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Abstract
We present a novel framework to regularize Neu-
ral Radiance Field (NeRF) in a few-shot setting
with a geometric consistency regularization. The
proposed approach leverages a rendered depth
map at unobserved viewpoint to warp sparse input
images to the unobserved viewpoint and impose
them as pseudo ground truths to facilitate learning
of NeRF. By encouraging such geometric consis-
tency at a feature-level instead of using pixel-level
reconstruction loss, we regularize the NeRF at se-
mantic and structural levels while allowing for
modeling view-dependent radiance to account for
color variations across viewpoints. We also pro-
pose an effective method to filter out erroneous
warped solutions, along with training strategies to
stabilize training during optimization. We show
that our model achieves competitive results com-
pared to state-of-the-art few-shot NeRF models.

1. Introduction
Recently, representing a 3D scene as a Neural Radiance
Field (NeRF) (Mildenhall et al., 2020) has proven to be
a powerful approach for novel view synthesis and 3D re-
construction (Barron et al., 2021; Jain et al., 2021; Chen
et al., 2021). However, despite its impressive performance,
NeRF requires a large number of densely, well distributed
calibrated images for optimization, which limits its appli-
cability. When limited to sparse observations, NeRF easily
overfits to the input view images and is unable to reconstruct
correct geometry (Zhang et al., 2020).

The task that directly addresses this problem, also called a
few-shot NeRF, aims to optimize high-fidelity neural radi-
ance field in such sparse scenarios (Jain et al., 2021; Kim
et al., 2022; Niemeyer et al., 2022), countering the undercon-
strained nature of said problem by introducing additional
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priors. Specifically, previous works attempted to solve this
by utilizing a semantic feature (Jain et al., 2021), entropy
minimization (Kim et al., 2022), SfM depth priors (Deng
et al., 2022) or normalizing flow (Niemeyer et al., 2022),
but their necessity for handcrafted methods or inability to
extract local and fine structures limited their performance.

To alleviate these issues, we propose a novel regulariza-
tion technique that enforces a geometric consistency across
different views with a depth-guided warping and a geometry-
aware consistency modeling. Based on these, we propose
a novel framework, called Neural Radiance Fields with
Geometric Consistency (GeCoNeRF), for training neural
radiance fields in a few-shot setting. Our key insight is
that we can leverage a depth rendered by NeRF to warp
sparse input images to novel viewpoints, and use them as
pseudo ground truths to facilitate learning of fine details and
high-frequency features by NeRF. By encouraging images
rendered at novel views to model warped images with a con-
sistency loss, we can successfully constrain both geometry
and appearance to boost fidelity of neural radiance fields
even in highly under-constrained few-shot setting. Taking
into consideration non-Lambertian nature of given datasets,
we propose feature-level regularization loss that captures
contextual and structural information while largely ignor-
ing individual color differences. We also present a method
to generate a consistency mask to prevent inconsistently
warped information from harming the network. Finally, we
provide coarse-to-fine training strategies for sampling and
pose generation to stabilize optimization of the model.

We demonstrate the effectiveness of our method on synthetic
and real datasets (Mildenhall et al., 2020; Jensen et al.,
2014). Experimental results prove the effectiveness of the
proposed model over the latest methods for few-shot novel
view synthesis.

2. Related Work
Neural radiance fields. Among the most notable of ap-
proaches regarding the task of novel view synthesis and 3D
reconstruction is Neural Radiance Field (NeRF) (Milden-
hall et al., 2020), where photo-realistic images are rendered
by a simple MLP architecture. Sparked by its impres-
sive performance, a variety of follow-up studies based on
its continuous neural volumetric representation have been
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Figure 1. Illustration of our consistency modeling pipeline for few-shot NeRF. Given an image Ii and estimated depth map Dj of j-th
unobserved viewpoint, we warp the image Ii to that novel viewpoint as Ii→j by establishing geometric correspondence between two
viewpoints. Using the warped image as a pseudo ground truth, we cause rendered image of unseen viewpoint, Ij , to be consistent in
structure with warped image, with occlusions taken into consideration.

prompted, including dynamic and deformable scenes (Park
et al., 2021; Tretschk et al., 2021; Pumarola et al., 2021;
Attal et al., 2021), real-time rendering (Yu et al., 2021a; Hed-
man et al., 2021; Reiser et al., 2021; Müller et al., 2022),
self-calibration (Jeong et al., 2021) and generative model-
ing (Schwarz et al., 2020; Niemeyer & Geiger, 2021; Xu
et al., 2021; Deng et al., 2021). Mip-NeRF (Barron et al.,
2021) eliminates aliasing artifacts by adopting cone tracing
with a single multi-scale MLP. In general, most of these
works have difficulty in optimizing a single scene with a
few number of images.

Few-shot NeRF. One key limitation of NeRF is its ne-
cessity for large number of calibrated views in optimizing
neural radiance fields. Some recent works attempted to ad-
dress this in the case where only few observed views of the
scene are available. PixelNeRF(Yu et al., 2021b) conditions
a NeRF on image inputs using local CNN features. This
conditional model allows the network to learn scene priors
across multiple scenes. Stereo radiance fields (Chibane et al.,
2021) use local CNN features from input views for scene
geometry reasoning and MVSNeRF (Chen et al., 2021) com-
bines cost volume with neural radiance field for improved
performance. However, pre-training with multi-view images
of numerous scenes are essential for these methods for them
to learn reconstruction priors.

Other works attempt different approach of optimizing NeRF
from scratch in few-shot settings: DSNeRF (Deng et al.,
2022) makes use of depth supervision to network to optimize
a scene with few images. (Roessle et al., 2021) also utilizes
sparse depth prior by extending into dense depth map by

depth completion module to guide network optimization.
On the other hand, there are models that tackle depth prior-
free few-shot optimization: DietNeRF (Jain et al., 2021) en-
forces semantic consistency between rendered images from
unseen view and seen images. RegNeRF (Niemeyer et al.,
2022) regularizes the geometry and appearance of patches
rendered from unobserved viewpoints. InfoNeRF (Kim
et al., 2022) constrains the density’s entropy in each ray and
ensures consistency across rays in the neighborhood. While
these methods constrain NeRF into learning more realis-
tic geometry, their regularizations are limited in that they
require extensive dataset-specific fine-tuning and that they
only provide regularization at a global level in a generalized
manner.

Self-supervised photometric consistency. In the field of
multiview stereo depth estimation, consistency modeling
between stereo images and their warped images has been
widely used for self-supervised training (Godard et al., 2017;
Garg et al., 2016; Zhou et al., 2017) In weakly supervised
or unsupervised settings (Huang et al., 2021; Khot et al.,
2019) where there is lack of ground truth depth information,
consistency modeling between images with geometry-based
warping is used as a supervisory signal (Zhou et al., 2017;
Huang et al., 2021; Khot et al., 2019) formulating depth
learning as a form of reconstruction task between view-
points.

Recently, methods utilizing self-supervised photometric
consistency have been introduced to NeRF: concurrent
works such as NeuralWarp (Darmon et al., 2022), Struct-
NeRF (Chen et al., 2022) and Geo-NeuS (Fu et al., 2022)
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model photometric consistency between source images and
their warped counterparts from other source viewpoints to
improve their reconstruction quality. However, these meth-
ods only discuss dense view input scenarios where pose
differences between source viewpoints are small, and do not
address their behavior in few-shot settings - where sharp
performance drop is expected due to scarcity of input view-
points and increased difficulty in the warping procedure ow-
ing to large viewpoint differences and heavy self-occlusions.
RapNeRF (Zhang et al., 2022) uses geometry-based repro-
jection method to enhance view extrapolation performance,
and (Bortolon et al., 2022) uses depth rendered by NeRF
as correspondence information for view-morphing module
to synthesize images between input viewpoints. However,
these methods do not take occlusions into account, and their
pixel-level photometric consistency modeling comes with
downside of suppressing view-dependent specular effects.

3. Preliminaries
Neural Radiance Field (NeRF) (Mildenhall et al., 2020)
represents a scene as a continuous function fθ represented
by a neural network with parameters θ, where the points are
sampled along rays, represented by r, for evaluation by the
neural network. Typically, the sampled coordinates x ∈ R3

and view direction d ∈ R2 are transformed by a positional
encoding γ into Fourier features (Tancik et al., 2020) that
facilitates learning of high-frequency details. The neural
network fθ takes as input the transformed coordinate γ(x)
and viewing directions γ(d), and outputs a view-invariant
density value σ ∈ R and a view-dependent color value
c ∈ R3 such that

{c, σ} = fθ(γ(x), γ(d)). (1)

With a ray parameterized as rp(t) = o + tdp from the
camera center o through the pixel p along direction dp, the
color is rendered as follows:

C(rp) =

∫ tf

tn

T (t)σ(rp(t))c(rp(t),dp)dt, (2)

where C(rp) is a predicted color value at the pixel p along
the ray rp(t) from tn to tf , and T (t) denotes an accumulated
transmittance along the ray from tn to t , defined such that

T (t) = exp

(
−
∫ t

tn

σ(rp(s))ds

)
. (3)

To optimize the networks fθ, the observation loss Lobs en-
forces the rendered color values to be consistent with ground
truth color value C ′(r):

Lobs =
∑
rp∈R

∥C ′(rp)− C(rp)∥22, (4)

whereR represents a batch of training rays.

4. Methodology
4.1. Motivation and Overview

Let us denote an image at i-th viewpoint as Ii. In a few-shot
novel view synthesis, NeRF is given only a few images {Ii}
for i ∈ {1, ..., N} with small N , e.g., N = 3 or N = 5.
The objective of novel view synthesis is to train the mapping
function fθ that can be used to recover an image Ij at j-th
unseen or novel viewpoint. As we described above, in the
few-shot setting, given {Ii}, directly optimizing fθ solely
with the pixel-wise reconstruction loss Lobs is limited by
its inability to model view-dependent effects, and thus an
additional regularization to encourage the network fθ to
generate consistent appearance and geometry is required.

To achieve this, we propose a novel regularization technique
to enforce a geometric consistency across different views
with depth-guided warping and consistency modeling. We
focus on the fact that NeRF (Mildenhall et al., 2020) inher-
ently renders not only color image but depth image as well.
Combined with known viewpoint difference, the rendered
depths can be used to define a geometric correspondence
relationship between two arbitrary views.

Specifically, we consider a depth image rendered by the
NeRF model, Dj at unseen viewpoint j. By formulating a
warping function ψ(Ii;Dj , Ri→j) that warps an image Ii
according to the depth Dj and viewpoint difference Ri→j ,
we can encourage a consistency between warped image
Ii→j = ψ(Ii;Dj , Ri→j) and rendered image Ij at j-th
unseen viewpoint, which in turn improves the few-shot
novel view synthesis performance. This framework can
overcome the limitations of previous few-shot setting ap-
proaches (Mildenhall et al., 2020; Chen et al., 2021; Barron
et al., 2021), improving not only global geometry but also
high-frequency details and appearance as well.

In the following, we first explain how input images can be
warped to unseen viewpoints in our framework. Then, we
demonstrate how we impose consistency upon the pair of
warped image and rendered image for regularization, fol-
lowed by explanation of occlusion handling method and
several training strategies that proved crucial for stabiliza-
tion of NeRF optimization in few-shot scenario.

4.2. Rendered Depth-Guided Warping

To render an image at novel viewpoints, we first sample a
random camera viewpoint, from which corresponding ray
vectors are generated in a patch-wise manner. As NeRF
outputs density and color values of sampled points along the
novel rays, we use recovered density values to render a con-
sistent depth map. Following (Mildenhall et al., 2020), we
formulate per-ray depth values as weighted composition of
distances traveled from origin. Since ray rp corresponding
to pixel p is parameterized as rp(t) = o + tdp, the depth
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Figure 2. Illustration of the proposed framework. GeCoNeRF regularizes the networks with consistency modeling. Consistency loss
function LM

cons is applied between unobserved viewpoint image and warped observed viewpoint image, while disparity regularization loss
Lreg regularizes depth at seen viewpoints.

rendering is defined similarly to the color rendering:

D(rp) =

∫ tf

tn

T (t)σ(rp(t))tdt, (5)

where D(rp) is a predicted depth along the ray rp. As de-
scribed in Figure 1, we use the rendered depth map Dj to
warp input ground truth image Ii to j-th unseen viewpoint
and acquire a warped image Ii→j , which is defined as a
process such that Ii→j = ψ(Ii;Dj , Ri→j). More specif-
ically, pixel location pj in target unseen viewpoint image
is transformed to pj→i at source viewpoint image by view-
point difference Rj→i and camera intrinsic parameter K
such that

pj→i ∼ KRj→iDj(pj)K
−1pj , (6)

where ∼ indicates approximate equality and the projected
coordinate pj→i is a continuous value. With a differentiable
sampler, we extract color values of pj→i on Ii. More for-
mally, the transforming components process can be written
as follows:

Ii→j(pj) = sampler(Ii; pj→i), (7)

where sampler(·) is a bilinear sampling operator (Jaderberg
et al., 2015).

Acceleration. Rendering a full image is computationally
heavy and extremely timetaking, requiring tens of seconds
for a single iteration. To overcome the computational bottle-
neck of full image rendering and warping, rays are sampled
on a strided grid to make the patch with stride s, which we
have set as 2. After the rays undergo volumetric rendering,
we upsample the low-resolution depth map back to original
resolution with bilinear interpolation. This full-resolution

depth map is used for the inverse warping. This way, de-
tailed warped patches of full-resolution can be generated
with only a fraction of computational cost that would be
required when rendering the original sized ray batch.

4.3. Consistency Modeling

Given the rendered patch Ij at j-th viewpoint and the
warped patch Ii→j with depth Dj and viewpoint differ-
ence Ri→j , we define the consistency between the two to
encourage additional regularization for globally consistent
rendering. One viable option is to naı̈vely apply the pixel-
wise image reconstruction loss Lpix such that

Lpix = ∥Ii→j − Ij∥. (8)

However, we observe that this simple strategy is prone to
cause failures in reflectant non-Lambertian surfaces where
appearance changes greatly regarding viewpoints (Zhan
et al., 2018). In addition, geometry-related problems, such
as self-occlusion and artifacts, prohibits naı̈ve usage of pixel-
wise image reconstruction loss for regularization in unseen
viewpoints.

Feature-level consistency modeling. To overcome these
issues, we propose masked feature-level regularization loss
that encourages structural consistency while ignoring view-
dependent radiance effects, as illustrated in Figure 2.

Given an image I as an input, we use a convolutional net-
work to extract multi-level feature maps such that fϕ,l(I) ∈
RHl×Wl×Cl , with channel depth Cl for l-th layer. To mea-
sure feature-level consistency between warped image Ii→j

and rendered image Ij , we extract their features maps from
L layers and compute difference within each feature map
pairs that are extracted from the same layer.

In accordance with the idea of using the warped image Ii→j
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(a) GT patch (b) Rendered patch (c) Warped patch (d) Occlusion mask (e) Masked patch

Figure 3. Visualization of consistency modeling process. (a) ground truth patch, (b) rendered patch at novel viewpoint, (c) warped patch,
from input viewpoint to novel viewpoint, (d) occlusion mask with threshold masking, and (e) final warped patch with occlusion masking
at novel viewpoint.

as pseudo ground truths, we allow a gradient backpropaga-
tion to pass only through the rendered image and block it
for the warped image. By applying the consistency loss at
multiple levels of feature maps, we cause Ij to model after
Ii→j both on semantic and structural level.

Formally written, the consistency loss Lcons is defined as
such that

Lcons =

L∑
l=1

1

Cl

∥∥f lϕ(Ij→i)− f lϕ(Ij)
∥∥. (9)

For this loss function Lcons, we find l-1 distance function
most suited for our task and utilize it to measure consis-
tency across feature difference maps. Empirically, we have
discovered that VGG-19 network (Simonyan & Zisserman,
2014) yields best performance in modeling consistencies,
likely due to the absence of normalization layers (Johnson
et al., 2016) that scale down absolute values of feature dif-
ferences. Therefore, we employ VGG19 network as our
feature extractor network fϕ throughout all of our models.

It should be noted that our loss function differs from that of
DietNeRF (Jain et al., 2021) in that while DietNeRF’s con-
sistency loss is limited to regularizing the radiance field in a
globally semantic level, our loss combined with the warping
module is also able to give the network highly rich infor-
mation on a local, structural level as well. In other words,
contrary to DietNeRF giving only high-level feature consis-
tency, our method of using multiple levels of convolutional
network for feature difference calculation can be interpreted
as enforcing a mixture of all levels, from high-level semantic
consistency to low-level structural consistency.

Occlusion handling. In order to prevent imperfect and
distorted warpings caused by erroneous geometry from in-
fluencing the model, which degrades overall reconstruction
quality, we construct consistency mask Ml to let NeRF
ignore regions with geometric inconsistencies, as demon-
strated in Figure 3. Instead of applying masks to the images
before inputting them into the feature extractor network, we
apply resized masks Ml directly to the feature maps, after

View i View j

𝐼!

𝐼"→!
𝑀$

(a)

(b)
(c)

Rendered
Surface 

Artifacts

Seen Unseen

Figure 4. Occlusion-aware mask generation. Mask generation
by comparing geometry between novel view j and source view i,
with Ii→j being warped patch generated for view j. For (a) and (b),
warping does not occur correctly due to artifacts and self-occlusion,
respectively. Such pixels are masked out by Ml, allowing only (c),
with accurate warping, as training signal for rendered image Ij .

using nearest-neighbor down-sampling to make them match
the dimensions of l-th layer outputs.

We generateM by measuring consistency between rendered
depth values from the target viewpoint and source viewpoint
such that

M(pj) =
[
∥Dj(pj)−Di(pj→i)∥ < τ

]
. (10)

where [·] is Iverson bracket, and pj→i refers to the corre-
sponding pixel in source viewpoint i for reprojected target
pixel pj of j-th viewpoint. Here we measure euclidean dis-
tance between depth points rendered from target and source
viewpoints as a criterion for a threshold masking. As illus-
trated in Figure 4, if distance between two points are greater
than given threshold value τ , we determine two rays as
rendering depths of separate surfaces and mask out the cor-
responding pixel in viewpoint Ij . The process takes place
over every pixel in viewpoint Ij to generate a mask M the
same size as rendered pixels. Through this technique, we fil-
ter out problematic solutions at feature level and regularize
NeRF with only high-confidence image features.

5



GeCoNeRF: Few-Shot Neural Radiance Fields via Geometric Consistency

(a) GT (b) DietNeRF (c) InfoNeRF (d) RegNeRF (e) GeCoNeRF (f) GeCoNeRF (D)

Figure 5. Qualitative comparison on NeRF-Synthetic (Mildenhall et al., 2020) show that in 3-view setting, our method captures fine
details more robustly (such as the wire in the mic scene) and produces less artifacts (background in the materials scene) compared to
previous methods. We show GeCoNeRF’s results (e) with its rendered depth (f).

Based on this, the consistency loss Lcons is extended as such
that

LM
cons =

L∑
l=1

1

Clml

∥∥Ml ⊙ (f lϕ(Ii→j)− f lϕ(Ij))
∥∥, (11)

where ml is the sum of non-zero values.

Edge-aware disparity regularization. Since our method
is dependent upon the quality of depth rendered by NeRF,
we directly impose additional regularization on rendered
depth to facilitate optimization. We further encourage lo-
cal depth smoothness on rendered scenes by imposing l-
1 penalty on disparity gradient within randomly sampled
patches of input views. In addition, inspired by (Godard
et al., 2017), we take into account the fact that depth discon-
tinuities in depth maps are likely to be aligned to gradients
of its color image, and introduce an edge-aware term with
image gradients ∂I to weight the disparity values. Specif-
ically, following (Godard et al., 2017), we regularize for
edge-aware depth smoothness such that

Lreg = |∂xD∗
i |e−|∂xIi| + |∂yD∗

i |e−|∂yIi|, (12)

where D∗
i = Di/Di is the mean-normalized inverse depth

from (Godard et al., 2017) to discourage shrinking of the
estimated depth.

4.4. Training Strategy

In this section, we present novel training strategies to learn
the model with the proposed losses.

Total losses. We optimize our model with a combined
final loss of original NeRF’s pixel-wise reconstruction loss
Lobs and two types of regularization loss, LM

cons for unob-
served view consistency modeling and Lreg for disparity
regularization.

Progressive camera pose generation. Difficulty of of ac-
curate warping increases the further target view is from the
source view, which means that sampling far camera poses
straight from the beginning of training may have negative
effects on our model. Therefore, we first generate camera
poses near source views, then progressively further as train-
ing proceeds. We sample noise value uniformly between
an interval of [-β, +β] and add it to the original Euler rota-
tion angles of input view poses, with parameter β growing
linearly from 3 to 9 degrees throughout the course of opti-
mization. This design choice can be intuitively understood
as stabilizing locations near observed viewpoints at start and
propagating this regularization to further locations, where
warping becomes progressingly more difficult.

Positional encoding frequency annealing. We find that
most of the artifacts occurring are high-frequency occlu-
sions that fill the space between scene and camera. This
behaviour can be effectively suppressed by constraining the
order of fourier positional encoding (Tancik et al., 2020)
to low dimensions. Due to this reason, we adopt coarse-to-
fine frequency annealing strategy previously used by (Park
et al., 2021) to regularize our optimization. This strategy
forces our network to primarily optimize from coarse, low-
frequency details where self-occlusions and fine features are
minimized, easing the difficulty of warping process in the
beginning stages of training. Following (Park et al., 2021),
the annealing equation is α(t) = mt/K, with m as the
number of encoding frequencies, t as iteration step, and we
set hyper-parameter K as 15k.

5. Experiments
5.1. Experimental Settings

Baselines. We use mip-NeRF (Barron et al., 2021) as our
backbone. We give our comparisons to the baseline and
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Table 1. Quantitative comparison on NeRF-Synthetic (Mildenhall et al., 2020) and LLFF (Mildenhall et al., 2019) datasets.

Methods NeRF-Synthetic (Mildenhall et al., 2020) LLFF (Mildenhall et al., 2019)
PSNR ↑ SSIM ↑ LPIPS ↓ Avg. ↓ PSNR ↑ SSIM ↑ LPIPS ↓ Avg. ↓

NeRF (Mildenhall et al., 2020) 14.73 0.734 0.451 0.199 13.34 0.373 0.451 0.255
mip-NeRF (Barron et al., 2021) 17.71 0.798 0.745 0.178 14.62 0.351 0.495 0.246

DietNeRF (Jain et al., 2021) 16.06 0.793 0.306 0.151 14.94 0.370 0.496 0.232
InfoNeRF (Kim et al., 2022) 18.65 0.811 0.230 0.111 14.37 0.349 0.457 0.238

RegNeRF (Niemeyer et al., 2022) 18.01 0.842 0.352 0.132 19.08 0.587 0.336 0.146

GeCoNeRF (Ours) 19.23 0.866 0.201 0.096 18.77 0.596 0.338 0.145

(a) Ground-truth (b) mip-NeRF (c) mip-NeRF (D) (d) GeCoNeRF (e) GeCoNeRF (D)

Figure 6. Qualitative results on LLFF (Mildenhall et al., 2019). Comparison with baseline mip-NeRF shows that our model learns of
coherent depth and geometry in extremely sparse 3-view setting.

several state-of-the-art models for few-shot NeRF: InfoN-
eRF (Kim et al., 2022), DietNeRF (Jain et al., 2021), and
RegNeRF (Niemeyer et al., 2022). We provide implementa-
tion details in the appendix.

Datasets and metrics. We evaluate our model on NeRF-
Synthetic (Mildenhall et al., 2020) and LLFF (Mildenhall
et al., 2019). NeRF-Synthetic is a realistically rendered
360◦ synthetic dataset comprised of 8 scenes. We randomly
sample 3 viewpoints out of 100 training images in each
scene, with 200 testing images for evaluation. We also
conduct experiments on LLFF benchmark dataset, which
consists of real-life forward facing scenes. Following Reg-
NeRF (Niemeyer et al., 2022), we apply standard settings
by selecting test set evenly from list of every 8th image and
selecting 3 reference views from remaining images. We
quantify novel view synthesis quality using PSNR, Struc-
tural Similarity Index Measure (SSIM) (Wang et al., 2004),
LPIPS perceptual metric (Zhang et al., 2018) and an average
error metric introduced in (Barron et al., 2021) to report the
mean value of metrics for all scenes in each dataset.

5.2. Comparisons

Qualitative comparisons. Qualitative comparison results
in Figure 5 and 6 demonstrate that our model shows superior
performance to baseline mip-NeRF (Barron et al., 2021) and

previous state-of-the-art model, RegNeRF (Niemeyer et al.,
2022), in 3-view settings. We observe that our warping-
based consistency enables GeCoNeRF to capture fine de-
tails that mip-NeRF and RegNeRF struggle to capture in
same sparse view scenarios, as demonstrated with the mic
scene. Our method also displays higher stability in render-
ing smooth surfaces and reducing artifacts in background
in comparison to previous models, as shown in the results
of the materials scene. We argue that these results demon-
strate how our method, through generation of warped pseudo
ground truth patches, is able to give the model local, scene-
specific regularization that aids recovery of fine details,
which previous few-shot NeRF models with their global,
generalized priors were unable to accomplish.

Quantitative comparisons. Comparisons in Table 1 show
our model’s competitive results in LLFF dataset, whose
PSNR results show large increase in comparison to mip-
NeRF baseline and competitive compared to RegNeRF. We
see that our warping-based consistency modeling success-
fully prevents overfitting and artifacts, which allows our
model to perform better quantitatively.

5.3. Ablation Study

We validate our design choices by performing an ablation
study on LLFF (Mildenhall et al., 2019) dataset.
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(a) Baseline (b) (a) + Lcons (c) (b) + M (O. mask) (d) (c) + Progressive (e) (d) + Lreg (Ours)

Figure 7. Qualitative ablation. Our qualitative ablation results on Horns scene shows the contribution of each module in performance of
our model at 3-view scenario.

Table 2. Ablation study.

Components PSNR↑ SSIM↑ LPIPS↓ Avg.↓

(a) Baseline 14.62 0.351 0.495 0.246
(b) (a) + Lcons 18.10 0.529 0.408 0.164
(c) (b) + M (O. mask) 18.24 0.535 0.379 0.159
(d) (c) + Progressive 18.46 0.552 0.349 0.151
(e) (d) + Lreg (Ours) 18.55 0.592 0.340 0.150

Table 3. Progressive training ablation.

Components PSNR↑ SSIM↑ LPIPS↓ Avg. ↓
w/o prog. anneal 18.50 0.852 0.781 0.161
w/o prog. pose 16.96 0.799 0.811 0.194
w/o both 17.04 0.788 0.823 0.197

GeCoNeRF (Ours) 19.23 0.866 0.723 0.148

Feature-level consistency loss. We observe that without
the consistency loss Lcons, our model suffers both quan-
titative and qualitative decrease in reconstruction fidelity,
verified by incoherent geometry in image (a) of Figure 7.
Absence of unseen view consistency modeling destabilizes
the model, resulting divergent behaviours.

Occlusion mask. We observe that addition of occlusion
mask M improves overall appearance as well as geometry,
as shown in image (c) of Figure 7. Its absence results broken
geometry throughout the overall scene, as demonstrated in
(b). Erroneous artifacts pertaining to projections from differ-
ent viewpoints were detected in multiple scenes, resulting
lower quantitative values.

Image-aware disparity regularization. We justify our
usage of image-aware disparity regularization loss by per-
forming an ablation study regarding its effects on our model
performance. We see that without this geometry regular-
ization, our model tends to suffer divergent behaviours of
artifacts filling the space between camera and object or
fail to recovery smooth, consistent depth geometry of the
surface. We see that our usage of disparity regularization
effectively smooths the surface and makes warping more
coherent, leading to increased qualitative performance of
our models.

Table 4. Pixel-level consistency ablation.

Components PSNR↑ SSIM↑ LPIPS↓ Avg.↓
w/ LM

pix 17.98 0.528 0.431 0.165
w/ LM

cons (Ours) 18.55 0.592 0.340 0.150

(a) Pixel-level (b) Feature-level 
Figure 8. LM

pix vs. LM
cons comparison.

Progressive training strategies. In Table 3, we justify our
progressive training strategies with additional experiments
on NeRF-Synthetic dataset, while in the main ablation we
conduct an ablation with progressive annealing only. For
pose generation, we sample pose angle from large interval
in the beginning, instead of slowly growing the interval.
For positional encoding, we replace progressive annealing
with naı̈ve positional encoding used in NeRF. We observe
that their absence causes destabilization of the model and
degradation in appearance, respectively.

Edge-aware disparity regularization. We observe that
inclusion of edge-aware disparity regularization Lreg re-
fines given geometry, as shown in image (e) of Figure 7. By
applying Lreg, we see increased smoothness in geometry
throughout the overall scene. This loss contributes to re-
moval of erroneous artifacts, which achieves better results
both qualitatively and quantitatively, as shown in Table 2.

Feature-level loss vs. pixel-level loss. In Table 4, we con-
duct a quantitative ablation comparisons between feature-
level consistency lossLM

cons and pixel-level photometric con-
sistency loss LM

pix, both with occlusion masking. As shown
in Figure 8, naı̈vely applying pixel-level loss for consistency
modeling leads to broken geometry. This phenomenon can
be attributed to Lpix being agnostic to view-dependent spec-
ular effects, which the network tries to model by altering or
erasing altogether non-Lambertian surfaces.
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5.4. Comparison to Consistency Modeling between
Known Views

It is standard practice in MVS (Huang et al., 2021; Khot
et al., 2019) to model photometric consistency between
ground truth view images, training the model to predict
geometry in a self-supervised manner. Recent works in
NeRF and neural SDF (Zhang et al., 2021; Darmon et al.,
2022; Chen et al., 2022) adopt this method in standard
”dense” view setting and show its effectiveness in refining
geometry. However, this method has previous not been
attempted in few-shot setting, and conduct an ablation study
to see its effectiveness given our setting.

(a) Between known views

(b) GeCoNeRF (Ours)  

Figure 9. Consistency between known views vs. our method.

In order to compare GeCoNeRF with contemporary meth-
ods (Darmon et al., 2022; Chen et al., 2022; Fu et al., 2022)
that model consistency between known views, we conduct
an experiment to observe how such consistency modeling
performs in few-shot NeRF setting. In our experiment, we
replace our consistency modeling with above setting, warp-
ing source images to other known views for consistency
between the warped image and ground truth (reference)
image.

Its result, shown in (a) of Figure 9, displays divergent be-
haviours such as heavy artifact generation, while our method
(b) succeeds in recovering detailed geometry of the scene
under the same setting. As discussed in Section 2, we argue
that large view differences and scarcity of reference images
make it difficult for NeRF to refine geometry with consis-
tency modeling between known views. Our work’s novel
contributions allow consistency modeling to be adopted
to few-shot NeRF to facilitate stable training under such
extreme conditions, distinguishing our work from above
methods.

6. Conclusion
We present GeCoNeRF, a novel approach for optimizing
Neural Radiance Fields (NeRF) for few-shot novel view
synthesis. Inspired by self-supervised monocular depth es-
timation method, we regularize geometry consistency by
giving semantic consistency between rendered image and
warped image. This approach overcomes limitation of NeRF
with sparse inputs, which shows performance degradation
with depth ambiguity and many artifacts. With feature con-
sistency loss, we are able to regularize NeRF at unobserved
viewpoints to give it beneficial geometric constraint. Fur-
ther techniques and training strategies we propose prove
to have stabilizing effect and faciliate optimization of our
network. Our experimental evaluation demonstrates our
method’s competitiveness results compared to other state of
the art baselines.
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Here we provide more implementation details (Section A) and a pseudo-code describing algorithm of consistency modeling
in GeCoNeRF (Section B). Next, in Section ??, we give an additional ablation study of our method, to differentiate our
work to existing methods that utilize multiview consistency. In Section C, we give an experimental quantitative analysis of
our model regarding the number of input images given to the model, in comparison with our baseline model. Finally, in
Section D, we give our analysis of our model’s performance and the limitations of our method.

A. More Implementation Details
Network architecture. We use mip-NeRF (Mildenhall et al., 2020) as network backbone and our neural radiance field is
paramterized as fully connected ReLU network with hidden dimension of 256 and depth of 8 layers. We use 128 samples
along the ray for both coarse and fine sample levels. Our model is implemented using the PyTorch framework (Yen-Chen,
2020) on top of the pytorch-NeRF code base (Yen-Chen, 2020).

Training details. We train our neural networks using ADAM optimizer (Kingma & Ba, 2015). The learning rate is first
linearly warmed up from 0 to 5× 10−4 for the first 5k iterations, and then controlled by the cosine decay schedule to the
minimum learning rate of 5× 10−6. We clip gradients by value at 0.1 and then by norm at 0.1. We train each model for
70k iterations for 6 hours in total on a two Nvidia 3090Ti GPU. We write the optimization algorithm for GeCo-NeRF’s
unobserved viewpoint consistency modeling as follows in Algorithm 1.

Unseen view patch generation. The pose for novel viewpoints are generated by adding a small divergence angle to the
pose of a randomly selected given input pose. For each iteration, divergence angle is uniformly sampled within a range value
that linearly increases as a function of iteration steps. We convert the ground truth 4-by-4 pose matrix into Euler angles,
and add the sampled divergent angle values to x- and y-axis Euler angle vector components. The z-axis component of
Euler angle vector remains zero to prevent roll rotation from occurring. Then we convert the divergent angle back into pose
matrix and generate corresponding rays with the same module used to generate ground truth viewpoint rays. We generate
120× 120 sized patchwise rays by bilinearly upsampling 60× 60 rays in a strided grid.

Novel pose sampling scheme. Our training details regarding pose sampling are as follows: we generate unobserved
viewpoints by sampling camera location and poses on a half-sphere, with camera direction always directed towards its
center, just like ground truth camera orientations given in our datasets. For progressive camera pose sampling, we sample
noise value uniformly within interval of [-d, +d] and add it to the original Euler rotation angles of reference poses. Sampling
range parameter d grows linearly from 3 to 9 degrees throughout the course of optimization. This has an effect of generating
viewpoints progressively further away from original reference viewpoints as training steps increase.

Consistency loss weight decay. Due to divergent behaviours that are shown by NeRF as it undergoes few-shot optimization,
and to match different rates of decrease between vanilla NeRF loss and consistency modeling loss, we add a weighting
hyperparameter to our regularization loss. We find that this scheme is effective in preventing the regularization loss from
growing out of proportion and degrading the reconstruction quality. We exponentially decay the loss weight with decay
parameter as 20000, which indicates that decay weight result 0.367 when the number of iteration steps reach the said number.
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B. Algorithm
We present the algorithm of consistency modeling in GeCoNeRF as follows in Algorithm 1. Considering a depth image
rendered by the NeRF model, Dj at unseen viewpoint j. By formulating a warping function ψ(Ii;Dj , Ri→j) that warps an
image Ii according to the depth Dj and viewpoint difference Ri→j , we can encourage a consistency between warped image
Ii→j = ψ(Ii;Dj , Ri→j) and rendered image Ij at j-th unseen viewpoint, which in turn improves the few-shot novel view
synthesis performance.

Algorithm 1 GeCoNeRF Framework
initialization;
i < N j ← 1m− 1 α← exp(−σθ(gi(mp(ẑj))) ·∆j)
mc←mcθ(gi(mp(ẑj))mv)
mCu ←mCu +A · (1− α) ·mc

Dj ← Dj +A · (1− α) · d̂j
A← A · α
regularization step Backprojection: x← Dj(pj)K

−1pj
Reprojection: pj→i ← KRj→ix
Inverse warping:
Ii→j(pi)← sampler(Ii; pj→i)
Mask generation:
M(pj)←

[
∥Dj(pj)−Di(pj→i)∥ < τ

]
Regularization loss calculation:
LM
cons ←

∑L
l=1

1
Clml

∥∥∥Ml ⊙ (f lϕ(Ii→j)− f lϕ(Ij))
∥∥∥ Minimize LM

cons

C. Robustness to Number of Input Views
To see the varying effects of our regularization loss regarding the number of input viewpoints, experimented on scenarios
with 3, 6, 15 reference views on Blender dataset, and observed PSNR differences between our model and vanilla model in
each setting. We selected 3, 6, 15 reference views, since RegNeRF and InfoNeRF both show saturating improvement against
their baseline at 15 reference views. The reason for our usage of 15 viewpoints, and not standard viewpoints (usually over
100), for abundant view setting is due to observations given in previous few-shot NeRF papers RegNeRF (Niemeyer et al.,
2022) and InfoNeRF (Kim et al., 2022): they observe that their vanilla baselines start to achieve better performance once
enough input views are given, generally around 11-15, varying by the dataset.

Table 5. Analysis with varying input view numbers.

Methods 3 views 6 views 15 views
mip-NeRF (Mildenhall et al., 2020) 17.94 22.55 26.13
GeCo-NeRF (Ours) 19.23 22.89 25.83

As shown in Table 5, while our model displays better performance over our baseline model at few-shot settings, the difference
between the two models becomes smaller as more input views are given. Finally, 15-view setting, our model is overtaken at
by the baseline. This is consistent with results given in previous few-shot NeRF papers (Kim et al., 2022; Niemeyer et al.,
2022) that commit to similar experiment. We speculate that NeRF reaches a point regarding inputs viewpoints where the
regularization no longer benefits its optimization but rather constrains it from achieving higher performances.

D. Limitations
Our major limitations are as follows:

(i) Our method uses thresholding technique for occlusion handling and mask generation, and this makes our method sensitive
to differences depending on different scenes and datasets. Even though we use singular threshold throughout different
scenes, there are cases where small protrusions in the scene (such as lego blocks in Blender Lego scene) are masked out due
to viewpoint-point based depth difference values that go just over the threshold values, and subjected less to novel viewpoint
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regularization.

(ii) Our observed view consistency modeling depends on the assumption that there are large areas of surfaces that are
covered by multiple viewpoints and thus able to be subjected to warping-based regularization. However, this validity of this
assumption depends heavily on the nature of the scene and viewpoint selected, as there can be scenarios where a certain
ground truth view shares no viewpoint with other ground truth views due to self-occlusion and large angular discrepancy
between viewpoints. In such cases, all patches that are warped to the viewpoint would be masked out completely, resulting
unnecessary computational cost for one third of the consistency modeling regularization steps.

E. Broader Impact
Our work enables few-shot optimization and rendering of NeRF, which allows neural radiance fields to be optimized with
sparse images, which makes it more readily applicable to real-life applications, such 3D reconstruction and novel view
synthesis. This in turn opens up new possibilities in multiple different ways, such as augmented reality, 3D scanning and
easily manipulable visual effects.
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