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Abstract
We consider episodic reinforcement learning in
reward-mixing Markov decision processes (RM-
MDPs): at the beginning of every episode na-
ture randomly picks a latent reward model among
M candidates and an agent interacts with the
MDP throughout the episode for H time steps.
Our goal is to learn a near-optimal policy that
nearly maximizes the H time-step cumulative
rewards in such a model. Prior work (Kwon
et al., 2021a) established an upper bound for
RMMDPs with M = 2. In this work, we
resolve several open questions for the general
RMMDP setting. We consider an arbitrary
M ≥ 2 and provide a sample-efficient algorithm–
EM2 –that outputs an ϵ-optimal policy using
O
(
ϵ−2 · SdAd · poly(H,Z)d

)
episodes, where

S,A are the number of states and actions respec-
tively, H is the time-horizon, Z is the support size
of reward distributions and d = O(min(M,H)).
We also provide a (SA)Ω(

√
M)/ϵ2 lower bound,

supporting that super-polynomial sample com-
plexity in M is necessary.

1. Introduction
We consider the framework of Latent MDPs (LMDPs),
which has been studied in several prior works (Chadès et al.,
2012; Brunskill & Li, 2013; Hallak et al., 2015; Steimle
et al., 2018; Kwon et al., 2021b) and can be understood
as an extension of probabilistic mixture models to the se-
quential decision making setting. In LMDPs, one MDP is
randomly chosen from M possible candidate models at the
beginning of every episode, and an agent interacts with the
chosen MDP for H time steps of an episode. However, the
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identity of the chosen MDP is unknown to the agent. We
call this the latent context. This models the setting where
the decision-maker is unable to measure or perhaps even es-
timate an important identifying feature of the environment.

This problem falls into the general partially observable
Markov decision process (POMDP) framework. While ver-
satile, POMDPs are generally hard to learn, primarily be-
cause the optimal policy depends on the entire history of the
process (Smallwood & Sondik, 1973; Krishnamurthy et al.,
2016). To learn near-optimal policies with latent contexts,
existing POMDP solutions would require strong assump-
tions on reachability of the system (e.g., Azizzadenesheli
et al. (2016); Guo et al. (2016)) or certain separability as-
sumptions (e.g., see conditions proposed in Liu et al. (2022);
Golowich et al. (2022); Kwon et al. (2021b)). However,
these assumptions do not necessarily align with the applica-
tions (e.g., dynamic web application (Hallak et al., 2015),
medical treatment (Steimle et al., 2018), transfer learning
(Brunskill & Li, 2013)).

In Kwon et al. (2021a) the authors developed a sample-
efficient algorithm in the special case of two reward-mixing
MDPs (RMMDPs): when the state transition models are
shared across different MDPs, the number of latent contexts
is M = 2.While that work requires no additional assump-
tions (notably, reachability and separability), the techniques
are specific to M = 2. The more general M ≥ 2 RMMDP
setting is yet to be studied and no provable guarantees are
known to date.

1.1. Our Contributions

In this work we develop new techniques to resolve several
open questions for learning near-optimal policies in RM-
MDPs with M ≥ 2. We summarize our main results:

1. We design an algorithm that learns an ϵ-optimal
policy for an RMMDP with M ≥ 2 that inter-
acts with the environment at most Õ(poly(M,H) ·
SA)min(2M−1,H)/ϵ2 episodes.

2. For the special case that all the probability distribution
of the reward is a strict integral of the base probability,
we show that the exponent of S andA can be improved
from O(M) to O(logM). Examples of such cases
include the case when all rewards are deterministic
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conditioned on latent contexts.

3. For general instances of RMMDPs, we establish a
lower bound of (SA)Ω(

√
M)/ϵ2, justifying that a super-

polynomial sample complexity inM is necessary. This
is the first lower bound for the general RMMDP setting.

Our approach is based on constructing the latent reward
model from theO(min(M,H)) first moments of the reward
function in different state-action pairs, while estimating
the shared transition model using reward-free exploration
techniques (Kaufmann et al., 2021). By estimating these
quantities we construct an RMMDP which approximates
the underlying and unknown RMMDP sufficiently well.
Further, we show that the optimal policy of the approximate
RMMDP is near optimal for the unknown RMMDP.

1.2. Key Challenge: Circumventing Unidentifiability

Moment matching based algorithms are well known in their
ability to learn latent mixture models (see e.g., Moitra &
Valiant (2010); Doss et al. (2020) and references therein).
Towards applying this technique to the RMMDP setting, sup-
pose we can estimate a correlation of rewards at q-different
state-actions x = (si, ai)

q
i=1, which we refer as a reward

moment. If we can estimate reward-moments for all x up to
some degree d ∈ N+, then we can recover the latent reward
model. This is the well-known moment-matching technique
in literature on learning finite mixture models.

The RMMDP setting has a fundamental difference: the
agent can only access the environment by sampling trajec-
tories. In this case there are many trajectories that simply
cannot be realized and have zero probability to be observed
under any sampling policy, and the reward moments along
this trajectory cannot be estimated. For example, in a loop-
free system, any state-action (si, ai) cannot be visited more
than once in the same episode, in which case we cannot get
any samples of the higher-order moment that repeats the
same state more than once. In such a case, the true latent
reward model is not identifiable.

This model unidentifiability issue can also be found in –
seemingly unrelated – literature of learning mixtures of
discrete product distributions (Freund & Mansour, 1999;
Feldman et al., 2008; Chen & Moitra, 2019). There, the task
of learning latent mixture parameters is also challenging
due to the model unidentifiability issue, since higher-order
statistics with multiplicity cannot be estimated. Hence, most
work in this direction focused on the density estimation
which minimizes the statistical distance between observa-
tions, rather than insisting on recovering latent parameters
(there are a few exceptions, e.g., Gordon et al. (2021)). In
the RMMDP setting, instead of focusing on model identifi-
abllity, we cast the following fundamental question:

How can we efficiently learn a near optimal policy of the
RMMDP model?

or, analogously, we ask whether identifiability of the latent
model is truly necessary if our ultimate goal is only finding
a good policy.

In this work, we answer this question affirmatively. We
design a model-based approach that recovers a latent reward
model that matches the measurable higher order reward mo-
ments. We show this is sufficient to recover an RMMDP
model that approximates the trajectory distributions for all
policies with a requirement to recover the true underlying
latent reward model. With this in hand, it is then straightfor-
ward to find a near optimal policy for the true underlying
RMMDP.

1.3. Related Work

Recent years have witnessed a substantial progress in devel-
oping efficient RL algorithms for a number of challenging
tasks arising from both theory and practice (e.g., Jaksch et al.
(2010); Mnih et al. (2013); Silver et al. (2018); Kober et al.
(2013); Bellemare et al. (2016); Azar et al. (2017); Tang
et al. (2017)). The standard framework for RL assumes a
Markovian environment, where full information on the cur-
rent state is provided, and the optimal policy depends only
on the current observation. In contrast, little is understood
on partially observed systems where the underlying state
cannot be directly decoded from current observations. Due
to the vast volume of literature, we only discuss a few works
that are most relevant to us.

Prior work on RMMDPs. The most relevant work to
ours is Kwon et al. (2021a). There, the authors considered
the RMMDP setting with M = 2 and with uniform priors,
and designed an algorithm that learns a near optimal policy
for this setting. Their approach relies heavily on partial
parameter recovery guarantees, which is not possible for
M ≥ 3. In this work, we develop new techniques to tackle
RMMDPs with M ≥ 3 problems, that avoid any parameters
estimation. As a further benefit to our different approach
that does not attempt to partially estimate parameters, we
also improve upon their results for M = 2, improving
the sample complexity from O(ϵ−4) to the optimal O(ϵ−2)
dependence.

Solutions for general POMDPs. As a special case of
POMDPs, we may consider applying existing algorithms
that learn a near optimal policy of a generic POMDP to the
RMMDPs. There is a growing body of work that focuses on
the case when single or multiple-step observations from test
action sequences are sufficient statistics of the environment
(e.g., Boots et al. (2011); Krishnamurthy et al. (2016); Az-
izzadenesheli et al. (2016); Golowich et al. (2022); Efroni
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et al. (2022); Liu et al. (2022); Zhan et al. (2022)). In such a
scenario, latent model parameters can be learned up to some
parameter transformations when the system is irreducible
or optimistically explored. This approach has been applied
to function approximation settings in some recent work un-
der similar sufficient statistic assumptions (e.g., Cai et al.
(2022); Zhan et al. (2022); Uehara et al. (2022)). However,
RMMDP instances do not necessarily satisfy the statistical
sufficiency of test-observation sequences: the latent context
cannot necessarily be decoded even in hindsight. Thus, their
results do not apply for RMMDPs.

Multitask RL RMMDP can be considered as a special
case of multitask reinforcement learning in MDP environ-
ments (Taylor & Stone, 2009; Brunskill & Li, 2013; Liu
et al., 2016; Hallak et al., 2015) with a different reward func-
tion to each task. If we are given a sufficiently long time
horizon (and some separation between contexts) for an indi-
vidual task to identify the context, then we can efficiently
learn the latent model by clustering the trajectories. Then,
if we can learn the latent model, we can easily learn a near-
optimal policy from an estimated model. However, for such
condition to hold, we need very long time horizonH ≫ SA.
In many scenarios such as dynamic web applications or med-
ical treatments (Hallak et al., 2015; Steimle et al., 2018),
we have a relatively short time-horizon H = O(1) for each
task and thus cannot identify the latent context or the latent
model. We do not make any assumptions about the length
of time-horizon within an episode, or about seperability.

Miscellaneous While we assume that episodes start in a
sequential order, in other applications such as in recommen-
dation systems, episodes can proceed in parallel without
limit on the time-horizon (Maillard & Mannor, 2014; Gen-
tile et al., 2014; Hu et al., 2021; Kwon et al., 2022). In
such problems, the goal is to learn an optimal policy for
each episode (or task) as quickly as possible exploiting the
similarity between tasks. In contrast, the goal in RMMDP is
to learn an optimal adaptive, i.e., history-dependent policy
within the limited time horizon.

2. Preliminaries
The reward-mixing Markov decision processes is defined as
follows.

Definition 2.1 (Reward-Mixing Markov Decision Pro-
cess (RMMDP)). An RMMDP M consists of a tuple
(S,A, T, ν, {wm, µm}Mm=1) with a state space S; action
spaceA; a shared transition model T : S ×A×S → [0, 1]
that maps a state-action pair and a next state to a probabil-
ity; ν is a common initial state distribution; {wi}Mi=1 are the
mixing weights such that at the beginning of every episode a
reward model µm is chosen with probability wm; µm is the
model parameter that describes a reward distribution, i.e.,

Pµm(r | a) := P(r | m, a), according to an action a ∈ A
conditioning on a latent context m.

We further assume the reward values are finite and bounded.

Assumption 2.2 (Discrete Rewards). The reward distribu-
tion has finite and bounded support. The reward attains a
value in the set Z . We assume that for all z ∈ Z we have
|z| ≤ 1. We denote the cardinality of Z as Z.

As an example, the Bernoulli distribution satisfies Assump-
tion 2.2 with Z = {0, 1} and Z = 2. We denote the
probability of observing a reward value z by executing an
action a at a state s, as µm(s, a, z) := P(r = z | m, s, a) in
a context m. We consider a policy class Π which contains
all history-dependent policies π : (S,A,Z)∗ × S → A.
We are interested in finding a near-optimal policy π ∈ Π
that is ϵ-optimal with respect to the optimal value: V ∗

M :=

maxπ∈Π Eπ
[∑H

t=1 rt

]
, where Eπ[·] is expectation taken

over the modelM with a policy π.

Notation We use [d] := {1, . . . , d} and [d]+ := {0}∪ [d].
We often denote a state-action pair (s, a) as one symbol
x = (s, a) ∈ S × A. For any length t part of a trajectory
(y1, y2, ..., yt), we often simplify the notation as y1:t. We
use |x| for the length of sequence x. For a subset of indices
I ⊆ [d], we write xI := (xi)i∈I to refer to a subsequence
of x at positions I. We define V πM as an expected cumula-
tive reward for modelM with policy π. Lastly, we denote
the cardinality of the state and action space as S := |S| and
A := |A|.

3. Algorithm
The idea for learning a near-optimal policy of an RMMDP
for the special case of M = 2 with equal mixing weights
was developed in Kwon et al. (2021a). With techniques
that seem specialized for M = 2, the authors show that
estimates of the second-order correlation of rewards, mea-
sured between different time-steps, is sufficient to find a
near-optimal policy. We develop new techniques to address
this problem, and extend it beyond the M = 2 case.

3.1. Recovering Latent Model from Higher Order
Moments

For a general RMMDPs, we define the moment of rewards
of degree q ≤ d for some d ∈ N+ as follows:

M (x, z) :=
∑M
m=1 wmΠqi=1µm(xi, zi), (1)

for every x = (xi)
q
i=1 ∈ (S × A)

⊗
q and z = (zi)

q
i=1 ∈

Z
⊗
q . To empirically estimate these higher order moments

we observe they can be cast as a conditional expectation. Let
π be a policy that does not depend on the reward observation.

3



Reward-Mixing MDPs with Few Contexts are Learnable

Algorithm 1 Estimate and Match Moments (EM2)

Input: d ∈ N, ϵ, η ∈ (0, 1), ιc > 0
// Estimate transition model, initial distribution, moments
of latent reward and their uncertainty by pure exploration
(T̂ , ν̂,Mn(·, ·), n(·)) ← EstimateMoments(d, ϵ, η)
(see Appendix C, Algorithm 2).
// Construct reward latent model with matching moments
Find {ŵm, µ̂m}Mm=1 such that

|M̂(x, z)−Mn(x, z)| ≤
√
ιc/n(x)

for all q ∈ [d], x ∈ (S ×A)
⊗
q, z ∈ Z

⊗
q .

Empirical RMMDP: M̂ = (S,A, T̂ , ν̂, {ŵm, µ̂m}Mm=1).
Return an optimal policy of M̂.

Assume that Pπ(x observed) > 0 where x observed is the
event that there exists some 1 ≤ t1 < ... < tq ≤ H such
that xti = xi, i.e., all state-actions in x are visited in the
same episode. Then M(x, z) can be estimated from the
conditional expectation:

M(x, z) = Eπ[Πqi=11 {rti = zi} |x observed]. (2)

Since this is an expectation of observable quantities, we can
estimate them from sample trajectories if a roll-in policy can
visit x with good probability. We use n(x) to denote the
number of samples (trajectories) used to estimate M (x, ·).

The key challenge arises when not all x can be visited in
the same trajectory, or they can be visited with significantly
different probabilities. To quantify this challenge, let ξ(x)
be the maximum visitation probability of x:

ξ(x) := maxπ∈ΠPπ(x observed). (3)

In the extreme, this quantity can be zero for many x’s. For
such x, we cannot expect to estimate M(x, ·) even with in-
finite sample trajectories. This results in the unidentifiability
of the latent reward model.

It turns out that we only need an estimated moment M̂(x, ·)
to be accurate proportionally to ξ(x). Intuitively, the smaller
ξ(x) is the less accurate estimate of M(x, ·) is required. In
our analysis, we show that if we can explore the environment
to collect samples of higher-order moments in such a way,
then trajectory distributions of all policies are uniformly
close to the true model, even though higher-order moment
estimates are non-uniformly accurate.

3.2. Algorithm Overview

The algorithm we introduce and analyze is the Estimate
and Match Moments (EM2 ) procedure, depicted in Al-
gorithm 1. EM2 consists of two stages: (i) collect sam-
ples to estimate the transition model, initial distribution

and the d-order moments of the reward models for all se-
quences x ∈ (S × A)

⊗
d, i.e., estimate Mn(x, z) for all

x ∈ (S × A)
⊗
d and z ∈ Z

⊗
d (see definition in equa-

tion (1)), (ii) find an approximate RMMDP model M̂whose
reward moments up to degree d match within confidence in-
tervals of ∝

√
1/n(x). One such model is assured to exist

since the underlying true model satisfies these constraints.

Remark 3.1 (Estimation of T and ν). The transition model
and initial state distribution can be estimated with pure-
exploration schemes e.g., (Kaufmann et al., 2021). They can
be either separately estimated or estimated simultaneously
with the reward moments.

Next we elaborate on the estimation of higher-order mo-
ments in stage (i), and on finding a latent reward model with
matching moments in stage (ii).

3.3. Pure Exploration of Higher-Order Moments

The estimation of M(x, ·) can be carried out in multiple
ways. A naive approach for doing that is to iterate over all
moments up to degree q ≤ d , all x ∈ ∪dq=1(S × A)

⊗
q

such that ξ(x) is larger than some threshold, and estimate
the conditional mean via equation (2): by executing roll-in
policy that maximizes the probability of observing x. Note
that the roll-in policy and ξ(x) can be approximately com-
puted after estimating the transition dynamics. Although
simple, this approach requires many trajectories for collect-
ing samples of moments that are hard to reach, resulting in
total sample-complexity of O(SA)2d.

A more involved but more systematic way for estimating
the higher-order moments M(x, ·) is to employ a pure ex-
ploration scheme (Kaufmann et al., 2021) on a higher-order
MDP, analogously to the idea developed in Kwon et al.
(2021a) forM = 2. For completeness, we restate the formal
definition of the higher order MDP and the pure-exploration
mechanism we use in Appendix C. This procedure allows
us to estimate the higher order moments in a more sample
efficient manner, relatively to the naive algorithm; the total
sample-complexity reduces from O(SA)2d to O(SA)d.

Once the pure exploration phase ends, we have a collection
of samples for all moments of degree at most d. Then, for
any degree q ≤ d, moment x ∈ (S × A)

⊗
q with any

paired sequence z ∈ Z
⊗
q, let the quantity Mn(x, z) be

the empirical estimate of M(x, z) (see Algorithm 2 for
more details). We remark that we choose our roll-in policy
to be independent of past reward observations, and thus we
can simply take the average of samples to get Mn(x, z).
Using a standard measure of concentration for martingales
(Wainwright, 2019), we can show that

|M(x, z)−Mn(x, z)| ≤
√
ιc/n(x).

The above holds for all combinations of x and z with
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probability at least 1 − η by an application of the union
bound, when the logarithmic constant is given as ιc =
O(d log(SAZ/η)).

3.4. Finding Latent Model with Matched Moments

Once we obtain the empirical moments Mn(·, ·)
from the exploration phase, we can search over all
the RMMDP models to find an empirical model
M̂ := (S,A, T̂ , ν̂, {ŵm, µ̂m}Mm=1) that satisfies∣∣∣M̂(x, z)−Mn(x, z)

∣∣∣ ≤ √
ιc/n(x), then we are

guaranteed that∣∣∣M(x, z)− M̂(x, z)
∣∣∣ ≤ 2

√
ιc/n(x),

∀(x, z) ∈
⋃d
q=1(S ×A)

⊗
q ×Z

⊗
q. (4)

That is, we find an RMMDP model where its first dmoments
approximately match the ones of the true model.

Computational Challenges for the Model Recovery
Solving equation (4) is a hard computational task. Brute-
force approaches, which iterate over all possible candidates,
may take time exponential in O(SA). Even for a simpler
setting of learning mixtures of discrete n product distribu-
tions, it is not obvious how to find the latent parameters
that matches all multilinear moments (i.e., moments without
any multiplicity) (Feldman et al., 2008; Chen & Moitra,
2019). The best known computational complexity for that
problem, with uniform uncertainties, is O(n/ϵ)O(M2) due
to Chen & Moitra (2019). However, since we have non-
uniform uncertainties across all moments, we expect that
solving equation (4) is computationally harder problem. We
leave these computational challenges as future work, and
henceforth focus on the sample-complexity upper bound of
learning near optimal policy of RMMDP.

4. Upper Bounds
In this section we highlight the key tools with which we
establish a sample complexity guarantee for EM2 . To sim-
plify the discussion, we momentarily assume that transition
models are known, i.e., T and ν are given. This section fo-
cuses on analyzing the performance difference between two
RMMDP modelsM(1) andM(2), whereM(1) is the true
RMMDP model, andM(2) is an empirical RMMDP model
with the same transition and initial state probabilities T and
ν, but different latent reward model and mixing weights, i.e.,
T (2) = T , ν(2) = ν, and w(2)

m = ŵm, µ
(2)
m = µ̂m. We note

that prior knowledge of T and ν is not required in our final
result (see Appendix C).

As mentioned earlier, the difference between the value
of any fixed policy π ∈ Π measured on two RMMDPs
can be bounded by the l1-statistical distance in trajectory

distributions. Consider the set of all possible trajectories
T = (S × A × Z)

⊗
H , that is, any state-action-reward

sequence of length H . Then,

|V πM(1) − V πM(2) | ≤ H · ∥(P(1)
π − P(2)

π )((x, r)1:H)∥1
= H ·

∑
τ∈T |P

(1)
π (τ)− P(2)

π (τ)|, (5)

For any policy π ∈ Π, our goal is to show that∑
τ∈T |P

(1)
π (τ)− P(2)

π (τ)| ≤ O(ϵ/H), i.e., the true and
empirical models are close in l1-statistical distance for all
history-dependent policies.

In particular, we need to bound the l1 distance of length H
trajectories as a function of the distance between the first
O(min(M,H)) reward moments ofM(1) andM(2), and
without exponential dependence on H .

The accuracy with which we estimate moment M(x, ·) de-
pends on n(x), the number of trajectories that visit x. We
divide the level of uncertainties of trajectories based on the
number of samples collected for each moment. We define
the following sets:

Xl = {x ∈
⋃d
q=1(S ×A)

⊗
q | n(x) ≥ nl},

El = {x1:H ∈ (S ×A)
⊗
H | ∀q ≤ d :

∀ 1 ≤ t1 < . . . < tq ≤ H, (xti)
q
i=1 ∈ Xl}, (6)

for a decreasing sequence (nl)Ll=1 which we give in Lemma
4.3. Here, El is a set of length at most d state-actions in
which every subsequence has been sampled at least nl times.
Further, observe that E0 ⊆ E1 ⊆ · · · ⊆ EL. We split the set
of trajectories into disjoint sets E ′0 = E0, E ′L+1 = EcL and
E ′l = Ecl−1 ∩El and for l ∈ [L], i.e., a set of trajectories with
all correlations of degree at most d sampled more than nl
and at least one set of correlation explored less than nl−1

times.

With this definition, we can rewrite the above bound on the
l1 statistical distance between all trajectories for any policy:

∥P(1)
π − P(2)

π ∥1 =

L+1∑
l=0

∑
τ :x1:H∈E′

l

|P(1)
π (τ)− P(2)

π (τ)|

≤
L+1∑
l=0

sup
π∈Π

P(1)
π (x1:H ∈ E ′l ) ·O(ϵl), (7)

where P(1)
π (x1:H ∈ E ′l ), is the probability that a random

trajectory τ observed with a roll-in policy π belongs to
E ′l , and ϵl is the overall statistical distance of trajectory
distributions (conditioned on E ′l ) at level l. The first relation
in equation (7) holds since any trajectory τ belongs to one of
the sets E ′l . The main challenge of the analysis is to bound
ϵl, as a function of the moment distance. We can define this
more carefully using the sets above: let δl be the maximum
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error between the dth order reachable moments in level l:

δl := max
x∈Xl

max
z∈Z

⊗
d
max
I⊆[d]

∣∣∣M(1)(xI , zI)−M(2)(xI , zI)
∣∣∣ .

(8)

The essential content of Lemma 4.1 and Theorem 4.2 is to
show that ϵl and δl are linearly related, with a term that does
not grow exponentially with H .

Lemma 4.1 (Eventwise Total Variance Discrepancy). Let
δl be defined as in equation (8), i.e., the maximum mismatch
in moments up to degree d = min(2M − 1, H). For any
l ∈ [L]+ and any history-dependent policy π ∈ Π, we have:∑

τ :x1:H∈E′
l
|P(1)
π (τ)− P(2)

π (τ)|

≤ sup
π∈Π

P(1)
π (x1:H ∈ E ′l ) · (4HZ)d · δl. (9)

Thus, Lemma 4.1 implies the second relation in equation (7),
setting ϵl = (4HZ)min(2M−1,H) · δl. Moreover, it general-
izes an analogous result that was proved for the M = 2 case
(see Kwon et al. (2021a), Lemma 4.1). There are several
notable differences between these results:

1. The threshold value nl is set to the order of δ−2
l . In

contrast, in Kwon et al. (2021a), nl was set to be of the
order of δ−4

l . Thanks to this improvement, we obtain
the optimal dependence in ϵ in our final result, namely,
O(ϵ−2) as opposed to O(ϵ−4).

2. We do not rely on a parameter recovery guarantee,
which cannot be attained for an RMMDP, without
strong identifiability assumptions. Instead, we directly
convert the closeness in moments to closeness in to-
tal variation distance of the trajectory distributions for
all history-dependent policies. We prove this result
by an induction argument on the number of contexts
and time-horizon. In Chen & Moitra (2019), a similar
induction idea is used for showing the robust identi-
fiability of mixtures of discrete product distributions
directly from closeness in moments (see Lemma 5.5
in Chen & Moitra (2019)).

To prove this result, we in fact prove a more general result
which may be of independent interest:

Theorem 4.2 (Bound on Total Variation from Moment
Closeness). Let δ > 0 and let M(1),M(2) be two RM-
MDPs. Assume thatM(1) andM(2) have the same transi-
tion kernel and initial state distribution, but have different
latent reward models, and potentially different number M1

and M2 of latent contexts. Define Xd to be the set of length
d := min(H,M1 +M2 − 1) state-action sequences that
have nearly matched moments

Xd :=
{
x ∈ (S ×A)

⊗
d
∣∣∣∀z ∈ Z⊗

d :

max
I⊆[d]

∣∣∣M(1)(xI , zI)−M(2)(xI , zI)
∣∣∣ ≤ δ}.

Let Etot be the set of trajectories for which all subsequences
of length d are in Xd, i.e., Etot is the set of all well-explored
trajectories:

Etot :=
{
x1:H |∀ t1 < . . . < td : (xtq )

d
q=1 ∈ Xd

}
.

Then for any subset of well-explored trajectories E ⊆ Etot,
for any history-dependent policy π, we have∑

τ :x1:H∈E |P
(1)
π (τ)− P(2)

π (τ)|

≤ sup
π∈Π

P(1)
π (x1:H ∈ E) · (4HZ)d · δ.

This result then, bounds the total variation distance between
two models with possibly different number of latent con-
texts, as long as their moments are close. The proof pro-
ceeds by induction on the total number of contextsM1+M2.
Lemma 4.1 is a direct corollary of Theorem 4.2. We refer
the reader to Appendix A for the details.

The results thus far translate bounds in moment distance, to
bounds in total-variation distance. The next result bounds
the sample complexity required to control the moment dis-
tance, i.e., given 4, the sample complexity required to con-
trol the probability that a given trajectory belongs to the sets
E ′l .
Lemma 4.3. Consider the sets defined in (6) where we set
n0 = K/(SA)d, nl+1 = nl/4 for l = 0, 1, . . . , L, and L
such that nL > ιc and nL+1 ≤ ιc. Then, there exists a
pure-exploration algorithm which takes ϵpe > 0 as an input
parameter, such that with probability (w.p.) at least 1− η,
using at most K episodes, for

K ≥ C · (SA)dϵ−2
pe log(K/η), (10)

with some absolute constant C > 0, we have

sup
π∈Π

Pπ(x1:H ∈ E ′l ) ≤ O
(
Hdϵpe ·

√
nl/ιc

)
. (11)

The proof of Lemma 4.3 is given in Appendix C.1.

Now using the above Lemma, Equation (4) to translate it
to a moment bound, and Equation (7) and Lemma 4.1, we
can bound the difference in expected value between the true
and empirical models for an arbitrary history-dependent
policy π:

|V πM(1) − V πM(2) | ≤ H · ∥(P(1)
π − P(2)

π )(τ)∥1
≤ H

∑L
l=0H

d ·O(ϵpe) · (4HZ)d.

Combining the above results, and taking ϵpe =
ϵ/(HL(4H2Z)d), L = O(log(n0)) ≤ O(logK), and
d = min(2M−1, h), our main result follows, and establish-
ing a sample complexity guarantee for EM2 (see Appendix A
for the full proof):
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Theorem 4.4 (Sample Complexity of Learning RMMDPs
with M ≥ 2). Let d = min(2M − 1, H). There exists a
universal constantC > 0 such that there exists an algorithm
using at most K episodes where,

K ≥ C · (SA)
d

ϵ2
· poly(d,H,Z)d · poly log(K/η),

and outputs an ϵ-optimal policy w.p. at least 1− η.

4.1. Improved Upper Bound with Integral Probabilities

We have shown that for general instances of RMMDPs, we
can learn an ϵ-optimal policy using O(SA)2M−1 samples.
This upper bound can be significantly improved if we make
an additional assumption on latent reward models. Suppose
that for anym ∈ [M ], x ∈ S×A, z ∈ Z , µm(x, z) can take
a value from a finitely discretized set P = {0, 1/P, . . . , 1}
for some positive integer P ∈ N+. Under this assumption,
we show that estimating d = ⌈2P logM⌉ are sufficient to
learn a near optimal policy. This translates to an improved
(SA)O(logM)/ϵ2 sample complexity for under this assump-
tion. An interesting special case of such scenario is when
the reward is deterministic conditioned on a context, i.e.,
µm(x, z) takes value from P = {0, 1} with P = 1.

This is a reminiscent of quasi-polynomial sample-
complexity for learning a mixture of subcubes (Chen &
Moitra, 2019), i.e., learning a mixture of binary product
distributions Z = {0, 1} when the latent model parame-
ters can only take values from P = {0, 1/2, 1}. While not
used for a more general setting, we show that their main
identifiability (of distribution from moments) results can
be similarly applied to RMMDP problems with general
observation support Z and integral probability set P .

Lemma 4.5 (Modified Lemma 4.1 for Integral Probabil-
ities). Suppose µm(x, z) takes values only from P =
{0, 1/P, . . . , 1} for all m ∈ [M ], x ∈ X and z ∈ Z . Let
δl be defined as in equation (8) for the maximum mismatch
in moments up to degree d = min(⌈2P logM⌉, H). For
any l ∈ {0, 1, ..., L+ 1} and any history-dependent policy
π ∈ Π, we have∑

τ :x1:H∈E′
l

|P(1)
π (τ)− P(2)

π (τ)|

≤ sup
π∈Π

P(1)
π (x1:H ∈ E ′l ) ·MO(MP logP ) · δl. (12)

See Appendix B.4 for the proof. Combining Lemma 4.5
with Lemma 4.3, we get the following quasi-polynomial
sample-complexity result for integral reward probabilities:

Theorem 4.6. Suppose µm(x, z) takes values only from
P = {0, 1/P, . . . , 1} for all m ∈ [M ], x ∈ X and z ∈ Z
where P ∈ N+ is an absolute constant. If H > 2P logM ,
then there exists a universal constant C > 0 such that there

exists an algorithm using at most K episodes where,

K ≥ C · (SA)
2P logM

ϵ2
·MO(M) · poly(H, log(K/η)),

and outputs an ϵ-optimal policy w.p. at least 1− η.

Note that for the case of deterministic rewards, we can
instantiate the above theorem with P = 1.

5. Lower Bound
In previous sections, we designed an algorithm that learns
a near-optimal policy for general instances of RMMDPs
with discrete rewards given O

(
(SA)O(M)

)
samples. In this

section, we complement this upper bound by showing that a
super polynomial dependence on S and A is necessary for
M = ω(1) from information-theoretic standpoint. Specifi-
cally, we show that there exists a class of instances which
cannot avoid (SA)Ω(

√
M) sample complexity.

To show this lower bound, we construct the family of hard
instances where each instance M is defined as follows.
All the instances share the same dynamics: at every time
step t ∈ [H], the environment visits a unique state s∗t . At
every state st = s∗t (or time step t), all actions except one
correct action a∗t ∈ A returns a reward sampled from a
uniform distribution over a binary alphabet {0, 1}. In this
section, we only consider binary rewards, and we omit the
z-part for indexing µm with (x, z), i.e., use µm(x) to denote
µm(x, 1) = E[1 {r = 1} |x]. We also denote M(x) as

M (x) :=
∑M
m=1 wmΠdi=1µm(xi).

We want to construct an example such that for all but the
correct sequence of actions a1:H = a∗1:H , distributions of
observed reward sequences are not statistically distinguish-
able from playing uniform actions. Such an example can be
constructed by finding a moment-matching correct actions.
Specifically, let d = H = Ω(

√
M) be the desired degree of

matching moments that we need for the construction of hard
instances. For simplicity, let µ∗

m ∈ Rd be the restriction
of µm to correct actions, i.e., µ∗

m(t) = µm(s∗t , a
∗
t ) for all

t ∈ [d]. We set the family of hard instances of the latent
reward model by borrowing a construction from Chen &
Moitra (2019).
Lemma 5.1 (Result of Section 4.3 in Chen & Moitra (2019)).
There exists some d = Ω(

√
M) such that for any ϵ ≤

(2d)−2d, there exists a realization {µ∗
m}Mm=1 and mixing

weights {wm}Mm=1, such that all degree q < d multilinear
moments of µ∗

m is equal to (1/2)q:∑M
m=1 wmΠt∈Iµ

∗
m(t) = (1/2)q, ∀I ⊊ [d] : |I| = q.

Furthermore, the degree-d moment is ϵ-away from the uni-
form distribution:∑M

m=1 wmΠdt=1µ
∗
m(t) ≥ (1/2)d + ϵ.

7
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Intuitively, the moment-matching example (up to degree
d− 1) would require to explore almost all possible length
d = H sequence of actions, since there would be no infor-
mation gain if a wrong sequence of actions a1:H ̸= a∗1:H
is played. We show that any ϵ-optimal policy for any
ϵ ≤ (2d)−2d needs to play the correct sequence with non-
negligible probability:

Lemma 5.2. Let M be the lower-bound instance con-
structed with Lemma 5.1 with ϵ ≤ (2d)−2d and d > 4. The
optimal cumulative rewards forM is at least (d/2)+ϵ·2d−2.
Furthermore, let πϵ be an ϵ-optimal policy forM with , then
we have Pπϵ(a1:H = a∗1:H) ≥ 1/4.

Note that (2d)−2d = M−O(
√
M) can still be significantly

larger than (SA)−Ω(
√
M). To formalize the lower bound

argument, we can use the fundamental equality on infor-
mation gain with bandit feedback (Garivier et al., 2019)
modified to the RMMDP setting :

Lemma 5.3. Let ψ be any exploration strategy in RMMDPs
for K episodes. Let M(1) and M(2) be two RMMDPs
with the same transition and initial state probabilities. Let
Nψ,x1:H

(K) be the number of times that a trajectory τ ends
up with a sequence of state-actions x1:H for K episodes.
Then,∑
x1:H

E(1) [Nψ,x1:H
(K)] · KL

(
P(1)(·|x1:H),P(2)(·|x1:H)

)
= KL

(
P

(1)
ψ (τ1:K),P

(2)
ψ (τ1:K)

)
, (13)

wherePψ(τ1:K) is a distribution ofK trajectories obtained
with ψ, and P(·|x1:H) is a marginal probability of a reward
sequence r1:H obtained from a fixed test x1:H .

We convert this result to an information-theoretic lower
bound for learning RMMDPs. Specifically, letM(1) be the
base system where rewards are always uniformly distributed
over {0, 1}, andM(2) =M be the moment-matching sys-
tem from Lemma 5.1. If we can give an upper bound to
equation (13), then by Pinsker’s inequality and Le Cam’s
two-point method (LeCam, 1973), we can argue that two
systems from trajectory observations are not distinguishable,
and thus we cannot learn the optimal policy forM(2).

To see this, note that the left hand side of equation (13)
is 0 except for the correct state-action sequence x∗1:H .
On the other hand, all information from the first model
is symmetric over all sequences of (state)-actions, and
thus for any exploration strategy ψ, there must exist at
least one xψ1:H sequence such that E(1)

[
Nψ,xψ1:H

(K)
]
≤

A−H · K. Thus for the moment-matching instanceM(2)

with x∗1:H = xψ1:H , at least K = Ω(AH) episodes are nec-
essary to distinguish the two systems from trajectory ob-
servations τ1:K . We can translate this argument into an

Ω(AH) lower bound for learning general RMMDPs, and
using the action-amplification argument used in Kwon et al.
(2021b), we can obtain an (SA)Ω(

√
M) lower bound with

d = H = Ω(
√
M).

Theorem 5.4 (Lower Bound for RMMDPs). There exists a
universal constant C > 0 and a class of RMMDPs such that
to obtain an ϵ-optimal policy for ϵ < M−C

√
M , we need at

least (SA)Ω(
√
M)/ϵ2 episodes.

The proof of Theorem 5.4 follows from Lemma 5.1-5.3, and
the full proof can be found in Appendix D.4.

6. Conclusion
In this work, we resolve several major open questions con-
cerning the learnability of the RMMDP setting. We design
the EM2 algorithm and establish an O(SA)O(M)/ϵ2 upper
bound for learning an ϵ-optimal policy of a general RM-
MDP. Hence, a near optimal policy of an RMMDP can be
efficiently learned for M = O(1). We compliment our
upper bound with (SA)Ω(

√
M)/ϵ2 lower bound.

One natural question is whether our results can be extended
to a more general framework of Latent MDP (Kwon et al.,
2021b), where the transition dynamics can also depend on
latent contexts. We note that dealing with non-identical
transitions imposes additional significant challenges. The
main bottleneck is that the target higher-order statistics are
not easily accessible anymore, since now the way to ex-
plore higher order reward (and transition) moments must be
learned as well. We believe this is an important question to
be addressed in future.

Other future research questions include investigating the
gap between the upper and lower bounds, suggesting natural
assumptions that can assist in reducing the sample complex-
ity further, and considering the case where M is unknown.
Finally, designing a practical algorithm that can operate in
large-scale RMMDP problems is an interesting next step to
take.
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A. Proof of Main Theorem 4.4
A.1. Proof of Lemma 4.1

Note that invoking Theorem 4.2, it directly follows that E ′l ⊆ Etot with setting δ := δl for Xd. Lemma 4.1 follows from the
conclusion of Theorem 4.2 with M1 =M2 =M and d = min(2M − 1, H).

A.2. Proof of Theorem 4.2

We start by unfolding the expression of statistical distance:∑
τ :x1:H∈E

|P(1)
π (τ)− P(2)

π (τ)| =
∑
x1:H

∑
r1:H

1 {x1:H ∈ E} ν(s1)ΠH−1
t=1 T (st+1|st, at) ·ΠHt=1π(at|ht)

×

∣∣∣∣∣
M1∑
m=1

w(1)
m ΠHt=1µ

(1)
m (xt, rt)−

M2∑
m=1

w(2)
m ΠHt=1µ

(2)
m (xt, rt)

∣∣∣∣∣ .
This can be established by directly using the RMMDP model assumption, the Markovian underlying dynamics and the fact
that T (st+1 | st, at) and π(at | ht) are positive.

With a slight abuse of notation, we compactly define T1:t := v(s1) · Πt−1
t′=1T (st′+1|st′ , at′) and π1:t := Πtt′=1π(at′ |ht′).

Let ht := ((s, a, r)1:t−1, st) be a history before taking an action at the tth time step. The above can be rewritten as:∑
τ :x1:H∈E

|P(1)
π (τ)− P(2)

π (τ)| =
∑
x1:H

∑
r1:H

1 {E}T1:H · π1:H ·
∣∣∣M(1)(x1:H , r1:H)−M(2)(x1:H , r1:H)

∣∣∣ ,
where the equality holds by the definition of the higher-order moments (equation (1)).

The proof proceeds by induction on the number of latent contexts. A similar idea was employed in Chen & Moitra (2019)
for a related problem of learning mixtures of product distributions. Specifically, the authors in Chen & Moitra (2019) have
shown the statistical closeness between mixtures of product distributions from matching higher-order multilinear moments.
The key to proceed with the mathematical induction is to reduce the number of contexts or the length of sequence at least by
one whenever we process one time-step event.

To apply induction, we first need to check the base case. The base case for Theorem 4.2 is when M1 = M2 = 1 or
H < M1 +M2. Before we proceed, we define a few definitions on the probability of encountering trajectories of interest.

Additional Notation Let us denote the maximum probability of ending up with a trajectory τ conditioned on a history h,
such that the x1:H part belongs to E as:

P∗(E|h) := sup
π∈Π

Pπ(E|h). (14)

By definition, we have the following inequalities, for history ht = ((s, a, r)1:t−1, st) at time t, action at and any history-
dependent policy π, we have

P∗(E|hH) ≥
∑
aH

1 {x1:H ∈ E}π(aH |hH), t = H, (15)

P∗(E|ht) ≥
∑
at

P∗(E|ht, at)π(at|ht), t < H, (16)

P∗(E|ht, at) ≥
∑
st+1

P∗(E|ht+1)T (st+1|st, at), t < H. (17)

Also, since P∗
E(·) only depends on the occurance of x1:H , any two RMMDP models with the same transition and initial

distribution have the same value for P∗
E :

P∗
E(h) = sup

π∈Π
P(1)
π (E|h) = sup

π∈Π
P(2)
π (E|h).

Hence when we consider the same transition model, we often omit (1) and (2) in superscript from P
(1)
π (E|h) or P(2)

π (E|h).
Also note that P∗

E(ht) = P
∗
E(x1:t−1, st) and P∗

E(ht, at) = P
∗
E(x1:t) since P∗

E only depends on the state-action part of the
history.
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Base Case I: When M1 =M2 = 1, note that

M(x1:H , r1:H) = ΠHt=1µ(xt, rt),

where we can omit the subscript m for reward models µ since there is only one latent context. Then,∑
τ :x1:H∈E

|P(1)
π (τ)− P(2)

π (τ)| =
∑
x1:H

∑
r1:H

1 {E}π1:HT1:H
∣∣∣ΠHt=1µ

(1)(xt, rt)−ΠHt=1µ
(2)(xt, rt)

∣∣∣
≤
∑
x1:H

∑
r1:H−1

1 {E}π1:HT1:H
∣∣∣ΠH−1

t=1 µ
(1)(xt, rt)−ΠH−1

t=1 µ
(2)(xt, rt)

∣∣∣ ·(∑
rH

µ(1)(xH , rH)

)

+
∑
x1:H

∑
r1:H−1

1 {E}π1:HT1:H
(
ΠH−1
t=1 µ

(2)(xt, rt)
)
·
∑
rH

∣∣∣µ(1)(xH , rH)− µ(2)(xH , rH)
∣∣∣ .

By the moment-closeness condition, note that we have
∣∣µ(1)(xH , rH)− µ(2)(xH , rH)

∣∣ ≤ δ. We also know that for any
xH ∈ S ×A, we have

∑
rH
µ(1)(xH , rH) = 1. On one hand, it is easy to verify that∑

x1:H

∑
r1:H−1

1 {E}π1:HT1:HΠH−1
t=1 µ

(2)(xt, rt)

=
∑

x1:H−1

∑
r1:H−1

π1:H−1T1:H−1Π
H−1
t=1 µ

(2)(xt, rt)
∑
sH

T (sH |xH−1)
∑
aH

1 {E}π(aH |hH)

≤
∑

x1:H−1

∑
r1:H−1

π1:H−1T1:H−1Π
H−1
t=1 µ

(2)(xt, rt)
∑
sH

T (sH |xH−1)P
∗
E(hH)

≤
∑

x1:H−1

∑
r1:H−2

π1:H−1T1:H−1

(
ΠH−2
t=1 µ

(2)(xt, rt)
)
P∗

E(hH−1, aH−1)
∑
rH−1

µ(2)(xH−1, rH−1)

=
∑

x1:H−1

∑
r1:H−2

π1:H−1T1:H−1

(
ΠH−2
t=1 µ

(2)(xt, rt)
)
P∗

E(hH−1, aH−1) ≤ ... ≤ P∗
E(∅) = sup

π∈Π
Pπ(E),

where the inequalities come from equation (17) and equation (15). We also have∑
x1:H

∑
r1:H−1

1 {E}π1:HT1:H
∣∣∣ΠH−1

t=1 µ
(1)(xt, rt)−ΠH−1

t=1 µ
(2)(xt, rt)

∣∣∣
≤

∑
x1:H−1

∑
r1:H−1

P∗
E(hH−1, aH−1)π1:H−1T1:H−1

∣∣∣ΠH−1
t=1 µ

(1)(xt, rt)−ΠH−1
t=1 µ

(2)(xt, rt)
∣∣∣ .

Applying the same argument recursively, we can proceed from t = H to t = 1 and get:∑
x1:H

∑
r1:H

1 {E}π1:H−1T1:H

∣∣∣ΠHt=1µ
(1)(xt, rt)−ΠHt=1µ

(2)(xt, rt)
∣∣∣ ≤ P∗

E(∅)HZδ.

Base Case II: If H ≤M1 +M2 − 1, then by the moment-closeness condition,∑
τ :x1:H∈E

|P1,π(τ)− P2,π(τ)| =
∑
x1:H

∑
r1:H

1 {E}π1:HT1:H
∣∣∣M(1)(x1:H , r1:H)−M(2)(x1:H , r1:H)

∣∣∣
≤ δ ·

∑
x1:H

∑
r1:H

1 {E}π1:HT1:H

= δ ·
∑

x1:H−1

∑
r1:H−1

π1:H−1T1:H−1

∑
xH

1 {E}π(aH |hH)T (sH |sH−1, aH−1)
∑
rH

1

≤ Zδ ·
∑

x1:H−1

∑
r1:H−1

π1:H−1T1:H−1P
∗
E(hH−1, aH−1) ≤ . . . ≤ P∗

E(∅) · ZHδ = sup
π∈Π

Pπ(E) · ZHδ.

where inequalities hold due to the moment matching condition and inequalities for P∗
E(·).

12
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Induction on H and M1 +M2. Suppose that the inductive assumption is true for all two RMMDP models when the total
number of latent contexts is less than M1 +M2, or when the length of episode is less than H . Let l(x, z) be the smallest
probability among all latent contexts, i.e.,

l(x, z) := min

(
min

m∈[M1]
µ(1)
m (x, z), min

m∈[M2]
µ(2)
m (x, z)

)
.

Note that the moment-closeness condition says that for any 1 ≤ t1 < t2 < . . . < td ≤ H ,∣∣∣∣∣
M1∑
m=1

w(1)
m Πdq=1µ

(1)
m (xtq , zq)−

M2∑
m=1

w(2)
m Πdq=1µ

(2)
m (xtq , zq)

∣∣∣∣∣ ≤ δ, ∀x1:H ∈ E , {zq}dq=1 ∈ Z
⊗
d,

and similarly for degree d−1 moments of any parts of trajectories in E . Call the event that occurred at t = 1 (x1, r1). Without
loss of generality, suppose that the minimum for l(x1, r1) is achieved from the first RMMDP modelM(1). Define p(1) :=∑M1

m=1 w
(1)
m

(
µ
(1)
m (x1, r1)− l(x1, r1)

)
and p(2) :=

∑M1

m=1 w
(2)
m

(
µ
(2)
m (x1, r1)− l(x1, r1)

)
. By the moment closeness

condition,
∣∣p(1) − p(2)∣∣ ≤ δ. Note that in each model, we can decompose the probability of each trajectory τ = (x, r)1:H as

π1:HT1:H ·
M1∑
m=1

w(1)
m ΠHt=1µ

(1)
m (xt, rt)

= P(1)
π (x1, r1)l(x1, r1)π2:HT1:H−1 ·

M1∑
m=1

w(1)
m ΠHt=2µ

(1)
m (xt, rt)

+ P(1)
π (x1, r1)π2:HT1:H−1 ·

M1∑
m=1

w(1)
m (µ(1)

m (x1, r1)− l(x1, r1))ΠHt=2µ
(1)
m (xt, rt).

Let us define two auxiliary modelsM(3) andM(4) as follows:

1. M(3) has the transition model T (3)(·) := T (1)(·), initial state distribution ν(3)(·) := T (1)(·|s1, r1), latent reward
models µ(3)

m (·) := µ
(1)
m (·), and mixing weights w(3)

m := 1
p(1)

w
(1)
m (µ

(1)
m (x1, r1)− l(x1, r1)).

2. M(4) is defined similarly as M(3) from M(2), except for the mixing weights w(4)
m := 1

p(2)
w

(2)
m (µ

(2)
m (x1, r1) −

l(x1, r1)).

Note thatM(3) has at most M1− 1 non-zero mixing weights, since l(x1, r1) must match at least one of reward probabilities
{µ(1)

m (x1, r1)}M1
m=1. Hence we can leave out only non-zero mixing weights in {w(3)

m }M1
m=1 and consider as if there are only

M1 − 1 latent contexts inM(3).

Let us define Ex1
:= {x2:H |(x1, x2:H) ∈ E}, a subset of trajectories in E starting from x1. Note that Pπ(x2:H ∈ Ex1

|x1) ≤
P∗

E(x1). We can decompose the statistical distance of trajectories as the following:

∑
x1:H

∑
r1:H

1 {E}π1:HT1:H

∣∣∣∣∣
M1∑
m=1

w(1)
m ΠHt=1µ

(1)
m (xt, rt)−

M2∑
m=1

w(2)
m ΠHt=2µ

(2)
m (xt, rt)

∣∣∣∣∣
≤
∑
x1,r1

P1,π(x1)l(x1, r1) ·
∑

x2:H ,r2:H

1 {Ex1
}π2:HT2:H

∣∣∣M(1)(x2:H , r2:H)−M(2)(x2:H , r2:H)
∣∣∣

+
∑
x1,r1

P1,π(x1) ·
∑

x2:H ,r2:H

1 {Ex1}π2:HT2:H ·
∣∣∣p(1)M(3)(x2:H , r2:H)− p(2)M(4)(x2:H , r2:H)

∣∣∣ .
We observe that in the first term, the summation starting from t = 2 to H can be considered as a statistical difference
between two RMMDP modelsM(1) andM(2) with a new common initial state distribution ν′(·) := T (·|s1, a1) in a shorter
time-horizon of length H − 1. A new policy π′(·|h) is π(·|h, r1, x1) in this setup. Note that the moment-closeness condition
remains the same, and therefore by inductive assumption on H , we have∑

x2:H ,r2:H

1 {Ex1}π2:HT2:H
∣∣∣M(1)(x2:H , r2:H)−M(2)(x2:H , r2:H)

∣∣∣ ≤ P∗
E(x1) · (4(H − 1)Z)dδ.

13
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For the second term, we show in Section A.2.1 that∑
x2:H ,r2:H

1 {Ex1}π2:HT2:H ·
∣∣∣p(1)M(3)(x2:H , r2:H)− p(2)M(4)(x2:H , r2:H)

∣∣∣
≤ P∗

E(x1) · 4 · (4(H − 1)Z)d−1δ. (18)

Assuming this, we have

∑
x1:H

∑
r1:H

1 {E}π1:HT1:H

∣∣∣∣∣
M1∑
m=1

w(1)
m ΠHt=1µ

(1)
m (xt, rt)−

M2∑
m=1

w(2)
m ΠHt=2µ

(2)
m (xt, rt)

∣∣∣∣∣
≤
∑
x1

P(1)
π (x1)P

∗
E(x1) ·

∑
r1

(4(H − 1)Z)dδ · l(x1, r1)

+
∑
x1

P(1)
π (x1)P

∗
E(x1) ·

∑
r1

4 · (4(H − 1)Z)d−1δ.

Note that
∑
r1
l(x1, r1) ≤

∑
r1
µ
(1)
m (x1, r1) ≤ 1 for any fixed m ∈ [M ], and thus the above can be further bounded by

δ(4(H − 1))d−1Zd ·

(∑
x1

P(1)
π (x1)P

∗
E(x1)

)
· (4(H − 1) + 4) ≤ P∗

E(∅) · (4HZ)dδ,

which proves the result for M1,M2, H . Applying the same argument inductively for all increasing M1,M2 and H , the
above also holds for M1 =M2 =M and d = min(2M − 1, H).

A.2.1. PROOF OF EQUATION (18)

We first separate a subtle issue of mismatch between p(1) and p(2):∑
x2:H ,r2:H

1 {Ex1}π2:HT2:H ·
∣∣∣p(1)M(3)(x2:H , r2:H)− p(2)M(4)(x2:H , r2:H)

∣∣∣
≤ p(1) ·

∑
x2:H ,r2:H

1 {Ex1
}π2:HT2:H

∣∣∣M(3)(x2:H , r2:H)−M(4)(x2:H , r2:H)
∣∣∣

+ |p(1) − p(2)| ·
∑

x2:H ,r2:H

1 {Ex1
}π2:HT2:HM(4)(x2:H , r2:H).

Since |p(1) − p(2)| ≤ δ, we have

|p(1) − p(2)| ·
∑

x2:H ,r2:H

1 {Ex1
}π2:HT2:HM(4)(x2:H , r2:H) ≤ P∗

E(x1)δ.

For the remaining term, we examine the moment-closeness condition for the auxiliary modelM(3) andM(4). If M1 = 1,
then we must have p(1) = 0 and thus the remaining term is 0. Hence we focus on the case that M1 > 1. We can consider
two cases: if p(1) ≤ 4δ, then instead of using the moment-closeness condition, we apply

p(1)·
∑

x2:H ,r2:H

1 {Ex1}π2:HT2:H
∣∣∣M(3)(x2:H , r2:H)−M(4)(x2:H , r2:H)

∣∣∣
≤ 4δ ·

∑
x2:H ,r2:H

1 {Ex1
}π2:HT2:H

(
M(3)(x2:H , r2:H) +M(4)(x2:H , r2:H)

)
≤ P∗

E(x1) · 8δ,

and we are done as long as (4(H−1)Z)d−1 > 8. Otherwise, let us compare the moments of degree up to d−1 inM(3) and
M(4). Consider any moments consisting of q ≤ d− 1 pairs of state-actions in any trajectory x2:H ∈ Ex1

at non-overlapping
time-steps 2 ≤ t1 < . . . < tq ≤ H . For any z = z1:q ∈ Z

⊗
q with x = (xtq′ )

q
q′=1, we can check that∣∣∣M(3)(x, z)−M(4)(x, z)

∣∣∣ = ∣∣∣∑M1−1
m=1 w

(3)
m Πqq′=1µ

(3)
m (xtq′ , zq′)−

∑M2

m=1 w
(4)
m Πqq′=1µ

(4)
m (xtq′ , zq′)

∣∣∣ .
14
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Recall that

M1−1∑
m=1

w(3)
m Πqq′=1µ

(3)
m (xtq′ , zq′) =

1

p(1)

M1∑
m=1

w(1)
m (µ(1)

m (x1, r1)− l(x1, r1))Πqq′=1µ
(1)
m (xtq′ , zq′),

and similarly for the moments inM(4). Hence we can decompose the moment difference as the following:∣∣∣M(3)(x, z)−M(4)(x, z)
∣∣∣

≤ 1

p(1)

∣∣∣∣∣
M1∑
m=1

w(1)
m µ(1)

m (x1, r1)Π
q
q′=1µ

(1)
m (xtq′ , zq′)−

M2∑
m=1

w(2)
m µ(2)

m (x1, r1)Π
q
q′=1µ

(2)
m (xtq′ , zq′)

∣∣∣∣∣
+
l(x1, r1)

p(1)

∣∣∣∣∣
M1∑
m=1

w(1)
m Πqq′=1µ

(1)
m (xtq′ , zq′)−

M2∑
m=1

w(2)
m Πqq′=1µ

(2)
m (xtq′ , zq′)

∣∣∣∣∣
+

∣∣∣∣ 1

p(1)
− 1

p(2)

∣∣∣∣ ·
∣∣∣∣∣
M1∑
m=1

w(2)
m (µ(2)

m (x1, r1)− l(x1, r1))Πqq′=1µ
(2)
m (xtq′ , zq′)

∣∣∣∣∣ .
By the moment-closeness condition forM(1) andM(2) up to degree d, the first two terms can be easily bounded by 2δ

p(1)
.

For the last term, note that

M1∑
m=1

w(2)
m (µ(2)

m (x1, r1)− l(x1, r1))Πqq′=1µ
(2)
m (xtq′ , zq′) ≤

M1∑
m=1

w(2)
m (µ(2)

m (x1, r1)− l(x1, r1)) ≤ p(2),

and also |p(1) − p(2)| ≤ δ, and thus the last term is bounded by δ/p(1). Therefore, we can conclude that M(3) and
M(4) satisfies the moment-closeness condition (regarding trajectories in Ex1) with δ′ = 3δ/p(1). Applying the inductive
assumption for M1 − 1,M2 and H − 1, we have

p(1)·
∑

x2:H ,r2:H

1 {Ex1
}π2:HT1:H−1

∣∣∣M(3)(x2:H , r2:H)−M(4)(x2:H , r2:H)
∣∣∣

≤ P∗
E(x1) · 3 · (4(H − 1)Z)d−1 · δ.

Finally, we can apply the results to∑
x2:H ,r2:H

1 {Ex1
}π2:HT1:H−1 · p(1)

∣∣∣p(1)M(3)(x2:H , r2:H)− p(2)M(4)(x2:H , r2:H)
∣∣∣

≤ P∗
E(x1)(δ + 3 · (4(H − 1)Z)d−1 · δ) ≤ P∗

E(x1) · 4 · (4(H − 1)Z)d−1 · δ.

This proves (18), and thus completes Lemma 4.1.

A.3. Proof of Theorem 4.4

We first note that

(S ×A×Z)
⊗
H =

L+1⋃
l=0

E ′l .

Thus, we can split the sum over all trajectories into L + 2 levels, to bound the statistical distance between trajectory
distributions (reiterating equation (7)):

∥(P(1)
π − P(2)

π )(τ)∥1 =

L+1∑
l=0

∑
τ :x1:H∈E′

l

|P(1)
π (τ)− P(2)

π (τ)| ≤
L+1∑
l=0

sup
π∈Π

P(1)
π (x1:H ∈ E ′l ) ·O(ϵl).
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Note that this holds for all history-dependent policies. Then we apply the results from Lemma 4.1 and 4.3, which yields

∥(P(1)
π − P(2)

π )(τ)∥1 ≤
L+1∑
l=0

sup
π∈Π

P(1)
π (x1:H ∈ E ′l ) ·O(ϵl)

≤
L+1∑
l=0

Hdϵpe
√
nl/ιc · (4HZ)d ·O

(√
ιc/nl

)
≤ O(L)Hdϵpe(4HZ)

d.

Now using ϵpe = ϵ/(HL(4H2Z)d), we get ∥(P(1)
π − P(2)

π )(τ)∥1 ≤ O(ϵ/H), which in turn gives

|V πM(1) − V πM(2) | ≤ H · ∥(P(1)
π − P(2)

π )((x, r)1:H)∥1 ≤ O(ϵ),

as desired.

B. Additional Theoretical Results
B.1. Improved Results for M = 2

The work of Kwon et al. (2021a) considers the problem of learning RMMDPs for M = 2. There, the authors analyze the
case in which the mixing weights are balanced, i.e., w1 = w2 = 1/2. They design an algorithm with sample complexity
of O(poly(H,Z)(SA)2/ϵ4). We now show that for the special setting considered in Kwon et al. (2021a) Theorem 4.4
can be improved to yield an upper bound of O(poly(H,Z)(SA)2/ϵ2): strictly improving the dependence from their ϵ−4

dependence without resulting in any degradation in the polynomial dependence of (SA).

The following lemma is key to the improved result.
Lemma B.1. For any RMMDP with M = 2 and w1 = w2 = 1/2, the following holds: for any length three sequences of
state-action x = (xi)

3
i=1 and rewards z = (zi)

3
i=1,

M(x, z) = −2M(x{1}, z{1}) ·M(x{2}, z{2}) ·M(x{3}, z{3}) +M(x{1}, z{1}) ·M(x{2,3}, z{2,3})

+M(x{2}, z{2}) ·M(x{1,3}, z{1,3}) +M(x{3}, z{3}) ·M(x{1,2}, z{1,2}).

That is, for this special case, if the first and second moments nearly match, then the third moments are also guaranteed to
match. Equipped with the above lemma along with Theorem 4.4, we can get a corollary that strictly improves the result of
Kwon et al. (2021a):
Corollary B.2 (Improved Sample Complexity for Balanced 2-RMMDPs). There exists a universal constant C > 0 such
that if M = 2 and w1 = w2 = 1/2, then there exists an algorithm that produces an ϵ-optimal policy with probability at
least 1− η, using at most K episodes, for

K ≥ C · (SA)
2

ϵ2
· poly(H,Z) · poly log(K/η).

We believe the idea of expressing the third-order moment using lower-order moments can also be applied when the prior is
unknown with extra exploration procedures (see, e.g., Appendix E in Kwon et al. (2021a)). We leave this as future work.

B.2. Proof of Lemma B.1

This equation directly comes from unfolding the expression:

−2 · 1
8
(µ1(x1, z1) + µ2(x1, z1))(µ1(x2, z2) + µ2(x2, z2))(µ1(x3, z3) + µ2(x3, z3))

+
1

4
(µ1(x1, z1) + µ2(x1, z1))(µ1(x2, z2)µ1(x3, z3) + µ2(x2, z2)µ2(x3, z3)) + . . .

=
1

2
(µ1(x1, z1)µ1(x2, z2)µ1(x3, z3) + µ2(x1, z1)µ2(x2, z2)µ2(x3, z3)) ,

after canceling out cross-context multiplied terms.
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B.3. Proof of Corollary B.2

With Lemma B.1, we can directly verify that all trajectories in El defined with d = 2 satisfies the moment closeness condition
(8) up to degree 3 with δl = O

(√
ιc/nl

)
. That is, we only need to explore up to second-order moments of the system, but

the guarantee on the moment-closeness can be given up to the third-order degree. Thus, we can invoke Lemma 4.1 with
d = 3, and combine that with Lemma 4.3 with d = 2, which gives

∥(P(1)
π − P(2)

π )(τ)∥1 ≤
L+1∑
l=0

sup
π∈Π

P(1)
π (x1:H ∈ E ′l ) ·O(ϵl)

≤
L+1∑
l=0

H2ϵpe
√
nl/ιc · (4HZ)3 ·O

(√
ιc/nl

)
≤ O(L)H2ϵpe(4HZ)

3,

where ϵpe = ϵ/(H6L(4Z)3). Plugging this to the first part of Lemma 4.3, after K exploration episodes where

K ≥ C · (SA)
2

ϵ2pe
log(K/η) = C · (SA)

2

ϵ2
· poly(H,Z) · poly log(K/η),

we obtain an O(ϵ)-optimal policy.

B.4. Proof of Lemma 4.5

The proofs here are largely adapted from Chen & Moitra (2019) (see their Lemma 3.1 and 3.8 for the proof of distributional
identifiability from low-degree moments). We first define some notation.

We often use a single letter y to denote a pair of state-action and reward (x, z), and thus we use µm(y) = µm(x, z). Yq be a
q power set of state-action-rewards:

Yq := {y = (y1, . . . , yq)|(y1, . . . , yq) ∈ (S ×A×Z)
⊗
q}.

Let Y0 = {∅} be a null sequence set, and let Y := ∪Hq=1Yq be a set of at most length H sequence (with possible repetitions)
of state-action-rewards. Then we define a latent moment matrix M ∈ R|Y|×M whose rows are indexed by y ∈ Y such that

M(y,m) := Π
|y|
q=1µm(yq).

By convention, M(∅,m) = 1. For any Y ⊆ Y , let MY be a row restriction of M to Y . We also denote a single row vector
My indexed by y. We denote a length of sequence y as |y|. For any J ⊆ [|y|], yJ is a subsequence of y restricted to J . If
J = ∅, then yJ means ∅.

Now for two RMMDP modelsM(1) andM(2) with the same transition and initial state probabilities, let M(1) and M(2) be
latent moment matrices respectively, and let M ∈ R|Y|×2M be a column-concatenation of two matrices M =

[
M(1)|M(2)

]
.

We first show that for any row of M corresponding to a sequence y of length larger than d = O(logM), My is in the row
span of MY (y) where Y (y) is a set of at most d pairs in y

Y (y) := {yJ |∀J ⊆ [|y|] : |J | ≤ d}.

Formally, we show the following lemma:
Lemma B.3. For any y ∈ Y with |y| > d = ⌈2P logM⌉, the rows of MY (y) span all rows in My .

The proof of Lemma B.3 is deferred to Section B.4.1. The implication of Lemma B.3 is crucial: it implies that if we can
match up to all degree d = O(logM) moments exactly, then we can predict probabilities of arbitrary length of trajectories
exactly. This means two RMMDP models are identical in terms of trajectory distributions. Of course, we always have a
sampling noise in our estimates, and the main challenge is to understand how much the overall statistical error is amplified.

We first observe that the statistical distance between two RMMDP models for any history-dependent policy π can be
represented as the following: ∑

τ :x1:H∈E′
l

|P(1)
π (τ)− P(2)

π (τ)| =
∥∥DMYHw

∥∥
1
,
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where D is a diagonal matrix whose diagonal element is defined as:

D (y = (s, a, r)1:H) = 1 {E ′l}π1:HT1:H ,

and w ∈ R2M is a vector concatenating w(1) and −w(2) such that w :=
[
w(1)| − w(2)

]⊤
. Let N be a row restriction of M

to pairs of degree ≤ d that are explored in El, i.e., N := MYl where

Y l := ∪τ∈ElY (τ).

Here we consider τ in the form of y of length H . By the moment closeness condition, note that

∥Nw∥∞ ≤ δl.

The remaining steps follow the proof of Lemma 3.8 in Chen & Moitra (2019), and again we rewrite the major procedures
for the completeness of the paper. We show by contradiction that if

∥∥DMYHw
∥∥
1
> P∗

E′
l
(∅) · ϵ, then it must hold that

∥Nw∥∞ > M−O(M) · ϵ. This concludes Lemma 4.5 by plugging ϵ =MO(M) · δl.

To show this, let r := rank(N) be the rank of N, and let Nr be the column restriction of N to r linearly independent
columns. Since the columns of Nr span all columns of N, we can find wr := w + v such that v ∈ ker(N) and wr is only
supported on the r coordinates corresponding to columns selected by Nr. Since Nr is full rank, σ∞

min(Nr) > 0 where
σ∞
min(A) := minu ∥Au∥∞/∥u∥∞ for a matrix A. If we can give proper lower bounds for σ∞

min(Nr) and ∥wr∥∞, then we
can bound ∥Nw∥∞ ≥ σ∞

min(Nr) · ∥wr∥∞. Now this follows from the two following lemmas.
Lemma B.4. If a matrix A ∈ Rn×k is a full column rank with n ≫ k, and if all elements of A are integral multiples of
some p > 0, then σ∞

min(A) ≥ pk · k−O(k).

Note that all entries of Nr are integral multiples of 1/P d, and thus we have that

σ∞
min(Nr) ≥ P−drr−O(r) ≥M−O(MP logP ).

Since P = O(1), this is bounded below by M−O(M). The proof of Lemma B.4 is given in Section B.4.2. On the other
hand, we can show that ∥wr∥∞ > ϵ/M .
Lemma B.5. If

∥∥DMYHw
∥∥
1
> P∗

E′
l
(∅) · ϵ, then for any v ∈ ker(N), ∥w + v∥∞ > ϵ/(2M).

Proof. Let wr = w + v. Note that by Lemma B.3, all rows of DMYH are spanned by the rows of N: for any τ ∈ E ′l , then
Mτ is in the span of MY (τ) and thus spanned by the rows of N, and otherwise D(τ) = 0 by definition and thus the row of
DMYH corresponding to τ is 0. Obviously, 0 vector is in the span of the rows of N. Now since v ∈ ker(N), DMYHv = 0
for any v ∈ ker(N). Therefore we have∥∥DMYHw

∥∥
1
=
∥∥DMYHwr

∥∥
1
≤
∥∥DMYH

∥∥
1,1
∥wr∥∞,

where
∥∥DMYH

∥∥
1,1

is the absolute sum of all elements in DMYH . Note that the sum of the mth column of DMYH is
equal to ∑

(x,r)1:H

1 {E ′l}π1:HT1:HΠHt=1µ
(1)
m (xt, rt) ≤ P∗

E′
l
(∅),

and similar inequalities hold for the (M +m)th column for m ∈ [M ]. Since there are 2M columns,
∥∥DMYH

∥∥
1,1

is further
bounded by 2MP∗

E′
l
(∅). Finally, by a contradicting assumption, we have

ϵP∗
E′
l
(∅) < 2MP∗

E′
l
(∅)∥wr∥∞,

which proves the lemma.

Combining Lemma B.4 and B.5, we obtain the desired contradiction that ∥Nw∥∞ > M−O(M)ϵ. By letting ϵ =MO(M)δl,
we can conclude that

∥∥DMYHw
∥∥
1
≤ P∗

E′
l
(∅) ·MO(M)δl, and we can conclude that∑

τ :x1:H∈E′
l

|P(1)
π (τ)− P(2)

π (τ)| =
∥∥DMYHw

∥∥
1
≤ P∗

E′
l
(∅) ·MO(M)δl.
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B.4.1. PROOF OF LEMMA B.3

This largely follows from the proof of Lemma 3.1 in Chen & Moitra (2019), and we rewrite the major procedures in there for
the completeness of the paper. We show this lemma by mathematical induction on the length of sequence. For convenience,
let n = |y| be the length of target sequence. We show that there exists non-trivial coefficients {αJ}J⊆[n] such that∑

J⊆[n]

αJMyJ = 0,

and that α[n] is nonzero. If we can do this inductively from n = d+ 1, then we are done by mathematical induction. We
construct an auxiliary polynomial function f of n variables x = {xj}nj=1 such that:

f(x) = Πnj=1(xj − λj) =
∑
J⊆[n]

αJΠj∈Jxj ,

for some {λj}nj=1. Note that the coefficient α[n] is always 1. The strategy is to construct a polynomial f such that f(x) = 0

at all x = {µ(b)
m (yj)}nj=1 for all m ∈ [M ] and b = 1, 2. Note that any column of

∑
J⊆[n] αJMyJ corresponds to one of

{µ(b)
m (yj)}nj=1. The existence of such polynomial f guarantees that My is in the span of the rows of lower degree pairs in

the same sequence, which inductively implies the lemma.

To construct f , we start with f0(x) = 1 at t = 0 and inductively construct ft+1 from ft where ft(x) = Πtj=1(xj − λj).
At any time step t, define a set of surviving columns Rt =

{
(b,m)

∣∣ft ({µ(b)
m (yj)}nj=1

)
̸= 0
}

. Since µ(b)
m (·) can take

values only from the candidate probability set P , by the pigeonhole principle, we can choose λt+1 ∈ P such that
|Rt+1| ≤

⌊(
1− 1

P+1

)
|Rt|

⌋
. Since |R0| = 2M , once t reach (P + 1) log(2M), there will be no surviving columns and

we find the desired polynomial f = ft(x) ·Πnj=t+1xj .

B.4.2. PROOF OF LEMMA B.4

This is reminiscent of Lemma 3.7 in Chen & Moitra (2019). We can pick k rows of A such that a row restriction of A to the
selected rows, which we denote as Ak, is full rank. By definition, σ∞,1

min(A) ≥ σ∞
min(Ak). Now Ak is a k × k square matrix

and det(Ak) > 0, and thus we can equivalently say

σ∞
min(Ak) = min

u

∥Aku∥∞
∥u∥∞

= min
u′

∥u′∥∞
∥A−1

k u′∥∞
≥ min

u′

∥u′∥∞
∥A−1

k ∥∞,∞∥u′∥1
≥ 1

k

1

∥A−1
k ∥∞,∞

,

where ∥A−1
k ∥∞,∞ is the largest element ofA−1

k . The determinant of any (k−1)×(k−1) minor is at most (k−1)! = kO(k),
and det(Ak) is some nonzero integral multiple of pk. Using the Cramer’s matrix inversion formula, we can conclude that
∥A−1

k ∥∞,∞ ≤ p−kkO(k).

B.5. Proof of Theorem 4.6

Similarly to the proof of Theorem 4.4 (which can be found in Section A.3), we can show that

∥(P(1)
π − P(2)

π )(τ)∥1 =

L+1∑
l=0

∑
τ :x1:H∈E′

l

|P(1)
π (τ)− P(2)

π (τ)|

≤
L+1∑
l=0

Hdϵpe ·
√
nl/ιc ·MO(MP logP ) ·O

(√
ιc/nl

)
≤ LHdϵpeM

O(M),

where we used Lemma 4.5 and Lemma 4.3 with d = 2P logM since H > 2P logM . Plugging ϵpe = ϵ/(Hd+1LMO(M)),
we have

|V πM(1) − V πM(2) | ≤ H · ∥(P(1)
π − P(2)

π )(τ)∥1 ≤ O(ϵ).
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Algorithm 2
1: Function: EstimateMoments(d, ϵ, η)
2: Let ϵpe := ϵ/(HL(4H2Z)d))

3: Initialize Q̃(·)(·) = Ṽ0 = 1, n(x) = 0 for all x ∈
⋃d
q=1(S ×A)

⊗
q .

4: Initialize T̂ (·) = ν̂(·) = 0, nT (·) = 0.
5: while Ṽ0 > ϵpe do
6: Get an initial state s1 for the kth episode. Let v1 = (∅, . . . , ∅), i = 1, rc = 1
7: for t = 1, 2, ...,H do
8: Pick (at, bt) = argmax(a,b)∈Ã Q̃t((it,vt, st), (a, b)).
9: Play action at, observe next state st+1 and reward rt.

10: if it ≤ d and bt ̸= 0 then
11: Record zit = rt
12: end if
13: Update (it+1,vt+1, st+1) according to the choice of at and bt following the rule in (19)
14: if it ≤ d and it+1 = d+ 1 then
15: xc := (vjt+1)

it
j=1, zc = (zj)

it
j=1

16: end if
17: end for
18: if iH+1 = d+ 1 then
19: n(xc)← n(xc) + 1
20: Mn(xc, z)← (1− 1/n(xc))Mn(xc, z) + 1 {z = zc} /n(xc) for all z ∈ Z

⊗
length(x)

21: end if
22: Update T̂ , ν̂ and nT from a trajectory (s1, a1, s2, a2, ..., sH , aH)

23: Update Q̃(·) and Ṽ using (20), (21)
24: end while
25: Return T̂ , ν̂,Mn, n

C. Reward Free Pure-Exploration for Higher-Order Moments
Recall that our goal in the exploration phase is to obtain a collection of samples to estimate reward-moments. In this section,
we describe a systematic way of collecting samples using the reward-free exploration scheme. The underlying idea is simple:
for each x = (xi)

q
i=1 for some q ≤ d, we want to visit all state-actions in x in order. We construct a dth-order MDP where

each state is a combination of some state-action sequence and the current state. In this system, if we have visited up to ith

elements in x at time-step t, and if the (i+ 1)th element in x is reached at time t+ 1, then we can advance a state from
((x1, ..., xi), st) to ((x1, ..., xi, xi+1), st+1). Then we can simplify the goal to reach (x, ·) at the end of the episode as much
as possible in this system.

We can formalize the above idea. This part mostly follows Kwon et al. (2021a), and we restate most of the definitions for
completeness. We employ the reward-free exploration idea for dth-order MDPs, which is defined as the following:

Definition C.1 (dth-Order MDPs). A dth-order MDP M̃ is defined on a state-space S̃ and action-space Ã where

S̃ =
{
(i,v, s)| i ∈ [d+ 1],v : (vi)di=1 ∈ ((S ×A) ∪ {∅})

⊗
d, s ∈ S

}
,

Ã = {(a, b)| a ∈ A, b ∈ {0, 1,−1}}.

In M̃, an augmented state (it,vt, st) evolves under an action (at, zt) as follows:

i1 = 1,v1 = (∅, . . . , ∅), s1 ∼ ν(·), st+1 ∼ T (·|st, at), vjt+1 = vjt ∀j ∈ [d]/{it},

it+1 =


d+ 1 if bt = −1
it + 1 else if bt = 1 and it ≤ d
it else

, vitt+1 =

{
(st, at) if bt ̸= 0

vitt else
when it ≤ d. (19)

In short, additional state variables i and v select which state-actions to include in a moment to estimate in the current episode.
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Additional action variable b selects whether to include or skip the current state-action, or decide a moment to sample with
currently saved state-actions in v.

Let us define the upper confidence action-value function Q̃ and value function Ṽ that is defined as in the form of Bellman-
equation w.r.t. M̃ with pure-exploration bonus:

qc((i,v, s), (a, b)) = 1 {(i ≤ d) ∩ (i′ = d+ 1)} ·
(
1 ∧

√
ιc

n(xc)

)
, qT (s, a) =

(
1 ∧

√
ιT

nT (s, a)

)
Q̃t((i,v, s), (a, b)) = 1 ∧

(
qc((i,v, s), (a, b)) + Es′∼T̂ (·|s,a)

[
Ṽt+1(i

′,v′, s′)
]
+ qT (s, a)

)
, (20)

and

Ṽt(i,v, s) = max
(a′,b′)∈Ã

Q̃t((i,v, s), (a
′, b′)), Ṽ0 =

√
ιν/k +

∑
s ν̂(s) · Ṽ1(1,v1, s), (21)

Here, i′ and v′ are the first and second coordinates of the next state following the (deterministic) transition rule (19)
for i and v. 1 {(i ≤ d) ∩ (i′ = d+ 1)} is an indicator of whether to finish and collect samples for correlations stored
in v′. By convention, we let Q̃H+1(·) = 0. K is the total number of episodes to be explored. The logarithmic factor
ιc = O(d log(SAZ/η)) is properly set confidence interval parameters. The pure-exploration bonus qc encourages to collect
samples for the moments that have not been sufficiently explored yet. This is controlled by the number n(xc) of collected
samples for xc = ((vj)i−1

j=1, (s, a)). Variables nT , qT are defined for estimating transition models which we describe below,
where nT (s, a) is the number of total times that (s, a) has been visited, and qT (s, a) is pure-exploration bonus for visiting
(s, a).

Exploration for Estimating Moments In every episode, we take a greedy augmented action (at, bt) that maximizes
Q̃t at every time step t ∈ [H]. We continue this pure-exploration process for K episodes until Ṽ0 ≤ ϵpe with a threshold
parameter ϵpe for the pure exploration. The pure-exploration procedure is summarized in Algorithm 2. The main purpose of
Algorithm 2 is to auto-balance the amount of samples for moments proportional to each moment’s reachability.

Estimate Transition Models The transition models and initial state distributions can be easily estimated in the pure-
exploration phase. In equation (20), qT (·) is an exploration bonus term for the uncertainty in transition probabilities, and
ιT = O(S log(K/η)) and ιν = O(S log(K/η)) are properly set confidence constants. Specifically, we can add bonus terms
qT (·) and

√
ιν/k to upper-confidence functions Q̃ and Ṽ0 to encourage the exploration to estimate transition model T̂ and

initial state distribution ν̂ simultaneously with higher-order moments of latent reward models. The update step (line 2) can
be implemented in a straight-forward manner.

Additional Notation We denote 1k{x} as a random variable indicating whether x is visited at the kth episode. Let
Π̃ : S̃ → Ã be the class of stationary policies in dth-order MDPs. π̃k be the policy (greedy with respect to Q̃) executed
in the kth episode. Let nk(x) :=

∑k−1
k′=1 1k′{x} and the expected quantities n̄k(x) :=

∑k−1
k′=1 Eπ̃k′ [1k′{x}]. We define a

desired high probability event Epe for martingale sums:

nk(x) ≥
1

2
n̄k(x)− cl · d log(SAK/η), ∀k ∈ [K],x ∈

⋃d
q=1(S ×A)

⊗
q, (22)

for some absolute constant cl > 0. With a standard measure of concentration argument for martingale sums (Wainwright,
2019), and taking union bound on all k and x, we can show that P(Epe) ≥ 1− η.

We denote T̂k, ν̂k for the empirically estimated transition and initial distribution models at the beginning of kth episode.
Similarly to nk(x), let nk(s, a), n̄k(s, a) be the actual and expected visit count for a single state-action (s, a) ∈ (S ×A),
and let #k(s, a) be the random variable that the number of times that (s, a) is visited at the kth episode. This is for tracking
the uncertainties in T̂k. Similarly to equation (22), it holds that

nk(s, a) ≥
1

2
n̄k(s, a)− cl · log(SAK/η), ∀k ∈ [K], (s, a) ∈ (S ×A),

with probability at least 1− η.
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C.1. Proof of Lemma 4.3

Proof of equation (10): We first show that Algorithm 2 terminates after at most K episodes with probability at least 1− η
where

K ≥ C · (SA)dϵ−2
pe · log(K/η),

for some absolute constant C > 0. Let us examine Ṽ0 at the kth episode. This can be decomposed as

Ṽ0 =
√
ιν/k +

∑
s

ν̂k(s) · Ṽ1(i1,v1, s)

≤
√
ιν/k + ∥ν̂k(s)− ν(s)∥1 +

∑
s

ν(s) · max
(a,b)∈Ã

Q̃1((i1,v1, s), (a, b))

≤ 2
√
ιν/k + Eπ̃k

[
Q̃1((i1,v1, s1), π̃k(i1,v1, s1))

]
,

where in the last inequality we used ∥ν̂k − ν(s)∥1 ≤
√
ιν/k by standard martingale inequalities. Then, we can recursively

bound expectation of Q̃t for t ≥ 1. For convenience, let us denote xt = ((vjt )
it−1
j=1 , (st, at)) be the moment that can be

sampled at the current time step, and

Eπ̃k
[
Q̃t((it,vt, st), (at, bt))

]
= Eπ̃k [qr((it,vt, st), (at, bt)) + qT (st, at)] + Eπ̃k

[∑
st+1

T̂k(st+1|st, at) · Ṽt+1(it+1,vt+1, st+1)
]

≤ Eπ̃k
[
Q̃t+1((it+1,vt+1, st+1), (at+1, bt+1))

]
+ 2Eπ̃k

[
1 {it ≤ d ∩ it+1 = d+ 1}

(
1 ∧

√
ιc

nk(xt)

)]
+ 2Eπ̃k

[
1 ∧

√
ιT

nk(st, at)

]
,

where in the last inequality, we used that ∥T (·|st, at)− T̂ (·|st, at)∥1 ≤
√
ιT /nk(st, at) by martingale concentration, and

|Q̃t+1(·)| ≤ 1. Note that the indicator 1 {it ≤ d ∩ it+1 = d+ 1} means whether we collect the sample at the tth time step,
i.e., 1 {collect at t}. Putting together, at the kth episode, we have

Ṽ0 ≤ 2
√
ιν/k + 2

H∑
t=1

Eπ̃k

[(
1 ∧

√
ιT

nk(st, at)

)
+ 1 {collect at t}

(
1 ∧

√
ιc

nk(xt)

)]
= 2
√
ιν/k + 2

∑
(s,a)

(
1 ∧

√
ιT

nk(s, a)

)
· Eπ̃k [#k(s, a)] + 2

∑
x

(
1 ∧

√
ιc

nk(x)

)
· Eπ̃k [1k{x}] .

From equation (22), we have that∑
x

(
1 ∧

√
ιc

nk(x)

)
· Eπ̃k [1k{x}] ≤ 2

∑
x

√
ιc

1 + n̄k(x)
· (n̄k+1(x)− n̄k(x))

+
∑
x

1 {n̄k(x) < 4 · cld log(SAK/η)} (n̄k+1(x)− n̄k(x)),

where we used by definition that Eπ̃k [1k{x}] = (n̄k+1(x)− n̄k(x)). Similarly, we also have∑
(s,a)

(
1 ∧

√
ιT

nk(s, a)

)
· Eπ̃k [#k(s, a)] ≤ 2

∑
s,a

√
ιT

1 + n̄k(s, a)
· (n̄k+1(s, a)− n̄k(s, a))

+H
∑
(s,a)

1 {n̄k(s, a) < 4 · cl log(SAK/η)} (n̄k+1(s, a)− n̄k(s, a)).

using an integral inequality
∑K
k=1

√
1/(1 + nk)(nk+1 − nk) ≤

∫ nK
1

1/xdx for any non-decreasing sequence (nk)Kk=1, we
can sum over all K episodes until Ṽ0 > ϵpe and thus, we have

Kϵpe ≤ 4
√
ινK +O(cldH(SA)d log(KSA/η)) + 8

∑
(s,a)

√
ιT n̄K+1(s, a) + 8

∑
x

√
ιcn̄K+1(x).
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We now note that
∑
s,a n̄K+1(s, a) = HK and

∑
x n̄K+1(x) ≤ K. Using a Cauchy-Schwartz inequality, we get

Kϵpe ≤ O
(√

ινK + dH(SA)d log(KSA/η) +
√
ιTHSAK +

√
ιc(SA)dK

)
.

The bound on K is concluded by plugging the confidence parameters, which ensures that K should satisfy

K ≤ O
(
Hd(SA)dϵ−2

pe log(KSA/η)
)
,

until we terminate Algorithm 2 after at most K episodes with probability at least 1− η.

Proof of equation (11): To prove this part, we first note that by union bound, we have

sup
π∈Π

Pπ(x1:H ∈ E ′l ) = sup
π∈Π

Pπ

 d⋃
q=1

⋃
1≤t1<...<tq≤H

(xti)
q
i=1 ∈ Xl ∩ X

c
l−1


≤

d∑
q=1

∑
1≤t1<...<tq≤H

sup
π∈Π

Pπ
(
(xti)

q
i=1 ∈ X

c
l−1

)
.

For each fixed q and t = (ti)
q
i=1, we consider a sub-class of pure-exploration policies Π̃(t) : (S̃ × [H])→ Ã such that each

π̃ ∈ Π̃(t) takes bt = 1 when t = ti for some i < q, bt = −1 when t = tq, and otherwise takes bt = 0. Within this policy
class, define the value function Ṽ t and action-value function Q̃t with respect to Π̃(t) as the following:

qT (s, a) =

(
1 ∧

√
ιT

nK+1(s, a)

)
,

qt,c((i,v, s), (a, b)) = 1
{
t = q ∩ xc ∈ X cl−1

}
·
(
1 ∧

√
ιc

nK+1(xc)

)
,

Q̃t
t((i,v, s), (a, b)) = 1 ∧

(
qt,c((i,v, s), (a, b)) + Es′∼T̂ (·|s,a)

[
Ṽ t
t+1(i

′,v′, s′)
]
+ qT (s, a)

)
,

and

Ṽ t
t (i,v, s) = max

a∈A
Q̃t
t((i,v, s), (a, bt)), Ṽ t

0 =
√
ιν/K +

∑
s ν̂(s) · Ṽ t

1 (1,v1, s).

with Q̃t
H+1 = 0. By construction, Ṽ0 is an upper confidence bound of Ṽ t

0 :

ϵpe ≥ Ṽ0 ≥ Ṽ t
0 ,

since Ṽ t
0 is computed with more restriction on policies. Note that the exploration-bonus from collecting a sample of moments

qt,c is always larger than
√
ιc/nl−1. On the other hand, supπ Pπ

(
(xti)

q
i=1 ∈ X cl−1

)
can be computed through the same

dynamic programming on Q̃∗ with slight changes of exploration bonus:

qt,c((i,v, s), (a, b)) = 1
{
t = q ∩ xc ∈ X cl−1

}
,

Q̃∗
t ((i,v, s), (a, b)) = qt,c +

∑
s′

T (s′|s, a) · Ṽ ∗
t+1(i

′,v′, s),

and

Ṽ ∗
t (i,v, s) = max

a∈A
Q̃∗
t ((i,v, s), (a, bt)).

Then,

Ṽ ∗
0 =

∑
s

ν(s) · Ṽ ∗
1 (1,v1, s) = sup

π∈Π
Pπ
(
(xti)

q
i=1 ∈ X

c
l−1

)
.
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Finally, with the setting of confidence interval parameters ιT for transition errors, we can inductively show that

Q̃t
t ≥ Q̃∗

t ·
√
ιc/nl−1, Ṽ t

t ≥ Ṽ ∗
t ·
√
ιc/nl−1.

This implies that

ϵpe ≥ Ṽ t
0 ≥

√
ιc/nl−1 · sup

π∈Π
Pπ
(
(xti)

q
i=1 ∈ X

c
l−1

)
.

We conclude the final result (equation (11)):

sup
π∈Π

Pπ(x1:H ∈ E ′l ) ≤
d∑
q=1

∑
1≤t1<...<tq≤H

sup
π∈Π

Pπ
(
(xti)

q
i=1 ∈ X

c
l−1

)
≤ O

(
Hdϵpe ·

√
nl−1/ιc

)
.

D. Proofs for the Lower Bound
D.1. Proof of Lemma 5.1

This construction follows from the result in Section 4.3 in Chen & Moitra (2019), and in particular, their Lemma 4.8 with
a slight change in constants (e.g., let λ2 = −λ1 ∝ −ϵ · 2−d). We refer the readers to Chen & Moitra (2019) for detailed
constructions.

D.2. Proof of Lemma 5.2

The optimal policy π∗ is the one which always plays optimal actions up to time step d − 1, and select the last action
depending on the conditional expectation of the last reward. Specifically, suppose we played a sequence of actions (a∗t )

d−1
t=1

and the received a reward sequence (rt)
d−1
t=1 . It is not difficult to verify that the conditional probability of last reward

according to a∗H is given as follows:

E
[
rd|(a∗t )d−1

t=1 , (rt)
d−1
t=1 , a

∗
d

]
=

{
1/2 + ϵ · 2d−1 if

∑d−1
t=1 (1− rt) is even

1/2− ϵ · 2d−1 otherwise
, (23)

That is, the number of 0 in a sequence (rt)d−1
t=1 is even, then the probability of getting 1 is larger, and otherwise the probability

of getting 0 is larger. Thus, the optimal policy can play aH = a∗H if the number of 0 is even, and play anything else
otherwise. Cumulative rewards of the optimal policy is given as follows:

Eπ∗

[∑d
t=1 rt

]
= Eπ∗

[∑d−1
t=1 rt

]
+ E

[
E
[
rd

∣∣∣(at)d−1
t=1 = (a∗t )

d−1
t=1 , (rt)

d−1
t=1 , ad ∼ π∗

]]
≥ (d− 1)/2 +

1

2
(1/2 + ϵ · 2d−1) +

1

2
(1/2)

= d/2 + ϵ · 2d−2,

where in the second equality, we used the fact that all reward sequences of length d− 1 has the same marginal probability.

Now for any history-dependent policy π, we note that

Eπ
[∑d

t=1 rt

]
= (d− 1)/2 + Eπ [rd] ≤ d/2 + ϵ · 2d−1 · Pπ(a1:d = a∗1:d).

Thus, for any ϵ-optimal policy πϵ with ϵ < (2d)−2d, we have

d/2 + ϵ · 2d−2 − ϵ < d/2 + ϵ · 2d−1 · Pπ(a1:d = a∗1:d),

which in turn implies Pπ(a1:d = a∗1:d) ≥ 1/2− 1/2d−1 ≥ 1/4.
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D.3. Proof of Lemma 5.3

This is a fundamental equality whose bandit version can be found in e.g., Cesa-Bianchi & Lugosi (2006), Garivier et al.
(2019). We start by unfolding the expression for KL-divergence:

KL
(
P

(1)
ψ (τ1:K),P

(2)
ψ (τ1:K)

)
= E(1)

ψ

[
log

(
P

(1)
ψ (τ1:K)

P
(2)
ψ (τ1:K)

)]

= E(1)
ψ

[
log

(
P

(1)
ψ (τ1:K−1)

P
(2)
ψ (τ1:K−1)

)]
+ E(1)

ψ

[
log

(
P

(1)
ψ (τK |τ1:K−1)

P
(2)
ψ (τK |τ1:K−1)

)]
.

Note that for any τK = (xK1:H , r
K
1:H),

P
(1)
ψ (τK |τ1:K−1) =

(
ΠHt=1T (s

K
t |xKt−1)ψ(a

K
t |hKt , τ1:K−1)

)
· P(1)

(
rK1:H |xK1:H

)
,

and similarly, for P(2)
ψ

P
(2)
ψ (τK |τ1:K−1) =

(
ΠHt=1T (s

K
t |xKt−1)ψ(a

K
t |hKt , τ1:K−1)

)
· P(2)

(
rK1:H |xK1:H

)
,

which implies

E(1)
ψ

[
log

(
P

(1)
ψ (τK |τ1:K−1)

P
(2)
ψ (τK |τ1:K−1)

)]
= E(1)

ψ

[
E(1)
ψ

[∑
x1:H

log

(
P(1)

(
rK1:H |xK1:H

)
P(2)

(
rK1:H |xK1:H

))1{xK1:H = x1:H
} ∣∣∣τ1:K−1

]]

=
∑
x1:H

E(1)
ψ

[
log

(
P(1)

(
rK1:H |x1:H

)
P(2)

(
rK1:H |x1:H

))1{xK1:H = x1:H
}]

=
∑
x1:H

KL
(
P(1) (·|x1:H) ,P(2) (·|x1:H)

)
· E(1)

ψ

[
1
{
xK1:H = x1:H

}]
,

where the second equality is an application of the tower rule. Applying this recursively in K, we can show that

KL
(
P

(1)
ψ (τ1:K),P

(2)
ψ (τ1:K)

)
=
∑
x1:H

KL
(
P(1) (·|x1:H) ,P(2) (·|x1:H)

)
· E(1)

ψ

[
K∑
k=1

1
{
xk1:H = x1:H

}]
.

By definition of Nψ,x1:H
(K), we have

E(1)
ψ

[
K∑
k=1

1
{
xk1:H = x1:H

}]
= Nψ,x1:H

(K).

Plugging the above, we get the desired result.

D.4. Proof of Theorem 5.4

Let {µ∗
m}Mm=1 be the specific set of vectors in Rd satisfying Lemma 5.1 with d = Ω(

√
M) ≥ 5 being an odd number

satisfying the condition in Lemma 5.1. Suppose the transition model follows the construction in Section 5: at every time step
t ∈ [H], we deterministicially move to a unique state s∗t , and the reward values are binary, i.e., Z = {0, 1}. At every state
st = s∗t (or time step t), all actions except one correct action a∗t ∈ A returns a reward sampled from a uniform distribution
over {0, 1}. The correct actions a∗t can be any action in A.

Consider two base systemsM(1) andM(2): inM(1), reward distributions from all state-actions are uniform over {0, 1}.
InM(2), µm(s∗t , a

∗
t ) = µ∗

m(t), and otherwise uniform over {0, 1} similarly. As we can see in Lemma 5.2, the optimal
expected cumulative reward inM(1) is 1/2, whereas inM(2) optimal value is greater than 1/2 + ϵ · 2d−2. Suppose there
exists a PAC-algorithm ψ such that for any RMMDP instances, ψ can output an ϵ-optimal policy πϵ after K episodes with
probability greater than 2/3. Then, we can use ψ to test whether the system isM(1) orM(2), for any chosen optimal
actions with probability greater than 2/3.
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However, note that for any state-action sequence x1:H ̸= x∗1:H ,

KL
(
P(1)(·|x1:d),P(2)(·|x1:d)

)
= 0,

and

KL
(
P(1)(·|x∗1:d),P(2)(·|x∗1:d)

)
=
∑
r1:d

P(1)(r1:d|x∗1:d) · log
(
P(1)(r1:d|x∗1:d)
P(2)(r1:d|x∗1:d)

)

=

(
1

2

)d
·
∑
r1:d

log

(
P(1)(rd|x∗1:d, r1:d−1)

P(2)(rd|x∗1:d, r1:d−1)

)

=

(
1

2

)d+1

·
∑
r1:d

log

(
1/2

1/2 + ϵ0

)
+ log

(
1/2

1/2− ϵ0

)

=

(
1

2

)d+1

·
∑
r1:d

O(ϵ20) = O(ϵ20),

where ϵ0 = ϵ · 2d−1 due to (23). Let ψ′ be an augmented exploration strategy that first runs ψ for K episodes and run the
returned policy for O(1/ϵ20) extra episodes. Let K ′ = K +O(1/ϵ20) be the total number of episodes. We can apply Lemma
5.3 to obtain that after running an algorithm ψ′ for K ′ episodes in both systems, we get

E(1)
[
Nψ′,x∗

1:H
(K ′)

]
·O(ϵ20) = KL

(
P

(1)
ψ′ (τ

1:K′
),P

(2)
ψ′ (τ

1:K′
)
)
.

By Pinsker’s inequality, it holds that

TV
(
P

(1)
ψ′ (τ

1:K′
),P

(2)
ψ′ (τ

1:K′
)
)
≤ 1

2

√
KL
(
P

(1)
ψ′ (τ1:K

′),P
(2)
ψ′ (τ1:K

′)
)
.

Note that since everything is symmetric in systemM(1), there exists at least one x∗1:H such that the expected number of the
sequence being executed is small:

Nψ′,x∗
1:H

(K ′) ≤ A−d ·K ′.

Therefore, due to LeCam’s two point method (LeCam, 1973), K ′ must satisfy that

A−d ·K ′ ·O(ϵ20) = Ω(1).

This implies that K ′ ≥ Ω(Ad/ϵ20)−O(1/ϵ20) = Ω(Ad/ϵ20).

Using the action amplification argument in Kwon et al. (2021b) (see their lower bound construction in their Appendix), we
can effectively construct the system with O(SA/(H logA S))-actions (in this system, each action selection happens through
O(logA S)-steps). As long as S = O(poly(A)), this gives a lower bound Ω

((
SA
d

)d · 1
ϵ2

)
. As we can take d = Ω(

√
M)

from Lemma 5.1, we are done.
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