
pILE (Kipf et al., 2019) uses VAEs to segment trajectories
into subtasks and the subtask encodings as subpolicies in
hierarchical RL. The model-free method Option-GAIL (Jing
et al., 2021) infers expert options from trajectories with an
EM-like approach. Zhang & Paschalidis (2021) directly
optimize a hierarchical policy with options by maximizing
the probability of expert trajectories with a hidden Markov
model. Directed-Info GAIL (Sharma et al., 2019a) is a vari-
ant of hierarchical inverse RL that learns latent policies by
modeling problems as directed graphs. The method seg-
ments expert trajectories into sub-tasks and learns structural
policies to solve different sub-tasks. OptionGAN (Hender-
son et al., 2018) learns to recover reward and policy options
simultaneously. Learning from Guided Play (LfGP) (Ablett
et al., 2021) uses scheduled auxiliary tasks to address lack-
ing exploration in adversarial online IL. Paul et al. (2019)
learn a generative model over subgoals from demonstrations
and use it to augment the reward function for RL fine-tuning.
However, these methods do not incorporate high-level plan-
ning mechanisms, which may make them unsuitable for
solving complex reasoning problems.

Offline RL. In offline RL, the agent’s objective is to learn
an optimal policy without interacting with the environment.
Instead, the agent has access to a dataset of transitions that
have been collected by a behavior policy πβ that can be
suboptimal. A significant benefit that offline RL has over
imitation learning is the ability to extract strong policies
even when the expert trajectories are suboptimal (Kumar
et al., 2022). Conservative Q-learning (Kumar et al., 2020)
is a model-free offline RL method that learns a lower bound
on the policy value, which helps avoid overestimating state
values. Decision Transformer (Chen et al., 2021) treats the
offline reinforcement learning task as a sequence modeling
problem, where the goal is to predict the action conditioned
on a desired reward. We use offline RL methods as baselines
in our experiments.

Hierarchical IL with Discrete Search. The closest works
to ours in search and planning are kSubS (Czechowski et al.,
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Figure 1: A visualization of our Hierarchical Imitation Planning with Search (HIPS) when learning to solve Sokoban. The
main components of our method are a detector dξ(sgk |si) that segments the trajectory into subgoals, a subgoal-conditioned
low-level policy πθ(ai|si, sgk), and the VQVAE, a generative model over the subgoals. The low-level policy and VQVAE
are used during evaluation for planning, whereas the detector is training-only.

2021) and AdaSubS (Zawalski et al., 2022). kSubS learns
an autoregressive model for generating subgoals given a set
of trajectories and plans with subgoal search. Unlike our
method, kSubS relies on the true environment dynamics for
low-level search to find fixed-length subtrajectories between
subgoals in some environments when combined with an
autoregressive CNN. AdaSubS replaces the low-level search
of kSubS with a learned policy and supports subtrajectories
of multiple hard-coded lengths by training an autoregressive
generative model for each length. Our approach relies on a
learned low-level policy and dynamics model and supports
varying-length segments. We show that it is possible to
train a single non-autoregressive adaptive generative model,
which makes generating subgoals more efficient.

3. Method
We consider goal-oriented, complex reasoning problems,
in which the agent’s objective is to act in the environment
to reach a terminal state. This corresponds to a Markov
decision process with a reward of one upon solving the task
and zero otherwise. We consider environments with fully
Markovian, discrete-valued states with full observability.
We work in the imitation learning (offline) setting: the agent
needs to learn to solve tasks only from available demonstra-
tions without the possibility to interact with the environment
before evaluation. We assume that there is a dataset D of
trajectories τ = {s0, a0, s1, . . . , aT−1, sT } collected by ex-
perts who know how to solve tasks, with only a reward of

one at the terminal state sT . The experts may not reach
the terminal states in the fastest possible way. Our method
should be able to combine parts of the dataset trajectories,
that is, perform stitching (Singh et al., 2020), to discover
efficient solutions.

We propose to solve the imitation learning task using an
agent which has a hierarchical structure with two levels. Our
agent learns a hierarchical representation of the available
trajectories by identifying likely experts’ subgoals in the
existing trajectories in an unsupervised manner. A low-level
policy for reaching these subgoals is learned simultaneously.
The identified subgoals are then used to train a discrete-code
generative model which can generate reasonable subgoals
to perform subgoal-level planning with standard search al-
gorithms such as PHS, MCTS, or A*. The low-level policy
executes the plan generated by the planner by sequentially
reaching the determined subgoals. Planning with search al-
lows our method to improve on suboptimal demonstrations.
A graphical representation of our method is shown in Fig. 1.
We call our method Hierarchical Imitation Planning with
Search (HIPS). Below we describe the main components
of the approach: the subgoal detector dξ(sgk+1

|sgk), the
subgoal conditioned low-level policy πθ(ai|si, sgk), and the
subgoal generative model p(sg|s).

3.1. Subgoal Identification

The goal of the subgoal identification phase is to learn a
high-level representation τ∗ = (sg1 , sg2 , . . . , sgM ) of each
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trajectory such that the trajectory is represented as a se-
quence of subgoals sgk . Each subgoal is a state from the
trajectory, that is ∀ksgk ∈ τ , and in particular, sgM = sT .
This is a time series segmentation problem where the solu-
tion has three desirable qualities: 1) we want the identified
subgoals sgk to be easy to reach by a trainable low-level
policy πθ(ai|si, sgk) which takes the subgoal sgk as input,
2) we want the subgoals to be easy to sample from a gen-
erative model, and 3) we want to segment the trajectories
into as few subgoals as possible to make planning over them
more efficient.

Successfully segmenting the trajectories into a variable num-
ber of variable-length segments turns out to be a highly non-
trivial task, as most prior work has focused on fixed-length
segments or a fixed number of segments. Our solution is to
formulate this segmentation task as an RL problem in which
we treat each trajectory from D as one episode for training,
and try to maximize the subgoal-conditioned log-probability
of the actions in the trajectory,

∑T−1
i=0 log πθ(ai|si, sgk),

and minimize the number of segments.

In each episode, the segmentation agent starts at the first
state s0 of the trajectory and selects the next subgoal state
sg1 according to the probabilities produced by its policy
dξ(sg1 |s0), which we call the detector. We limit the de-
tector to consider only the following H states as candidate
subgoals, that is sg1 is selected from s1, ..., sH . The agent
samples the next subgoal according to the computed proba-
bilities and gets the reward

R1 = r1 − α, (1)

where r1 is the log-probability that a low-level policy
πθ(ai|si, sg1) selects the sequence of actions a0, ..., ag1−1

in the first segment:

r1 =

g1−1∑
i=0

log πθ(ai|si, sg1)

and α is a penalty to prevent segmentation into too many sub-
trajectories. After that, the segmentation agent changes its
state to sg1 , selects the next subgoal according to dξ(sg2 |sg1)
and gets reward R2 computed using action log-probabilities
from the second segment, similarly to (1). The episode
continues like this until the end of the trajectory is reached.

The low-level policy πθ(ai|si, sgk) is considered as part of
the environment of the segmentation agent. It is updated
during training using goal-conditioned behavioral cloning
to minimize

Lθ = −Eτ∼D

M(τ)∑
k=1

−1+gk∑
i=gk−1

log πθ(ai|si, sgk), (2)

with subgoals sgk produced by the segmentation agent. Note
that the number of identified subgoals M(τ) may vary
across trajectories.

Algorithm 1 Segmenting Trajectories for Hierarchical IL
Input: A dataset of trajectories D, untrained low-level pol-
icy network πθ, detector dξ
Parameters: The parameters of the low-level policy net-
work, θ, detector network, ξ
Output: Trained low-level policy π, dataset D′ of subgoal
pairs {(sgk+1

, sgk)}
1: while πθ, dξ not converged do
2: Sample a trajectory τ .
3: Segment τ with dξ
4: Predict low-level actions with πθ conditioned on pro-

duced subgoals
5: Compute returns (Equation 1), update ξ with REIN-

FORCE
6: Compute the losses for πθ (Equation 2), update θ
7: end while
8: Create a dataset D′ of subgoal pairs {(sgk+1

, sgk)} by
sampling trajectories τ from D and segmenting them
with dξ.

9: return πθ,D′

Thus, the segmentation agent is trained by giving it a higher
reward when selected subgoals lead to more accurate action
predictions by the low-level policy. The low-level policy
is trained concurrently with the subgoals (high-level com-
mands) produced by the segmentation agent as input. We
train the segmentation agent using the policy gradient al-
gorithm REINFORCE with a learnable value function as
baseline (Williams, 1992).

We train the low-level policy and detector simultaneously,
and the associated non-stationarity might cause issues. In
practice, we observe that πθ(ai|si, sgk) converges rapidly
during the simultaneous training and its effect on the non-
stationarity is limited. Note that using a trainable detector
dξ(sgk+1

|sgk) may encourage subgoals that are easy to rec-
ognize among the states in the training trajectories. If that
is true, we hypothesize that such subgoals may be easy to
produce by a learned generative model. Our approach for
segmenting trajectories is summarized in Algorithm 1.

3.2. Generative Model for Subgoals

To plan in terms of the high-level subgoals, the agent needs
the ability to generate reasonable subgoals sg for each envi-
ronment state s. We do this by learning a generative model
p(sg|s) over the subgoals using the ones identified in the
trajectory segmentation step as training data. We implement
the model as a VQVAE with discrete latent codes, which is
inspired by the vector quantized models proposed by Ozair
et al. (2021). The VQVAE encoder takes a pair of states
(sg, s) as input and outputs a continuous latent code ze.
Then, the code is quantized by finding the nearest code ek
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from the codebook such that k = argminm ∥ze − em∥2.
The decoder uses the code ek to reconstruct the subgoal
state ŝg = gψ(ek, s). The loss minimized during training is

L = Lrec(ŝg, sg) + ∥[ze]− ek∥22 + β∥ze − [ek]∥22 , (3)

where Lrec is the reconstruction loss and [·] denotes the stop
gradient operation.

We train the VQVAE in two stages. In the pre-training stage,
we use random pairs of states (sj , si), i < j ≤ i+H from
the trajectories as inputs (sg, s). We skip the discretization
layer and only use the reconstruction loss Lrec(ŝg, sg) for
training the encoder and the decoder. After the pre-training
has converged, the complete VQVAE is trained by using
pairs of consecutive subgoals (sgk+1

, sgk) as input. We
initialize the codebook by running KMeans++ clustering
(Arthur & Vassilvitskii, 2007) on the first batches of encoder
outputs and using the cluster centers as the initial codes.
This training strategy was inspired by the strategy proposed
by Łańcucki et al. (2020). Finally, we learn a subgoal-
conditioned prior p(ek+1|sgk) over the latent codes.

Once the model has been trained, one can generate subgoals
conditioned on the current state s by sampling a code e from
the learned codebook and running it through the decoder
gψ(e, s). Note that the number of possible codes e is finite,
which means that the number of generated subgoals sg is
finite as well. Note also that distinct codes e may result in
the same generated subgoal sg , which is a desired behavior
when the size of the codebook is larger than the number of
reasonable subgoals for the considered state. The pseudo-
code for our VQVAE training is given in Algorithm 2 in the
Appendix I.

3.3. High-Level Planning with Search

We perform planning in the subgoal space, as it can be more
efficient and suitable for long-horizon planning than plan-
ning in the state space (Nair & Finn, 2020). We demonstrate
that our method is compatible with many different search
algorithms. Each search node represents a subgoal. When
a search node is expanded, possible next subgoals (child
nodes) are generated with the VQVAE. Given a codebook of
size K, there are K possible child nodes for each subgoal.
This can be interpreted as the latent codes encoding the
different branches of the search tree rather than the actual
subgoals, which helps us significantly constrain the code-
book sizes. To limit the size of the search tree, we remove
duplicates and unreachable subgoals. The reachability of a
proposed subgoal sg from state si is evaluated by using the
low-level policy πθ(ai|si, sg) trained in the segmentation
phase. We run the policy iteratively from state si and simu-
late state transitions by using the true dynamics or a learned
model fdyn(si+1|ai, si). If the subgoal sg is reached within
a specific number of steps, the subgoal is considered reach-

able, and a search node is created. In this work, we work
with discrete states and require an exact match between the
reached state and the subgoal. Using a suitable threshold
to evaluate the match is an alternative in the continuous
setting. We also learn a value function V (s) that predicts
the number of low-level steps necessary to reach the goal
(terminal state) and use it as a heuristic in planning.

The search methods we use are Greedy Best-First Search
(GBFS), Policy-Guided Heuristic Search (PHS*, Orseau
& Lelis, 2021), A* (Hart et al., 1968) and Monte-Carlo
Tree Search (MCTS, Coulom, 2006; Kocsis & Szepesvári,
2006). PHS* is dependent on a good policy, but when
the dataset contains suboptimal trajectories, learning a good
VQVAE prior to act as the policy might be impossible. Then,
policy-independent algorithms like A* or GBFS can be
superior. PHS* is also aimed at minimizing the search loss,
not finding a particularly high-quality solution. When that
is important, A* or MCTS can be superior to PHS*.

4. Experiments
In our experimental phase, we evaluate our method on com-
plex, sparse reward problems that require reasoning. We
compare our method to existing search, hierarchical imi-
tation learning, and offline RL methods. We also analyze
whether our RL-based approach for identifying subgoals is
superior to subgoals sampled at fixed intervals.

4.1. Environments

We evaluate our method in four environments that are all
complex reasoning domains (see Fig. 2). The first envi-
ronment is Sokoban, which is a PSPACE-complete puzzle
where the agent must push boxes onto goal locations (Cul-
berson, 1997). The moves are irreversible and one wrong
push can make the puzzle unsolvable. We use a 10 × 10
problem size with four boxes, the default configuration in
the earlier literature (Orseau & Lelis, 2021; Guez et al.,
2019; Racanière et al., 2017). We use a one-hot encoded
tensor with shape 10 × 10 × 4 as the observation space
(Orseau & Lelis, 2021).

The second environment is the sliding tile puzzle (STP)
which is a classic benchmark in the search literature (Korf,
1985). We use a puzzle size of 5× 5, and the objective is to
sort the number tiles in a specific descending order.

The third environment is Box-World (BW), where the agent
must collect colored keys and open color-matching locks
to recover more keys until it finally reaches a goal target
(Zambaldi et al., 2018). Keys can only be used once. If
the agent uses its key to open the wrong box, the game will
become unsolvable. Hence, careful planning and reasoning
about entities and their relations are required.
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Sokoban Sliding Tile Puzzle Box-World Traveling Salesman Problem

Figure 2: The environments we consider in the experiments. Sokoban: the task is to push yellow boxes onto the target
locations (marked with red squares). Sliding Tile Puzzle (STP): The task is to order the tiles from 1 to 24 by moving them.
Box-World: The agent must collect colored keys and open color-matching locks to recover more keys until it finally reaches
a goal target (marked with the $ sign). Traveling salesman problem (TSP): The agent (marked with the circle) has to visit all
cities (marked with squares) before returning to the start (marked with the black square). Visited cities are marked with
green squares and unvisited ones with red squares.

The fourth environment is a grid-based Traveling Salesman
Problem (TSP). The agent moves through the 2D grid to
visit all the cities before returning to the starting point (see
Fig. 2). The TSP is an NP-hard combinatorial optimization
problem. However, finding any solution to TSP is relatively
easy. Hence, grid-based TSP serves as an environment for
evaluating the solution quality.

In Sokoban, we collect a training set of 10340 trajectories
using gym-sokoban (Schrader, 2018). 10240 of the problem
instances have been solved using Curry (Shoham, 2021)
and 100 trajectories were collected by performing random
actions. The training set consists of 5100 trajectories in
STP and 22100 in Box-World, of which 5000 and 22000
were collected by solving the problem instances with a
subgoal-based A* algorithm (Hart et al., 1968) and 100
by performing random actions. In subgoal-based A*, we
generated subgoals progressively closer to the terminal state
procedurally and executed A* to reach these subgoals, as
solving complete problem instances with A* would have
been computationally very expensive due to the complexity
of the environments. In TSP, we do not limit the number of
demonstrations available to the agent but the demonstration
trajectories are highly suboptimal and generated by running
an agent that visits 25 cities in a 25 × 25 grid in random
order.

4.2. Agents

Our HIPS agent consists of the following neural net-
works: the detector dξ(sgk+1

|sgk), the low-level policy
πθ(ai|si, sgk), the VQVAE encoder fϕ(zek+1

|sgk+1
, sgk),

the VQVAE decoder gψ(sgk+1
|ek+1, sgk), the VQ-

VAE prior p(ek+1|sgk), the low-level dynamics model
fdyn(si+1|ai, si), and the distance function V (si). The en-
coder fϕ and detector dξ are not used during evaluation. All

Table 1: The overall success rates (%) of different algo-
rithms. The algorithms in the bottom part have access to the
true environment dynamics, and those in the upper part do
not.

Method Sokoban STP BW TSP

HIPS (ours) 97.5 94.7 55.7 100.0
HIPS-k (ours) 99.0 94.7 20.1 100.0
BC 18.7 82.5 41.1 28.8
CQL 3.3 11.7 6.0 33.6
DT 36.7 0.0 10.0 0.0
RIS 0.0 0.0 7.3 0.0
Option-GAIL 0.3 0.0 0.0 0.0
IQ-Learn 0.0 0.0 0.0 0.0

HIPS-env (ours) 98.1 94.6 99.6 100.0
AdaSubS 91.4 0.0 22.4
kSubS 90.5 93.3 87.9

networks are ResNet-based CNNs (He et al., 2016). The
decoder and low-level dynamics CNNs also contain FiLM
layers (Perez et al., 2018). We only use the 100 random tra-
jectories for training the low-level dynamics model. In Box-
World, the neural networks additionally use Deep Recurrent
Convolutions (Guez et al., 2019). All neural networks are
implemented with PyTorch (Paszke et al., 2019) and trained
with an Adam optimizer (Kingma & Ba, 2015). We evaluate
Sokoban and Box-World with PHS* as the high-level search
algorithm. Because of the suboptimality of the TSP trajec-
tories, learning a good VQVAE prior is difficult, and we use
A* in TSP. We also observed that GBFS is superior to PHS*
with very small search budgets in STP (see Appendix G).

We compare our agents to two main classes of baselines.
The first class of baselines is strong IL and offline RL algo-
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Table 2: The success rates (%, higher is better) of different search algorithms after performing N node expansions. In
Sokoban and Box-World, HIPS was evaluated with PHS*, with GBFS in STP, and with A* in TSP.

Sokoban Sliding Tile Puzzle Box-World Travelling Salesman

N 100 500 1000 100 500 1000 100 500 1000 100 500 1000

HIPS (ours) 88.5 94.7 95.9 89.8 91.8 92.2 55.7 55.7 55.7 100.0 100.0 100.0
HIPS-k (ours) 77.7 90.9 94.3 68.0 79.1 84.4 20.1 20.1 20.1 77.3 100.0 100.0

HIPS-env (ours) 88.5 94.9 96.4 90.2 92.1 92.6 99.6 99.6 99.6 100.0 100.0 100.0
HIPS-env-k (ours) 76.9 91.3 94.0 69.7 80.9 87.2 99.1 99.1 99.1 77.2 100.0 100.0
AdaSubS 82.2 88.8 90.2 0.0 0.0 0.0 1.2 12.2 20.8
kSubS 73.1 79.9 82.8 79.9 91.7 92.7 40.4 80.9 85.3
PHS* 1.8 76.1 91.1 0.0 0.0 0.0 25.8 93.8 94.0 0.0 0.0 0.0

rithms. We compare our agent to standard flat behavioral
cloning (BC), a powerful offline RL algorithm, Conserva-
tive Q-Learning (CQL, Kumar et al., 2020), and a strong IL
algorithm, Inverse Soft-Q Learning (IQ-Learn, Garg et al.,
2021). We ran IQ-Learn in the online mode, where it could
collect additional data during training. Furthermore, we in-
clude the Decision Transformer (DT, Chen et al., 2021), the
hierarchical IL algorithm Option-GAIL (Jing et al., 2021),
and the online goal-conditioned RL algorithm RIS (Chane-
Sane et al., 2021) in our experiments. For CQL, we use
the implementation of d3rlpy (Seno & Imai, 2021), and for
other algorithms, we use the open-sourced implementations
of the authors. For all methods that need rewards, we give
the agent a reward of one upon completing the task and 0
otherwise. We do not include the 100 random trajectories in
the dataset when evaluating imitation learning algorithms.

The second class of baselines is search methods that use
the true environment dynamics, a state-of-the-art low-level
search, Policy Guided Heuristic Search (PHS*, Orseau &
Lelis, 2021), and two subgoal-level search methods: kSubS
(Czechowski et al., 2021) and AdaSubS (Zawalski et al.,
2022). In PHS*, we observed that using a policy trained
with behavioral cloning works better than a policy trained
using the loss function proposed by Orseau & Lelis (2021)
and therefore, we use the BC policy in the experiments. We
evaluate kSubS and AdaSubS with the autoregressive CNNs
on all environments except Box-World because it would
have required significant changes to the existing implemen-
tation. Our method, HIPS, relies on a learned dynamics
model instead of the true dynamics. Hence, it solves a
more complex problem. We also train a more comparable
variant of our method, HIPS-env, that uses an environment
simulator for planning.

4.3. Results

We use the overall success rates reported in Table 1 as the
main evaluation metric in all environments. We evaluate the
performance of each seed and take the mean over the random

seeds. We use 10 random seeds to evaluate our method,
HIPS, at least five seeds per ablation, and at least three
seeds per baseline method. When evaluating the overall
success rate, the search algorithms may perform as many
expansions as necessary to find a solution to the problems.
The critical success factor for our model is the capacity of
the generative model to cover the complete search space
with the proposed subgoals.

Our method, HIPS, outperforms the baseline methods in all
four environments (see Table 1). The table also contains
an ablation of our method, HIPS-k, where we train the VQ-
VAE with subgoals sampled at fixed intervals as done in
AdaSubS and kSubS instead of using the detector network
(see Appendices G and J for more details). Eliminating
the detector leads to a clear drop in performance in one of
the four environments. HIPS-k is superior to kSubS in all
environments despite solving a more difficult problem than
kSubS. HIPS-k must learn the environment dynamics and
a low-level policy, whereas kSubS uses a low-level search
with the environment dynamics. HIPS-k also is superior
to AdaSubS which also uses a low-level policy instead of
search. The sparse reward structure and the required reason-
ing capabilities prove to be very difficult for the model-free
baseline IL and offline RL methods that do not rely on
planning, which is why they struggle with all four tasks.

HIPS-env performs equally to HIPS, except in Box-World,
where the search exploits the inaccuracies of the dynam-
ics model. However, HIPS was evaluated using open-loop
planning, where one plan was generated, executed, and
evaluated. If the agent is allowed to re-plan when the dy-
namics model deviates from the environment and fine-tune
the model with the new transition, the performance would
most likely increase. The issues with the dynamics model
do not prevent HIPS from outperforming the baselines.

Letting a search algorithm perform unlimited expansions
is unrealistic in most real-world applications. Following
Czechowski et al. (2021), we evaluate the percentage of test
problems solved after N node expansions. The results are
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Figure 3: An example of a high-level plan (a sequence of subgoals) found by HIPS in Sokoban.

Figure 4: Examples of subgoals proposed for the current state (marked with blue boundaries) in TSP.

Table 3: The success rates of different algorithms (higher
is better) and the average number of steps (lower is better)
needed to solve TSP.

Method Success rate (%) Avg. steps

HIPS-PHS* (ours) 100.0 305.9
HIPS-MCTS (ours) 100.0 213.0
HIPS-A* (ours) 100.0 168.2
kSubS 87.9 268.2
CQL 33.6 336.9
BC 28.8 339.3
AdaSubS 22.4 338.9

Teacher 100.0 336.5
Oracle MCTS 100.0 199.9
Christofides 100.0 139.0

given in Table 2. The benefits of using RL to detect sub-
frames become clear, as HIPS outperforms the fixed-length
ablation HIPS-k in Sokoban, Sliding Tile Puzzle (STP), and
Travelling Salesman Problem (TSP). HIPS-env outperforms
the baseline methods in Sokoban and TSP and is superior to
kSubS on STP when the search budget is small. PHS* can
solve STP and TSP, but cannot make enough progress in
1000 node expansions. AdaSubS cannot solve STP because
it struggles to reliably reach the generated subgoals with its
low-level policy. Therefore, kSubS outperforms AdaSubS.

TSP is a problem where generating a successful trajectory is
easy, but finding an efficient solution is much more difficult.
Hence, we evaluate the solution lengths of the methods. We
also compare the search algorithms PHS*, MCTS, and A*
when used with HIPS. Given the amount of data, we per-
form VQVAE pre-training using pairs of subgoals instead of

random pairs. In addition to the baselines capable of solving
TSP, the performance of our method is compared to a known
approximation algorithm Christofides (Christofides, 1976),
to the training dataset (Teacher), and to an Oracle variant of
subgoal-level MCTS where we replace the VQVAE genera-
tor with procedurally generated subgoals, where the agent
is visiting one of the remaining unvisited cities.

The solution lengths found in TSP are reported in Table 3.
HIPS finds better solutions than the baselines in TSP. HIPS
with PHS* can only slightly improve the training data,
whereas HIPS-MCTS with subgoal-level rollouts can find
significantly better solutions than the ones in the training
dataset. It is inferior to the approximation algorithm, but the
gap to the Oracle MCTS is small (around 6 %), which shows
that the subgoals generated by the VQVAE are competitive
with the procedurally generated subgoals. Finally, HIPS-A*
is the best-performing agent, and the gap to Christofides
is around 20 %. Note that our learned heuristic is non-
admissible, and we trade off optimality for speed. kSubS
can also improve on the training dataset, but it is uncom-
petitive against HIPS-MCTS and HIPS-A*. CQL, BC, and
AdaSubS can make some progress on the task and solve
some instances, but they cannot improve the solution lengths.
A problem of model-free baseline methods is the inability to
commit to going to a specific city, which highlights the bene-
fits of goal-conditioned learning. Complete results including
the standard errors can be found in Appendix F.

4.4. Visualizations

We visualize the subgoals and plans generated by our agent
to gain further understanding into the agent. An example of
a high-level plan found by HIPS for Sokoban is visualized
in Fig. 3. Fig. 4 illustrates the subgoals proposed by the
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HIPS generative model for an intermediate state in TSP. The
model suggests visiting one of the unvisited cities as the
next subgoal, which is a very reasonable planning strategy.
More visualizations of the high-level trajectories discovered
by our agent and the subgoals proposed by the generative
model can be found in Appendix J.

5. Conclusion
We present a novel method for hierarchical IL that can ad-
dress difficult reasoning problems that require long-term
decision-making. Our approach relies on identifying sub-
goals from trajectories and generating new subgoals for
search-based planning on new problem instances. Our
method outperforms powerful search, IL, and offline RL
baselines on the benchmark tasks. Our experiments demon-
strate that our VQVAE is a suitable generative model for
subgoal-level search and using a detector to discover sub-
goals has benefits over subtrajectories of fixed length.

We see many promising directions for addressing the limita-
tions of our method and improving it. Quantifying the model
uncertainty could help prevent the search from exploiting
the learned models. Combining discrete high-level planning
with continuous low-level execution could make it possi-
ble to solve real-world tasks with robotics. Learning more
abstract goals not formulated in the observation space to
improve the efficiency of high-level planning and allowing
the agent to ignore task-irrelevant sensory inputs to handle
real-world vision tasks are also left for future work. Com-
bining low-level and high-level searches would improve the
solution rate. Applying the learned high-level models in
an RL setting to improve exploration or in a curriculum
learning to solve progressively harder problem instances are
also promising directions for future research.
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A. Ethical Considerations and Societal Impact
We do not see any immediate negative societal impacts associated with our work. We do not train our models with any
sensitive or private data, and our model is not directly applicable to, for instance, real-world decision-making concerning
humans. However, we cannot exclude the method being applied to something harmful that is difficult to foresee, for instance,
military purposes.

B. Infrastructure
We trained our models on an HPC cluster using one NVIDIA GPU and multiple CPU workers per run. Most runs were
performed on V100 GPUs with 32 GB of GDDR SDRAM. For some of the runs, the GPU was an A100, a K100, or a P80.
We used 6 CPU workers per GPU with 10 GB of RAM per worker and each worker running on one core. By reducing the
number of workers, it is possible to train and evaluate the agent on a workstation with Intel i7-8086K, 16 GB of RAM, and
an NVIDIA GeForce GTX 1080 Ti GPU with 10 GB of video memory.

C. Tried Ideas
During the development of the algorithm, we evaluated the different components, and we found that many of the elements
in the presented solution are extremely important for achieving good performance. We tried replacing the detector with
a straight-through estimator but found it very difficult to train, and it did not achieve good results. We also tried Implicit
Maximum Likelihood Estimation (I-MLE, Niepert et al., 2021) for trajectory segmentation, but it failed to learn meaningful
representations. We found that training the detector with PPO (Schulman et al., 2017) instead of REINFORCE did not
have a significant effect on the performance in our initial tests, so we chose REINFORCE for the conceptual simplicity.
Having fixed-length subgoals performed inferior to the detector, as the ablation (see Appendix G) study shows, and training
a non-goal conditioned low-level policy did not work with our algorithm either. We also tried replacing the VQVAE with an
autoregressive model, but it was not computationally feasible. A GAN-based generative model was difficult to train and
could not easily generate subgoals that were dissimilar enough.

We attempted not evaluating reachability during planning. However, even though the generative model has been successfully
trained, the fact that we use the same number of codes regardless of the state causes the generator to create some unreachable
subgoals in states where the number of realistic subgoals is smaller than the number of latent codes or some latent code
corresponds to, for instance, movement in an impossible direction. Given the limited number of trajectories, we do not
have enough data to train the VQVAE prior to accurately reflect this. Hence, reachability must also be addressed during
planning. We tried training a reachability network to achieve this, but the performance was not good enough in practice to
rely solely on it. However, using a verifier to support the reachability evaluation as in (Zawalski et al., 2022) could improve
the performance of our method.
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D. Impact of Value Function and VQVAE Prior
We ran an ablation study in Sokoban to analyze the value function and the VQVAE prior. When the algorithm uses both the
value function and the prior, the natural choice for the search algorithm is PHS*. When there is no value function, PHS*
cannot be used, and the most similar suitable alternative to PHS* is LevinTS (Orseau et al., 2018). With a value function
but without a prior, neither LevinTS nor PHS* cannot be used, so we chose GBFS as a representative search algorithm.
The results for the number of puzzles solved after N expansions are plotted in Table 4. The results of the ablation show
that HIPS-PHS* is superior to HIPS-GBFS, indicating that learning a VQVAE prior is beneficial for solving Sokoban.
The comparison between HIPS-PHS* and HIPS-LevinTS shows that value functions are important for quickly solving
the puzzles, as the inferior performance after 100 node expansions shows, but the impact at 500 expansions and after that
is smaller. Overall having both a value function and the VQVAE prior increases performance in Sokoban, but using one
suffices for achieving a practically functional algorithm.

Table 4: The success rates (%, higher is better) of HIPS (with PHS*), HIPS-GBFS and HIPS-LevinTS algorithms after
performing N node expansions in Sokoban, including the standard errors of the means of the runs.

Sokoban

N 50 100 200 500 1000

HIPS-PHS* 82.9 ± 0.9 88.5 ± 0.7 92.1 ± 0.7 94.7 ± 0.7 95.9 ± 0.5
HIPS-GBFS 74.4 ± 1.6 78.4 ± 1.5 82.9 ± 1.4 86.5 ± 1.4 89.7 ± 1.2
HIPS-LevinTS 63.8 ± 3.6 78.6 ± 2.3 87.0 ± 1.4 93.7 ± 0.6 95.6 ± 0.3

E. Generalization Ability
To analyze the generalizability of our method, we took the HIPS and HIPS-env agents trained on Sokoban levels with 4
boxes and evaluated them on Sokoban levels with 5 boxes without any fine-tuning, and the results in Table 5 show that the
performance stays good and our method has some generalization capability:

Table 5: The success rates (%, higher is better) of HIPS and HIPS-env after performing N node expansions in Sokoban and
the final success rate (∞), including the standard errors of the means of the runs.

N 50 100 200 500 1000 ∞
HIPS, 4 boxes 82.9 ± 0.9 88.5 ± 0.7 92.1 ± 0.7 94.7 ± 0.7 95.9 ± 0.5 97.5 ± 0.6
HIPS, 5 boxes 67.5 ± 2.1 79.4 ± 1.2 86.0 ± 1.3 91.5 ± 0.8 93.3 ± 0.6 97.1 ± 0.5

HIPS-env, 4 boxes 82.8 ± 0.6 88.5 ± 0.4 91.5 ± 0.4 94.9 ± 0.3 96.4 ± 0.3 98.1 ± 0.4
HIPS-env, 5 boxes 68.6 ± 1.7 77.3 ± 0.9 83.9 ± 1.0 89.9 ± 0.8 92.8 ± 0.8 97.3 ± 0.7
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F. Complete Results

Table 6: The overall success rates (%) of different algorithms including the standard errors of the means of the runs. The
algorithms in the bottom part have access to the true environment dynamics, and those in the upper part do not.

Method Sokoban STP BW TSP

HIPS (ours) 97.5 ± 0.6 94.7 ± 1.0 55.7 ± 2.4 100.0 ± 0.0
HIPS-k (ours) 99.0 ± 0.3 94.7 ± 1.5 20.1 ± 1.4 100.0 ± 0.0
BC 18.7 ± 0.7 82.5 ± 2.2 41.1 ± 1.6 28.8 ± 8.5
CQL 3.3 ± 0.4 11.7 ± 3.3 6.0 ± 1.0 33.6 ± 2.6
DT 36.7 ± 1.2 0.0 ± 0.0 10.0 ± 2.3 0.0 ± 0.0
RIS 0.0 ± 0.0 0.0 ± 0.0 7.3 ± 2.2 0.0 ± 0.0
Option-GAIL 0.3 ± 0.3 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
IQ-Learn 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

HIPS-env (ours) 98.1 ± 0.4 94.6 ± 1.0 99.6 ± 0.2 100.0 ± 0.0
AdaSubS 91.4 ± 0.5 0.0 ± 0.0 22.4 ± 2.3
kSubS 90.5 ± 1.0 93.3 ± 0.9 87.9 ± 3.8

Table 7: The interquartile means of the success rates (%, higher is better) of HIPS after performing N node expansions, and
the final success rate (∞ expansions)

N 50 100 200 500 1000 ∞
Sokoban 82.9 88.9 92.8 95.3 96.2 98.1
Sliding Tile Puzzle 79.1 90.6 92.0 92.7 93.1 94.6

N 20 50 100 500 1000 ∞
Box-World 56.1 56.2 56.2 56.2 56.2 56.2
Travelling Salesman 58.1 100.0 100.0 100.0 100.0 100.0

Table 8: The success rates of different algorithms (higher is better) and the average number of steps (lower is better) needed
to solve TSP. The table also includes the standard errors of the means of the runs.

Method Success rate (%) Avg. steps

HIPS-PHS* (ours) 100.0 ± 0.0 305.9 ± 5.4
HIPS-MCTS (ours) 100.0 ± 0.0 213.0 ± 4.4
HIPS-A* (ours) 100.0 ± 0.0 168.2 ± 3.6
kSubS 87.9 ± 3.8 268.2 ± 12.0
CQL 33.6 ± 2.6 336.9 ± 4.1
BC 28.8 ± 8.5 339.3 ± 3.9
AdaSubS 22.4 ± 2.3 338.9 ± 18.6

Teacher 100.0 ± 0.0 336.5 ± 0.4
Oracle MCTS 100.0 ± 0.0 199.9 ± 0.7
Christofides 100.0 ± 0.0 139.0 ± 0.1
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Table 9: The mean success rates (%, higher is better) of different search algorithms after performing N node expansions,
including the standard errors of the means of the runs.

Sokoban

N 50 100 200 500 1000

HIPS (ours) 82.9 ± 0.9 88.5 ± 0.7 92.1 ± 0.7 94.7 ± 0.7 95.9 ± 0.5
HIPS-k (ours) 63.1 ± 1.7 77.7 ± 1.0 85.8 ± 0.6 90.9 ± 0.6 94.3 ± 0.0

HIPS-env (ours) 82.8 ± 0.6 88.5 ± 0.4 91.5 ± 0.4 94.9 ± 0.3 96.4 ± 0.3
HIPS-env-k (ours) 64.3 ± 1.2 76.9 ± 0.8 86.3 ± 1.1 91.3 ± 1.5 94.0 ± 1.6
AdaSubS 76.4 ± 0.5 82.2 ± 0.5 85.7 ± 0.6 88.8 ± 0.4 90.2 ± 0.5
kSubS 69.1 ± 2.2 73.1 ± 2.2 76.3 ± 1.9 79.9 ± 2.2 82.8 ± 1.3
PHS* 0.3 ± 0.0 1.8 ± 0.1 14.9 ± 0.3 76.1 ± 0.5 91.1 ± 0.3

Sliding Tile Puzzle

N 50 100 200 500 1000

HIPS (ours) 78.7 ± 2.5 89.8 ± 1.9 91.1 ± 1.7 91.8 ± 1.7 92.2 ± 1.7
HIPS-k (ours) 10.3 ± 1.2 68.0 ± 3.9 76.0 ± 3.8 79.1 ± 3.5 84.4 ± 1.6

HIPS-env (ours) 78.6 ± 2.6 90.2 ± 1.8 91.4 ± 1.6 92.1 ± 1.7 92.6 ± 1.6
HIPS-env-k (ours) 10.5 ± 1.8 69.7 ± 2.2 76.6 ± 3.0 80.9 ± 2.9 87.2 ± 2.3
AdaSubS 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
kSubS 0.7 ± 0.2 79.9 ± 3.1 89.8 ± 1.5 91.7 ± 1.3 92.7 ± 1.1
PHS* 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Box-World

N 20 50 100 500 1000

HIPS (ours) 55.6 ± 2.3 55.7 ± 2.3 55.7 ± 2.3 55.7 ± 2.3 55.7 ± 2.3
HIPS-k (ours) 20.1 ± 1.3 20.1 ± 1.3 20.1 ± 1.3 20.1 ± 1.3 20.1 ± 1.3

HIPS-env (ours) 99.3 ± 0.2 99.6 ± 0.2 99.6 ± 0.2 99.6 ± 0.2 99.6 ± 0.2
HIPS-env-k (ours) 89.1 ± 1.7 98.9 ± 0.1 99.1 ± 0.2 99.1 ± 0.2 99.1 ± 0.2
PHS* 0.6 ± 0.2 5.4 ± 0.5 25.8 ± 1.0 93.8 ± 0.7 94.0 ± 0.7

Travelling Salesman

N 20 50 100 500 1000

HIPS (ours) 52.9 ± 13.3 99.9 ± 0.1 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
HIPS-k (ours) 0.0 ± 0.0 12.5 ± 1.4 77.3 ± 1.8 100.0 ± 0.0 100.0 ± 0.0

HIPS-env (ours) 54.3 ± 13.7 99.9 ± 0.1 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
HIPS-env-k (ours) 0.0 ± 0.0 12.9 ± 1.7 77.2 ± 1.6 100.0 ± 0.0 100.0 ± 0.0
AdaSubS 0.0 ± 0.0 0.0 ± 0.0 1.2 ± 0.6 12.2 ± 1.6 20.8 ± 1.2
kSubS 0.0 ± 0.0 1.5 ± 0.6 40.4 ± 11.1 80.9 ± 6.8 85.3 ± 5.3
PHS* 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
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G. Ablation: HIPS-k

Table 10: The success rates (%, higher is better) of different variants of HIPS in STP after performing N node expansions

N 100 500 1000 ∞
HIPS-PHS* 55.8 ± 4.5 94.6 ± 0.8 94.8 ± 0.9 94.8 ± 0.9
HIPS-GBFS 89.8 ± 1.9 91.8 ± 1.7 92.2 ± 1.7 94.7 ± 1.0

HIPS-GBFS-3 N/A N/A N/A N/A
HIPS-GBFS-5 68.1 ± 3.9 79.1 ± 3.2 84.4 ± 1.4 94.7 ± 1.4
HIPS-GBFS-7 84.3 ± 0.4 85.6 ± 0.5 86.1 ± 0.6 86.4 ± 0.5
HIPS-GBFS-9 76.4 ± 0.8 76.4 ± 0.8 76.4 ± 0.8 76.4 ± 0.8

When we replace the detector dξ with subgoals sampled at fixed intervals, we re-train the low-level policy πθ to achieve
these subgoals. The discrete VQVAE, including the prior, are also re-trained using the new pairs of consecutive subgoals.
The distance between the subgoals can, in this case, be controlled by a hyperparameter k. In Sokoban, STP, and Box-World,
we used ten as the subgoal horizon and five as k (see Table 12). In TSP, selecting a segment length half of the subgoal
horizon proved to be too much, so we let k be equal to four, the default segment length used in kSubS (Czechowski et al.,
2021).

We performed a small ablation study in STP to analyze the impact of the value of k. The results are shown in Table 10. We
see that given a large research budget, PHS* is slightly superior to GBFS, but GBFS outperforms PHS* given a small search
budget. HIPS-GBFS-3 doesn’t converge because the value function is noisy. Using a larger k allows the value function to
”leap over” the noise, as observed by Czechowski et al. (2021). We see that using a larger k improves the percentage of
puzzles solved after a smaller number of expansions, but hurts the overall solution rate, as the search space is explored less
systematically. However, using a k too large is also harmful as training the generative model becomes difficult. Furthermore,
no value of k was able to outperform HIPS-GBFS, which highlights the benefits of our method that can propose subgoals at
different distances adaptively in all environments (see Figure 5).

Sokoban STP

Box-World TSP

Figure 5: Lengths of the subtrajectories to reach subgoals proposed by VQVAE when it has been trained using the detector
dξ.
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H. Search Methods
Greedy Best-First Search (GBFS) is a priority queue -based search algorithm, where the evaluation function has been
defined as

φ(n) = h(n),

where h(n) is a heuristic that predicts the distance to the goal. The node that is predicted to be the closest to the goal is
expanded.

Policy-Guided Heuristic Search (PHS) is a policy-guided search algorithm (Orseau & Lelis, 2021) which uses a priority
queue with the evaluation function

φ(n) = η(n)g(n)/π(n),

where g(n) is the path cost from the root to node n, π(n) is the node policy (the probability of selecting node n) and η(n) is
a heuristic factor whose purpose is to estimate the cost to the nearest descendant solution node. We use a variant of PHS,
PHS* where the heuristic factor has been defined as

ηh(n) =
1 + h(n)/g(n)

π(n)h(n)/g(n)
. (4)

A* is a heuristic-based search algorithm that tries to find the shortest path to the goal (Hart et al., 1968). It is based on a
priority queue with the evaluation function

φ(n) = g(n) + h(n),

where g(n) is the distance from the root to node n and h(n) is a heuristic that predicts the distance from the node n to the
goal. If the heuristic h(n) never overestimates the true distance to the goal, the heuristic is said to be admissible, and A* is
guaranteed to find the shortest path.

Monte Carlo Tree Search (MCTS) is a tree-based search method based on expanding a search tree by performing Monte
Carlo evaluations. The selection of nodes for expansion is biased towards promising nodes to enable MCTS to focus on the
relevant parts of the search tree. The most commonly used method is UCT, where nodes with higher rewards and lower
visitation frequency get the highest priority (Ozair et al., 2021; Kocsis & Szepesvári, 2006).

Listing 1 contains the pseudo-code describing our high-level search with a priority queue. Subroutine phs cost calculates
the value of the heuristic factor η(n) for PHS* as in (4). Subroutine extract plan collects the subgoals on the path to
the leaf node (terminal state) from the root (initial state). Subroutine get distances takes as input the current state and
the proposed children and tries to reach them using the subgoal-conditioned low-level policy πθ. The distances between the
state and the children are recovered simultaneously.
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Listing 1 PyTorch pseudocode for the high-level search
1 def get_priority(node, alg):
2 if alg == ’phs_star’:
3 return phs_cost(node.log_p, node.value, node.cum_dist)
4 elif alg == ’gbfs’:
5 return node.value
6 elif alg == ’a_star’:
7 return node.value + node.cum_dist
8

9

10 def init_node(node, alg, vqvae, policy, value_func, dynamics):
11 node.value = value_func(node.state)
12 node.child_states = vqvae.generate(node.state)
13 node.distances_to_children = get_distances(
14 node.state,
15 node.child_states,
16 policy,
17 dynamics)
18 node.filter_unreachable_children() # Uses the distances computed
19 node.children_log_probs = vqvae.prior(node.state)
20 node.priority = get_priority(node, alg)
21

22

23 def search(state, alg, vqvae, policy, value_func, dynamics):
24 n_nodes = 0
25 queue = PriorityQueue() # Create empty priority queue
26 expanded = Set() # Create empty set
27 node = Node(
28 state,
29 parent=None,
30 cum_dist=0,
31 log_p=0,
32 )
33 init_node(node, alg, vqvae, policy, value_func, dynamics)
34 queue.insert(node)
35

36 while len(queue) > 0:
37 node = queue.pop()
38 expanded.add(node.state)
39 n_nodes += 1
40 for c_state, c_dist, c_log_p in zip(node.child_states,
41 node.distances_to_children,
42 node.children_log_probs):
43 if c_state in expanded:
44 continue
45 new_node = Node(
46 c_state,
47 parent=node,
48 cum_dist=node.cum_dist + c_dist,
49 log_p=node.log_p + c_log_p,
50 )
51 if is_terminal(c_state):
52 return extract_plan(new_node), n_nodes # Success
53 init_node(new_node, alg, vqvae, policy, value_func, dynamics)
54 queue.insert(new_node)
55 return None, n_nodes # Search failed, queue empty
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I. VQVAE Training

Algorithm 2 Training VQVAE for Subgoal Generation
Input: A dataset of trajectories D, a dataset of subgoal pairs D′, untrained encoder fϕ, decoder gψ , codebook {ek}
Parameters: The codebook {ek} and the parameters of the encoder, ϕ, and the decoder, ψ
Output: Trained encoder fϕ, decoder gψ , codebook {ek}.

1: while fϕ and gψ not converged do
2: Sample a trajectory τ from D
3: For each state si ∈ τ , uniformly sample a pair sj from (si+1, . . . , sH)
4: Reconstruct sj without discretization: ŝj = gψ(fϕ(sj , si), si)
5: Compute reconstruction loss Lrec(ŝj , sj)
6: Update ϕ, ψ to minimize reconstruction loss
7: end while
8: Sample subsequent subgoal pairs sgj , sgj−1 from D′ and encode them with the encoder: zj = fϕ(sgj , sgj−1)
9: Initialize {ek} as the clusters centers obtained by running KMeans++ on the encodings {zj}

10: while {ek}, fϕ and gψ not converged do
11: Sample a batch of subsequent subgoal pairs sgj , sgj−1

from D′

12: Reconstruct subgoals with VQVAE

zj = fϕ(sgj , sgj−1
)

kj = argmin
m

∥zj − em∥2

ŝgj = gψ(ekj , sgj−1)

13: Compute the loss in (3)
14: Update ϕ, ψ, {ek} to minimize the loss computed in Step 13.
15: end while
16: return fϕ, gψ , {ek}

J. Hyperparameters and Visualizations

Table 11: General hyperparameters of our method.

Parameter Value

Learning rate for dynamics 2 · 10−4

Learning rate for π, d, V 1 · 10−3

Learning rate for VQVAE 2 · 10−4

Discount rate for REINFORCE 0.99

Table 12: Environment-specific hyperparameters of our method.

Parameter Explanation Sokoban STP Box-World TSP

α Subgoal penalty 0.1 0.1 0.1 0.05
β Beta for VQVAE 0.1 0.1 0.1 0
c Exploration constant for MCTS – – – 0.1
D Codebook dimensionality 128 128 128 64
H Subgoal horizon 10 10 10 50
K VQVAE codebook size 64 64 64 32
k Segment length w/o REINFORCE 5 5 5 4
(N,D) DRC size – – (3, 3) –
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(a) A subgoal-level plan.

(b) Examples of generated subgoals.

Figure 6: Visualization of the solution found by HIPS for a Sokoban problem. (a): A subgoal-level plan found by HIPS.
(b): Subgoals proposed for an intermediate state (marked with blue boundaries). The subgoals have been sorted according to
the prior probabilities. The subgoal selected for the final plan is marked with red boundaries.

21



Hierarchical Imitation Learning with Vector Quantized Models

(a) A subgoal-level plan.

(b) Examples of generated subgoals.

Figure 7: Visualization of the solution found by HIPS for an STP problem. (a): A subgoal-level plan found by HIPS.
(b): Subgoals proposed for intermediate states (marked with blue boundaries). The subgoals have been sorted according to
the prior probabilities. The subgoal selected for the final plan is marked with red boundaries. Red color is used to highlight
the tiles which are different from the reference state (the previous state in (a) and the current state in (b)).
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(a) A subgoal-level plan.

(b) Examples of generated subgoals.

Figure 8: Visualization of the solution found by HIPS for a BW problem. (a): A subgoal-level plan found by HIPS.
(b): Subgoals proposed for an intermediate state (marked with blue boundaries). The subgoals have been sorted according to
the prior probabilities. The subgoal selected for the final plan is marked with red boundaries.
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(a) A subgoal-level plan.

(b) Examples of generated subgoals.

Figure 9: Visualization of the solution found by HIPS for a TSP instance. (a): A subgoal-level plan found by HIPS.
(b): Subgoals proposed for an intermediate state (marked with blue boundaries).
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