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Abstract
Placement is a critical step in modern chip design,
aiming to determine the positions of circuit mod-
ules on the chip canvas. Recent works have shown
that reinforcement learning (RL) can improve hu-
man performance in chip placement. However,
such an RL-based approach suffers from long
training time and low transfer ability in unseen
chip circuits. To resolve these challenges, we cast
the chip placement as an offline RL formulation
and present ChiPFormer that enables learning a
transferable placement policy from fixed offline
data. ChiPFormer has several advantages that
prior arts do not have. First, ChiPFormer can
exploit offline placement designs to learn transfer-
able policies more efficiently in a multi-task set-
ting. Second, ChiPFormer can promote effective
finetuning for unseen chip circuits, reducing the
placement runtime from hours to minutes. Third,
extensive experiments on 32 chip circuits demon-
strate that ChiPFormer achieves significantly bet-
ter placement quality while reducing the runtime
by 10× compared to recent state-of-the-art ap-
proaches in both public benchmarks and realistic
industrial tasks. The deliverables are released at
sites.google.com/view/chipformer/home.

1. Introduction
In modern chip design, placement is a crucial and challeng-
ing problem, which places circuit modules (e.g., macros and
standard cells) with varying sizes on a chip canvas. The
placement result can determine a chip’s performance, such
as the speed and energy cost, especially when the scale of
integrated circuits grows continuously. For example, very
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Figure 1: Comparing the placement quality and the run-
time between ChiPFormer (ours) and the recent advanced
RL-based methods such as GraphPlace (Mirhoseini et al.,
2021), MaskPlace (Lai et al., 2022), and DeepPR (Cheng
& Yan, 2021) and optimization method RePlAce (Cheng
et al., 2018). All methods are evaluated in the ISPD05
benchmark. The placement quality (higher is better) is nor-
malized by 1.25(1−HPWL/min HPWL) ∈ [0, 1], where HPWL
represents Half Perimeter Wire Length. The number inside
“ChiPFormer(·)” means the maximum few-shot number for
placement in the finetuning stage (i.e., rollout times). We
see that ChiPFormer is the first offline RL approach for chip
placement so far, and ChiPFormer(300) outperforms the
other baselines in terms of quality and efficiency.

large-scale integrated (VLSI) circuits can have 100 to 1k
macros (e.g., SRAMs, IOs, and packaged computing units)
and 10k to 100k standard cells (e.g., logical gates), making
the placement problem computationally expensive.

Recent advanced approaches (Mirhoseini et al., 2021; Cheng
& Yan, 2021; Lai et al., 2022) have shown that reinforcement
learning (RL) can produce chip layouts that are superior
or comparable to those designed by humans in many key
evaluation metrics such as wirelength and congestion while
spending less placement time than humans. Specifically,
these approaches typically treat the placement problem as
a Markov Decision Process (MDP) and place one circuit
module at each step. All of them learn the placement policy
in an online manner by iteratively collecting data through
interactions with the environment, as shown in Fig.2 (a).
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Figure 2: Comparing the overall pipelines between (a) online RL placement and (b) offline RL placement (ours). In
(a), the online RL model keeps interacting with the environment (i.e., a placement simulator or an EDA design tool for
getting metrics from placement designs, and its time consumption is usually proportional to the circuit scale) to learn policy
from scratch. As a result, online policy learning takes more than 3 hours on a chip in the ISPD05 benchmark. In (b), the
offline approach enables ChiPFormer to learn a policy using fixed offline placement data, thus eliminating time-consuming
online interactions. When an unseen circuit is presented, ChiPFormer can be finetuned with only a few rollouts by reusing
and transferring the learned experience across multi-task offline data. We see that such an offline method can reduce the
runtime in the ISPD05 benchmark ten times compared to previous online approaches (i.e., 18 minutes v.s. 3 hours).

However, one challenge that remains unsolved is that all
recent RL methods have a low training efficiency, as shown
in Fig.1. This is because learning the policy online is slow
in a large placement search space, significantly when the
chip circuit scale increases. For instance, Mirhoseini et al.
(2021) pointed out that the search space can be larger than
102500 when there are only 1000 modules. In that case, it
takes approximately 48 hours to pretrain a policy network
and 6 hours to finetune it on eight V100 GPUs. Although
DeepPR (Cheng & Yan, 2021) and MaskPlace (Lai et al.,
2022) can shorten the runtime, they still require more than
3 hours of training. RL-based methods can achieve much
stronger placement performance than the classic optimiza-
tion approaches (Lin et al., 2020; Cheng et al., 2018), but
their long runtime makes them less practical than classic
methods that can produce a placement design in minutes.

This work addresses the above challenge by presenting ChiP-
Former, which designs a decision transformer model for
chip placement. It has three appealing benefits compared to
the recent approaches. First, unlike the current advanced RL
methods that learn the placement policy online, ChiPFormer
formulates chip placement as an offline RL problem in a
data-driven manner. This offline formulation enables us to
pretrain ChiPFormer on fixed and pre-collected data, allevi-
ating the time-consuming online rollouts and enabling data
reuse across multiple placement tasks. The learned policy
can be transferred to unseen chip circuits in a few minutes.

Second, ChiPFormer can learn transferable placement pol-
icy, which is achieved by collecting multi-task offline data
on multiple circuits and then modeling a conditional place-
ment policy with ChiPFormer. Following Gato (Reed et al.,
2022), we assume the offline data are collected from multi-

ple chip circuits using (near) expert-level placement behav-
iors, differing from the common offline RL setting where
the data are collected by sub-optimal behavior policies over
a single environment such as Chen et al. (2021).

Third, unlike the recent representative RL methods such
as GraphPlace (Mirhoseini et al., 2021), MaskPlace (Lai
et al., 2022), and DeepPR (Cheng & Yan, 2021) that learned
the placement policy using convolutional neural network
(CNN) or graph neural network (GCN), ChiPFormer is the
first transformer placement network so far. Our multi-task
transformer design allows us to learn transferable policies,
which can be generalized to new unseen circuits within a few
minutes. For example, we apply ChiPFormer on 12 unseen
chip circuits and achieve an average placement time of 18
minutes, outperforming the GraphPlace method (Mirhoseini
et al., 2021) in HPWL and runtime metrics by 65% and 97%
decrease, respectively.

This paper has three main contributions. (1) To our knowl-
edge, ChiPFormer is the first work so far to learn transfer-
able placement policy in an offline RL manner. The learned
policy can generalize to unseen chip placement tasks effec-
tively and efficiently. (2) To facilitate further study of the of-
fline placement problem, we release the collected placement
dataset, including 12 chip circuits (tasks) and 500 expert
placement results for each circuit.1 (3) We conduct exten-
sive experiments on 32 circuit tasks, containing 26 circuits
from public chip benchmarks and 6 circuits from realistic
industrial chips. This work has evaluated 1.3× ∼ 5.3×
more chip circuits than recent works. For example, there are
6 circuits evaluated in GraphPlace, 24 in MaskPlace, and
8 in DeepPR. In all experiments, ChiPFormer can speed

1The dataset is shared on Google drive.
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up the placement runtime by 10× ∼ 30× with only two
Nvidia 3090 GPUs while achieving better placement quality
compared to the recent state-of-the-art methods.

2. Preliminaries
Chip Placement. The chip placement problem can be de-
fined as a constrained optimization problem. The main
objective is to determine the positions of circuit modules
(e.g., macros and standard cells) on a physical chip canvas to
minimize the wirelength, which determines the chip delay
and energy consumption. As the computation of wirelength
is an NP-complete problem (Garey & Johnson, 1977), re-
cent placement methods use Half-Perimeter Wire-Length
(HPWL) as a proxy to estimate the wirelength, which is com-
puted by accumulating all the half-perimeters of bounding
boxes of all the nets from the circuit netlist.

As shown below, the constraints for placement include: (1)
overlap constraint, which avoids the overlapping between
modules (i.e., each position on the chip canvas can be cov-
ered by at most one module), and (2) congestion constraint,
where the wire congestion should be lower than a desired
small threshold to reduce chip cost. In general, the place-
ment optimization problem can be formulated as

min
x,y

HPWL(x,y), (1)

s.t. Overlap(x,y,w,h) = 0, (2)
Congestion(x,y,w,h) ≤ C, (3)

where (x,y) = (x1, x2, ..., xn, y1, y2, ..., yn) and each pair
(xi, yi) is the placement position of the ith circuit mod-
ule. Similarly, (w,h) are the widths and heights of mod-
ules. C is the desired threshold of the congestion constraint.
HPWL(·), Overlap(·), and Congestion(·) are the functions
to calculate the HPWL, the overlap area, and the congestion
of the placement design, respectively.

Offline Reinforcement Learning. RL is typically designed
to deal with tasks of sequential modeling, which is often
described by the Markov Decision Process (MDP). Particu-
larly, an MDP, written as M := (S,A, T , r, ρ, γ), is speci-
fied by the state space S , action space A, transition dynam-
ics T (st+1|st,at), reward function r(st,at), initial state
distribution ρ(s1), and discount factor γ. The goal of RL is
to learn a policy π(a|s) that maximizes the expected return
Eτ∼π(τ )[

∑T
t=1 r(st,at)], where τ := (s1,a1, ..., sT ,aT )

denotes the state-action trajectory. For clarity, we employ
the notation π(τ ) to denote the trajectory distribution in-
duced by executing the policy π(a|s) in the environment.

In offline RL, the agent (learning policy) will not inter-
act with the environment (i.e., it cannot input the place-
ment design into the simulator/EDA tool and get the met-
rics). Instead, the agent is provided with a fixed dataset

D := {(s,a, s′, r)}, which has been collected by some
data-generating process. Since it cannot explore the MDP,
the agent must rely on the provided offline data to learn a
policy that maximizes the expected return.

Reinforcement Learning for Placement. To instantiate an
RL-based chip placement, we can re-frame the placement as
a sequential decision-making MDP, denoted by Mc, where
we use the superscript to indicate the chip placement task for
a specific circuit c (Mirhoseini et al., 2021; Lai et al., 2022).
In the MDP, state s describes the positions of previous
macros that have been placed, action a indicates the position
of the current macro to be placed, and reward r is defined as
the negative wirelength and constraints (circuit-dependent).

3. Our Approach
3.1. Problem Setup

This paper studies the chip placement problem in the offline
RL regime, as shown in Fig.2 (b). In particular, we cast the
chip placement as a sequential decision-making problem
but assume that the RL experience is fixed and there is no
further interaction with the environment, which has a vast
search space. In contrast, previous RL placement methods
learn from scratch through expensive and time-consuming
online interaction with the environment, creating a barrier
to applying RL methods to efficient placement tasks. Hence,
we expect that offline training would facilitate more efficient
chip placement, especially when transferring to new unseen
chip circuit tasks.

Formally, we have an expert-level and multi-task chip place-
ment dataset, denoted as D := {(c, τ )}, where c denotes
the index of a chip circuit task and τ denotes the collected
expert-level placement behaviors corresponding to c. Un-
like the vanilla offline RL, we drop the reward term by
considering expert-level behaviors.

Different from typical offline RL that assumes all offline
data comes from a single task, our offline data D are col-
lected from n different circuit placement tasks M[n]

train, where
M[n]

train denotes a set of MDPs {M1
train, · · · ,Mn

train}. This is
conceptually similar to the multi-task learning setup. In
modern chip placement, the expert-level and multi-task
setup can be naturally satisfied. For example, one can em-
ploy any RL-based and optimization-based methods to col-
lect the placement data from multiple existing circuits. To
facilitate future research, we have released our collected
offline dataset.

3.2. Overall Pipeline

Our pipeline consists of two steps, including macro place-
ment and mixed-size placement.
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Figure 3: Circuit token generation (left) and ChiPFormer architecture (right). We generate the circuit token HI(c)
by pretraining a conditional VAE model (graph implementation), which fits an inference model and a generative model.
Specifically, the inference model takes as input the adjacency matrix A and node feature matrix X of a graph representing
the topology structure of circuit c. We use the GPT architecture as the backbone of ChiPFormer, which uses a causal self-
attention mask and predicts actions by feeding tokens (including circuit token, state token, and action token) autoregressively.

In the first step for macro placement, we train a general
decision/sequence generation model, ChiPFormer, using
only the collected data D of multiple placement tasks. Then,
we transfer the learned policy to a downstream task (chip),
denoted by Mtest. For example, as Fig.2 (b) shows, given
an already seen chip, i.e., the downstream task stays in
the offline training distribution Mtest ∈ M[n]

train, we can di-
rectly use the pretrained ChiPFormer to generate a new
placement design. Alternatively, given a new unseen chip,
i.e., Mtest /∈ M[n]

train, we can finetune the pretrained ChiP-
Former for adapting to unseen circuits with few-shot online
interaction (Section 3.4). In the second step for mixed-size
placement, we let the macro placement result as an initial
layout status and adopt the optimized-based method to place
the standard cells (Section 3.5) by following recent works
such as Flora (Liu et al., 2022a) and GraphPlanner (Liu
et al., 2022b).

3.3. Offline Learning of ChiPFormer

ChiPFormer models the sequential placement task as a gen-
eral hindsight information matching (Furuta et al., 2021), by
following prior supervised offline RL methods (Chen et al.,
2021; Emmons et al., 2021). We first describe its objective
and then present the details of the network architecture for
sequential placement modeling.

Hindsight Information Matching. Specifically, given a
trajectory τ := (s1,a1, · · · , sT ,aT ) starting from state s1,
we can define hindsight information as a trajectory’s infor-
mation statistics, denoted as HI(τ ), which could be any
function of a trajectory that captures some statistical proper-
ties in the state space or the trajectory space. For example,
a prior work, Decision Transformer (Chen et al., 2021),

takes the return of a trajectory as the hindsight information
HI(τ ) :=

∑T
t=1 r(st,at). The supervised goal-reaching

RL (Ghosh et al., 2019) takes the final state as the hind-
sight information HI(τ ) := sT . In contrast, we extend the
naive hindsight information to the multi-task scenario by
incorporating the additional task description (i.e., circuit c).
Instead of using heuristic statistics (like the returns), we
take a learned embedding of the circuit c as the multi-task
hindsight information HI(c, τ ).

We then model the above hindsight information matching
via supervised regression by learning a conditional place-
ment policy πθ,

max
θ

E(c,τ )∼D

[
T∑

t=1

log πθ(at|τt,HI(c, τ ))

]
, (4)

where τt := (s1,a1, · · · , st) denotes the trajectory seg-
ment until the state st. Next, we discuss how such place-
ment hindsight information HI(c, τ ) can be captured by
exploiting the circuit netlist structure as its representation.

Chip Representation. Since the physical connectivity of
the circuit netlist can often be represented by a graph, we
use the variational graph auto-encoders (VGAE) (Kipf &
Welling, 2016b) to encode the topology information of
chip circuits. As shown in the left of Fig.3, we trans-
form the netlist of the circuit c into an undirected graph
Gc = (Vc, Ec), where Vc denotes a set of nodes represent-
ing all modules on a circuit c, and Ec denotes a set of edges
representing the wire connecting the modules. We also de-
fine an N × N matrix Ac and an N ×D matrix Xc to be
the adjacency matrix and the node features of graph Gc,
respectively. We have N = |Vc|, the number of nodes, and
D, the size of the node features.
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Then, we can optimize the following variational lower
bound with respect to the inference parameters ϕ as shown
below. For simplicity of notation, here we drop the super-
script c for matrices Xc, Ac, Zc, and vector zc.

max
ϕ

Ec∼D
[
Eqϕ(Z|X,A)[log p(A|Z)]

−KL[q(Z|X,A)||p(Z)]] , (5)

where inference model qϕ(Z|X,A) =
∏N

i=1 qϕ(zi|X,A),
and generative model p(A|Z) =

∏N
i=1

∏N
j=1 σ(z

T
i zj). In

addition, we have Z = [z1, z2, · · · , zN ]T as the latent vari-
ables to represent nodes. p(Z) is a Gaussian prior, and
σ(x) = 1/(1+e−x) is the sigmoid function. KL[p(·)||q(·)]
is the Kullback-Leibler divergence between p(·) and q(·).

As we have collected an expert-level offline dataset, we
can remove the dependency of the hindsight information
HI(c, τ ) on the expert trajectory τ , thus replacing HI(c, τ )
with HI(c) and approximating HI(c) through the learned
surrogate inference model qϕ in Eqn.(5).

Following prior work (Mirhoseini et al., 2021), we com-
pute the mean of all latent embeddings to obtain a rep-
resentation for the whole graph Gc, i.e., setting the of-
fline placement hindsight information HI(c, τ ) = HI(c) =
1
N

∑N
i=1 z

c
i , where zc

i is a row vector of the matrix Zc =
qϕ(Z

c|Xc,Ac). The corresponding pseudo-code is shown
in Appendix Algo. 1.

Network Architecture. We illustrate the architecture of
ChiPFormer at the right of Fig.3, which uses GPT (Radford
et al., 2018; 2019) as the backbone network. Specifically,
there are (2T + 1) tokens in one placement trajectory, in-
cluding T state tokens, T action tokens, and one circuit
token to represent the hindsight information HI(c).

We determine the placement order by the sorting results of
the area and the net number of the macros. We represent
the state token st using a three-channel input, including the
position mask, the wire mask, and the view mask, similar to
MaskPlace (Lai et al., 2022). These mask representations
are discussed in Appendix A.4. To scale the input size, we
divide the chip canvas into an 84× 84 grid. Thus each input
channel can be seen as an image with the resolution 84×84,
and we can represent the state as a three-channel input of
size 3 × 84 × 84. For the action token at, we represent it
as the two-dimensional (x, y) coordinates of the macro t,
which will be placed in the 2D grid. To avoid overlapping
between macros, we also remove all infeasible actions by
the position mask introduced in Appendix A.4.

Before feeding the state and the action tokens into the GPT
backbone, we employ two trainable embedding models to
first encode the states and actions separately. Furthermore,
we introduce a circuit token to distinguish different circuit
topologies. The main reason is that the visual representation

in the state token ignores topology information of circuits,
which is important for placement, especially in multi-task
learning. If two circuits contain the same modules but are
connected differently, the optimal placement solution should
be different as Appendix A.3. Thus, we encode the cir-
cuit topology information into the hindsight information
(Eqn.(4)). As the circuit token, HI(c) is independent of the
placement state token and should be considered in all se-
quence modeling steps. Therefore, it is put at the beginning
of the sequential modeling process. Detailed model archi-
tecture and hyper-parameter settings are in Appendix A.5,
Table 10 and 11.

3.4. Online Finetuning for Unseen Chip

For a new unseen chip placement task (i.e., Mtest /∈ M[n]
train),

we can finetune the pretrained ChiPFormer model by few-
shot online rollouts similar to the online decision trans-
former (Zheng et al., 2022). To maintain the training sta-
bility of the supervised pretraining process, we finetune
the policy via a return-weighted regression through online
interaction with the unseen circuit ctest:

min
θ

L(πθ) := −EB(τ ) [ω(τ ) log πθ(at|τt,HI(ctest))] ,

where the expectation is over the replay buffer B of online
rollout trajectories, ω(τ ) := exp(R(τ )/α)

EB(τ)[exp(R(τ )/α)] is the return-

guided prioritization weight, R(τ ) :=
∑T

t=1 r(st,at) is the
return of a trajectory, and α is the sampling temperature. In
the implementation, we also build the online replay buffer B
on a priority queue to keep the trajectories with the highest
returns in the search history instead of the FIFO (First-In
First-Out) replay buffer in Zheng et al. (2022).

Further, we employ a policy entropy as an intrinsic moti-
vation H(πθ) = EB(τ ) [− log πθ(·|st,HI(ctest))], encourag-
ing the online rollout to yield more exploratory behaviors.
Combining the weighted regression and the entropy objec-
tive, we obtain the following policy finetuning objective:

min
θ

L(πθ) + λmax(0, β −H(πθ)), (6)

where λ is the hyper-parameter to represent the weight of
the entropy loss, and we introduce the max operator to keep
the value of entropy H(πθ) larger than one threshold β, so
as to maintain a certain level of exploration.

3.5. Mixed-size Placement

The mixed-size placement aims at placing all modules on
the chip canvas, including macros and standard cells. Our
work follows similar procedures in Mirhoseini et al. (2021);
Cheng & Yan (2021), which employ the optimized-based
method for standard cell placement. Different from these
methods that fix the positions of macros and subsequently
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Table 1: Mixed-size placement workflow. In the implemen-
tation, we adopt DREAMPlace (Lin et al., 2020) to conduct
the optimization-based placement procedure.

Phase Operation1 Description

1 - Return the macro placement result from
the pretrained (or finetuned) ChiPFormer.

2 GP Fix all macros placed by ChipFormer, and
return a coarse layout by optimization method.

3 GP + LG + DP Set macros and standard cells movable, and
return a global optimal placement layout.

1 Operation in optimization-based placement method (DREAMPlace, Lin et al. (2020)):
GP = Global Placement, LG = Legalization, DP = Detailed Placement.

search remaining positions for standard cells, we let the
positions of macros (after macro placement) as the initial
layout and allow macros still to be movable when perform-
ing optimization-based placement as Table 1, thus reaching
the optimal solution.

4. Experiment
Benchmarks and Settings. We evaluate ChiPFormer
with the recent advanced RL-based methods GraphPlace
(Mirhoseini et al., 2021), DeepPR (Cheng & Yan, 2021),
MaskPlace (Lai et al., 2022), PRNet (Cheng et al., 2022), the
supervised learning-based methods Flora (Liu et al., 2022a)
and GraphPlanner (Liu et al., 2022b), the optimization-
based methods DREAMPlace (Lin et al., 2020) and Re-
PlAce (Cheng et al., 2018), and the manual design approach
(Human). All previous methods are implemented by their
default settings. Our experiments are evaluated over 32
circuits from a public placement benchmark (containing
ISPD05 (Nam et al., 2005), ICCAD04 (Adya et al., 2009),
Ariane RISC-V CPU (Zaruba & Benini, 2019) with a total
of 26 circuits) and a private realistic industrial placement
task (containing 6 circuits), which involves considerably
more chip circuits than reported in previous works. More
details about the experimental benchmark information and
hyperparameter settings can be found in Appendix Table 5,
6, and 11.

Offline Data Collection. To collect our multi-task offline
placement data, we employ MaskPlace as the proxy method
to learn 12 expert-level behavior (data-collecting) policies
over 12 circuits (8 from ISPD05 and 4 from ICCAD04)
respectively. Then, we collect 500 expert-level placement
results for each circuit using these trained data-collecting
policies. Because MaskPlace is based on the stochastic
policy, we can ensure that the collected 500 behaviors will
not collapse to a single solution for each task, thus exhibiting
an essential structural diversity in the offline dataset.

Macro Placement Results. First, we investigate whether
our offline placement formulation can produce effective
macro placement results. In this case, we use part of the col-

lected offline data to learn a ChiPFormer placement policy
and then finetune the pretrained policy to the unseen circuits.
Specifically, we divide the 12 circuits used for the offline
data collection into four circuit groups according to the in-
dex in the circuit name. For example, the 1st group includes
the circuits adaptec1, bigblue1 and ibm01. Then, we use the
three grouped offline data to learn a ChiPFormer policy and
use the pretrained ChiPFormer as a finetuning initialization
for the unseen circuits in the other group. We report the best
HPWL of macro placement within the limited rollout times
over the unseen circuits in Table 2, where all results (mean
and standard deviation) are achieved across 5 seeds. We can
find that ChiPFormer(2k) consistently surpasses the other
baselines while improving the placement sample efficiency.
We can also observe that even with a substantially small
number of rollout times (3k in baselines v.s. 300 in ChiP-
Former), ChiPFormer(300) can achieve better performance
in 10 out of 12 tasks. Due to the superior sample efficiency
and the strong performance, we use ChiPFormer(300) as
the default finetuning setting in the following experiments
when it is not explicitly specified.

Further, we report the overlap ratio and the congestion com-
parison results in Appendix Table 7 and Fig.11. Our ChiP-
Former consistently outperforms baselines and exhibits bet-
ter results in both metrics.

Mixed-Size Placement Results. Next, we compare our
ChiPFormer to prior baselines (Human, DREAMPlace,
GraphPlace, PRNet, DeepPR, MaskPlace, Flora, and Graph-
Planner) on the mixed-size placement task. We provide the
visualization in Fig.4 and the comparison results in Table
3 and Appendix Table 8. Benefiting from the offline pre-
training, we can observe that our ChiPFormer can produce
state-of-the-art placement quality in all mixed-size place-
ments. ChiPFormer can even reduce the HPWL by more
than 10% in several chip placement tasks compared to the
best results among the baseline methods.

Time Efficiency. Beyond the training sample efficiency
explored above, we investigate the training time efficiency.
We provide plots of the HPWL metric over runtime in Fig.5.
Our offline ChiPFormer finetuning is consistently compet-
itive with previous online methods with more stable per-
formance and less running time, leading to more than 10×
speed-up in time efficiency.

Industrial Chip Placement. In Table 4, we also compare
ChiPFormer to the human experts in 6 realistic industrial
chip design tasks. Compared to the public placement bench-
marks, realistic industrial placement involves more complex
constraints and design metrics (Bhasker & Chadha, 2009;
Wang et al., 2009). For a fair comparison, we use industrial
EDA tool to conduct the mixed-size placement workflow af-
ter applying our pretrained ChiPFormer model. We provide
the comparison results in Table 4, where we can find that
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Table 2: Comparisons of HPWL (×105) for macro placement (lower is better). All results are based on the performance
of unseen circuits. The number after the method name corresponds to the online rollout times, i.e., the number of placement
attempts. In particular, ChiPFormer(1) denotes the zero-shot placement performance. The percentage values in pink or cyan
indicate the reduction or increase rates of HPWL compared to state-of-the-art baseline results (that have been underlined).
By reducing the rollout times by 10 times compared to the best baseline MaskPlace(3k), our ChiPFormer(300) can still
produce the minimal wirelength in 10 out of 12 circuits. Further, ChiPFormer(2k) can achieve state-of-the-art results in all
circuits when increasing the rollout times to 2k (which is still smaller than the one required by the previous baselines).

circuit GraphPlace(50k) DeepPR(3k) MaskPlace(3k) ChiPFormer(1) ChiPFormer(300) ChiPFormer(2k)

adaptec1 30.01±2.98 19.91±2.13 7.62±0.67 8.87±0.98 7.02±0.11 (-7.87%) 6.62±0.05 (-13.12%)
adaptec2 351.71±38.20 203.51±6.27 75.16±4.97 122.37±22.61 70.42±2.67 (-6.30%) 67.10±5.46 (-10.72%)
adaptec3 358.18±13.95 347.16±4.32 100.24±13.54 107.11±8.84 78.32±2.03 (-21.87%) 76.70±1.15 (-23.48%)
adaptec4 151.42±9.72 311.86±56.74 87.99±3.25 85.63±7.52 69.42±0.54 (-21.10%) 68.80±1.59 (-21.81%)
bigblue1 10.58±1.29 23.33±3.65 3.04±0.06 3.11±0.03 2.96±0.04 (-2.63%) 2.95±0.04 (-2.96%)
bigblue2 14.78±0.95 11.38±0.20 5.75±0.11 6.85±0.26 6.02±0.09 (+4.70%) 5.44±0.10 (-5.39%)
bigblue3 357.48±47.83 430.48±12.18 90.04±4.83 131.78±17.36 81.48±4.83 (-9.51%) 72.92±2.56 (-19.01%)
bigblue4 440.70±15.95 433.90±5.26 103.26±2.69 136.79±13.93 110.10±0.23 (+6.62%) 102.84±0.15 (-0.41%)
ibm01 4.12±0.10 6.62±0.27 3.73±0.12 4.57±0.27 3.61±0.08 (-3.22%) 3.05±0.11 (-18.23%)
ibm02 4.56±0.03 6.33±0.05 4.85±0.34 6.01±0.41 4.84±0.17 (-0.21%) 4.24±0.25 (-12.58%)
ibm03 2.57±0.07 3.08±0.17 1.82±0.10 2.15±0.17 1.75±0.07 (-3.85%) 1.64±0.06 (-9.89%)
ibm04 5.73±0.15 4.80±0.26 4.73±0.07 5.00±0.14 4.19±0.11 (-11.42%) 4.06±0.13 (-14.16%)

Human GraphPlace MaskPlaceDeepPR

ChiPFormer (phase1) ChiPFormer (phase2) ChiPFormer (phase3)

PRNet

DREAMPlace Flora

Figure 4: Visualization of mixed-size placement for circuit adaptec3. Red marks macros and blue marks standard
cells. Baseline methods (shaded background) include Human (HPWL = 19.41×107, Overlap = 0%), DeepPR (HPWL
= 24.11×107, Overlap = 24.35%), PRNet (HPWL = 23.24×107, Overlap = 10.71%), GraphPlace (HPWL = 25.80×107,
Overlap = 1.24%), MaskPlace (HPWL = 21.49×107, Overlap = 0%), DREAMPlace (HPWL = 15.63×107, Overlap = 0%),
Flora (HPWL = 15.65×107, Overlap = 0%), and ChiPFormer (HPWL = 13.97×107, Overlap = 0%). ChiPFormer (phase 1),
(phase 2), and (phase 3) represent the return results of phase 1, 2, and 3 in our placement flow (Table 1), respectively.

ChiPFormer can exceed expert human performance in most
industrial metrics.

Dataset Size. To explore the impact of training dataset size
on the transfer ability of our ChiPFormer, we construct three
offline datasets (small, medium, and large) containing 1, 3,
and 9 circuits, respectively. For each dataset, we compare

the HPWL results of ChiPFormer(1), ChiPFormer(300), and
ChiPFormer(2k) after finetuning for circuit adaptec1 over
10 seeds in Fig.6 (a). The results show that using more
offline circuits, ChiPFormer can yield better generalization
for new unseen circuits, especially in the zero-shot transfer
settings (ChiPFormer(1)).
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Table 3: Comparisons of HPWL (×107) for the mixed-size placement (lower is better). The baseline results for
DREAMPlace, GraphPlace, PRNet, DeepPR, MaskPlace, Flora, and GraphPlanner are taken from the respective papers.
Baseline Human means the macros are placed by hardware experts. We implement our ChiPFormer method according to the
workflow specified in Table 1. The percentage value in the pink denotes the reduction rate of HPWL compared to the best
results (underlined) among baselines.

circuit Human DREAMPlace GraphPlace PRNet DeepPR MaskPlace Flora GraphPlanner ChiPFormer(workflow)

adaptec1 7.33 6.56 8.67 8.28 8.01 7.93 6.47 6.55 6.45±0.02 (-0.31%)

adaptec2 8.22 10.11 12.41 12.33 12.32 9.95 7.77 7.75 7.36±0.26 (-5.03%)

adaptec3 19.41 15.63 25.80 23.24 24.11 21.49 15.65 15.08 13.97±0.80 (-7.36%)

adaptec4 17.44 14.41 25.58 23.40 23.64 22.97 14.30 14.27 12.97±0.29 (-9.30%)

bigblue1 8.94 8.52 16.85 14.10 14.04 9.43 8.51 8.59 8.48±0.02 (-0.35%)

bigblue2 13.67 12.57 14.20 14.48 14.04 14.13 12.59 12.72 9.86±0.32 (-21.56%)

bigblue3 30.40 46.06 36.48 46.86 45.06 37.29 - - 27.33±0.31 (-10.10%)

bigblue4 74.38 79.50 104.00 100.13 95.20 106.18 74.76 - 65.98±4.08 (-11.29%)

0 2000 4000 6000
Runtime (second)

107HP
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L

10x less runtume

adaptec2

DeepPR
GraphPlace
MaskPlace
ChiPFormer

0 2000 4000 6000
Runtime (second)

107

adaptec4
DeepPR
GraphPlace
MaskPlace
ChiPFormer

Figure 5: HPWL curves over runtime. All methods are
evaluated on two RTX3090 GPUs. ChiPFormer can search
for high-quality placements in a very short time, more than
10 times faster compared with other methods.

Table 4: Comparisons to human expert design on 6 indus-
trial chip design tasks. The lower the metrics the better.

circuit method Timing NVP1 Congestion

WNS/ps TNS/ns H/% V/%

C1
Human 204 57.1 2569 0.06 0.38

MaskPlace 161 42.7 1964 0.07 0.07
ChiPFormer 142 19.4 1636 0.04 0.07

C2
Human 403 492.2 11360 0.63 2.05

MaskPlace 242 259.1 9710 0.57 1.67
ChiPFormer 177 224.9 8110 0.53 1.27

C3
Human 102 91.9 5614 1.02 0.85

MaskPlace 116 92.8 5559 1.05 0.87
ChiPFormer 108 91.2 5452 1.02 0.82

C4
Human 399 438.0 13925 0.97 0.34

MaskPlace 389 324.2 12582 0.68 0.34
ChiPFormer 248 266.0 12398 0.62 0.34

C5
Human 89 10.8 2675 0.02 0.07

MaskPlace 122 32.2 2975 0.02 0.22
ChiPFormer 80 4.9 1706 0.02 0.04

C6
Human 154 137.4 6833 0.70 0.22

MaskPlace 81 49.6 7040 0.77 0.26
ChiPFormer 78 38.1 6412 0.63 0.22

1 NVP = Number of Violation Points, WNS = Worst Negative Slack, TNS = Total Negative Slack.
More details about metrics can be found in Bhasker & Chadha (2009) and Wang et al. (2009).

small medium large
0.0

0.2

0.4

0.6

0.8

1.0

1.2

HP
W

L

1e6
1
300
2k

(a)

a1 a2 a3 a4 b1 b2 b3 b4 i1 i2 i3 i4
Circuit

2

0

2

4

6

8

10

12

Av
er

ag
e 

im
pr

ov
em

en
t i

n 
HP

W
L 

(%
)

(b)

Figure 6: (a) Comparison of different offline dataset
sizes. Small, medium and large datasets include 1/3/9 offline
circuits, respectively. We can see that the larger dataset tends
to generate higher-quality placements. (b) Performance
improvement when introducing the circuit token. We
can observe that introducing the circuit token contributes to
improved performance in most circuits.

Ablation Study. To study the role of the multi-task hind-
sight information matching and verify the effects of circuit
token HI(c), we ablate the circuit token and keep other set-
tings the same. We test the zero-shot performance on 12
circuits in benchmark ISPD05 and ICCAD04. In Fig.6 (b),
we measure the difference between the ablated ChiPFormer
and the full ChiPFormer. We can find that when introducing
the circuit token, ChiPFormer can acquire a better general-
ization ability to zero-shot to unseen tasks.

Further, we compare FIFO and priority-based storage strate-
gies for the finetuning replay buffer and ablate the entropy
loss in Eqn.(6). We show the ablation results in Fig.7. We
can see that the FIFO-based strategy tends to forget the ex-
periences with higher returns and lead to sub-optimal and
high-variance placement results. When removing the en-
tropy loss, ChiPFormer suffers from a lack of exploration
ability and converges to a local optimum.
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Figure 7: Ablation results in replay buffer update rules
and the entropy motivation in ChiPFormer finetuning.

5. Conclusion
In this paper, we propose ChiPFormer, an offline RL method
for chip placement tasks, and design a mixed-size placement
workflow. ChiPFormer can learn from existing placement
solutions (offline data) and significantly improve the train-
ing sample and time efficiency. ChiPFormer can also ac-
quire strong zero-shot transfer ability and yield an effective
initialization for the few-shot finetuning on unseen chip
placement tasks.
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A. Appendix
A.1. Statistics of Benchmark Circuits

In Table 5 and 6, we provide the statistics of 26 circuits from benchmarks ISPD05, ICCAD04, and Ariane RISC-V CPU and
6 realistic industrial circuits used in our experiments, where Macro (placed 1st) means (the number of) macros placed by
decision transformer. For the three circuits adaptec1, adaptec2, and bigblue1, because they have fixed macros that have
been pre-placed around the chip as IOs, we maintain the positions of them but still compute HPWL with respect to these
fixed macros to make a fair comparison. For circuits bigblue2 and bigblue4 that contain more than 8k macros, we select part
of the macros to place based on the importance ordering. For circuits in benchmark ICCAD04, the circuit description files
do not distinguish between macros and standard cells. Thus we select 256 modules as macros and the remaining modules as
standard cells. In the implementation, we use the same circuit settings in all experiments.

Table 5: Statistics of public benchmark circuits.

Circuit Macros Macros (placed 1st) Hard Macros Standard Cells Nets Pins Ports Area Util(%)

adaptec1 543 63 63 210904 221142 944063 0 55.62
adaptec2 566 159 159 254457 266009 1069482 0 74.46
adaptec3 723 723 201 450927 466758 1875039 0 61.51
adaptec4 1329 1329 92 494716 515951 1912420 0 48.62
bigblue1 560 32 32 277604 284479 1144691 0 31.58
bigblue2 23084 256 52 534782 577235 2122282 0 32.43
bigblue3 1293 1293 138 1095519 1123170 3833218 0 66.81
bigblue4 8170 1024 52 2169183 2229886 8900078 0 35.68

ariane 932 932 134 0 12404 22802 1231 78.39
ibm01 256 256 52 12506 14111 50566 246 61.94
ibm02 256 256 52 19321 19584 81199 259 64.63
ibm03 256 256 52 22846 27401 93573 283 57.97
ibm04 256 256 52 26899 31970 105859 287 54.88
ibm06 256 256 52 32320 34826 128182 166 54.77
ibm07 256 256 52 45419 48117 175639 287 46.03
ibm08 256 256 52 51000 50513 204890 286 47.13
ibm09 256 256 52 53142 60902 222088 285 44.52
ibm10 256 256 52 68643 75196 297567 744 61.40
ibm11 256 256 52 70185 81454 280786 406 41.40
ibm12 256 256 52 70425 77240 317760 637 53.85
ibm13 256 256 52 83775 99666 357075 490 39.43
ibm14 256 256 52 146991 152772 546816 517 22.49
ibm15 256 256 52 161177 186608 715823 383 28.89
ibm16 256 256 52 183026 190048 778823 504 39.46
ibm17 256 256 52 184735 189581 860036 743 19.11
ibm18 256 256 52 210328 201920 819697 272 11.09

Table 6: Statistics of industrial benchmark circuits.

Circuit Macros Macros (placed 1st) Standard Cells Nets Pins Ports

C1 45 45 652519 817469 2792845 9009
C2 159 159 3487686 4417159 9532116 6676
C3 134 134 2268372 2776101 10004114 1416
C4 70 70 1058352 1340788 4256481 27120
C5 144 144 2766094 3143780 11519226 11174
C6 165 165 1777410 2443917 7268601 14882

A.2. Additional Results

In Fig.8, we provide more visualization results for mixed-size placement. In Fig.9, we provide additional results (on
circuit adaptec4 and bigblue2) for the training sample efficiency comparison. In Fig.10, we present additional results (over
benchmarks ISPD05 and ICCAD04) for the training time efficiency comparison. In Table 7, we provide the comparison
results of the overlap ratio for macro placement. In Table 8, we give additional results for the mixed-size placement in
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ICCAD04 benchmark. In Table 9, we give out the reconstruct quality of testing set and the related code is from original
repository 2.

Human GraphPlace MaskPlaceDeepPR

ChiPFormer (phase1) ChiPFormer (phase2) ChiPFormer (phase3)

PRNet

DREAMPlace Flora

Figure 8: Visualization of mixed-size placement for circuit adaptec4. Results include Human (HPWL = 17.44×107,
Overlap = 0%), DeepPR (HPWL = 23.40×107, Overlap = 32.11%), PRNet (HPWL = 23.64×107, Overlap = 13.36%),
GraphPlace (HPWL = 25.58×107, Overlap = 7.43%), MaskPlace (HPWL = 22.97×107, Overlap = 0%), DREAMPlace
(HPWL = 14.41×107, Overlap = 0%), Flora (HPWL = 14.30×107, Overlap = 0%), and ChiPFormer (HPWL = 12.97×107,
Overlap = 0%).

Congestion Constraint. Considering that some scenarios require the congestion metric, we test ChiPFormer on both HPWL
and congestion metrics. We run ChiPFormer on 8 circuits in ISPD05. To make a fair comparison, we run experiments
on the processed circuits from PRNet (Cheng et al., 2022). We show the results in Fig.11. At testing, we first set the
congestion threshold to +∞ and find how far congestion can go when considering only HPWL. Then, we gradually reduce
this threshold to find all points on the Pareto front. We can find that our ChiPFormer can achieve better results in both
HPWL and congestion metrics when compared to MaskPlace, DeepPR and PRNet.

A.3. Example on the Circuit Token

The agent learns policy only from state and action tokens when ablating the circuit token (i.e., ignoring the topology structure
of the circuit). Suppose two circuits contain the same modules but are connected differently. In that case, the agent can not
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Figure 9: HPWL versus rollout times (number of trajectories). ChiPformer can reduce the rollout times by more than
90% while achieving the same placement quality.

2https://github.com/DaehanKim/vgae pytorch
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Figure 10: HPWL curves over runtime. (cont.) All methods are evaluated on two RTX3090 GPUs.

Table 7: Comparisons of the overlap ratio (%) for macro placement, which are evaluated by the ratio of the cumulative
overlapping area to the total area in the chip. The overlap ratio should be 0 (or as close to 0 as possible) to meet the
requirements of chip manufacturing. We can observe that ChipFormer can maintain non-overlapping placements in most
circuits.

circuit GraphPlace DeepPR PRNet MaskPlace ChiPFormer

adaptec1 1.89 46.26 12.60 0.00 0.00
adaptec2 1.54 18.39 9.94 0.00 0.00
adaptec3 1.24 24.35 10.71 0.00 0.00
adaptec4 7.59 32.11 13.36 0.00 0.00
bigblue1 1.98 2.08 2.04 0.00 0.00
bigblue2 0.77 29.42 20.06 0.00 0.00
bigblue3 0.96 74.03 5.11 0.00 0.00
bigblue4 5.54 8.35 6.46 0.00 0.00

ariane 5.13 38.91 9.49 3.33 3.27

distinguish them because they share the same state and action tokens and thus generate the same actions in the two circuits.
However, that will lead to a sub-optimal solution on one circuit. To illustrate, we give an example in Fig.12.

A.4. State Token Generation

The state tokens in ChiPFormer consist of the view mask, position mask, and wire mask as in MaskPlace (Lai et al., 2022),
which are representations of the placement state from different perspectives. Each mask occupies one input channel. All
masks can be seen as images with resolution N × N . A state token generation example can be seen in Fig.13. In this
case, there are already two placed macros, and now the agent will take action to place Macro 3. There are two nets, and
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Table 8: Comparisons of HPWL (×107) for mixed-size placement in ICCAD04 benchmark. HPWL is the smaller the
better. SA (simulated annealing) method is implemented as in Mirhoseini et al. (2021). ChiPFormer(workflow) can achieve
the best placement quality.

circuit SA RePlAce GraphPlace MaskPlace ChiPFormer(workflow)

ibm01 25.85 22.82 31.71 24.18 16.70 (-26.82%)

ibm02 54.87 47.59 55.11 47.45 37.87 (-20.19%)

ibm03 80.68 64.36 80.00 71.37 57.63 (-10.46%)

ibm04 83.32 72.61 86.86 78.76 65.27 (-10.11%)

ibm06 69.09 58.07 63.48 55.70 52.57 (-5.62%)

ibm07 111.03 98.57 117.70 95.27 86.20 (-9.52%)

ibm08 131.07 114.67 134.77 120.64 102.26 (-10.82%)

ibm09 135.45 120.01 148.74 122.91 105.61 (-12.00%)

ibm10 423.14 274.29 440.78 367.55 230.39 (-16.00%)

ibm11 210.12 169.98 218.73 202.23 160.60 (-5.52%)

ibm12 410.05 306.33 438.57 397.25 273.14 (-10.83%)

ibm13 259.89 220.14 278.92 246.49 197.20 (-10.42%)

ibm14 405.80 341.80 455.32 302.67 301.28 (-0.46%)

ibm15 510.06 451.36 520.06 457.86 429.71 (-4.80%)

ibm16 614.54 516.05 642.08 584.67 463.32 (-10.22%)

ibm17 720.40 635.93 814.37 643.75 569.13 (-10.50%)

ibm18 442.00 399.43 450.67 398.83 370.36 (-7.14%)

Table 9: Reconstruct quality of VGAE. AUC, AP, and ACC mean area under the receiver operating characteristic curve,
average precision from prediction scores, and accuracy, respectively.

Test Metrics AUC AP ACC

Value 0.9600 0.9557 0.8969

the corresponding pins and bounding boxes are marked in red and green, respectively. (1) View mask marks all occupied
grid cells by macros with 1. (2) Position mask labels all feasible cells that will not generate an overlap if the next macro is
placed at the position (supposed that the placement position corresponds to the lower-left corner of the macro). (3) Wire
mask marks the HPWL increase when the next macro is placed in the corresponding cells. According to the definition of
HPWL, the increase in HPWL is the increase in the size of the net bounding box. Thus, if the place position is inside the
net bounding box, the HPWL increase equals 0. Otherwise, it equals the distance from the cells to the bounding box. It is
easy to find that the values in the wire mask are the sum of the distances from the cells to all net bounding boxes as Fig.13.
Considering that some pins are not located in the lower-left corner of the macro (an offset), the corresponding net bounding
box needs to be moved by an equivalent offset (i.e., the bounding box is moved in the opposite direction of the offset vector).

A.5. Model Architecture and Hyper-parameters

The detailed model architecture can be seen in Table 10. Hyper-parameters of the ChiPFormer can be found in Table 11.
When pretraining, we keep the sequence length T=256. If a circuit contains more than 256 macros, the trajectory is truncated
to the beginning of 256 macros according to the placement order. On the contrary, if there are less than 256 macros, we pad
the trajectory with zeros to the fixed length. When testing, for those circuits with more than T = 256 macros, ChiPFormer
keeps a sliding window to record the latest 256 state tokens and 256 action tokens to generate the next action, following the
way of the decision transformer.

A.6. Pseudo-code for Circuit Token Generation

The pseudo-code version for generating circuit token HI(ctest) of circuit ctest can be seen in Algo. 1.
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Figure 11: Comparisons over HPWL and congestion. Both HPWL and congestion are smaller the better. Numbers beside
points are the expected congestion thresholds C (as the input parameter). We run ChiPFormer finetuning with 300 rollouts,
then set the congestion threshold to +∞ and gradually decrease it.
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Figure 12: An example for two circuits that share the same state and action tokens (s1,a1, s2,a2). Consider the two
circuits (circuit 1 and circuit 2). The only difference between them is that the 3rd macro of the circuit is connected to both
the 1st and 2nd macros in circuit 2. According to the definition of state token, the state tokens s1, s2 are the same because
the position, wire, and view masks only involve the placed macros and the current macro to be placed. That means state s1
contains the 1st macro and state s2 contains the 1st and 2nd macros, which are the same in two circuits. Consider an optimal
policy A that minimizes the HPWL in circuit 1 (subplot “Circuit 1 + Policy A”). However, deploying policy A over circuit 2
will lead to the sub-optimal solution (subplot “Circuit 2 + Policy A”). In contrast, the optimal policy for circuit 2 should
be Policy B, which renders different behaviors at state s2 (subplot “Circuit 2 + Policy B”). Thus, in the multi-task chip
placement setting, the circuit token helps us identify optimal placement behaviors when circuits contain the same macros
while differing in their topology structures.
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Macro 1

Macro 2

Next: Macro 3
Pos Mask = 0 (feasible positions)
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View Mask = 1

View Mask = 0
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Wirelength Mask = 8
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Figure 13: An example for state tokens (placement masks) generation. The view mask, position mask, and wire mask
are generated based on the current placement design and the next macro to place. View mask V ∈ {0, 1}N×N is to mark the
occupied cells by macros. Position mask P ∈ {0, 1}N×N is to label all feasible action positions that do not cause overlap.
Wire mask W ∈ [0, 1]N×N is to label the HPWL increase when the next macro is placed in the corresponding position.
For ease of understanding, we marked the data before normalization for the wire mask, which is the sum of the shortest
Manhattan distances for each cell to the inside of bounding boxes.

Table 10: Model Architecture

layer name (index) kernel size output size

circuit token extraction
(VGAE)

GCN 1 - (num of macros, 32)
GCN 2 - (num of macros, 32)
Pooling - (32, )

circuit embedding FC 1 - (1024,)
FC 2 - (1024,)
FC 3 - (768, )

state embedding CNN 1 8×8, 16 (16, 40, 40)
CNN 2 4×4, 32 (32, 20, 20)
CNN 3 3×3, 16 (16, 10, 10)
FC 1 - (784,)

action embedding Embedding - (7056,)

action head reshape to 2D - (84, 84)
CNN 1 1×1, 8 (8, 84, 84)
CNN 2 1×1, 8 (8, 84, 84)
CNN 3 1×1, 1 (84, 84)

action merge CNN 1 1×1, 1 (84, 84)

B. Related Work
Optimization-based Method for Placement. As a combinatorial optimization problem, researchers have tried different
optimization-based methods to solve the chip placement task, which can be classified into partitioning-based, simulated
annealing-based, and analytic-based methods.

Partitioning-based methods (Roy et al., 2006; Khatkhate et al., 2004) are based on the divide-and-conquer idea. They
first divide the circuits into sub-circuits and assign each part to a sub-region on the chip. Then, these sub-circuits can be
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Table 11: Hyper-parameters used in our experiments

Stage Configuration Value Configuration Value

circuit token extraction
dim of hidden layer 32 dim of latent variable 32
training iterations 800 learning rate 1e-2

num of node features 4

pretraining
num of layers #L 6 hidden size #H 128

num of att heads #A 8 num of tokens 1+2×256
batch size 32 learning rate 6e-4

finetuning
temperature for sampling α 1e-2 replay buffer size 64

entropy weight λ 0.5 expected entropy β 0.5
batch size 32 learning rate 1e-4

standard cell placement density weight in (phase 2) 1e-4 density weight in (phase 3) 1e-3
number of iterations (phase 2) 300

computing hardware CPU AMD Ryzen 9 5950X GPU 2× RTX 3090

continuously divided and assigned to divided sub-regions recursively. These methods are efficient but can hardly get high
placement quality, especially for large-scale circuits.

Simulated annealing-based methods (Yang et al., 2000; Vashisht et al., 2020) start from a randomly generated placement
solution and then try to move to a neighbor solution with a slight change. If the neighbor solution is better than the current
solution, it uses the neighbor solution to replace it. If the neighbor solution is worse than the current solution, there is also a
probability of decreasing with the iterative process to accept the neighbor solution. Such a solution can achieve improved
placement quality but suffers from high computational inefficiency.

Analytical-based methods express the optimization problem as an analytical function of the coordinates of modules. Based
on the analytical functions, these methods can be divided into quadratic methods (Viswanathan et al., 2007a;b; Kim et al.,
2012; Kim & Markov, 2012; Brenner et al., 2015; Lin et al., 2013; Spindler et al., 2008) and non-quadratic methods (Chen
et al., 2008; Lu et al., 2014; Cheng et al., 2018; Lin et al., 2020; Chan et al., 2006; Kahng et al., 2005; Gu et al., 2020).
Quadratic methods use quadratic functions as objective functions and solve placement by Quadratic Programming (QP)
(Nocedal & Wright, 2006). These methods are more applicable to problems where the search space is discrete, so they are
still used in FPGA placement. On the contrary, in the non-quadratic methods, the objective functions are not quadratic and
contain some non-linear functions, such as the logarithmic function. The advantage is that these functions can describe the
placement target more precisely (Cheng et al., 2018; Lu et al., 2014). However, the corresponding optimization methods,
such as stochastic gradient descent, will lead to a locally optimal solution.

Learning-based Method for Placement. With the development of deep learning techniques, researchers have proposed
learning-based placement methods, which can be divided into reinforcement learning-based, supervised learning-based, and
unsupervised learning-based methods.

All existing reinforcement learning-based methods belong to online methods. They formulate the placement as a sequential
Markov decision process and decide the position of one module at each step. GraphPlace (Mirhoseini et al., 2021) uses the
policy gradient framework (Sutton et al., 1999) to encode the current placement state by GCN-based model and generates the
probability matrix of placement positions by de-convolution layers. After placing all hard macros, it uses the force-directed
method (a quadratic method) (Spindler et al., 2008) to place the remaining soft macros and standard cells. After that, Jiang
et al. (2021) verified that using the non-quadratic method DREAMPlace rather than the force-directed method could achieve
better results. DeepPR (Cheng & Yan, 2021) and PRNet (Cheng et al., 2022) combine the CNN and GCN methods to encode
the placement state and train the PPO model (Schulman et al., 2017) to learn the policy. However, they do not consider the
actual sizes of macros, which means the reward function for HPWL is not accurate, and the overlaps cannot be avoided
when placing macros. MaskPlace (Lai et al., 2022) introduces a series of visual representations of states in placement
from the perspective of view, position, and wirelength. All of them are 2D images, where the view image is a high-level
representation to describe the placement status from the human view. The position and wirelength images are low-level
representations of overlapping positions and wirelength increases. However, it does not consider the topology information of
circuits and previous states when making decisions by the CNN-based model, which tends to lead to a sub-optimal solution.
Kim et al. also proposed an offline reinforcement learning method for the recap placement task, but it is for high-frequency
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analog circuits, the scale of which is much smaller than the placement of large-scale digital circuits.

Supervised learning-based methods such as Flora (Liu et al., 2022a) and GraphPlanner (Liu et al., 2022b) considered that
transforming the placement task into a sequential decision process makes itself complicated. On the contrary, they train the
GAT (Veličković et al., 2017) and Variation GCN (Kipf & Welling, 2016a) models on a synthetic training dataset to predict
the positions of modules as a kind of prediction task. However, the prediction results are hardly used directly because the
non-overlapping constraint is not considered. Also, the synthetic data is still far from the real circuits.

Unsupervised learning-based methods are still in the early stages of research. Lu et al. (2022) proposed to use the GNN-based
model to cluster modules and use the clustering results as soft constraints for the following placement solvers (i.e., the solver
will make the positions of modules under the same cluster as close as possible). Due to a lack of labeling information for
clustering, the estimated objective function based on metrics such as congestion, timing, and power is not guaranteed to be
accurate.

Algorithm 1 Generate circuit token HI(ctest)

1: Input: Training data M[n]
train, including adjacency metrics A[n], node

features X [n] of n chip circuits, inference model qϕ(X,A), and gener-
ative model p(Z). Testing data Mtest for the unseen circuit ctest.

2: for epoch = 1 to E do
3: Z [n] = qϕ(X

[n], A[n])

4: Â[n] = p(Z [n])
5: loss = BCEloss(A[n], Â[n])
6: ϕ = ϕ− ∂loss/∂ϕ
7: end for
8: Z = qϕ(X

ctest , Actest) {Generate latent variables for N macros.}
9: HI(ctest) =

∑N
i=1 zi/N {Circuit token (chip representation) is the

average pooling for all variables of macros}
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