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Abstract
Denoising diffusion models (DDMs) have led to
staggering performance leaps in image genera-
tion, editing and restoration. However, existing
DDMs use very large datasets for training. Here,
we introduce a framework for training a DDM
on a single image. Our method, which we coin
SinDDM, learns the internal statistics of the train-
ing image by using a multi-scale diffusion process.
To drive the reverse diffusion process, we use a
fully-convolutional light-weight denoiser, which
is conditioned on both the noise level and the
scale. This architecture allows generating samples
of arbitrary dimensions, in a coarse-to-fine man-
ner. As we illustrate, SinDDM generates diverse
high-quality samples, and is applicable in a wide
array of tasks, including style transfer and har-
monization. Furthermore, it can be easily guided
by external supervision. Particularly, we demon-
strate text-guided generation from a single image
using a pre-trained CLIP model. Results, code
and the Supplementary Material are available on
the project’s webpage.

1. Introduction
Image synthesis and manipulation has attracted a surge of
research in recent years, leading to impressive progress in
e.g. generative adversarial network (GAN) based methods
(Goodfellow et al., 2020) and denoising diffusion models
(DDMs) (Sohl-Dickstein et al., 2015). State-of-the art gener-
ative models now reach high levels of photo-realism (Sauer
et al., 2022; Ho et al., 2020; Dhariwal & Nichol, 2021), can
treat arbitrary image dimensions (Chai et al., 2022), can be
used to solve a variety of image restoration and manipula-
tion tasks (Saharia et al., 2022c;a; Meng et al., 2021), and
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can even be conditioned on complex text prompts (Nichol
et al., 2022; Ramesh et al., 2022; Rombach et al., 2022;
Saharia et al., 2022b). However, this impressive progress
has often gone hand-in-hand with the reliance on increased
amounts of training data. Unfortunately, in many cases
relevant training examples are scarce.

Recent works proposed to learn a generative model from
a single natural image. The first unconditional model pro-
posed for this task was SinGAN (Shaham et al., 2019). This
model uses a pyramid of patch-GANs to learn the distribu-
tion of small patches in several image scales. Once trained
on a single image, SinGAN can randomly generate similar
images, as well as solve a variety of tasks, including edit-
ing, style transfer and super-resolution. Follow up works
improved SinGAN’s training process (Hinz et al., 2021), ex-
tended it to other domains (e.g. audio (Greshler et al., 2021),
video (Gur et al., 2020), 3D shapes (Wu & Zheng, 2022)),
and used alternative learning frameworks (energy-based
models (Zheng et al., 2021), nearest-neighbor patch search
(Granot et al., 2022), enforcement of deep feature statistics
via test-time optimization (Elnekave & Weiss, 2022)).

In this paper, we propose a different approach for learn-
ing a generative model from a single image. Specifically,
we combine the multi-scale approach of SinGAN with the
power of DDMs to devise SinDDM, a hierarchical DDM
that can be trained on a single image. At the core of our
method is a fully-convolutional denoiser, which we train on
various scales of the image, each corrupted by various levels
of noise. We take the denoiser’s receptive field to be small
so that it only captures the statistics of the fine details within
each scale. At test time, we use this denoiser in a coarse-
to-fine manner, which allows generating diverse random
samples of arbitrary dimensions. As illustrated in Fig. 1,
SinDDM synthesizes high quality images while exhibiting
good generalization capabilities. For example, certain small
structures in the skylines in row 1 and the angles of some
of the mountains in row 2 do not exist in the corresponding
training images, yet they look realistic.

Similarly to existing single-image generative models,
SinDDM can be used for image-manipulation tasks (see
Sec. 4). However, perhaps its most appealing property is
that it can be easily guided by external supervision. For
example, in Fig. 2 we demonstrate text guidance for con-
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Training image Random samples from a single example

Figure 1. Single image diffusion model. We introduce a framework for training an unconditional denoising diffusion model (DDM) on a
single image. Our single-image DDM (SinDDM) can generate novel high-quality variants of the training image at arbitrary dimensions by
creating new configurations of both large objects and small-scale structures (e.g. the shape of the skyline in row 1 and the angles formed
by the distant mountains in row 2). SinDDM can be used for many tasks, including text-guided generation from a single image (Fig. 2).

trolling the content and style of samples. These effects are
achieved by employing a pretrained CLIP model (Radford
et al., 2021). Other guidance options are illustrated in Sec. 4.

2. Related Work
Single image generative models Single-image generative
models perform image synthesis and manipulation by cap-
turing the internal distribution of patches or deep features
within a single image. Shocher et al. (2019) presented a
single-image conditional GAN model for the task of image
retargeting. In the context of unconditional models, Sin-
GAN (Shaham et al., 2019) is a hierarchical GAN model that
can generate high quality, diverse samples based on a single
training image. SinGAN’s training process was improved by
Hinz et al. (2021). Several works replaced SinGAN’s GAN
framework by other techniques for learning distributions.
These include energy-based models (Zheng et al., 2021),
nearest-neighbor patch search (Granot et al., 2022), and
enforcement of deep-feature distributions via test-time op-
timization of a sliced-Wasserstein loss (Elnekave & Weiss,
2022). Here, we follow the hierarchical approach of Sin-
GAN, but using denoising diffusion probabilistic models
(Ho et al., 2020). This enables us to generate high quality
images, while supporting guided image generation as in
(Dhariwal & Nichol, 2021). We note that two concurrent
works suggested frameworks for training a diffusion model
on a single signal (Nikankin et al., 2023; Wang et al., 2022).

Those techniques differ from ours, and particularly, do not
fully explore the possibilities of controlling such internal
models via text-guidance.

Diffusion models First presented by Sohl-Dickstein et al.
(2015), diffusion models sample from a distribution by re-
versing a gradual noising (diffusion) process. This method
recently achieved impressive results in image generation
(Dhariwal & Nichol, 2021; Ho et al., 2020) as well as in var-
ious other tasks, including super-resolution (Saharia et al.,
2022c), image-to-image translation (Saharia et al., 2022a)
and image editing (Meng et al., 2021). These works es-
tablished diffusion models as the current state-of-the-art in
image generation and manipulation.

Text-guided image manipulation and generation Text-
guided image generation has recently attracted consider-
able interest with the emergence of models like DALL-E 2
(Ramesh et al., 2022), stable diffusion (Rombach et al.,
2022) and Imagen (Saharia et al., 2022b), which was even
extended to video generation (Ho et al., 2022). Besides
generation, those techniques have also been found useful
for image editing tasks, such as manipulating a set of user
provided images using text (Gal et al., 2022). One pop-
ular way to guide image generation models by text is by
using a pre-trained CLIP model (Radford et al., 2021). In
SinDDM we adopt this approach and combine CLIP’s exter-
nal knowledge with our internal model to guide the image
generation process by text prompts. Recently, Text2Live
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Figure 2. Text guided generation. SinDDM can generate images conditioned on text prompts in several different manners. We can
control the contents of the generated samples across the entire image (top) or within a user-prescribed region of interest (middle). We can
also control the style of the generated samples (bottom). All effects are achieved by modifying only the sampling process, without the
need for any architectural changes or for training or tuning the model (see Sec. 4).

(Bar-Tal et al., 2022) described an approach for text-guided
image editing by training on a single image. This method
uses a pre-trained CLIP model to guide the generation of
an edit layer that is later combined with the original image.
Thus, as opposed to our goal here, Text2Live can only add
details on top of the original image; it cannot change the en-
tire scene (e.g. changing object configurations) or generate
images whose dimensions differ from the original image.

3. Method
Our goal is to train an unconditional generative model to
capture the internal statistics of structures at multiple scales
within a single training image. Similarly to existing DDM
frameworks, we employ a diffusion process, which gradu-
ally turns the image into white Gaussian noise. However,
here we do it in a hierarchical manner that combines both
blur and noise.

3.1. Forward Multi-Scale Diffusion

As illustrated in the right pane of Fig. 3, we start by con-
structing a pyramid {xN−1, . . . , x0} with a scale factor
of r > 0 (black frames). Each xs is obtained by down-
sampling x by rN−1−s (so that xN−1 is the training image
x itself). We also construct a blurry version of the pyra-
mid (orange frames), {x̃N−1, . . . , x̃0}, where x̃0 = x0 and
x̃s = (xs−1)↑r for every s ≥ 1. We use bicubic interpola-
tion for both the upsampling and downsampling operations.
We use those two pyramids to define a multi-scale diffusion
process over (s, t) ∈ {0, . . . , N − 1} × {0, . . . , T} as

xs
t =
√
ᾱt (γ

s
t x̃

s + (1− γs
t )x

s) +
√
1− ᾱt ϵ , (1)

Algorithm 1 SinDDM Training
1: repeat
2: s ∼ Uniform({0, ..., N − 1})
3: t ∼ Uniform({0, ..., T})
4: ϵ ∼ N (0, I)
5: if s = 0 then
6: xs,mix

t = xs

7: else
8: xs,mix

t = γs
t x

s−1 ↑r +(1− γs
t )x

s

9: end if
10: Update model ϵθ by taking gradient descent step on
11: ∇θ

∥∥∥ϵ− ϵθ(
√
ᾱtx

s,mix
t +

√
1− ᾱtϵ, t, s)

∥∥∥
1

12: until converged

where ϵ ∼ N (0, I). As t grows from 0 to T , γs
t increases

monotonically from 0 to 1 while ᾱt decreases monotonically
from 1 to 0 (see Appendix D for details). Therefore, as t
increases, xs

t becomes both noisier and blurrier. The reason
for using a blurry version of the image in each scale, is
associated with the sampling process, as we explain next.

3.2. Reverse Multi-Scale Diffusion

To sample an image, we attempt to reverse the diffusion
process, as shown in the left pane of Fig. 3. Specifically, we
start at scale s = 0, where we follow the standard DDM ap-
proach (starting with random noise at t = T and gradually
removing noise until a clean sample is obtained at t = 0).
We then upsample the generated image to scale s = 1, com-
bine it with noise again, and run a reverse diffusion process
to form a sample at this scale. The process is repeated until
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Figure 3. Multi-scale diffusion. Our forward multi-scale diffusion process (right) is constructed from down-sampled versions of the
training image (black frames), as well as their blurry versions (orange frames). In each scale, we construct a sequence of images that are
linear combinations of the original image in that scale, its blurry version, and noise. Sampling via the reverse multi-scale diffusion (left),
starts from pure noise at the coarsest scale. In each scale, our model gradually removes the noise until reaching a clean image, which is
then upsampled and combined with noise to start the process again in the next scale.

Embedding Block

time scale

OutputInput

Figure 4. SinDDM architecture. We use a fully-convolutional
model with four blocks, having a total receptive field of 35× 35.
The model is conditioned on both the timestep t and the scale s.

reaching the finest scale, s = N − 1.

Note that since we upsample the image between scales, we
naturally add blur. This implies that our model needs to
remove not only noise, but also blur. This is the reason
that during the forward process, we also gradually blur the
image in addition to adding noise (for every scale s > 0).
This forces the model to learn to remove both noise and blur
from the initial image. The importance of adding blur is
illustrated in Fig. 5.

The reverse diffusion process is driven by a single fully
convolutional model, which is trained to predict xs

0 based
on xs

t (in practice it predicts the noise ϵ from which we
extract a prediction of xs

0). The training procedure is shown
in Alg. 1. For sampling, we adopt the DDIM formulation
(Song et al., 2021), as detailed in Alg. 2, where for scale
s = 0 we use the noise variance of DDPM (Ho et al., 2020)
and for s > 0 we use σs

t = 0 except when applying text-
guidance, in which case we also use the DDPM scheduler.
Note that for s = 0, γs

t = 0 since there is no blur to remove.

Algorithm 2 SinDDM Sampling
1: for s = 0, . . . , N − 1 do
2: if s = 0 then
3: x0

T [0] ∼ N (0, I)
4: end if
5: for t = T [s], . . . , 1 do
6: xs,mix

t =
xs
t−

√
1−ᾱt ϵθ(x

s
t ,t,s)√

ᾱt

7: x̂s
0 =

xs,mix
t −γs

t x̃
s

1−γs
t

8: xs,mix
t−1 = γs

t−1x̃
s + (1− γs

t−1)x̂
s
0

9: z ∼ N (0, I)

10: xs
t−1 =

√
ᾱt−1x

s,mix
t−1

11: +
√

1− ᾱt−1 − (σs
t )

2 xs
t−

√
ᾱtx

s,mix
t√

1−ᾱt
+ σs

t z

12: end for
13: if s < N − 1 then
14: x̃s+1 = x̂s

0 ↑r
15: z ∼ N (0, I)
16: xs+1

T [s+1] =
√
ᾱT [s+1]x̃

s+1 +
√
1− ᾱT [s+1]z

17: end if
18: end for

More details about the γs
t schedule in regular sampling and

in text-guided sampling are provided in appendices D and E.

As shown in Fig. 4, our model is conditioned on both the
timestep t and the scale s. We found this to improve gen-
eration quality and training time compared to a separate
diffusion model for each scale. Our model comprises 4 con-
volutional blocks, with a total receptive field of 35×35. The
number of scales is chosen such that the area covered by the
receptive field is as close as possible to 40% of the area of
the entire image at scale 0. In most of our experiments, this
rule led to 4 or 5 scales. The small receptive field forces the
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Without Blur

With Blur

Figure 5. Training with and without blur. For each training image, we compare samples from two models trained on that image, one
trained without blur and one trained with blur. The images sampled from the model that was trained without blur lack fine details such as
the pyramids’ texture and the stars in the night sky.

model to learn the statistics of small structures and prevents
memorization of the entire image. For every scale s > 0, we
start the reverse diffusion at timestep T [s] ≤ T , which we
set such that (1− ᾱT [s])/ᾱT [s] is proportional to the MSE
between xs and x̃s. This ensures that the amount of noise
added to the upsampled image from the previous scale is
proportional to the amount of missing details at that scale
(see derivation in App. D). For s = 0, we start at T [0] = T .

As opposed to external DDMs, our model uses only convolu-
tions and GeLU nonlinearities, without any self-attention or
downsampling/upsampling operations. The timestep t and
scale s are injected to the model using a joint embedding,
similarly to the one used to inject only t in (Ho et al., 2020)
(see App. B). The model has a total of 1.1× 106 parameters
and its training on a 250× 200 image takes around 7 hours
on an A6000 GPU. Sampling of a single image takes a few
seconds. In each training iteration we sample a batch of
noisy images from the same randomly chosen scale s but
from several randomly chosen timesteps t. We train the
model for 120,000 steps using the Adam optimizer with its
default parameters (see App. C for further details).

3.3. Guided Generation

To guide the generation by a user-provided loss, we follow
the general approach of Dhariwal & Nichol (2021), where
the gradient of the loss is added to the predicted clean image
in each diffusion step. Here we describe two ways to guide
SinDDM generations, one by choosing a region of interest
(ROI) in the original image and its desired location in the
generated image and one by providing a text prompt.

Generation guided by image ROIs In image-guided gen-
eration, the user chooses regions from the training image
and selects where they should appear in the generated image.
The rest of the image is generated randomly, but coherently
with the constrained regions (see Fig. 10). To achieve this
effect, we use a simple L2 loss. Specifically, let xs

target be

an image containing the desired contents within the target
ROIs and let ms be a binary mask indicating the ROIs, both
down-sampled to scale s. Then we define our ROI guidance
loss to be LROI = ∥ms⊙ (x̂s

0−xs
target)∥2. Taking a gradient

step on this loss boils down to replacing the current estimate
of the clean image, x̂s

0, by a linear interpolation between x̂s
0

and xs
target. Namely,

x̂s
0 ← ms ⊙ ((1− η)x̂s

0 + ηxs
target) + (1−ms)⊙ x̂s

0, (2)

where the step size η determines the strength of the effect.
We use this guidance in all scales except for the finest one.

Text guided style For text-guidance, we use a pre-trained
CLIP model. Specifically, in each diffusion step we use
CLIP to measure the discrepancy between our current gen-
erated image, x̂s

0, and the user’s text prompt. We do this
by augmenting both the image and the text prompt, as de-
scribed in (Bar-Tal et al., 2022) (with some additional text
augmentations described in App. E.2), and feeding all aug-
mentations into CLIP’s image encoder and text encoder.
Our loss, LCLIP, is the average cosine distance between the
augmented text embeddings and the augmented image em-
beddings. We update x̂s

0 based on the gradient of LCLIP.
At the finest scale s = N − 1, we finish the generation
process with three diffusion steps without CLIP guidance.
Those steps smoothly blend the objects created by CLIP
into the generated image. For style guidance, we provide a
text prompt of the form “X style” (e.g. “Van Gogh style”)
and apply CLIP guidance only at the finest scale. To con-
trol the style of random samples, all pyramid levels before
that scale generate a random sample as usual and are thus
responsible for the global structure of the final sample. To
control the style of the training image itself we inject that
image directly to the finest scale, so that the modifications
imposed by our denoiser and by the CLIP guidance only
affect the fine textures. This leads to a style-transfer effect,
but where the style is dictated by a text prompt rather than
by an example style image (see Fig. S9 in the appendix).
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Figure 6. Image generation guided by text. SinDDM can generate diverse samples guided by a text prompt. The strength of the effect is
controlled by the strength parameter η (blue), while the spatial extent of the affected regions is controlled by the fill factor f (orange).

Text guided contents To control contents using text, we
use the same approach as above, but apply the guidance at
all scales except s = 0. We also constrain the spatial extent
of the affected regions by zeroing out all gradients outside
a mask ms. This mask is calculated in the first step CLIP
is applied, and is kept fixed for all remaining timesteps
and scales (it is upsampled when going up the scales of
the pyramid). The mask is taken to be the set of pixels
containing the top f -quantile of the values of ∇x̂s

0
LCLIP,

where f ∈ [0, 1] is a user-prescribed fill factor. We use an
adaptive step size strategy, where we update x̂s

0 as

x̂s
0 ← η δ ms ⊙∇LCLIP + (1−ms)⊙ x̂s

0. (3)

Here δ = ∥x̂s
0 ⊙ m∥/∥∇LCLIP ⊙ m∥ and η ∈ [0, 1] is a

strength parameter that controls the intensity of the CLIP
guidance. We also use a momentum on top of this update
scheme (see App. E.1). We let the user choose both the
fill factor f and the strength η to achieve the desired effect.
Their influence is demonstrated in Fig. 6.

4. Experiments
We trained SinDDM on images of different styles, including
urban and nature scenery as well as art paintings. We now
illustrate its utility in a variety of tasks.

Unconditional image generation As illustrated in Figs. 1,
7, S1 and S15, SinDDM is able to generate diverse, high
quality samples of arbitrary dimensions. Close inspection re-
veals that SinDDM often generalizes beyond the structures
appearing in the training image. For example, in Fig. 1,
2nd row, the angles of many of the mountains in the left-
most sample do not appear in the training image. Table 1
reports a quantitative comparison to other single image gen-
erative models on all 12 images appearing in this paper (see
App. G.1 for more comparisons). Each measure in the table

is computed over 50 samples per training image (we report
mean and standard deviation). As can be seen, the diversity
of our generated samples (both pixel standard-deviation and
average LPIPS distance between pairs of samples) is higher
than the competing methods. At the same time, our samples
have comparable quality to those of the competing meth-
ods, as ranked by the no-reference image quality measures
NIQE (Mittal et al., 2012), NIMA (Talebi & Milanfar, 2018)
and MUSIQ (Ke et al., 2021). However, the single-image
FID (SIFID) (Shaham et al., 2019) achieved by SinDDM
is higher than the competing methods. This is indicative of
the fact that SinDDM generalizes beyond the structures in
the training image, so that the internal deep-feature distribu-
tions are not preserved. Yet, as we show next, this does not
prevent from obtaining highly satisfactory results in a wide
range of image manipulation tasks.

Generation with text guided contents Figures 2, 6, S2
present text guided content generation examples. As can be
seen, our approach allows obtaining quite significant effects,
while also remaining loyal to the internal statistics of the
training image. In Figs. 2 and S3 we illustrate editing of
local regions via text. In this setting, the user chooses a ROI
and a corresponding text prompt. These are used as inputs
to CLIP’s image and text encoders, and the gradients of the
CLIP loss are used to modify only the ROI. In Figs. 8 and
S16-S18 we compare our text-guided content generation
method to Text2Live (Bar-Tal et al., 2022) and to Stable
Diffusion (Rombach et al., 2022). Text2Live is an image
editing method that can operate on any image (or video) us-
ing a text prompt. It does so by synthesizing an edit layer on
top of the original image. The edit is guided by four differ-
ent text prompts that describe the input image, the edit layer,
the edited image and the ROI. This method cannot move
objects, modify scene arrangement, or generate images of
different aspect ratios. Our model is guided only by one text
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GPNNConSinGAN SinDDM (ours)Input SinGAN

Figure 7. Unconditional image generation comparisons. We qualitatively compare our model to other single image generative models on
unconditional image generation. As can be seen, our results are at least on par with the other models in terms of quality and generalization.

Training Image SinDDM (ours)Stable Diffusion Text2Live

Figure 8. Image generation and editing guided by text. We compare SinDDM to Text2Live and stable diffusion (using the approach of
SDEdit). Unlike these methods, SinDDM is not constrained to the aspect ratio or scene arrangement of the training image. We used the
text prompts “stars constellations in the night sky” and “volcano eruption” for the 1st and 2nd rows, respectively. Text2Live requires four
different text prompt as inputs. For the pyramid image, we supplied it with the additional texts “volcano erupt from the pyramids in the
desert” to describe the full edited image, “pyramids in the desert” to describe the input image and “the pyramids” to describe the ROI in
the input image (see App. G.2 for the text prompts we used for the night sky image). For stable diffusion we tried many strength values
and chose the best result (see App. G.2 for other strengths).
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Table 1. Quantitative evaluation for unconditional generation. Best and second best results are marked in blue, with and without boldface
fonts respectively.

Type Metric SinGAN ConSinGAN GPNN SinDDM

Diversity Pixel Div. ↑ 0.28±0.15 0.25±0.2 0.25±0.2 0.32±0.13
LPIPS Div. ↑ 0.18±0.07 0.15±0.07 0.1±0.07 0.21±0.08

No reference IQA
NIQE ↓ 7.3±1.5 6.4±0.9 7.7±2.2 7.1±1.9
NIMA ↑ 5.6±0.5 5.5±0.6 5.6±0.7 5.8±0.6

MUSIQ ↑ 43±9.1 45.6±9 52.8±10.9 48±9.8
Patch Distribution SIFID ↓ 0.15±0.05 0.09±0.05 0.05±0.04 0.34±0.3

"Van Gogh style" "Picasso style" "Cubism style"Training image "Monet style"

Figure 9. Generation with text guided style. SinDDM can generate samples in a prescribed style using CLIP guidance at the finest scale.

prompt that describes the desired result and can generate
diverse samples of arbitrary dimensions. As for Stable Dif-
fusion, we use the “image-to-image” option implemented
in their source code. In this setting, the image is embedded
into a latent space and injected with noise (controlled by a
strength parameter). The denoising process is guided by the
user’s text prompt, similarly to the framework described in
SDEdit (Meng et al., 2021) (see App. G.2).

Generation with text guided style Figures 2, 9, S4-S8
present examples of image generation with a text-guided
style. Here, the guidance generates not only the textures and
brush strokes typical of the desired style, it also generates
fine semantic details that are commonly seen in paintings
of this style (e.g. typical scenery, sunflowers in “Van Gogh
style”). Figure S9 shows text-guided style transfer.

Generation guided by image ROIs Figures 10 and S10
show examples for generation guided by image ROIs. Here,
the goal is to generate samples while forcing one or more
ROIs to contain pre-determined content. As we illustrate,

this particularly allows to perform outpainting. This is done
by letting the ROI be the entire training image and gen-
erating samples with a larger aspect ratio (e.g. twice as
large horizontally). SinDDM generates diverse contents
outside the constrained ROIs that coherently stitch with the
constrained regions.

Style transfer Similarly to SinGAN, SinDDM can also
be used for image manipulation tasks, by relying on the fact
that it can only sample images with the internal statistics of
the training image. Particularly, to perform style transfer, we
train our model on the style image and inject a downsampled
version of the content image into some scale s ≤ N − 1
and timestep t ≤ T (by adding noise with the appropriate
intensity). We then run the reverse multi-scale diffusion
process to obtain a sample. At the injection scale, we use
γs
t = 0 for all t and match the histogram of the content

image to that of the style image. As can be seen in Figs. 11
and S24, this leads to samples with the global structure of the
content image and the textures of the style image. We show
a qualitative comparison with SinIR (Yoo & Chen, 2021), a
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Figure 10. Image guided generation in ROIs. Our model is able to generate images with user-prescribed contents within several ROIs.
The rest of the image is generated randomly but coherently around those constraints.The first row exemplifies enforcing two identical
ROIs. The second row demonstrates selecting the entire image as the ROI and a wider target image, resulting in an outpainting effect.

Style Content

SinDDM (ours)SinIR

Figure 11. Style transfer. SinDDM can transfer the style of the
training image to a content image, while preserving the global
structure of the content image.

state-of-the-art internal method for image manipulation.

Harmonization Here, the goal is to realistically blend a
pasted object into a background image. To achieve this ef-
fect, we train SinDDM on the background image and inject
a downsampled version of the naively pasted composite into
some scale s and timestep t (with γs

t = 0 at the injection
scale). As can be seen in Fig. 12 and S25, SinDDM blends
the pasted object into the background, while tailoring its
texture to match the background. Here, our result is less
blurry than SinIR’s.

5. Conclusion
We presented SinDDM, a single image generative model that
combines the power and flexibility of DDMs with the multi-
scale structure of SinGAN. SinDDM can be easily guided by
external sources. Particularly, we demonstrated text-guided

Training image Content

SinDDM (ours)SinIR

Figure 12. Harmonization. Injecting an image with a naively
pasted object into an intermediate scale and timestep, matches the
object’s appearance to the training image.

image generation, where we controlled the contents and
style of the samples. A limitation of our method is that it is
often less confined to the internal statistics of the training
image than other single image generative techniques. While
this can be advantageous in tasks like style transfer (see the
colors in Fig. 11), in unconditional image generation, this
can lead to over- or under-representation of objects in the
image (see App. H).
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