
DS-1000: A Natural and Reliable Benchmark for Data Science Code Generation

Yuhang Lai * 1 Chengxi Li * 1 Yiming Wang * 1 2 Tianyi Zhang * 3 Ruiqi Zhong * 4

Luke Zettlemoyer 5 6 Wen-tau Yih 6 Daniel Fried 7 Sida Wang 6 Tao Yu 1 5

Abstract
We introduce DS-1000, a code generation bench-
mark with a thousand data science problems
spanning seven Python libraries, such as NumPy
and Pandas. Compared to prior works, DS-
1000 incorporates three core features. First, our
problems reflect diverse, realistic, and practical
use cases since we collected them from Stack-
Overflow. Second, our automatic evaluation is
highly specific (reliable) – across all Codex-002-
predicted solutions that our evaluation accepts,
only 1.8% of them are incorrect; we achieve
this with multi-criteria metrics, checking both
functional correctness by running test cases and
surface-form constraints by restricting API us-
ages or keywords. Finally, we proactively defend
against memorization by slightly modifying our
problems to be different from the original Stack-
Overflow source; consequently, models cannot
answer them correctly by memorizing the solu-
tions from pre-training. The current best pub-
lic system (Codex-002) achieves 43.3% accuracy,
leaving ample room for improvement. We release
our benchmark at https://ds1000-code-gen.
github.io.

1. Introduction
Data science is important in many areas (Romero & Ventura,
2013; Bolyen et al., 2019; Faghmous & Kumar, 2014), but
requires programming proficiency in specialized libraries,
thus posing substantial barriers to lay users. Fortunately,
these barriers could potentially be reduced by pre-trained
code generation models: for example, Codex (Chen et al.,
2021a) can complete small Python snippets with non-trivial
accuracy and AlphaCode (Li et al., 2022) can tackle difficult

*Equal contribution 1The University of Hong Kong 2Peking
University 3Stanford University 4UC Berkeley 5University of
Washington 6Meta AI 7Carnegie Mellon University. Correspon-
dence to: Tao Yu <tyu@cs.hku.hk>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

competitive programming problems. We anticipate that
these barriers will diminish if the community can make solid
progress in applying these models to data science problems.

However, we currently lack a benchmark that 1) focuses on
everyday data science applications, 2) includes naturalistic
intents and contexts, and 3) has a reliable execution-based
evaluation metric. Most of the existing datasets with reliable
test cases (Hendrycks et al., 2021; Chen et al., 2021a) focus
on competition or interview-style programming problems;
they measure algorithmic understanding but do not target
real-world usage. Also, as represented by e.g., user prob-
lems on StackOverflow, users’ data science coding problems
usually have diverse contexts including their incorrect code,
error messages, and input-output examples, which cannot
be found in most prior data science relevant code genera-
tion benchmarks (Yin et al., 2018; Hendrycks et al., 2021;
Chandel et al., 2022; Chen et al., 2021a). Moreover, most of
these benchmarks solely rely on surface-form metrics such
as BLEU or CodeBLEU (Yin et al., 2018; Agashe et al.,
2019; Chen et al., 2021b). These metrics diverge from the
programmer’s intent, increasingly so as model capability
improves (Zhong et al., 2020). To our knowledge, no exist-
ing benchmarks contain both naturally occurring problems
with diverse contexts and reliable evaluation metrics.

To fill this gap, we introduce DS-1000, a benchmark with a
thousand problems covering seven widely-used Python data
science libraries: NumPy, Pandas, TensorFlow, PyTorch,
SciPy, Scikit-learn, and Matplotlib. We highlight
three core features of DS-1000: 1) it contains realistic
problems with diverse contexts, 2) it implements reliable
multi-criteria execution-based evaluation metrics, and 3) it
proactively defends against memorization. We outline how
we achieved each of them below.

First, we collected naturally occurring problems from Stack-
Overflow, manually scored their representativeness and use-
fulness, and curated a subset of them to create our bench-
mark. While inputs in existing code generation datasets
are either highly structured (problems or code context) or
restricted in scope, our natural problems are diverse in con-
tent and format. For example, users might search for more
efficient code implementations (Figure 1), provide incorrect
code with an error message and ask for bug fixes (Figure 13),
inquire about specific API usage (Figure 14), or ask for code

1

https://ds1000-code-gen.github.io
https://ds1000-code-gen.github.io

DS-1000: A Natural and Reliable Benchmark for Data Science Code Generation

result = df.div(1).add_prefix("inv_")

Prompt

Reference Solution

result = df.join(df.apply(lambda x: 1/x).add_prefix(“inv_"))

Test case 1

 df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
ans = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6],

 "inv_A": [1/1, 1/2, 1/3],

 "inv_B": [1/4, 1/5, 1/6]})

Test case 2
 df,ans = ...[omit for brevity]

 pd.testing.assert_frame_equal(result, ans)

Surface-form constraints
for and while should not appear in Syntax Tree

A:
<code>
import pandas as pd
df = pd.DataFrame({"A": [1, 2, 3],"B": [4, 5, 6]})
</code>
BEGIN SOLUTION
<code>
[insert]
</code>
END SOLUTION
<code>
print(result)
</code>

Here is a sample dataframe:
df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})

I'd like to add inverses of each existing column to the dataframe and name
them based on existing column names with a prefix, e.g. inv_A is an inverse of
column A and so on.
The resulting dataframe should look like so:
result = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6], "inv_A": [1/1,
1/2, 1/3], "inv_B": [1/4, 1/5, 1/6]})

Obviously there are redundant methods like doing this in a loop, but there
should exist much more pythonic ways of doing it … [omitted for brevity]

Predict

Correct/wrong?

Language Models (GPT-3 Codex)

Replace [insert] in the code context with
following predicted code snippets

Problem

Code Context

Execute to evaluate

Multi-criteria Execution-based Evaluation

Figure 1: An example problem in DS-1000. The model needs to fill in the code into “[insert]” in the prompt on the left; the
code will then be executed to pass the multi-criteria automatic evaluation, which includes the test cases and the surface-form
constraints; a reference solution is provided at the bottom left.

that implements functionality they specify with input-output
examples (Figure 1). These problems better reflect real-
world applications and open up new modeling challenges,
which have been understudied in existing code generation
benchmarks.

Second, it is challenging to evaluate program solutions to
natural and diverse problems reliably. Unlike competition-
style problems, natural problems might lack executable con-
texts and test cases, allow multiple solutions, depend on
external libraries, etc. To address these challenges, five of
the authors of this paper, all proficient in data science and
experts in Python, hand-adapted the original problems by
writing executable code contexts, rewriting problems to be
specific enough to be testable, and implementing automatic
multi-criteria execution-based evaluation using carefully
written and reviewed test cases and constraints that check
functional correctness and surface-form constraints. On
program solutions predicted by Codex-002, we find that
only 1.8% of the predicted programs passing our evalua-
tion are incorrect (false discovery rate), indicating that our
evaluation is reliable.

Third, one potential concern for adapting public problems
is that the models might simply memorize the correspond-
ing solution during pre-training time (Carlini et al., 2021).
We show in Section 2.4 that this can indeed happen: while
Codex achieves 72.5% accuracy on the popular numpy-100
dataset, the accuracy drastically drops to 23.6% after per-
turbing them without increasing their difficulty. Therefore,
while building DS-1000, we proactively took measures
against memorization by perturbing each problem.

Figure 1 shows an example DS-1000 problem, its reference
solution, and an expert-written automatic multi-criteria eval-
uation. To answer the problem, the model needs to fill in
the solution; to pass our automatic evaluation, it needs to 1)
return the correct output and 2) avoid inefficient implemen-
tations that use for-loops.

We use DS-1000 to evaluate several popular code generation
models, including Codex (Chen et al., 2021a), CodeGen
(Nijkamp et al., 2022), and InCoder (Fried et al., 2022).
We found model performance ranges from 7.4% to 43.3%,
with Codex-002 model being the best. This implies that
these models have the potential to reduce the barrier for data
analysis, yet still have large room for improvement.

2. Benchmark Construction
Our pipeline for building DS-1000 contains five stages, il-
lustrated in Figure 2 and described below. 1) We scraped
and selected high-quality problems from StackOverflow
(Section 2.1). 2) We rewrote the problem and the refer-
ence solution so that the problem is unambiguous and the
reference solution is executable.(Section 2.2) 3) We im-
plemented a multi-criteria automatic evaluation for each
problem, which includes test cases and surface-form con-
straints (Section 2.3). 4) We performed a pilot study which
shows that Codex can answer problems by memorizing the
pre-training corpus, and proactively took measures to pre-
vent this by perturbing the problems and their reference
solutions in DS-1000 (Section 2.4). 5) We improved our
multi-criteria evaluation by requiring it to reject a small
set of sample predictions that we considered incorrect via

2

DS-1000: A Natural and Reliable Benchmark for Data Science Code Generation

 inv_df = df.join(df.apply(lambda x: 1/x).add_prefix("inv_"))

df = pd.DataFrame({"A": [1, 2, 3],
 "B": [4, 5, 6]})

BEGIN SOLUTION
A known WRONG SOLUTION
result = df.join(df.apply(lambda
x:math.e**x).add_prefix('exp_'))
END SOLUTION
print(result)

… I'd like to apply the exponential function to each
existing column … The resulting dataframe should
look like so:
result = pd.DataFrame({"A": [1, 2, 3],

"B": [4, 5, 6],
"exp_A": [e^1, e^2, e^3],
"exp_B": [e^4, e^5, e^6]})

 … [omitted for brevity]

❷ Adding Code Context

import pandas as pd
df = pd.DataFrame({"A": [1, 2, 3],

 "B": [4, 5, 6]})
BEGIN SOLUTION
[insert]
END SOLUTION
print(result)

Test cases

…[omit for brevity]
pd.testing.assert_frame_equal(result,

ans)
Surface-form constraints

for and while should not appear in Syntax
Tree

❸ Implementing Automatic Tests ❺ Red Teaming❹ Perturbing Original Problem

❶ Manually Selecting and Modifying StackOverflow Problems

 df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})

Here is a sample dataframe:

I'd like to add inverses of each existing column to the dataframe
and … [omitted for brevity]

try:

 High vote

 Testable

Representative

 Useful

Figure 2: The pipeline for building DS-1000. See the start of Section 2 for a detailed description.

manual review (Section 2.5), and then calculated the false
discovery rate of our metric on a larger set of sample predic-
tions. To reliably carry out this data collection procedure,
five authors who are computer science students and familiar
with data science spent a total of about 1200 hours con-
structing DS-1000 (including steps from problem selection
to quality review).

2.1. Problem Selection

Sourcing Popular StackOverflow Problems. To obtain
natural and high-quality problems, we scraped data from
StackOverflow under each library tag (e.g., “NumPy”). To
select popular problems, we first removed duplicates and se-
lected problems with at least 1 vote, 1000 views, that had an
accepted answer. Next, we ranked problems based on votes
and views and calibrated these statistics based on the time
a problem was created since older problems naturally have
more views and votes. We refer readers to Appendix A.1 for
more details. Among the filtered problems, we randomly
sampled an initial pool containing 4500 problems (1000 for
NumPy, Pandas, and Matplotlib, 500 for Scikit-learn
and SciPy, 250 for TensorFlow, and 250 for PyTorch).

Filtering Suitable Problems. To select problems from
the above pool for our benchmark, our annotators scored
each problem according to the following rubric: whether a
problem a) contains input-output examples in the problem,
b) is difficult to predict the solution for models according
to the annotators’ judgment, c) is practically useful, d) has
a clear description, and e) is feasible to evaluate the solu-
tion. We aggregated these scores, reranked the candidate
problems, and incorporated the top-ranked ones to create
DS-1000. We ended up with 451 unique StackOverflow
problems. More than half of the original StackOverflow
problems were filtered out because they ask for an explana-
tion for an algorithm or general content (see Appendix A.1).

Controlling Library Version. Data science libraries

are continuously evolving. As a result, the semantics
of the problem is determined not only by the language
description but also by the software environment (e.g.,
library version). For example, the same code snippet,
tf.math.reciprocal(A), is only valid in the newer ver-
sion of TensorFlow. We fixed the evaluation environment
to include the latest versions of libraries that can be installed
with Python 3.7.10 and present the detailed documentation
in Appendix A.1.

2.2. Rewriting Problems and Reference Solutions

Creating Executable Context. To implement an execution-
based evaluation for each natural language problem, we
needed to write an executable context. We first added pack-
age imports and defined the variables described in the prob-
lem. For example, in Figure 2, we imported the Pandas
package and created the dataframe described in the prob-
lem as part of the context. Second, we needed to specify
the desired behavior of the target program to be predicted.
For example, in Figure 2, a code generation model can in-
fer from the context that the resulting dataframe should be
named as result, rather than output.

Rewriting Matplotlib Problems. Many Matplotlib prob-
lems on StackOverflow clarify their problems with example
figures, which, however, cannot be encoded by current pre-
trained code models. Therefore, we rewrote the StackOver-
flow problems in symbols (i.e., code and text) and adopted
a different format from other libraries (see Figure 15).

Collecting Reference Solutions. Finally, we obtained
the reference solution for each problem from multiple high-
vote replies, edited all reference solutions to be executable
given the context we provided, and fixed errors whenever
we noticed them (e.g., Figure 11). Even though we did not
use the reference solution in DS-1000 for evaluation, we
provided them in DS-1000 to facilitate future research.

3

DS-1000: A Natural and Reliable Benchmark for Data Science Code Generation

Table 1: The perturbation categories along with examples. “Surface” perturbations do not change the reference solution,
while “Semantic” perturbations do.

Perturbation Categories Example

Surface
Convert to completing function Figure 16, change format of code context
Paraphrase the description of the problem Figure 17, express the same problem in different words
Change the example input and output Figure 18, replace this example with a longer one

Semantic

Replace keywords with analogy words Figure 19, replace “inv” with “exp”
Change the required index Figure 20, need the specified rows and columns
Reverse the order of the list, string or dataframe Figure 21, reverse the needed string
Change the type of the required result Figure 22, change the DataFrame to a Series

Difficult Rewrite
Combining several surface and semantic perturbations Figure 23, change examples and replace “highest” with “lowest”
Digging more perturbations that increase the difficulty Figure 24, hypothesis testing

2.3. Implementing Multi-Criteria Evaluations

Our automatic evaluation is multi-criteria, checking both
functional correctness and surface-form constraints.

Functional Correctness. To evaluate functional correct-
ness, we constructed test cases by converting the input-
output examples provided in the StackOverflow problem;
then the expert annotators manually wrote additional test
cases to improve the evaluation. To evaluate a predicted
program, we execute it on the test inputs and compare the
outputs with the ground truth.

However, checking the exact equivalence of outputs can in-
advertently reject correct programs. Many problems involve
floating point arithmetic, and many return values are accept-
able since they are close to the ground truth answer, but
they are not exactly equal. Some problems require random
outputs, e.g., generating 100 samples from a distribution,
and even executing the reference solution twice can lead to
different results. Many problems do not fully specify all the
parameters, e.g., the color scheme for the output figure in
the Matplotlib library, or the hyper-parameters of a learn-
ing algorithm in Scikit-learn; therefore, programs with
different parameters can satisfy the requirement, returning
values that are different. In all these cases, we relied on the
best judgment of our expert annotators to implement the
metric for each problem, which sometimes involves com-
plicated techniques, such as using statistical tests to handle
randomness. See more examples in Appendix A.2.

Surface-Form Constraints. Functional correctness alone
is insufficient. For example, vectorized operations can be
expanded using for-loops, which, however, are inefficient
and do not meet the requirement of the problem. Therefore,
we introduced additional surface-form constraints that re-
quire the presence/absence of specific APIs for keywords.
Notably, such a check is different from the standard surface-
form metrics such as CodeBLEU (Ren et al., 2020), which
requires the whole model prediction to be uniformly similar
to a reference solution; instead, DS-1000 precisely targets
small but important parts of surface form.

2.4. Perturbation to Defend Against Memorization

Many models are pre-trained on web text and hence memo-
rize its content (Elangovan et al., 2021; Carlini et al., 2021);
therefore, they might answer our problems correctly by
simply recalling the solutions seen during pre-training if
they were trained on StackOverflow or derivative sites. We
demonstrate this effect on numpy-100, 1 a problem set of
100 NumPy problems with solutions that are copied several
thousand times on GitHub. When prompted to answer a
selected subset of 20 problems, Codex-002 achieves 72.5%
pass@1 accuracy.2

However, if the model truly knows how to solve those prob-
lems, it should be able to solve similar problems at the
same level of difficulty. This motivates us to perturb the
problems in two ways: surface perturbations and semantic
perturbations. For surface perturbations, we paraphrased
the problem or modified the code context in the problem,
but the reference solution should stay the same after the
perturbation; for example, changing from “Create a 5x5
matrix . . . ” to “I need a matrix sized 5x5 . . . ”. For semantic
perturbations, we changed the semantics of the reference
solution without changing its difficulty ; for example, ask-
ing for “min” instead of “max” in the problem. We provide
more detailed categories in Table 1. In all of these cases, the
difficulty of the problem does not change for humans.

Table 2: The performance of Codex-002 on numpy-100.

Origin Surface Semantic Avg. Perturbation

72.5 50.8 23.6 40.6

We manually applied these perturbations to numpy-100 and
show the result on Table 2. Although the difficulty level
remains the same to human users, the performance of Codex-
002 drops to 40.6% after perturbation (50.8% on surface per-
turbations and 23.6% on semantic perturbations). Further-

1https://github.com/rougier/numpy-100
2The fraction of Codex-002 samples that are correct.

4

https://github.com/rougier/numpy-100

DS-1000: A Natural and Reliable Benchmark for Data Science Code Generation

Table 3: Detailed statistics of DS-1000.

Pandas NumPy Matplotlib Scikit-learn SciPy TensorFlow PyTorch Total/Avg.
Problem 291 220 155 115 106 45 68 1000

Origin 100 97 111 46 58 17 22 451
Surface Perturbation 24 22 0 57 11 11 27 152
Semantic Perturbation 88 51 44 9 20 12 11 235
Difficult Rewrite 79 50 0 3 17 5 8 162

% Surface-Form Constraints 12.0 36.4 0 27.8 17.9 20.0 27.9 19.4
Avg. Test Cases 1.7 2.0 1.0 1.5 1.6 1.6 1.7 1.6

Avg. Problem Words 184.8 137.5 21.1 147.3 192.4 133.3 133.4 140.0
Avg. Lines of Code Context 9.0 8.3 6.9 11.0 10.2 9.2 9.0 8.9
Avg. Lines of Code Solution 5.4 2.5 3.0 3.3 3.1 4.1 2.1 3.6

more, in 36% of the cases, the model still predicted the orig-
inal answer of the problem after the semantic perturbation,
implying that the model is solving the original problems by
memorizing their corresponding solutions. Therefore, we
could significantly overestimate model performance if we
test them on problems directly taken from the web. (See
Appendix B for more details)

Therefore, to proactively prevent memorization, we applied
the above two perturbations to DS-1000 problems. Per-
turbation is a labor-intensive process. Even for a simple
perturbation from min to max, our annotators needed to edit
all mentions of min, smallest, minimum to make the problem
coherent, and updated the code context, reference solution,
and our evaluation metric accordingly.

Finally, to make DS-1000 more challenging, we additionally
introduced several semantic perturbations that increase the
difficulty on purpose (“Difficult Rewrite” in Table 1).

2.5. Quality Assurance

To ensure the quality of our benchmark, each problem, refer-
ence solution, and automatic multi-criteria evaluation were
reviewed by at least three expert annotators familiar with the
library. Additionally, we “red teamed” our automatic evalua-
tion by requiring it to reject all programs known to be incor-
rect, e.g., solutions to semantically perturbed problems (see
Figure 2). After the quality review, we also quantitatively
measured the evaluation quality by examining whether our
multi-criteria automatic metric can reject incorrect Codex-
002 predictions (more details in Section 3).

3. Dataset Statistics
We provide detailed dataset statistics in Table 3. DS-1000
contains 1000 problems originating from 451 unique Stack-
Overflow problems. To defend against potential memoriza-
tion, more than half of the DS-1000 problems are modified

from the original StackOverflow problems (Section 2.4);
they include 152 surface perturbations, 235 semantic pertur-
bations, and 162 difficult rewrites.

DS-1000 has carefully designed testing methods, checking
both execution semantics and surface-form constraints. For
each problem, there are 1.6 test cases (manually annotated
corner test cases) on average, and 19.4% of them are accom-
panied by surface-form constraints. The average of problem
words in DS-1000 is 140. On average, the reference solution
contains 3.6 lines of code. Table 3 shows the library break-
down statistics: Most libraries have a similar distribution
except Matplotlib because we adopted a different problem
format due to its multimodal nature.

Table 4 compares DS-1000 to other datasets. Notably,
the average number of words per problem in DS-1000 is
much larger than other data science related datasets (e.g.,
DSP, Chandel et al. 2022 and CoNaLa, Yin et al. 2018).
More importantly, the problems in DS-1000 represent more
diverse and naturalistic intent and context formats that can-
not be seen in any other datasets. Unlike generic Python
code generation benchmarks (MBPP, Austin et al. 2021 and
HumanEval, Chen et al. 2021a), we note that data science
code generation benchmarks have fewer test cases since
the annotators need to define program inputs with complex
objects such as square matrices, classifiers, or dataframes
rather than simple primitives, such as floats or lists. Never-
theless, as we will show next, even a few test cases suffice
for DS-1000.

We evaluate our multi-criteria automatic metric by check-
ing whether it can reject incorrect solutions. We randomly
sampled 10 problems from each library and sampled 40 pre-
dictions from Codex-002 for each problem (2800 problem-
code examples in total).3 We run our automatic metric on
all the sample predictions, review the predictions manually,

3We use a higher temperature of 0.7 compared with 0.2 in
Section 4.2 to get more diverse predictions.

5

DS-1000: A Natural and Reliable Benchmark for Data Science Code Generation

Table 4: Comparison of DS-1000 to other benchmarks. The first three benchmarks target general Python usage and the
next three involve data science code generation. DS-1000 adapts realistic problems from StackOverflow and checks both
execution semantics and surface-form constraints.

Dataset Problems Evaluation Avg. Test Cases Avg. P Words Avg. Lines of Code Solution Data Source

HumanEval 164 Test Cases 7.7 23.0 6.3 Hand-Written
MBPP 974 Test Cases 3.0 15.7 6.7 Hand-Written
APPS 10000 Test Cases 13.2 293.2 18.0 Competitions

JuICe 1981 Exact Match + BLEU - 57.2 3.3 Notebooks
DSP 1119 Test Cases 2.1 71.9 4.5 Notebooks
CoNaLa 2879 BLEU - 13.8 1.1 StackOverflow

DS-1000 1000
Test Cases +

Surface-Form Constraints 1.6 140.0 3.6 StackOverflow

calculate how often they disagree, and report the following
four quantities:

• Sample Level False Discovery Rate: among all pre-
dicted samples that pass our automatic evaluation,
1.8% of them are incorrect according to our annotator.

• Sample Level False Omission Rate: among all pre-
dicted samples that do not pass our automatic eval-
uation, 0.5% of them are correct according to our
annotator.

• Problem Level False Positive Percentage: among all
problems, 5.7% of the problems contain at least one
incorrect sample prediction that passes our automatic
metric.

• Problem Level False Negative Percentage: among all
problems, 5.7% (it happens to be the same as the above)
problems contain at least one correct sample prediction
that fails to pass our automatic metric.

Generally, problem-level measures are especially stringent
since they require correctly judging all predictions among
the 40 sample predictions. While an apple-to-apple com-
parison with other datasets is not possible due to the dif-
ference in the underlying model and benchmark construc-
tion method (as a point of reference, Li et al. (2022) find
the problem Level False Positive Percentage to be 60% on
APPS (Hendrycks et al., 2021)), these measures reflect that
DS-1000 is reliable.4

4. Benchmarking State-of-the-Art Models
We used DS-1000 to benchmark five pre-trained code mod-
els from three different families. The best model Codex-002

4Some problems in APPS might apply quite similar tests, and
some problems may have even as few as 2 or 3 test cases in the
test split. Thus, insufficient test coverage probably happens though
there are more test cases in average (Li et al., 2022).

Insertion achieves 43.3% accuracy, indicating room for im-
provement. We also show the results on the perturbed and
unperturbed examples in Section 4.4.

4.1. Prompt Format

We provide an official prompt format in DS-1000 because
it significantly impacts the performance of pre-trained lan-
guage models (Zhao et al., 2021). Figure 1 shows an exam-
ple: each prompt starts with a natural language description
and then provides a code context; the code context uses
HTML-like markers to indicate the location of missing code
that a model needs to fill in and provides both left and the
right context to the missing code pieces.

We decide to use infilling as our official format because
the right context is important to specify the behavior of
the program predictions (e.g., the variable name for the re-
sult). More broadly, given that 1) infilling is an important
functionality for real-world programming and 2) there is a
growing trend in pre-training with the right context (Agha-
janyan et al., 2022; Fried et al., 2022; Bavarian et al., 2022;
Tay et al., 2022), we expect more future pre-trained models
to perform infilling.

On the other hand, given that many current language mod-
els trained on code are not yet capable of infilling, we also
provide an official prompt that transfers the right context
information into the left context (Figure 25 and 26). Nev-
ertheless, despite our best effort to design the prompts for
left-to-right models, they still lag behind models with infill-
ing capabilities (Section 4.3). We conjecture that infilling
models are inherently more effective at utilizing the right
context information. Finally, we only have Completion
format for Matplotlib problems because Matplotlib pro-
vides global access to the current figure so the right context
is not necessary.

From now on, we refer to the infilling prompt format as
Insertion format and the left-context-only format as Com-

6

DS-1000: A Natural and Reliable Benchmark for Data Science Code Generation

Table 5: pass@1 accuracy with 40 samples generated for each problem. The upper part shows accuracy on the left-to-right
Completion format, while the lower part shows the results of Insertion format. The rightmost “Overall” columns show the
average accuracy on 1000 problems from all libraries. DS-1000 is able to differentiate the capabilities of different models
and there is substantial room for improvement even for the best Codex-002 model. ∗: Matplotlib problems do not have the
right context so Completion and Insertion formats are the same.

Format Model Pandas NumPy Matplotlib Scikit-learn SciPy TensorFlow PyTorch Overall

Left-to-right
Completion

Codex-002 26.5 43.1 57.0 44.8 31.8 39.3 41.8 39.2
Codex-001 9.4 26.6 41.8 18.5 15.0 17.2 9.7 20.2

Codex-Cushman 7.9 21.8 40.7 18.0 11.3 12.2 12.4 18.1
CodeGen-6B 1.9 12.1 18.6 5.8 7.4 12.8 3.4 8.4
InCoder-6B 3.1 4.4 28.3 2.8 2.8 3.8 4.4 7.4

Insertion Codex-002 30.1 46.5 57.0* 53.7 34.8 53.4 47.7 43.3
InCoder-6B 2.9 4.6 28.3* 3.1 3.1 7.8 3.2 7.5

pletion format.

4.2. Experimental Setup

Models. We experiment with three families of pre-trained
models: Codex, InCoder (Fried et al., 2022), and Code-
Gen (Nijkamp et al., 2022). For the Codex models, we
experiment with codex-davinci-002 (Codex-002), codex-
davinci-001 (Codex-001), and codex-cushman-001 (Codex-
Cushman). For InCoder and CodeGen, we experiment with
the 6B parameters models. Among them, Codex and Code-
Gen models are trained to predict the right context while
InCoder models are trained for both left-to-right generation
and infilling. In addition, Codex-002 also supports infilling,
although the exact model training details are not disclosed.

Implementation Details. We generate 40 samples for each
DS-1000 problem with temperature set to 0.2, top-p cutoff
set to 0.95, and max generation length set to 1024. We set
the stop sequence tokens to “</code>” and “# SOLUTION
END”. These samples are used in the unbiased estimator of
pass@1. For DS-1000, evaluating generated codes does not
require special computational resources like GPUs.

4.3. Main Results

Table 5 displays the pass@1 accuracy on DS-1000. We find
that DS-1000 can differentiate models with different capa-
bilities. The best model Codex-002 achieves a nontrivial
but far-from-perfect average accuracy of 43.3%, indicating
substantial room for improvement. In contrast, other models
like CodeGen-6B or InCoder-6B have much worse overall
performance, with accuracy lower than 5% on some libraries.
Qualitatively, these smaller models often cannot correctly
follow the prompt instruction, generating additional com-
ments instead of the required code. Future ablation is needed
to understand the underlying cause for this performance gap,

which could be the difference in model size, lack of instruc-
tion tuning, or the difference in pre-training data.

In addition, we observe that model accuracy varies across
different libraries. This speaks to the importance of a holis-
tic evaluation of multiple data science libraries because
performance in a specific library may not directly generalize
to other libraries.

Moreover, we find that Insertion format often leads to bet-
ter performance. The same Codex-002 model has a 4.1%
average accuracy improvement when used with Insertion
format than used with Completion format. This shows the
importance of the infilling capability for data science code
completion.

4.4. Results by Perturbation

In Section 2.4, we demonstrated the risk of memorizing
the solutions on the numpy-100 problem set; do we observe
the same effect on DS-1000? To investigate this, we ap-
plied surface perturbations (i.e., the problem changes but
the reference solution does not change) and semantic pertur-
bations (the reference solution will change) to the problems
in DS-1000.

Table 6 shows the results.5 The performance of Codex-002
drops after perturbation (3.4% on surface perturbations and
9.0% on semantic perturbations) but the drop is much less
severe than what we observed on numpy-100. This indi-
rectly suggests that Codex-002 might have memorized the
solution for some StackOverflow problems, but the effect is
less severe because they have not been repeated as often as
numpy-100 on the internet. Still, we believe problem pertur-
bation to be a useful strategy to defend against memorization

5Note that the results are not comparable to Table 5 since for
each kind of perturbation, we only selected a subset of problems
to perturb.

7

DS-1000: A Natural and Reliable Benchmark for Data Science Code Generation

Table 6: Effect of three different types of problem perturbation. In each subsection, we compare the accuracy of the
perturbed problems to that of the original problems. We observe that although Surface and Semantic perturbations also
cause a performance drop on DS-1000 the performance drop is much smaller compared to that on numpy-100. ∗: Numbers
are averaged from less than 10 problems.

Pandas NumPy Scikit-learn SciPy TensorFlow PyTorch Overall

Originsurface 37.3 61.2 52.6 33.0 64.9 64.8 53.2
Surface 31.9 −5.4 58.4 −2.8 55.7 +3.1 32.1 −0.9 58.0 −8.9 50.0 −14.8 49.8 −3.4

Originsemantic 36.8 56.7 60.6* 40.3 71.3 65.1 47.2
Semantic 33.2 −3.6 49.0 −7.7 38.9*−21.7 34.3 −6.0 42.5 −25.8 30.5 −34.6 38.2 −9.0

Origindifficult 39.9 52.7 5.0* 58.1 73.0* 53.8* 46.8
Difficult Rewrite 17.7 −22.2 27.1 −25.6 0.0*−5.0 13.8 −44.3 38.0*−35.0 28.8*−25.0 21.0 −25.8

by future models proactively.

Additionally, we rewrote some problems to create more DS-
1000 problems by intentionally making them more difficult
even for human programmers. As expected, Codex-002
performs much worse after the rewrite, and we plan to use
these problems as a challenge for future models.

We give a preliminary error analysis in Appendix C.

5. Related Work
Natural Language to Code. Research on translating
natural language to executable forms dates back several
decades. The models have become increasingly capable
of producing complex and general programs while requir-
ing fewer human annotations. Zelle & Mooney (1996) and
Zettlemoyer & Collins (2007) translate natural language
queries to domain-specific database queries. Liang et al.
(2013) and Berant et al. (2013) parse natural language into
first-order logic to answer generic knowledge-based ques-
tions. Yu et al. (2018); Scholak et al. (2021) translate natural
language problems to general SQL programs and develop
models that can generalize across domains. While all the
works above still need to train their models on the task they
evaluate, recently Li et al. (2022); Chen et al. (2021a) show
that generative models pre-trained on code can produce
Python snippets to tackle competitive programming chal-
lenges, without any additional human annotations. Many
other recent works corroborated this finding (Nijkamp et al.,
2022; Fried et al., 2022; Xu et al., 2022; Black et al., 2022),
and additional techniques at inference time further improve
the performance (Poesia et al., 2022; Shi et al., 2022).

Code Generation Benchmarks. As models become in-
creasingly capable, researchers start to build increasingly
difficult and general code generation benchmarks. While
Zelle & Mooney (1996) focused only on domain-specific
languages, Yu et al. (2018) builds a Text-to-SQL benchmark
that evaluates the capability to write broad-domain SQL

programs. Yin et al. (2018) evaluates the capability to write
short but general Python snippets, while more recent papers
Hendrycks et al. (2021); Li et al. (2022) evaluate models’
capability to solve competitive programming problems in
Python. If code generation models continue to improve, we
expect future researchers to focus on more complex tasks.

At the same time, however, it becomes more difficult to build
reliable benchmarks aligned with real-world applications.
Programs are most useful when they are executed; therefore,
we need to evaluate their execution semantics, and the best
general method so far is still to ask experts to manually write
test cases. Consequently, most benchmarks with test cases
focus on competition/interview/programming challenges
(Hendrycks et al., 2021; Li et al., 2022), because these are
the only applications where a lot of test cases are already
available. Therefore, most recent papers that evaluate on
real-world programs have to rely on unreliable surface-form
metrics (Ren et al., 2020; Chen et al., 2021b; Xu et al., 2022),
or similarity scores (Zhou et al., 2023) calculated by code
representations (Wang et al., 2022). This streetlight effect
might incentivize the community to work on problems that
are easy to evaluate but not useful in practice. In response
to this challenge, our paper manually implements a reliable
metric for naturally occurring problems. Future works can
consider using models to help humans write useful tests
(Tufano et al., 2020), or formally verify the correctness of a
predicted solution (Chu et al., 2017).

6. Conclusion
We propose DS-1000, a benchmark for generating code for
data analysis. Our benchmark 1) contains realistic problems,
2) implements reliable automatic metrics, and 3) proactively
defends against memorization strategies. We hope DS-1000
can track the progress of this research area and facilitate fair
comparisons between models, and our methods to construct
it can inspire other areas where the task is complicated and
the ground truth is challenging to evaluate.

8

DS-1000: A Natural and Reliable Benchmark for Data Science Code Generation

Acknowledgements
We thank Noah A. Smith, Tianbao Xie, Shuyang Jiang for
their helpful feedback on this work.

References
Agashe, R., Iyer, S., and Zettlemoyer, L. JuICe: A

large scale distantly supervised dataset for open do-
main context-based code generation. In Proceedings
of the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-
IJCNLP), pp. 5436–5446, Hong Kong, China, November
2019. Association for Computational Linguistics. doi:
10.18653/v1/D19-1546. URL https://aclanthology.
org/D19-1546.

Aghajanyan, A., Huang, B., Ross, C., Karpukhin, V., Xu,
H., Goyal, N., Okhonko, D., Joshi, M., Ghosh, G., Lewis,
M., et al. Cm3: A causal masked multimodal model of
the internet. arXiv preprint arXiv:2201.07520, 2022.

Austin, J., Odena, A., Nye, M., Bosma, M., Michalewski,
H., Dohan, D., Jiang, E., Cai, C., Terry, M., Le, Q., et al.
Program synthesis with large language models. arXiv
preprint arXiv:2108.07732, 2021.

Bavarian, M., Jun, H., Tezak, N., Schulman, J., McLeavey,
C., Tworek, J., and Chen, M. Efficient training of
language models to fill in the middle. arXiv preprint
arXiv:2207.14255, 2022.

Berant, J., Chou, A., Frostig, R., and Liang, P. Semantic
parsing on Freebase from question-answer pairs. In Pro-
ceedings of the 2013 Conference on Empirical Methods
in Natural Language Processing, pp. 1533–1544, Seattle,
Washington, USA, October 2013. Association for Com-
putational Linguistics. URL https://aclanthology.
org/D13-1160.

Black, S., Biderman, S., Hallahan, E., Anthony, Q., Gao,
L., Golding, L., He, H., Leahy, C., McDonell, K., Phang,
J., Pieler, M., Prashanth, U. S., Purohit, S., Reynolds,
L., Tow, J., Wang, B., and Weinbach, S. GPT-NeoX-
20B: An open-source autoregressive language model. In
Proceedings of BigScience Episode #5 – Workshop on
Challenges & Perspectives in Creating Large Language
Models, pp. 95–136, virtual+Dublin, May 2022. Asso-
ciation for Computational Linguistics. doi: 10.18653/
v1/2022.bigscience-1.9. URL https://aclanthology.
org/2022.bigscience-1.9.

Bolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A.,
Abnet, C. C., Al-Ghalith, G. A., Alexander, H., Alm, E. J.,
Arumugam, M., Asnicar, F., et al. Reproducible, inter-
active, scalable and extensible microbiome data science

using qiime 2. Nature biotechnology, 37(8):852–857,
2019.

Carlini, N., Tramèr, F., Wallace, E., Jagielski, M., Herbert-
Voss, A., Lee, K., Roberts, A., Brown, T. B., Song, D.,
Erlingsson, Ú., Oprea, A., and Raffel, C. Extracting
training data from large language models. In Bailey, M.
and Greenstadt, R. (eds.), 30th USENIX Security Sympo-
sium, USENIX Security 2021, August 11-13, 2021, pp.
2633–2650. USENIX Association, 2021. URL https:
//www.usenix.org/conference/usenixsecurity21/
presentation/carlini-extracting.

Chandel, S., Clement, C. B., Serrato, G., and Sundaresan, N.
Training and evaluating a jupyter notebook data science
assistant. arXiv preprint arXiv:2201.12901, 2022.

Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. d. O.,
Kaplan, J., Edwards, H., Burda, Y., Joseph, N., Brockman,
G., et al. Evaluating large language models trained on
code. arXiv preprint arXiv:2107.03374, 2021a.

Chen, X., Gong, L., Cheung, A., and Song, D. Plot-
Coder: Hierarchical decoding for synthesizing visu-
alization code in programmatic context. In Proceed-
ings of the 59th Annual Meeting of the Association
for Computational Linguistics and the 11th Interna-
tional Joint Conference on Natural Language Process-
ing (Volume 1: Long Papers), pp. 2169–2181, Online,
August 2021b. Association for Computational Linguis-
tics. doi: 10.18653/v1/2021.acl-long.169. URL https:
//aclanthology.org/2021.acl-long.169.

Chu, S., Wang, C., Weitz, K., and Cheung, A. Cosette:
An automated prover for SQL. In 8th Biennial Confer-
ence on Innovative Data Systems Research, CIDR 2017,
Chaminade, CA, USA, January 8-11, 2017, Online Pro-
ceedings. www.cidrdb.org, 2017. URL http://cidrdb.
org/cidr2017/papers/p51-chu-cidr17.pdf.

Elangovan, A., He, J., and Verspoor, K. Memorization vs.
generalization : Quantifying data leakage in NLP perfor-
mance evaluation. In Proceedings of the 16th Conference
of the European Chapter of the Association for Com-
putational Linguistics: Main Volume, pp. 1325–1335,
Online, April 2021. Association for Computational Lin-
guistics. doi: 10.18653/v1/2021.eacl-main.113. URL
https://aclanthology.org/2021.eacl-main.113.

Faghmous, J. H. and Kumar, V. A big data guide to un-
derstanding climate change: The case for theory-guided
data science. Big data, 2(3):155—163, September 2014.
ISSN 2167-6461. doi: 10.1089/big.2014.0026. URL
https://europepmc.org/articles/PMC4174912.

Fried, D., Aghajanyan, A., Lin, J., Wang, S., Wallace, E.,
Shi, F., Zhong, R., Yih, W.-t., Zettlemoyer, L., and Lewis,

9

https://aclanthology.org/D19-1546
https://aclanthology.org/D19-1546
https://aclanthology.org/D13-1160
https://aclanthology.org/D13-1160
https://aclanthology.org/2022.bigscience-1.9
https://aclanthology.org/2022.bigscience-1.9
https://www.usenix.org/conference/usenixsecurity21/presentation/carlini-extracting
https://www.usenix.org/conference/usenixsecurity21/presentation/carlini-extracting
https://www.usenix.org/conference/usenixsecurity21/presentation/carlini-extracting
https://aclanthology.org/2021.acl-long.169
https://aclanthology.org/2021.acl-long.169
http://cidrdb.org/cidr2017/papers/p51-chu-cidr17.pdf
http://cidrdb.org/cidr2017/papers/p51-chu-cidr17.pdf
https://aclanthology.org/2021.eacl-main.113
https://europepmc.org/articles/PMC4174912

DS-1000: A Natural and Reliable Benchmark for Data Science Code Generation

M. Incoder: A generative model for code infilling and
synthesis. arXiv preprint arXiv:2204.05999, 2022.

Hendrycks, D., Basart, S., Kadavath, S., Mazeika,
M., Arora, A., Guo, E., Burns, C., Puranik, S., He,
H., Song, D., and Steinhardt, J. Measuring coding
challenge competence with apps. In Vanschoren,
J. and Yeung, S. (eds.), Proceedings of the Neural
Information Processing Systems Track on Datasets
and Benchmarks, volume 1. Curran, 2021. URL
https://datasets-benchmarks-proceedings.
neurips.cc/paper_files/paper/2021/file/
c24cd76e1ce41366a4bbe8a49b02a028-Paper-round2.
pdf.

Li, Y., Choi, D., Chung, J., Kushman, N., Schrittwieser, J.,
Leblond, R., Eccles, T., Keeling, J., Gimeno, F., Lago,
A. D., Hubert, T., Choy, P., de Masson d’Autume, C.,
Babuschkin, I., Chen, X., Huang, P.-S., Welbl, J., Gowal,
S., Cherepanov, A., Molloy, J., Mankowitz, D. J., Rob-
son, E. S., Kohli, P., de Freitas, N., Kavukcuoglu, K.,
and Vinyals, O. Competition-level code generation with
alphacode. Science, 378(6624):1092–1097, 2022. doi:
10.1126/science.abq1158. URL https://www.science.
org/doi/abs/10.1126/science.abq1158.

Liang, P., Jordan, M. I., and Klein, D. Learning dependency-
based compositional semantics. Computational Linguis-
tics, 39(2):389–446, June 2013. doi: 10.1162/COLI_a_
00127. URL https://aclanthology.org/J13-2005.

Nijkamp, E., Pang, B., Hayashi, H., Tu, L., Wang, H., Zhou,
Y., Savarese, S., and Xiong, C. A conversational paradigm
for program synthesis. CoRR, abs/2203.13474, 2022.

Poesia, G., Polozov, A., Le, V., Tiwari, A., Soares, G.,
Meek, C., and Gulwani, S. Synchromesh: Reliable code
generation from pre-trained language models. In The
Tenth International Conference on Learning Represen-
tations, ICLR 2022, Virtual Event, April 25-29, 2022.
OpenReview.net, 2022. URL https://openreview.
net/forum?id=KmtVD97J43e.

Ren, S., Guo, D., Lu, S., Zhou, L., Liu, S., Tang, D., Sun-
daresan, N., Zhou, M., Blanco, A., and Ma, S. Code-
bleu: a method for automatic evaluation of code syn-
thesis. CoRR, abs/2009.10297, 2020. URL https:
//arxiv.org/abs/2009.10297.

Romero, C. and Ventura, S. Data mining in education. Wiley
Int. Rev. Data Min. and Knowl. Disc., 3(1):12–27, jan
2013. ISSN 1942-4787. doi: 10.1002/widm.1075. URL
https://doi.org/10.1002/widm.1075.

Scholak, T., Schucher, N., and Bahdanau, D. PICARD:
Parsing incrementally for constrained auto-regressive de-
coding from language models. In Proceedings of the

2021 Conference on Empirical Methods in Natural Lan-
guage Processing, pp. 9895–9901, Online and Punta
Cana, Dominican Republic, November 2021. Associa-
tion for Computational Linguistics. doi: 10.18653/v1/
2021.emnlp-main.779. URL https://aclanthology.
org/2021.emnlp-main.779.

Shi, F., Fried, D., Ghazvininejad, M., Zettlemoyer, L., and
Wang, S. I. Natural language to code translation with exe-
cution. In Proceedings of the 2022 Conference on Empir-
ical Methods in Natural Language Processing, pp. 3533–
3546, Abu Dhabi, United Arab Emirates, December
2022. Association for Computational Linguistics. URL
https://aclanthology.org/2022.emnlp-main.231.

Tay, Y., Dehghani, M., Tran, V. Q., Garcia, X., Bahri,
D., Schuster, T., Zheng, H. S., Houlsby, N., and
Metzler, D. Unifying language learning paradigms.
CoRR, abs/2205.05131, 2022. doi: 10.48550/arXiv.
2205.05131. URL https://doi.org/10.48550/arXiv.
2205.05131.

Tufano, M., Drain, D., Svyatkovskiy, A., Deng, S. K., and
Sundaresan, N. Unit test case generation with transform-
ers and focal context. arXiv preprint arXiv:2009.05617,
2020.

Wang, X., Wu, Q., Zhang, H., Lyu, C., Jiang, X., Zheng,
Z., Lyu, L., and Hu, S. Heloc: Hierarchical contrastive
learning of source code representation. In Proceedings
of the 30th IEEE/ACM International Conference on Pro-
gram Comprehension, ICPC ’22, pp. 354–365, New York,
NY, USA, 2022. Association for Computing Machinery.
ISBN 9781450392983. doi: 10.1145/3524610.3527896.
URL https://doi.org/10.1145/3524610.3527896.

Xu, F. F., Alon, U., Neubig, G., and Hellendoorn, V. J.
A systematic evaluation of large language models of
code. In Proceedings of the 6th ACM SIGPLAN Inter-
national Symposium on Machine Programming, MAPS
2022, pp. 1–10, New York, NY, USA, 2022. Association
for Computing Machinery. ISBN 9781450392730. doi:
10.1145/3520312.3534862. URL https://doi.org/10.
1145/3520312.3534862.

Yin, P., Deng, B., Chen, E., Vasilescu, B., and Neubig,
G. Learning to mine aligned code and natural language
pairs from stack overflow. In Proceedings of the 15th
International Conference on Mining Software Reposi-
tories, MSR ’18, pp. 476–486, New York, NY, USA,
2018. Association for Computing Machinery. ISBN
9781450357166. doi: 10.1145/3196398.3196408. URL
https://doi.org/10.1145/3196398.3196408.

Yu, T., Zhang, R., Yang, K., Yasunaga, M., Wang, D., Li,
Z., Ma, J., Li, I., Yao, Q., Roman, S., Zhang, Z., and
Radev, D. Spider: A large-scale human-labeled dataset

10

https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/c24cd76e1ce41366a4bbe8a49b02a028-Paper-round2.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/c24cd76e1ce41366a4bbe8a49b02a028-Paper-round2.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/c24cd76e1ce41366a4bbe8a49b02a028-Paper-round2.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/c24cd76e1ce41366a4bbe8a49b02a028-Paper-round2.pdf
https://www.science.org/doi/abs/10.1126/science.abq1158
https://www.science.org/doi/abs/10.1126/science.abq1158
https://aclanthology.org/J13-2005
https://openreview.net/forum?id=KmtVD97J43e
https://openreview.net/forum?id=KmtVD97J43e
https://arxiv.org/abs/2009.10297
https://arxiv.org/abs/2009.10297
https://doi.org/10.1002/widm.1075
https://aclanthology.org/2021.emnlp-main.779
https://aclanthology.org/2021.emnlp-main.779
https://aclanthology.org/2022.emnlp-main.231
https://doi.org/10.48550/arXiv.2205.05131
https://doi.org/10.48550/arXiv.2205.05131
https://doi.org/10.1145/3524610.3527896
https://doi.org/10.1145/3520312.3534862
https://doi.org/10.1145/3520312.3534862
https://doi.org/10.1145/3196398.3196408

DS-1000: A Natural and Reliable Benchmark for Data Science Code Generation

for complex and cross-domain semantic parsing and text-
to-SQL task. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing,
pp. 3911–3921, Brussels, Belgium, October-November
2018. Association for Computational Linguistics. doi:
10.18653/v1/D18-1425. URL https://aclanthology.
org/D18-1425.

Zelle, M. and Mooney, R. J. Learning to parse database
queries using inductive logic programming. In Associa-
tion for the Advancement of Artificial Intelligence (AAAI),
pp. 1050–1055, 1996.

Zettlemoyer, L. and Collins, M. Online learning of re-
laxed CCG grammars for parsing to logical form. In
Proceedings of the 2007 Joint Conference on Empirical
Methods in Natural Language Processing and Compu-
tational Natural Language Learning (EMNLP-CoNLL),
pp. 678–687, Prague, Czech Republic, June 2007. As-
sociation for Computational Linguistics. URL https:
//aclanthology.org/D07-1071.

Zhao, Z., Wallace, E., Feng, S., Klein, D., and Singh, S.
Calibrate before use: Improving few-shot performance
of language models. In Meila, M. and Zhang, T. (eds.),
Proceedings of the 38th International Conference on Ma-
chine Learning, volume 139 of Proceedings of Machine
Learning Research, pp. 12697–12706. PMLR, 18–24 Jul
2021. URL https://proceedings.mlr.press/v139/
zhao21c.html.

Zhong, R., Yu, T., and Klein, D. Semantic evaluation for
text-to-SQL with distilled test suites. In Proceedings
of the 2020 Conference on Empirical Methods in Natu-
ral Language Processing (EMNLP), pp. 396–411, On-
line, November 2020. Association for Computational Lin-
guistics. doi: 10.18653/v1/2020.emnlp-main.29. URL
https://aclanthology.org/2020.emnlp-main.29.

Zhou, S., Alon, U., Agarwal, S., and Neubig, G. Code-
bertscore: Evaluating code generation with pretrained
models of code. CoRR, abs/2302.05527, 2023. doi:
10.48550/arXiv.2302.05527. URL https://doi.org/
10.48550/arXiv.2302.05527.

11

https://aclanthology.org/D18-1425
https://aclanthology.org/D18-1425
https://aclanthology.org/D07-1071
https://aclanthology.org/D07-1071
https://proceedings.mlr.press/v139/zhao21c.html
https://proceedings.mlr.press/v139/zhao21c.html
https://aclanthology.org/2020.emnlp-main.29
https://doi.org/10.48550/arXiv.2302.05527
https://doi.org/10.48550/arXiv.2302.05527

DS-1000: A Natural and Reliable Benchmark for Data Science Code Generation

Appendices
A. Details on Data Collection
A.1. Problem Selection

Sourcing Popular StackOverflow Problems. We lever-
age StackOverflow to collect representative data science
code generation problems on each library. To select popular
problems, we first removed duplicates and selected prob-
lems with at least 1 vote, 1000 views, and accepted answers.
After this initial filtering, we obtain 15881 NumPy problems,
26248 Pandas problems, 1965 PyTorch problems, 8258
TensorFlow problems, 4141 SciPy problems, and 4499
Scikit-learn problems. Next, we performed a stratified
sampling on problems from each year to further subsample
the problems from Pandas and TensorFlow. We designed a
threshold for each year’s problems differently because older
problems naturally have higher votes. Table 8 displays the
criteria we used to filter each year’s problem on Pandas and
TensorFlow.

Filtering Suitable Problems. From the initial pool of
popular problems, our annotators selected problems that are
suitable for building DS-1000. Besides the considerations
mentioned in Section 2, we discuss those problems that are
not selected here. In general, we consider a problem to be
unsuitable if our multi-criteria evaluation is not applicable
(untestable problems). For example, we left StackOverflow
problems involving hardware problems (See Figure 29),
software errors (See Figure 30), concrete execution time
analysis, etc. out of DS-1000. See Figure 31 for a concrete
example where the problem asks for a natural language
explanation of a method in TensorFlow. We leave incorpo-
rating more unsuitable StackOverflow problems for future
work.

Controlling Library Version. Table 7 details the software
versions that we build DS-1000 with.

Table 7: The versions of software in DS-1000

Package Version

Seaborn 0.11.2
Matplotlib 3.5.2

NumPy 1.21.6
Pandas 1.3.5

Scikit-learn 1.0.2
SciPy 1.7.3

TensorFlow 2.10.0
PyTorch 1.12.1

A.2. Example Problems

Here we present an example problem from each of the seven
libraries in DS-1000 to illustrate the challenges we encoun-
tered in creating DS-1000.

Figure 9 shows a NumPy problem asking how to generate
samples that suit log-uniform distribution. Since the result
varies with different solutions and different settings, it’s
unreasonable to test the equivalence. Instead, we apply the
Kolmogorov-Smirnov test that judges whether two groups
of samples suit the identical or rather similar population.

Figure 10 gives a SciPy problem that describes some trou-
ble with the number of stored elements in a sparse matrix
and asks for a solution without repetitive type conversion.
Since our self-made assertion that checks the equivalence
of two matrices cannot distinguish the difference between
stored numbers, we need a special design for this problem.
For functional correctness, we check the type of b, match the
elements, and check the number of non-zero elements(nnz),
which is the core of the problem. For surface-form con-
straints, we reject the use of .toarray(), .A, .todense(),
and .array(), which might attempt to transform a sparse
matrix into a dense one.

Figure 11 shows a Pandas problem. We found that the
solution with the highest votes ignores the requirement “but
does not exactly match it” in the description of the problem,
and thus we had to fix the bug in our reference solution.
Besides, we enhanced the test case to check the point.

Figure 12 shows a TensorFlow problem. Since there is no
built-in testing function defined in TensorFlow 2.10.0, we
had to design it ourselves.

Figure 13 demonstrates a PyTorch problem. Here we use
load_data() to hide the input and let the models learn from
the description. The correct solution is not a regular type
conversion, as indicated in the error message.

Figure 14 shows a Scikit-learn problem. It requires ap-
plying the preprocessing method defined in Scikit-learn
to a Pandas dataframe, and it tests whether the models
learn Scikit-learn, Pandas, and their interaction well.
Actually, these data science libraries are not independent of
others, and this problem exemplifies the interactions.

Figure 15 shows a Matplotlib problem. Here the origi-
nal problem on StackOverflow contains an example figure,
which cannot be processed by current code models. We
rewrite the original problem into a standalone problem, that
is, “Plot y over x and show blue dashed grid lines”. The
automatic evaluation comes in two parts. First, it compares
the image produced by the generated program with the im-
age produced by the reference program. If two images
match exactly, then the generated program is considered
correct. Otherwise, the automatic evaluation examines the

12

DS-1000: A Natural and Reliable Benchmark for Data Science Code Generation

Table 8: The problem selection parameters and the number of result problems of Pandas and TensorFlow.

Year 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
Pandas vote 50 50 14 14 14 4 4 4 2 2 1 1

view 5k 5k 5k 5k 5k 1k 1k 1k 1.1k 1.1k 1k 1k
problems 2 8 467 494 554 2139 2483 1894 1985 809 225 8

TensorFlow vote - - - - 10 5 4 2 2 1 1 1
view - - - - 3k 2k 1k 1.6k 1.2k 1.3k 1k 1k
problems - - - - 100 632 1136 1167 1004 776 185 6

Matplotlib axis object and asserts the conditions relevant
to the problem specification. In this example, the assertions
are testing the existence of grid lines and the color of the
grid lines.

A.3. Problem Perturbation

Here, we give an example for each type of perturbation,
as shown in Table 1. We highlight the changes we made
through perturbations.

Figure 16, Figure 17 and Figure 18 give examples of surface
perturbations, showing code context perturbation, paraphras-
ing, and changes in example respectively. The original task
hasn’t changed.

Figure 19 shows how we replace keywords with analogy
words in a Pandas problem. The perturbed problem asks
for applying an exponential function to column A and B.
The problem in Figure 20 concentrates on changing the re-
quired index. Here we specify the target index on which
to operate using ordinal numbers. Figure 21 gives an ex-
ample of reversing the order. The desired output string is
reversed(from “abc,def,ghi,jkl” to “jkl,ghi,def,abc”). We
expect the models to capture the information and handle the
perturbation. Figure 22 shows an example of changing the
type of the required result. Here we change the type from
pd.DataFrame to pd.Series.

Figure 23 and Figure 24 demonstrate how we get difficult
rewrites. The example in Figure 23 replaces “highest” with
“lowest” and changes the shape of the desired output (from n
× 1 to 1 × n). The example in Figure 24, on the other hand,
focuses on digging more perturbations that could increase
the difficulty. The models should not only learn how to use a
two-sample KS test but also learn how to interpret the result
of the KS test.

A.4. Prompt Format

As we’ve mentioned in Section 4.1, we also provide a
prompt of Completion format. Here are two examples (Fig-
ure 25 and Figure 26) showing that we have to translate the
code in the right context into natural language instructions

as complementary information.

B. Details of Experiments on numpy-100

numpy-100 is a collection of 100 NumPy exercises from
NumPy mailing list, StackOverflow, and NumPy documen-
tation, which has been forked over 4.7k times on GitHub.

As shown in Figure 3, in the numpy-100 problem set, each
problem is given a short, one-sentence description with no
code context, followed by a reference solution.

28. Consider a (6,7,8) shape array, what is the index (x,y,z)
of the 100th element?

```python 
print(np.unravel_index(99, (6,7,8))) 
```

Figure 3: A numpy-100 example.

First, we wrote a code context for each problem and applied
Insertion prompt, as shown in Figure 4.

Problem:
Consider a (6,7,8) shape array, what is the index (x,y,z) of the 100th element?

<code>
import numpy as np
[insert]
print(result)
</code>

Figure 4: A numpy-100 example prompt.

Then we paraphrased the problems and modified the code
contexts as surface perturbations, as shown in Figure 5 and
Figure 6. We changed the description from “Consider a
(6,7,8) shape array, what is the index (x,y,z) of the 100th
element?” to “I have an array with shape (6,7,8). I need to
find the index of the 100th element.”. In another way, we
changed the code context to require models to complete a
given function.

For semantic perturbation, we changed the requirements
of the problems and also the semantics of the reference
solutions without changing their difficulty. As shown in
Figure 7, we changed “100” to “99”.

13

DS-1000: A Natural and Reliable Benchmark for Data Science Code Generation

Problem:
I have a array with shape (6,7,8). I need to find the index of the 100th element.

<code>
import numpy as np
[insert]
print(result)
</code>

Figure 5: A numpy-100 example of surface perturbation.
We expressed the same description in different words.

Problem:
Consider a (6,7,8) shape array, what is the index (x,y,z) of the 100th element?

<code>
import numpy as np

def f():
 [insert]
 return result
</code>

Figure 6: A numpy-100 example of surface perturbation.
We changed the code context.

At last, we equipped each problem and its perturbation with
one test case and an automatic evaluation. Then we tested
the performance of Codex-002 on them. We sampled 20
problems from numpy-100 and generated 10 samples for
each problem with the temperature set to 0.7, and top-p
cutoff set to 0.95.

C. Error Analysis
We provide a preliminary error analysis by showing an exam-
ple model error in Figure 8 and provide additional examples
in Figure 27 and 28. In this example, the problem asks for
removing adjacent duplicated non-zero values in a given
array, which cannot be satisfied by a single NumPy opera-
tion. The reference implements this problem by creating a
binary array representing the selection and performing two
operations to meet the problem requirement. However, we
see Codex-002 fails on the composite request and attempts
to answer the problem with a single method, np.unique,
pointed out as incorrect in the problem already. This exam-
ple error demonstrates the challenges in DS-1000 problems,

Problem:
Consider a (6,7,8) shape array, what is the index (x,y,z) of the 99th element?

<code>
import numpy as np
[insert]
print(result)
</code>

Figure 7: A numpy-100 example of semantic perturbation.
We only changed the required index.

which require both natural language understanding and code
generation abilities.

14

DS-1000: A Natural and Reliable Benchmark for Data Science Code Generation

Problem:
Given a numpy array, I wish to remove the adjacent
(before removing) duplicate non-zero value and all the
zero value.

For instance, for an array like that:
[0,0,1,1,1,2,2,0,1,3,3,3], I'd like to transform it to:
[1,2,1,3]. Do you know how to do it?

I just know np.unique(arr) but it would remove all the
duplicate value and keep the zero value. Thank you in
advance!

Reference SoluHon
a: 1-d np.array as input
selection = np.ones(len(a), dtype = bool)
selection[1:] = a[1:] != a[:-1]
selection &= a != 0
result = a[selection]

Wrong SoluHon
Just mimic mentioned wrong solution
result = np.unique(a)

Figure 8: An example model mistake. The problem specifies a composite requirement, removing adjacent non-zero
duplicates, which cannot be solved by a single operation. The model mistakenly generates a single operation that removes
all duplicates.

15

DS-1000: A Natural and Reliable Benchmark for Data Science Code Generation

Reference Solu1on
import spicy.stats
result = scipy.stats.loguniform.rvs(a = min, b = max, size = n)

Automa1c Evalua1on

Test code
 np.testing.assert_array_equal(result.shape, ans.shape)
 from scipy.stats import ks_2samp
 # Kolmogorov-Smirnov Test judges whether the two sampled
 # from similar distribution
 assert ks_2samp(result, ans)[0] <= 0.1

Surface-form constraints
for and while should not appear in Syntax Tree

Test case 1
 min = 1
 max = np.e
 n = 10000
 ans = ... # generated by Reference solution

Problem:
I could not find a built-in function in Python to generate a log uniform
distribution given a min and max value (the R equivalent is here),
something like: loguni[n, min, max, base] that returns n log uniformly
distributed in the range min and max.
The closest I found though was numpy.random.uniform .

That is, given range of x, I want to get samples of given size (n) that suit log-
uniform distribution.
Any help would be appreciated!

A:
<code>
import numpy as np
min = 1
max = np.e
n = 10000
</code>
BEGIN SOLUTION
<code>
[insert]
</code>
END SOLUTION
<code>
print(result)
</code>

Figure 9: NumPy example problem involving randomness, requiring the use of a specialist knowledge test.

Reference Solu1on
 b.setdiag(0)
 b.eliminate_zeros()

Automa1c Evalua1on

Test code
assert type(b) == type(ans)
Matching elements
assert len(sparse.find(b != ans)[0]) == 0
Checking number of nonzero elements
assert b.nnz == ans.nnz

Surface-form constraints
.toarray(), .A, .todense(), .array() should

not appear in Syntax Tree

Test case 1
 a = np.ones((2, 2))

Test case 2
 a = []

 ans = sparse.csr_matrix(a)
 ans.setdiag(0)
 ans.eliminate_zeros()

Problem:
I want to remove diagonal elements from a sparse matrix. Since the matrix is sparse,
these elements shouldn't be stored once removed.
Scipy provides a method to set diagonal elements values: setdiag
…[omit for brevity]
However with csr_matrix, it seems diagonal elements are not removed from storage:
…[omit for brevity]
>>> b.setdiag(0)
>>> b
<2x2 sparse matrix of type '<type 'numpy.float64'>'
 with 4 stored elements in Compressed Sparse Row format>
>>> b.toarray()
array([[0., 1.],
 [1., 0.]])
Through a dense array, we have of course:
>>> csr_matrix(b.toarray())
<2x2 sparse matrix of type '<type 'numpy.float64'>'
 with 2 stored elements in Compressed Sparse Row format>
Is that intended? If so, is it due to the compressed format of csr matrices? Is there any
workaround else than going from sparse to dense to sparse again?
A:
<code>
from scipy import sparse
import numpy as np
a = np.ones((2, 2))
b = sparse.csr_matrix(a)
</code>
BEGIN SOLUTION
<code>
[insert]
</code>
END SOLUTION
<code>
print(b)
</code>

Figure 10: An example problem of SciPy. Specific checking on conversion between dense matrix and sparse matrix.

16

DS-1000: A Natural and Reliable Benchmark for Data Science Code Generation

Just iterate over DataFrame.columns , now this is an example in
which you will end up with a list of column names that match:

spike_cols = [col for col in df.columns if 'spike' in col]

11/9/22, 2:52 PM python - Find column whose name contains a specific string - Stack Overflow

https://stackoverflow.com/questions/21285380/find-column-whose-name-contains-a-specific-string 1/4

'spike' 'spike-2' 'hey spike' 'spiked-in' 'spike'

df['name'] df[name]

DataFrame.columns

 pandas pd

data = { : [, ,], : [, ,], : [, ,], :
[, ,]}
df = pd.DataFrame(data)

spike_cols = [col col df.columns col]

((df.columns))
(spike_cols)

import as

'spike-2' 1 2 3 'hey spke' 4 5 6 'spiked-in' 7 8 9 'no'
10 11 12

for in if 'spike' in
print list
print

[, , ,]
[,]
'hey spke' 'no' 'spike-2' 'spiked-in'
'spike-2' 'spiked-in'

df.columns

[col for col in df.columns if 'spike' in col] df.columns col col

'spike'

df2 = df. (regex=)
(df2)

filter 'spike'
print

 spike- spiked-

2 in
0 1 7
1 2 8
2 3 9

DataFrame.filter

df[df.columns.drop(spike_cols)] DataFrame
spike_cols

df[[col for col in df.columns if "spike" in col]]

[col for col in df.columns if any(s in col for s in ['spike', 'foo', 'bar'])] df.filter(regex='(spike)|(foo)|(bar)')

11/9/22, 2:52 PM python - Find column whose name contains a specific string - Stack Overflow

https://stackoverflow.com/questions/21285380/find-column-whose-name-contains-a-specific-string 1/4

'spike' 'spike-2' 'hey spike' 'spiked-in' 'spike'

df['name'] df[name]

DataFrame.columns

 pandas pd

data = { : [, ,], : [, ,], : [, ,], :
[, ,]}
df = pd.DataFrame(data)

spike_cols = [col col df.columns col]

((df.columns))
(spike_cols)

import as

'spike-2' 1 2 3 'hey spke' 4 5 6 'spiked-in' 7 8 9 'no'
10 11 12

for in if 'spike' in
print list
print

[, , ,]
[,]
'hey spke' 'no' 'spike-2' 'spiked-in'
'spike-2' 'spiked-in'

df.columns

[col for col in df.columns if 'spike' in col] df.columns col col

'spike'

df2 = df. (regex=)
(df2)

filter 'spike'
print

 spike- spiked-

2 in
0 1 7
1 2 8
2 3 9

DataFrame.filter

df[df.columns.drop(spike_cols)] DataFrame
spike_cols

df[[col for col in df.columns if "spike" in col]]

[col for col in df.columns if any(s in col for s in ['spike', 'foo', 'bar'])] df.filter(regex='(spike)|(foo)|(bar)')

Reference Solu1on
result = [col for col in df.columns

if s in col and col != s]

Automa1c Evalua1on

Test code
 assert result == ans

Test case 1
 data = {'spike-2': [1,2,3], 'hey spke': [4,5,6],

 'spiked-in': [7,8,9], 'no': [10,11,12],
 'spike': [13,14,15]}

 df = pd.DataFrame(data)
 s = 'spike'

 ans = [col for col in df.columns
if s in col and col != s]

Problem:
I have a dataframe with column names, and I want to find the one
that contains a certain string, but does not exactly match it. I'm
searching for 'spike' in column names like 'spike-2', 'hey spike',
'spiked-in' (the 'spike' part is always continuous).
I want the column name to be returned as a string or a variable, so
I access the column later with df['name'] or df[name] as
normal. I want to get a list like['spike-2', 'spiked-in'].
I've tried to find ways to do this, to no avail. Any tips?

A:
<code>
import pandas as pd
data = {'spike-2': [1,2,3], 'hey spke': [4,5,6],

 'spiked-in': [7,8,9], 'no': [10,11,12]}
df = pd.DataFrame(data)
s = 'spike'
</code>
BEGIN SOLUTION
<code>
[insert]
</code>
END SOLUTION
<code>
print(result)
</code>

Highest-vote Solu1on

Figure 11: An example problem of Pandas. We need to write reference solutions by ourselves because high-vote replies
from StackOverflow ignore the requirement “but do not exactly match it”.

lengths_transposed = tf.expand_dims(lengths, 1)
range = tf.range(0, 8, 1)
range_row = tf.expand_dims(range, 0)
mask = tf.less(range_row, lengths_transposed)
result = tf.where(mask, tf.ones([4, 8]), tf.zeros([4, 8]))

Reference Solu1on

Test code
def tensor_equal(a, b): # self-made test function
 if type(a) != type(b):
 return False
 if isinstance(a, type(tf.constant([]))) is not True:
 if isinstance(a, type(tf.Variable([]))) is not True:
 return False
 if a.shape != b.shape:
 return False
 if a.dtype != tf.float32:
 a = tf.cast(a, tf.float32)
 if b.dtype != tf.float32:
 b = tf.cast(b, tf.float32)
 if not tf.reduce_min(tf.cast(a == b, dtype=tf.int32)):
 return False
 return True
assert tensor_equal(result, ans)

Test case 1
 lengths = [4, 3, 5, 2]
 ans = ... # generated by Reference solution

Test case 2
 lengths, ans = ...[omitted for brevity]

Problem:
I'm using tensorflow 2.10.0.
I have a tensor of lengths in tensorflow, let's say it looks like
this:
[4, 3, 5, 2]
I wish to create a mask of 1s and 0s whose number of 0s
correspond to the entries to this tensor, padded in front by
1s to a total length of 8. I.e. I want to create this tensor:
[[1,1,1,1,0,0,0,0],
 [1,1,1,0,0,0,0,0],
 [1,1,1,1,1,0,0,0],
 [1,1,0,0,0,0,0,0]
]
How might I do this?

A:
<code>
import tensorflow as tf
lengths = [4, 3, 5, 2]
</code>
BEGIN SOLUTION
<code>
[insert]
</code>
END SOLUTION
<code>
print(result)
</code>

Figure 12: An example problem of TensorFlow. We implemented a well-designed test function for tensor comparison.

17

DS-1000: A Natural and Reliable Benchmark for Data Science Code Generation

Reference Solu1on
tensor_of_tensors = torch.stack((list_of_tensors))

Automa1c Evalua1on

Test code
 torch.testing.assert_close(tensor_of_tensors, ans,

 check_dtype = False)

Test case 1

 torch.random.manual_seed(42)
 list_of_tensors = [torch.randn(3), torch.randn(3),
 torch.randn(3)]
 ans = ... # generated by Reference solution

Problem:
I have this code:
import torch
list_of_tensors = [torch.randn(3), torch.randn(3),
torch.randn(3)]
tensor_of_tensors = torch.tensor(list_of_tensors)
I am geYng the error:
ValueError: only one element tensors can be converted
to Python scalars
How can I convert the list of tensors to a tensor of tensors in pytorch?
A:

<code>
import numpy as np
import pandas as pd
import torch
list_of_tensors = load_data()
</code>
BEGIN SOLUTION
<code>
[insert]
</code>
END SOLUTION
<code>
print(tensor_of_tensors)
</code>

Figure 13: An example problem of PyTorch, with failed attempt and error message given in the description.

Reference Solu1on

df_out = pd.DataFrame(preprocessing.scale(data),
 index=data.index, columns=data.columns)

Automa1c Evalua1on

Test code
 # tolerate rounding error
 pd.testing.assert_frame_equal(df_out, ans,
 check_dtype=False, check_exact=False)

Test case 1
 np.random.seed(42)
 data = pd.DataFrame(np.random.rand(3, 3),

 index=['first', 'second', 'third'],
 columns=['c1', 'c2', ‘c3’])

 ans = ... # generated by Reference Solution

Problem:
I'm using the excellent read_csv()func:on from pandas, which gives:
In [31]: data = pandas.read_csv("lala.csv",
delimiter=",")
In [32]: data
Out[32]:
<class 'pandas.core.frame.DataFrame'>
Int64Index: 12083 entries, 0 to 12082
Columns: 569 entries, REGIONC to SCALEKER
dtypes: float64(51), int64(518)
but when i apply a func:on from scikit-learn i loose the informa:ons about
columns:
from sklearn import preprocessing
preprocessing.scale(data)
gives numpy array.
Is there a way to apply preprocessing.scale to DataFrames without loosing
the informa:on(index, columns)?
A:
<code>
import numpy as np
import pandas as pd
from sklearn import preprocessing
data = load_data()
</code>
BEGIN SOLUTION
<code>
[insert]
</code>
END SOLUTION
<code>
print(df_out)
</code>

Figure 14: An example problem of Scikit-learn, requiring applying Scikit-learn preprocessing method to Pandas
dataframe.

18

DS-1000: A Natural and Reliable Benchmark for Data Science Code Generation

Reference Solution

plt.plot(y, x)
plt.grid(color="blue", linestyle="dashed")

Automatic Evaluation

Test code
ax = plt.gca()

Matching image components
assert ax.xaxis._major_tick_kw["gridOn"]
assert "grid_color" in ax.xaxis._major_tick_kw
assert ax.xaxis._major_tick_kw["grid_color"] in ["blue", "b"]
assert "grid_linestyle" in ax.xaxis._major_tick_kw
assert ax.xaxis._major_tick_kw["grid_linestyle"] in ["dashed", "--", "-.", ":"]

Matching images, in the form of np.array
from PIL import Image
code_img, oracle_img = ... # load images

sample_image_stat = (
code_img.shape == oracle_img.shape
and np.allclose(code_img, oracle_img)

)
assert sample_image_stat

Test case 1
x = np.arange(10)
y = np.arange(10)

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

x = np.arange(10)
y = np.arange(10)

Plot y over x and show blue dashed grid lines
SOLUTION START

Rewrite prompt

Figure 15: An example problem of Matplotlib. Matplotlib original problems often contain example figures which cannot
be processed by current code models. We rewrite original problems into standalone problems in the form of comments.

A:
<code>
from scipy import sparse
import numpy as np
sa = sparse.csr_matrix(np.array([[1,2,3],[4,5,6],
[7,8,9]]))
sb = sparse.csr_matrix(np.array([0,1,2]))
</code>
BEGIN SOLUTION
<code>
[insert]
</code>
END SOLUTION
<code>
print(result)
</code>

A:
<code>
from scipy import sparse
import numpy as np
example_sA = sparse.csr_matrix(np.array([[1,2,3],
[4,5,6],[7,8,9]]))
example_sB = sparse.csr_matrix(np.array([0,1,2]))
def f(sA = example_sA, sB = example_sB):
</code>
BEGIN SOLUTION
<code>
[insert]
</code>
END SOLUTION
<code>
 return result
</code>

Problem:
I have this example of matrix by matrix mul^plica^on using numpy arrays:
import numpy as np
m = np.array([[1,2,3],[4,5,6],[7,8,9]])
c = np.array([0,1,2])
m * c
array([[0, 2, 6],
 [0, 5, 12],
 [0, 8, 18]])
How can i do the same thing if m is scipy sparse CSR matrix? The result should be csr_matrix as well.
This gives dimension mismatch:
sp.sparse.csr_matrix(m)*sp.sparse.csr_matrix(c)

Figure 16: An example problem of surface perturbation. We expect the model to complete the function(on the right).

19

DS-1000: A Natural and Reliable Benchmark for Data Science Code Generation

Origin
Problem:
How do I convert data from a Scikit-learn Bunch object (from sklearn.datasets) to
a Pandas DataFrame?
from sklearn.datasets import load_iris
import pandas as pd
data = load_iris()
print(type(data))
data1 = pd. # Is there a Pandas method to accomplish this?

Problem:
Can you give me any suggestion that transforms a sklearn Bunch object (from
sklearn.datasets) to a dataframe? I'd like to do it to iris dataset.
Thanks!
from sklearn.datasets import load_iris
import pandas as pd
data = load_iris()
print(type(data))
data1 = pd. # May be you can give me a Pandas method?

Figure 17: An example problem of surface perturbation. The description in the prompt has been paraphrased.

Origin
Problem:
How to convert a numpy array of dtype=object to torch Tensor?
array([
 array([0.5, 1.0, 2.0], dtype=float16),
 array([4.0, 6.0, 8.0], dtype=float16)
], dtype=object)

Problem:
How to convert a numpy array of dtype=object to torch Tensor?
x = np.array([
 np.array([1.23, 4.56, 9.78, 1.23, 4.56, 9.78], dtype=np.double),
 np.array([4.0, 4.56, 9.78, 1.23, 4.56, 77.77], dtype=np.double),
 np.array([1.23, 4.56, 9.78, 1.23, 4.56, 9.78], dtype=np.double),
 np.array([4.0, 4.56, 9.78, 1.23, 4.56, 77.77], dtype=np.double),
 np.array([1.23, 4.56, 9.78, 1.23, 4.56, 9.78], dtype=np.double),
], dtype=object)

Figure 18: An example problem of surface perturbation. The example input in the prompt has been replaced with another
one.

20

DS-1000: A Natural and Reliable Benchmark for Data Science Code Generation

Origin
Problem:
Sample dataframe:
df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
I'd like to add inverses of each existing column to the dataframe and name them based on
existing column names with a prefix, e.g. inv_A is an inverse of column A and so on.
The resulting dataframe should look like so:
result = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6], "inv_A": [1/
1, 1/2, 1/3], "inv_B": [1/4, 1/5, 1/6]})
…[omitted for brevity]

Problem:
Sample dataframe:
df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
I'd like to add exponentials of each existing column to the dataframe and name them based
on existing column names with a prefix, e.g. exp_A is an exponential of column A and so on.
The resulting dataframe should look like so:
result = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6], "exp_A
": [e^1, e^2, e^3], "exp_B": [e^4, e^5, e^6]})
Notice that e is the natural constant.
…[omitted for brevity]

Figure 19: An example problem of semantic perturbation. “inverse” has been replaced with an analogy word “exponential”.

Origin
Problem:
I have a 2D array `a` to represent a many-many mapping :
0 3 1 3
3 0 0 0
1 0 0 0
3 0 0 0
What is the quickest way to 'zero' out rows and column entries corresponding to a particular
index (e.g. zero_rows = 0, zero_cols = 0 corresponds to the 1st row/column) in this array?

Problem:
I have a 2D array `a` to represent a many-many mapping :
0 3 1 3
3 0 0 0
1 0 0 0
3 0 0 0
What is the quickest way to 'zero' out the second row and the first column?

Figure 20: An example problem of semantic perturbation. The required index of rows and columns has been changed.

21

DS-1000: A Natural and Reliable Benchmark for Data Science Code Generation

Origin
Problem:
I have the following dataframe:
 text
1 "abc"
2 "def"
3 "ghi"
4 "jkl"
How can I merge these rows into a dataframe with a single row like the following one?
 text
1 "abc, def, ghi, jkl"

Problem:
I have the following dataframe:
 text
1 "abc"
2 "def"
3 "ghi"
4 "jkl"
How can I merge these rows into a dataframe with a single row like the following one?
 text
1 "jkl, ghi, def, abc"

Figure 21: An example problem of semantic perturbation. The order of the desired string has been reversed.

Origin
Problem:
I have a square correlation matrix in pandas, and am trying to divine the most efficient way to return all values
where the value (always a float -1 <= x <= 1) is above 0.3.
The pandas.DataFrame.filter method asks for a list of columns or a RegEx, but I always want to pass all
columns in. Is there a best practice on this?
desired DataFrame:
 Pearson Correlation Coefficient
Col1 Col2
0 3 0.373153
1 3 0.419219
 4 0.356149
3 4 0.389972

Problem:
I have a square correlation matrix in pandas, and am trying to divine the most efficient way to return all values
where the value (always a float -1 <= x <= 1) is above 0.3.
The pandas.DataFrame.filter method asks for a list of columns or a RegEx, but I always want to pass all
columns in. Is there a best practice on this?
desired Series:
0 3 0.373153
1 3 0.419219
 4 0.356149
3 4 0.389972
dtype: float64

Figure 22: An example problem of semantic perturbation. The type of the desired result has been changed but the content
still keeps the same.

22

DS-1000: A Natural and Reliable Benchmark for Data Science Code Generation

Origin
Problem:
I have a logisMc regression model using Pytorch, where my input is high-dimensional and my output must be a
scalar - 0, 1 or 2.
I'm using a linear layer combined with a sofmax layer to return a n x 3 tensor, where each column represents the
probability of the input falling in one of the three classes (0, 1 or 2).
However, I must return a n x 1 tensor, so I need to somehow pick the highest probability for each input and create
a tensor indicaMng which class had the highest probability. How can I achieve this using Pytorch?
To illustrate, my Sofmax outputs this:
[[0.2, 0.1, 0.7],
 [0.6, 0.2, 0.2],
 [0.1, 0.8, 0.1]]
And I must return this:
[[2],
 [0],
 [1]]

Problem:
…[omit for brevity]
However, I must return a 1 x n tensor, and I want to somehow pick the lowest probability for each input and
create a tensor indicaMng which class had the lowest probability. How can I achieve this using Pytorch?
To illustrate, my Sofmax outputs this:
[[0.2, 0.1, 0.7],
 [0.6, 0.3, 0.1],
 [0.15, 0.8, 0.05]]
And I must return this:
[1, 2, 2], which has the type torch.LongTensor

Figure 23: An example problem that is difficult re-written with a combination of surface and semantic perturbations

Origin
Problem:
I can't figure out how to do a Two-sample KS test in Scipy.
…[omit for brevity]
test_stat = kstest(x, 'norm')
#>>> test_stat
#(0.021080234718821145, 0.76584491300591395)
Which means that at p-value of 0.76 we can not reject the null hypothesis that the two distribuMons are idenMcal.
However, I want to compare two distribuMons and see if I can reject the null hypothesis that they are idenMcal.
…[omit for brevity]
I tried the naive:
test_stat = kstest(x, z)
and got the following error:
TypeError: 'numpy.ndarray' object is not callable
Is there a way to do a two-sample KS test in Python? If so, how should I do it?
Thank You in Advance

Problem:
…[omit for brevity]
Is there a way to do a two-sample KS test in Python, then test whether I can reject the null hypothesis that the
two distribuHons are idenHcal(result=True means able to reject, and the vice versa) based on alpha? If so, how
should I do it?
Thank You in Advance

Figure 24: An example problem that is difficult re-written for more complexity

23

DS-1000: A Natural and Reliable Benchmark for Data Science Code Generation

Problem:
Sample dataframe:
df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})

I'd like to add inverses of each exisPng column to the dataframe and name them based
on exisPng column names with a prefix, e.g. inv_A is an inverse of column A and so on.
… [omiTed for brevity]
Obviously there are redundant methods like doing this in a loop, but there should exist
much more pythonic ways of doing it … [omiTed for brevity]
A:
<code>
import pandas as pd
df = pd.DataFrame({"A": [1, 2, 3],"B": [4, 5, 6]})
</code>
result = ...# put solution in this variable
BEGIN SOLUTION
<code>

Figure 25: Completion prompt corresponding to Figure 1.

A:
<code>
import numpy as np
import pandas as pd
from sklearn.ensemble import BaggingClassifier
from sklearn.model_selection import GridSearchCV
from sklearn.tree import DecisionTreeClassifier

X_train, y_train = load_data()
assert type(X_train) == np.ndarray
assert type(y_train) == np.ndarray
X_test = X_train
param_grid = {
 'base_estimator__max_depth': [1, 2, 3, 4, 5],
 'max_samples': [0.05, 0.1, 0.2, 0.5]
}
dt = DecisionTreeClassifier(max_depth=1)
bc = BaggingClassifier(dt, n_estimators=20,
max_samples=0.5, max_features=0.5)
</code>
solve this question with example variable `clf` and
put result in `proba`
BEGIN SOLUTION
<code>

A:
<code>
import numpy as np
import pandas as pd
from sklearn.ensemble import BaggingClassifier
from sklearn.model_selection import GridSearchCV
from sklearn.tree import DecisionTreeClassifier
X_train, y_train = load_data()
assert type(X_train) == np.ndarray
assert type(y_train) == np.ndarray
X_test = X_train
param_grid = {
 'base_estimator__max_depth': [1, 2, 3, 4, 5],
 'max_samples': [0.05, 0.1, 0.2, 0.5]
}
dt = DecisionTreeClassifier(max_depth=1)
bc = BaggingClassifier(dt, n_estimators=20,
max_samples=0.5, max_features=0.5)
</code>
BEGIN SOLUTION
<code>
[insert]
</code>
END SOLUTION
<code>
proba = clf.predict_proba(X_test)
print(proba)
</code>

Problem:
Say that I want to train BaggingClassifier that uses DecisionTreeClassifier:

dt = DecisionTreeClassifier(max_depth = 1)
bc = BaggingClassifier(dt, n_estimators = 20, max_samples = 0.5, max_features = 0.5)
bc = bc.fit(X_train, y_train)
I would like to use GridSearchCV to find the best parameters for both BaggingClassifier and
DecisionTreeClassifier(e.g. max_depth from DecisionTreeClassifier and max_samples from
BaggingClassifier), what is the syntax for this? Besides, you can just use the default arguments of GridSearchCV.

Figure 26: More complex Completion (on the right) prompt that requires additional information for a solution.

24

DS-1000: A Natural and Reliable Benchmark for Data Science Code Generation

Problem:
I am using Pandas to get a dataframe like this:
 name a b c
0 Aaron 3 5 7
1 Aaron 3 6 9
2 Aaron 3 6 10
3 Brave 4 6 0
4 Brave 3 6 1
I want to replace each name with a unique ID so output looks like:
 name a b c
0 1 3 5 7
1 1 3 6 9
2 1 3 6 10
3 2 4 6 0
4 2 3 6 1
How can I do that?

Reference SoluHon

df: pd.DataFrame as input
result = df.replace(df['name'].unique(),
 range(1, len(df['name'].unique()) + 1))

Wrong SoluHon

create a column named "ID"
df['ID'] = df.groupby(['name']).ngroup()

result = df

Figure 27: An example wrong solution that misunderstands the requirements and modifies on the wrong column.

Problem:
I'm using tensorflow 2.10.0.

I have a list of bytes and I want to convert it to a list of strings:

x=[b'\xd8\xa8\xd9\x85\xd8\xb3\xd8\xa3\xd9\x84\xd
8\xa9',
 b'\xd8\xa5\xd9\x86\xd8\xb4\xd8\xa7\xd8\xa1',
 b'\xd9\x82\xd8\xb6\xd8\xa7\xd8\xa1',
 b'\xd8\xac\xd9\x86\xd8\xa7\xd8\xa6\xd9\x8a',
 b'\xd8\xaf\xd9\x88\xd9\x84\xd9\x8a']

How can I get the string result list in Tensorflow?

Reference SoluHon
x: list of bytes as input

result = [tf.compat.as_str_any(a) for a in x]

Wrong SoluHon
Not using method in Tensorflow
result = [item.decode('utf-8') for item in x]

Figure 28: An example wrong solution that uses a common function instead of a function of TensorFlow.

25

DS-1000: A Natural and Reliable Benchmark for Data Science Code Generation

Figure 29: An example untestable problem involving hardware problems.

Figure 30: An example untestable problem involving software errors.

26

DS-1000: A Natural and Reliable Benchmark for Data Science Code Generation

Figure 31: An example untestable problem involving explanations.

27

	Introduction
	Benchmark Construction
	Problem Selection
	Rewriting Problems and Reference Solutions
	Implementing Multi-Criteria Evaluations
	Perturbation to Defend Against Memorization
	Quality Assurance

	Dataset Statistics
	Benchmarking State-of-the-Art Models
	Prompt Format
	Experimental Setup
	Main Results
	Results by Perturbation

	Related Work
	Conclusion
	Appendices
	Details on Data Collection
	Problem Selection
	Example Problems
	Problem Perturbation
	Prompt Format

	Details of Experiments on numpy-100
	Error Analysis

