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Abstract

Loss functions serve as the foundation of super-
vised learning and are often chosen prior to model
development. To avoid potentially ad hoc choices
of losses, statistical decision theory describes a
desirable property for losses known as properness,
which asserts that Bayes’ rule is optimal. Recent
works have sought to learn losses and models
jointly. Existing methods do this by fitting an
inverse canonical link function which monotoni-
cally maps R to [0, 1] to estimate probabilities for
binary problems. In this paper, we extend mono-
tonicity to maps between RC−1 and the projected
probability simplex ∆̃C−1 by using monotonic-
ity of gradients of convex functions. We present
LEGENDRETRON as a novel and practical method
that jointly learns proper canonical losses and
probabilities for multiclass problems. Tested on a
benchmark of domains with up to 1,000 classes,
our experimental results show that our method
consistently outperforms the natural multiclass
baseline under a t-test at 99% significance on all
datasets with greater than 10 classes.

1. Introduction
Loss functions are a pillar of machine learning (ML). In
supervised learning, a loss provides a measure of discrep-
ancy between the underlying ground truth and a model’s
predictions. A learning algorithm attempts to minimise this
discrepancy by adjusting the model. In other words, the loss
governs how a model learns. The consequence of the bad
choice of a loss is oblivious to the qualities of the learning
pipeline: it means a poor model in the end. This brings forth
the question: which loss is best for the problem at hand?
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Statistical decision theory answers this by turning to admis-
sible losses (Savage, 1971); also referred to as proper losses
or proper scoring rules (Gneiting & Raftery, 2007). Proper
losses are those for which the posterior expected loss value
is minimised when probability predictions coincide with
the true underlying probabilities. That is, a proper loss is
one that can induce probability estimates that are admissible
or optimal. Proper losses have been extensively studied in
Shuford et al. (1966); Grünwald & Dawid (2004); Reid &
Williamson (2010); Williamson et al. (2016), with the latter
two works extending losses to proper composite forms in
binary and multiclass settings. Only a handful of proper
losses, such as the square and log losses, are commonly
used in ML. This is not surprising: properness is an inten-
sional property and does not provide any candidate function.
While eliciting some members is possible, extending further
requires tuning or adapting the loss as part of the ML task.

There has been a recent surge of interest in doing so for su-
pervised learning, including Mei & Moura (2018); Grabocka
et al. (2019); Streeter (2019); Liu et al. (2020); Siahkamari
et al. (2020); Sypherd et al. (2022a). However, no con-
nections are made to properness to formulate the losses
in these works. On the other hand, several recent works
have used properness to formulate losses including Nock
& Nielsen (2008); Nock & Menon (2020); Walder & Nock
(2020); Sypherd et al. (2022b). Notably, the works of Nock
& Menon (2020); Walder & Nock (2020) have proposed al-
gorithms to learn both the link function and linear predictor
of logistic regression models by considering both functions
to be unknown but learnable; thereby extending Single In-
dex Models (Hardle et al., 1993; Mei & Moura, 2018) and
algorithms to learn them (Kakade et al., 2011). Despite the
impressive progress in these works, no references have been
made to proper losses for multiclass problems.

Background To approach multiclass problems in a prin-
cipled manner, we generalise logistic regression as follows.
For a given invertible and monotonic (see Definition A.1)
link function ψ that maps [0, 1] to R and an input-label
pair (x, y) with x ∈ Rp and y ∈ {−1, 1}, logistic re-
gression learns a model of the form Pr(Y = 1|x) =
ψ−1(w>x + b) by fitting a coefficient vector w ∈ Rp and
an intercept b ∈ R. A class prediction is then formed as
ŷ = arg maxy∈{−1,1} Pr(Y = y|x). The crucial element
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of logistic regression lies in the invertible and monotonic
link function that connects probabilities to predictors. In-
vertibility of the link allows one to identify a unique proba-
bility estimate to associate with the predictor. Monotonic-
ity of the link enforces an order to class predictions as
elements of x either increase or decrease monotonically,
so that the decision boundary between classes is unique.
Loosely speaking, the generalisation of these ideas to mul-
ticlass problems with C ≥ 2 classes is to form probability
estimates by using a monotonic link function ψ such that
ψ−1(x) = (p1, p2, . . . , pC−1) with

∑C−1
k=1 pk ≤ 1.

Motivation In this work, our interest lies in learning
proper losses for multiclass problems. Two observations
highlight why this is beneficial: properness directly enforces
the same ranking of classes as probabilities without build-
ing multiple models, and learned losses can provide better
models for related domains. We first note that to approach a
multiclass problem with C > 2 classes, one would typically
pose the problem as multiple 1-vs-rest or 1-vs-1 component
problems. Each component problem consists of positive and
negative labels where the former refers to a class of interest,
and the latter refers to all other classes in 1-vs-rest or to a
single other class of interest in 1-vs-1. An unfortunate conse-
quence in the design of these reductions to binary problems
is that they do not include the admissibility constraint that
probability estimates should rank classes in the same way
that true probabilities do. Without loss of generality to the
1-vs-1 approach, we observe this in the following theorem.

Theorem 1.1. Suppose we use the 1-vs-rest approach to
estimate probabilities for a multiclass problem with C > 2
classes. Then we learn models of the form

Pr(Ỹ = c|x) = ψ−1
k (w>k x + bk)

where c =

{
+1 when y = k

−1 otherwise
for k = 1, . . . ,C. Proba-

bility estimates for any class k is admissible if and only if
ψ−1
k (w>k x + bk) > ψ−1

i (w>i x + bi) for all i 6= k.

To avoid solving C 1-vs-rest problems through constrained
optimisation, we desire an approach that allows us to
model multiclass probabilities simultaneously, while learn-
ing proper multiclass losses which can induce admissible
probability estimates for all C classes directly. It has also
been shown in the work of Nock & Menon (2020) that loss
learning can provide better models for problems in domains
related to the original problem where the loss was learned;
compared to using uninformed losses such as cross-entropy
or log loss. In general, linear models are known to be sen-
sitive to training noise; with the notable result of Long &
Servedio (2008) that such noise is sufficient to deteriorate
any linear binary classification model to the point that it
performs no better than an unbiased coin flip on the original

noise-free domain. The presence of label noise in a dataset
can be interpreted as a domain that relates to an original
noise-free domain, up to some classification noise process.
The ideas of loss learning and loss transfer from Nock &
Menon (2020) can then be seen as a mechanism that allows
us to both overcome training noise and learn accurate mod-
els. We illustrate that learning proper multiclass losses can
be done by modelling the canonical link function which
connects probability estimates with a proper loss (see Defi-
nition 4.1 and remarks therein). In order to model canonical
links flexibly, we form them as composite functions with a
fixed component and a learnable component.

Contributions Our main contributions are as follows:

• We derive necessary and sufficient conditions for a
composite function in RC−1 to be monotonic and the
gradient of a twice-differentiable convex function;

• We derive sufficient conditions for a composite func-
tion in RC−1 to be monotonic and the gradient of a
twice-differentiable strictly convex function;

• We present LEGENDRETRON as a novel and practical
way of learning proper canonical losses and probabili-
ties concurrently in the multiclass problem setting.

Organisation In Section 2, we review existing works
which similarly aim to learn losses and models concurrently.
In Section 3, we first describe properness and proper canon-
ical losses. In Section 4, we design multiclass canonical
link functions through Legendre functions and the (u, v)-
geometric structure, and provide conditions for composite
functions to be monotonic and gradients of convex func-
tions. We then describe our method, LEGENDRETRON, in
detail within Section 5. Lastly, numerical comparisons are
provided in Section 6 before concluding in Section 7.

2. Related Work
TRON family of link-learning algorithms The notion of
searching for proper losses was first established within Nock
& Nielsen (2008). The SLISOTRON algorithm was later
presented in Kakade et al. (2011), as the first algorithm
designed to learn a model of the form Pr(Y = 1|x) =
u(w>x) for binary problems, which involves learning the
unknown link function u : R → [0, 1] assumed to be 1-
Lipschitz and non-decreasing, and the vector w ∈ Rp used
to form the linear predictor w>x. The algorithm iterates
between Lipschitz isotonic regression to estimate u and gra-
dient updates to estimate w. A notable and practical short-
coming of SLISOTRON is that the isotonic regression steps
to update u do not guarantee u to map to [0, 1]. The BREG-
MANTRON algorithm was later proposed in Nock & Menon
(2020), to refine the SLISOTRON algorithm by addressing
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this and providing convergence guarantees. By utilising
the connection between proper losses and their canonical
link functions outlined in Section 4, the BREGMANTRON
replaced the link function u with the inverse canonical link
ψ̃−1 which guaranteed probability estimates to lie in [0, 1].

ISGP-LINKGISTIC algorithm The idea of using the
(u, v)-geometric structure in combination with Legendre
functions to learn canonical link functions has recently been
explored in the work of Walder & Nock (2020) to propose
the ISGP-LINKGISTIC algorithm to learn a model of the
form Pr(Y = 1|x) = (u ◦ v−1)(w>x). By the squar-
ing and integration of a Gaussian Process (GP) to yield
the Integrated Squared Gaussian Process (ISGP), mono-
tonicity and invertibility of v−1 : R → R is guaranteed.
The ISGP-LINKGISTIC algorithm exploits this property by
choosing a fixed squashing function u separate from the a
priori ISGP distributed v−1. Inference is performed with a
stochastic EM algorithm where the E-step fixes the linear
predictor w>x and applies a Laplace approximation to the
latent GP to compute Eq(v−1|w)[log p(y|x, v−1)], and the
M -step maximises this expectation with respect to w. The
ISGP-LINKGISTIC algorithm takes a Bayesian approach to
learning proper canonical losses jointly with a probability
estimator by posterior sampling of inverse canonical links.

3. Definitions and Properties of Losses
In this section, we revisit the notions of proper losses to
formulate proper canonical losses in the multiclass setting.
We follow the definitions and notations of Williamson et al.
(2016) and describe key properties therein, for our discus-
sion of composite multiclass losses.

Let C ≥ 2 be the total number of classes. Our setting
is multiclass probability estimation. Denote the (C − 1)-
dimensional probability simplex as

∆C−1 =

{
p ∈ RC+ :

C∑
i=1

pi = 1

}
,

and its relative interior as

ri(∆C−1) =

{
p ∈ RC+ :

C∑
i=1

pi = 1, pi ∈ (0, 1),∀i

}
.

Suppose we have a dataset D of N pairs {(xn, yn)}Nn=1

where each xn ∈ X = Rp and yn ∈ Y = {1, . . . ,C}
denotes an input and a single label respectively. We aim
to learn a function h : X → ∆C−1 such that ŷn ∈
arg maxc∈{1,...,C} P(yn = c|xn) closely matches yn.

Consider the label as a random variable Y ∼ Categorical(p)
with prior class probabilities p ∈ ∆C−1. We denote
q ∈ ∆C−1 as the estimated probabilities in the following

definitions. To assess the quality of probability estimates, a
loss function can be defined generally as

` : ∆C−1 → RC+, `(q) = (`1(q), . . . , `C(q))>

where `i is the partial loss for predicting q when y = i. For
a given label y, we can return to scalar-valued losses by
referring to the y-th partial loss `y .
Definition 3.1 (conditional Bayes Risk). The condi-
tional risk associated with ` is defined as L(p, q) =
EY∼Categorical(p)[`Y (q)] for all p, q ∈ ∆C−1. The best
achievable conditional risk associated with a loss is termed
the conditional Bayes risk and is defined as

L :∆C−1 → R+,

L(p) = inf
q∈∆C−1

L(p, q) = inf
q∈∆C−1

EY∼Categorical(p)[`Y (q)].

It is well known that L is concave.
Definition 3.2 (Proper Losses). A loss ` is proper if and
only if L is minimized when q = p. In other words, L(p) =
L(p, p) ≤ L(p, q) for all p, q ∈ ∆C−1. Losses where the
inequality is strict when p 6= q, are termed strictly proper.

Remark Properness is an essential property of losses, as
optimising a model with respect to a proper loss guides the
model’s probability estimates towards true posterior class
probabilities. Examples of proper losses include the 0− 1,
square, log, and Matsushita losses (Matusita, 1956).

To draw the connection between a proper loss and its condi-
tional Bayes risk, we require definitions of subgradients and
Bregman divergences. Subgradients are a generalisation of
gradients and are particularly useful when analysing convex
functions that may not be differentiable.

Subgradients For a convex set S ⊆ Rn, the subdifferen-
tial of a convex function f : S → (−∞, +∞] at x ∈ S is
defined as

∂f(x) = {φ ∈ Rn : 〈φ,y − x〉 ≤ f(y)− f(x),∀y ∈ Rn}

where an element φ ∈ ∂f(x) is called a subgradient of
f at x. By convention, we define ∂f(x) = ∅ for all x /∈
S. Moreover, f is strictly convex if and only if ∂f(x) =
{φ ∈ Rn : 〈φ,y − x〉 < f(y)− f(x),∀y ∈ Rn}.

Bregman divergence For a convex set S ⊆ Rn, and a
continuously-differentiable and strictly convex function f :
S → (−∞, +∞], the Bregman divergence with generator
f is defined for all x,y ∈ S as

Df (x,y) = f(x)− f(y)− 〈∇f(y),x− y〉.

The following result is a rewritten characterisation of proper
losses through their “Bregman representation”, and expli-
cates the connection between a proper loss and its condi-
tional Bayes risk.
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Proposition 3.3 ((Williamson et al., 2016, Proposition 7)).
Let ` : ∆C−1 → RC+ be a loss. ` is a (strictly) proper
loss if and only if there exists a (strictly) convex function
f : ∆C−1 → R such that for all q ∈ ∆C−1, there exists a
subgradient φ ∈ ∂f(q) such that

L(p, q) = −(p− q)>φ− f(q) for all p ∈ ∆C−1.

Moreover, if L is differentiable on ri(∆C−1) then

L(p, q) = (p− q)>`(q) + L(q)

where ` is the unique proper loss associated with L with the
property ∇L(p) = `(p),∀p ∈ ri(∆C−1).

Remark 3.4. We note that L(p, q) is a Bregman divergence
if and only if ` is strictly proper due to the requirement of
strict convexity of f .

In this work, we seek to learn strictly proper losses ` by ex-
ploiting the connection∇L(p) = `(p) described in Proposi-
tion 3.3. In Section 4, we extend this connection between
probabilities and predictors in RC−1 through canonical link
functions, and describe in detail how strictly proper losses
can be learned through this extended connection.

4. Designing Multiclass Canonical Links
In this section, we provide definitions of canonical link func-
tions, Legendre functions and the (u, v)-geometric structure.
The latter two structures are essential for the design and
learning of canonical link functions. We show that design-
ing a canonical link amounts to designing a composite func-
tion that is the gradient of a twice-differentiable and convex
function. To this end, we present our key theoretical contri-
butions: conditions for composite functions to be gradients
of convex functions.

Composite Form It is often desirable to link predictors
with their probability estimates through an invertible link
function ψ : ∆C−1 → RC . This allows one to uniquely
identify probabilities while working with general predictors.
It also allows one to define loss functions more generally
as `ψ = ` ◦ ψ−1 which are referred to as proper composite
losses when ` is proper. Williamson et al. (2016, Proposi-
tion 13) shows that a proper composite loss `ψ is uniquely
represented by ` and ψ when `ψ is continuous and invertible.

Proper Canonical Form As elements of ∆C−1 are
uniquely determined by the first C − 1 components, the
above properties can be more naturally described by the
projected probability simplex:

∆̃C−1 =

{
p̃ ∈ RC−1

+ :

C−1∑
i=1

p̃i ≤ 1

}
.

Define the projection map

Π : ∆C−1 → ∆̃C−1,

Π(p) = (p1, . . . , pC−1) for all p ∈ ∆C−1,

and its inverse

Π−1 : ∆̃C−1 → ∆C−1,

Π−1(p̃) =

(
p̃1, . . . , p̃C−1, 1−

C−1∑
i=1

p̃i

)
for all p̃ ∈ ∆̃C−1.

Definition 4.1. The projected conditional Bayes risk is de-
fined as L̃ = L ◦ Π−1. Suppose L̃ is differentiable. Then
the canonical link function is defined as

ψ̃ : ∆̃C−1 → RC−1, ψ̃(p̃) = −∇L̃(p̃).

Williamson et al. (2016, Corollary 32) shows that given a
proper loss `, the function ` ◦Π−1 ◦ ψ̃−1 has components
which are convex with respect to the input domain. We refer
to such losses as proper canonical losses to distinguish them
from proper composite losses. The connection between a
differentiable conditional Bayes risk, a proper loss, and a
canonical link, shown by Proposition 3.3 and Definition 4.1,
is given by ` = ∇L = −((−∇L̃◦Π)·JΠ) = −((ψ̃◦Π)·JΠ)
where JΠ is the Jacobian of Π. This illustrates that one
can learn proper canonical losses by modelling either the
conditional Bayes risk or its associated canonical link.

Properties of Legendre functions Let f : RC−1 → R
be continuously differentiable and strictly convex. We refer
to f as a Legendre function. The Legendre-Fenchel conju-
gate of f , denoted by f∗, is defined as

f∗ : S → R,

f∗(x∗) = 〈(∇f)−1(x∗),x∗〉 − f
(
(∇f)−1(x∗)

)
.

where S = {∇f(x) : x ∈ RC−1}, and f is Legendre if and
only if f∗ is Legendre. Rockafellar (1970, Theorem 26.5)
shows that when the latter holds, (f∗)∗ = f , and ∇f is
continuous and invertible with∇f∗ = (∇f)−1. Moreover,
if f is twice-differentiable with positive definite Hessian ev-
erywhere, then the inverse function theorem yields that f∗ is
twice-differentiable since∇2f∗(∇f(x)) = (∇2f(x))−1.

(u, v)-geometric structure Amari (2016); Nock et al.
(2016); Walder & Nock (2020) state that a general dually flat
structure on RC−1 can be defined in terms of an arbitrary
strictly convex function ξ. Let u and v be differentiable
invertible functions. The pair (u, v) give a dually flat struc-
ture on RC−1 if and only if ∇ξ = u ◦ v−1. We consider
the (u, v)-geometric structure of the Bregman divergence
D(−L̃)∗ which gives ψ̃−1 = u ◦ v−1.
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ψ̃−1

v−1u

probability estimates
∆̃C−1

predictors
RC−1

transformed predictors
RC−1

Figure 1. Relationship between predictors and probability esti-
mates through the inverse of the canonical link function under
the (u, v)-geometric structure.

Designing links In this work, we focus on the case when
−L̃ is twice-differentiable. Note that −L̃ is convex since
Π−1 is affine and −L is convex. Properties of Legendre
functions allow us to move from−L̃ to its Legendre-Fenchel
conjugate (−L̃)∗, and similarly allow us to move from the
canonical link ψ̃ to its inverse ψ̃−1. The (u, v)-geometric
structure then allows us to flexibly learn ψ̃−1 by splitting
it into a learnable component v−1 and a fixed component
u. Fixing u to be a suitable squashing function ensures
that ψ̃−1 maps to ∆̃C−1; thereby allowing us to uniquely
identify multiclass probabilities associated with predictors
from RC−1. On the other hand, v−1 can be parameterised
by an invertible neural network which allows ψ̃−1 to adapt
to the multiclass problem at hand. Legendre functions and
the (u, v)-geometric structure together yield a more natu-
ral and practical design of the canonical link through its
inverse since it is often much easier to map inputs from
an unbounded space such as RC−1, to a bounded space
such as ∆̃C−1. Figure 1 illustrates how the inverse of the
canonical link is modelled using the (u, v)-geometric struc-
ture. Loosely speaking, v−1 allows one to find better logit
representations before they are squashed to probabilities.

Under the (u, v)-geometric structure, if one can prove that
u ◦ v−1 maps to ∆̃C−1 and is the gradient of a Legendre
function f , then one can set (−L̃)∗ = f and ∇(−L̃)∗ =
u ◦ v−1 as its corresponding inverse canonical link function
by using properties of Legendre functions. This requires
showing u◦v−1 is the gradient of a twice-differentiable and
strictly convex function. In the following two theorems, we
provide conditions where this assertion holds for general
composite functions. We defer the background, supporting
theorems and proofs of the following results to Sections A,
E and F within the Appendices.
Theorem 4.2. Let f : RC−1 → RC−1 and g : RC−1 →
RC−1 be differentiable. Then the following conditions are
equivalent:

1. f ◦ g = ∇F where F is a twice-differentiable convex
function.

2. The Jacobian Jf◦g(x) is symmetric for all x ∈ RC−1.

3. Jf◦g(x) is positive semi-definite for all x ∈ RC−1.

4. f ◦ g is monotone.

Proof sketch of Theorem 4.2 To claim that a function
f : RC−1 → RC−1 is the gradient of a convex function
g : RC−1 → R, requires f to satisfy maximal cyclical
monotonicity. This is a more abstract notion of monotonic-
ity within domains in higher dimensions, and encompasses
two notions of monotonicity, namely maximal monotonicity
and cyclical monotonicity. It turns out that it is sufficient
to consider monotonicity as maximal monotonicity is auto-
matically guaranteed as our domain is RC−1, and f ◦ g is
differentiable and therefore continuous.

Theorem 4.2 characterises when a composite function is the
gradient of a convex function. It also serves as a convenient
and practical criteria to aid model design through a check
of positive semi-definiteness for the Jacobian Jf◦g. The
implications of Theorem 4.2 are profound as it allows us to
derive the following sufficient conditions under which the
composition of gradients of convex functions is the gradient
of a Legendre function.

Theorem 4.3. Let f : RC−1 → S and g : RC−1 → RC−1

be differentiable where S ⊆ RC−1, and Jf (x) and Jg(x)
are symmetric and positive definite for all x ∈ RC−1. Then
f ◦ g is the gradient of a twice-differentiable Legendre func-
tion.

Proof sketch of Theorem 4.3 Theorem 4.2 tells us it is
sufficient to check for positive semi-definiteness of a com-
posite function’s Jacobian. Our proof involves a check
that all eigenvalues of the Jacobian are positive. This as-
serts that the composite function is the gradient of a twice-
differentiable and strictly convex function.

To use the (u, v)-geometric structure from Section 3 with
Theorem 4.3, we can set f = u and g = v−1 within The-
orem 4.3. This presents an additional requirement that the
functions f and g are also invertible. In Section 5, we
show how these requirements can be met with our proposed
algorithm, LEGENDRETRON.

5. Learning Proper Canonical Multiclass
Losses: LEGENDRETRON

In this section, we present LEGENDRETRON, our main algo-
rithmic contribution for learning proper canonical losses for
multiclass probability estimation. With the theory of Legen-
dre functions, (u, v)-geometric structure and Theorem 4.3
in hand to support our approach, we now present LEGEN-
DRETRON in detail, as an extension of generalised linear
models and Single Index Models for multinomial logistic
regression.
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Model Given a dataset D = {(xn, yn)}Nn=1, we have the
classification model

yn|xn ∼ Categorical
(
p̂(zn)

)
where zn = Wxn + b

where W ∈ R(C−1)×p, b ∈ RC−1 and p̂(zn) = (u ◦
v−1)(zn) with u chosen as a squashing function that maps
to ∆̃C−1 and v−1 = ∇g for a twice-differentiable and
strictly convex function g. We leave the specification of
a suitable squashing function u as a modelling choice and
provide a natural choice at the end of this section.

For any B ∈ Z+, let g1, g2, . . . gB be fully input convex
neural networks (FICNN) investigated in Amos et al. (2017).
We set v−1 = ∇g = (∇g1) ◦ (∇g2) ◦ · · · ◦ (∇gB). For
each gi, we use the same architecture as Huang et al. (2021)
which is described as

zi,1 = l+i,1(x)

zi,k = li,k(x) + l+i,k(s(zi,k−1)) for k = 2, . . . ,M + 1,

hi(x) = s(zi,M+1),

gi(x) = s(wi,0)hi(x) + s(wi,1)
‖x‖2

2

where we denote l+i,k as a linear layer with positive
weights, li,k as a linear layer with unconstrained weights,
wi,0,wi,1 ∈ R are unconstrained parameters and s(x) =
log(1 + ex) is the softplus function with s(x) denoting the
softplus function applied elementwise on x. In particular,
li,M+1 and l+i,M+1 are linear layers that map to R while for
each k = 1, . . .M , li,k and l+i,k are hidden layers that map to
RH for a chosen dimension size H ∈ Z+. With this setup,
each gi is strongly convex (and therefore strictly convex)
with an invertible gradient and positive definite Hessian for
all x ∈ RC−1 due to the quadratic term within each gi.

We now show that, when equipped with a suitable squashing
function u, any function learned by LEGENDRETRON is a
valid inverse canonical link function. We turn to a modified
version of the LogSumExp function previously studied in
Nielsen & Hadjeres (2018) and describe its main properties
within the following theorem.

Theorem 5.1. Let f(x) = log
(

1 +
∑C−1
k=1 exp(xk)

)
. The

key properties of f are:

• f is strictly convex with invertible gradient

u : RC−1 → ∆̃C−1,

u(x) =

(
exp(xi)

1 +
∑C−1
k=1 exp(xk)

)
1≤i≤C−1

.

• the Hessian of f , given by Ju(x), is positive definite
for all x ∈ RC−1.

We refer to f and u as LogSumExp+ and softmax+ respec-
tively. Let v−1 : RC−1 → RC−1 be defined as

v−1 = (∇g1) ◦ (∇g2) ◦ · · · ◦ (∇gB)

where g1, g2, . . . gB are FICNNs. Then any function u◦v−1

learned by LEGENDRETRON is the gradient of a twice-
differentiable Legendre function and is therefore, the inverse
of a canonical link function.

With this specification, any function u ◦ v−1 learned via
LEGENDRETRON is the gradient of a twice-differentiable
Legendre function which can serve as an inverse canonical
link function. Moreover, we can deduce that any inverse
canonical link or gradient of a twice-differentiable Legendre
function, can be approximated by the architecture of u◦v−1

defined in Theorem 5.1.

Corollary 5.2. Let u : RC−1 → ∆̃C−1 and v−1 :
RC−1 → RC−1 be defined as in Theorem 5.1 with v−1

parameterised by θ. Define C(Ω) as the set of twice-
differentiable convex functions with positive definite Hessian
everywhere for a compact set Ω ⊂ RC−1, and F = {f :
f : RC−1 → ∆̃C−1,∃θ such that u ◦ v−1 = f}. Then F is
dense in C(Ω).

Algorithm 1 describes LEGENDRETRON in detail. We con-
clude this section with remarks on our model design, and
connections between LEGENDRETRON, multinomial logis-
tic regression and the log loss.
Remark 5.3. The basis of our design comes from requir-
ing the determinant of Ju◦v−1(x) to satisfy |Ju◦v−1(x)| =
|Ju(v−1(x))||Jv−1(x)| > 0 for all x ∈ RC−1. A direct
way to guarantee this is by setting u and v−1 to be func-
tions with known positive definite Hessians. To the best
of our knowledge, only the CP-Flow architecture (Huang
et al., 2021) satisfies this property among invertible net-
works in normalising flows literature; making it our choice
for v−1. While it is possible to set other functions as u, it is
generally difficult to elicit invertible functions that squash
inputs to ∆̃C−1 aside from variants of softmax. We have set
u = softmax+ as it simplifies to the well-known sigmoid
when C = 2, which was used as the analogous squashing
function in ISGP (Walder & Nock, 2020).
Remark 5.4. As LogSumExp+ is twice-differentiable and
Legendre, its gradient softmax+ is a valid inverse canon-
ical link function since it maps to ∆̃C−1. However, we
note that setting ψ̃−1 = softmax+ results in learning only
the parameters W and b which is equivalent to formulating
multinomial logistic regression as a generalised linear model
with link ψ̃(p̃) =

(
log
(

p̃i
1−

∑C−1
k=1 p̃k

))
1≤i≤C−1

with corre-

sponding proper loss ` = −((ψ̃ ◦ Π) · JΠ) which can be
shown to be the log loss (or cross-entropy). That is, LEG-
ENDRETRON with v−1 as the identity map is equivalent to
multinomial logistic regression or logistic regression when
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Algorithm 1 LEGENDRETRON

Input: sample S ⊂ D, number of iterations T , number
of FICNNs B, hidden layer dimension size H , number
of layers M , squashing function u.
Initialise W and b.
Initialise g1, g2, . . . gB each with M layers of dimension
size H , and denote their joint set of parameters θ.
for i = 1 to T do

Set v−1 = (∇g1) ◦ (∇g2) ◦ · · · ◦ (∇gB).
for each (xn, yn) ∈ S do

Compute zn = Wxn + b.
Compute p̂(zn) = (u ◦ v−1)(zn).

end for
Compute ES[L(p̂(z), y)] by Monte Carlo where L is
the log-likelihood of the Categorical distribution.
Update W, b and θ by backpropagation.

end for
Output: W, b and g1, g2, . . . gB .

C = 2. In this case, Algorithm 1 would only optimise
parameters of a linear model without loss learning; by us-
ing the log loss. Comparisons between LEGENDRETRON
against multinomial logistic regression or logistic regression
illustrate performance differences between learning a proper
loss for the dataset and optimising with respect to log loss
(cross-entropy). These results are provided in Tables 1 and
3, and Figure 2.

6. Experiments
In this section, we provide numerical comparisons be-
tween LEGENDRETRON, multinomial logistic regression
and other existing methods that also aim to jointly learn
models and proper canonical losses. For our experiments,
we set softmax+ as the squashing function u for both LEG-
ENDRETRON and multinomial logistic regression. For a
practical and numerically stable implementation, we also
map probability estimates to the log scale by deriving an
alternate Log-Sum-Exp trick for softmax+. We defer the
full experimental details to Appendix I.

All experiments were performed using PyTorch (Paszke
et al., 2019) and took roughly one CPU month to complete1.
CPU run times for the aloi dataset, which had the largest
number of classes (1, 000), were respectively 4 hours and
0.75 hours for LEGENDRETRON and multinomial logistic
regression. We note that the difference in run times for
this experiment are in part due to the larger number of
epochs (360), larger number of blocks B, autograd and
backpropagation operations to update v−1 for a much larger

1The total run time for our experiments is favourable relative to
the reported two CPU months for the ISGP-LINKGISTIC algorithm
from Walder & Nock (2020).

Table 1. Test AUC for generalised linear models with various link
methods (ordering in decreasing average). See text for details.

MNIST FMNIST

LEGENDRETRON 99.9% 99.2%
ISGP-Linkgistic 99.9% 99.2%
GP-Linkgistic 99.9% 99.1%
Logistic regression 99.9% 98.5%
GLMTron 99.6% 98.1%
BREGMANTRON 99.7% 97.9%
BREGMANTRONlabel 99.6% 97.7%
BREGMANTRONapprox 99.3% 94.6%
SLISOTRON 94.6% 90.7%

number of classes. Average GPU run times on a P100 for
MNIST experiments in Table 2, were 2.32 and 2.12 hours
for VGGTRON and VGG respectively. These run times
demonstrate the relative efficiency and applicability of loss
learning for most datasets.

MNIST Binary Problems Binary problems are a special
case of our setting where C = 2, so LEGENDRETRON
is readily applicable. In Table 1, we compared LEGEN-
DRETRON against ISGP-LINKGISTIC (Walder & Nock,
2020) and BREGMANTRON (Nock & Menon, 2020), as
both algorithms also aim to learn proper canonical losses for
binary problems. We also compared with other baselines in
these two works including the SLISOTRON algorithm from
Kakade et al. (2011). Experiment details can be found in
Section 6 of Nock & Menon (2020). Our model successfully
matches the (binary specific) ISGP-LINKGISTIC baseline,
which was the strongest algorithm in test AUC performance
from the experiments of Walder & Nock (2020).

MNIST Multiclass Problems using Linear Models For
the three MNIST-like datasets (LeCun et al., 2010; Xiao
et al., 2017; Clanuwat et al., 2018), we compared LEG-
ENDRETRON against multinomial logistic regression and
ISGP-LINKGISTIC, since the latter is the strongest algo-
rithm in ten-class classification test accuracy performance
based on the experiments within Walder & Nock (2020).
ISGP-LINKGISTIC approaches the multiclass problem by
learning proper canonical losses for the 10 component 1-vs-
rest problems. Our experimental results in Figure 2 show
that LEGENDRETRON and multinomial logistic regression
outperform the ISGP-LINKGISTIC baseline on all three
datasets. These results illustrate our conjecture that proper-
ness with respect to losses and models in component prob-
lems in a multiclass setting, does not imply optimality of
class predictions or probability estimates. By respecting the
true problem structure, proper multiclass losses allow the
model to learn probability estimates that are able to better
distinguish between all the classes at hand. Our results also

7



LEGENDRETRON: Uprising Proper Multiclass Loss Learning

Table 2. Test classification accuracies of VGGTron and VGG for
the MNIST, Kuzushiji-MNIST and Fashion-MNIST datasets. See
text for details.

MNIST FMNIST KMNIST

VGGTRON 99.59% 92.88% 98.26%
VGG 99.40% 92.80% 98.12%

show that LEGENDRETRON either matches or outperforms
multinomial logistic regression on all three datasets. This is
most notable on the Kuzushiji-MNIST dataset where LEG-
ENDRETRON outperforms multinomial logistic regression
by a reasonable margin.

MNIST Multiclass Problems using Nonlinear Models
We note that the architecture of u ◦ v−1 does not restrict
us to linear models. In Table 2, we provided experimental
results of how loss learning can improve non-linear models.
Specifically, we replace the linear model components of
LEGENDRETRON and multinomial logistic regression with
a VGG-5 architecture; which we refer to as VGGTRON and
VGG respectively in Table 2. Our results show that learning
proper losses can improve the performance of non-linear
models. A more comprehensive survey of how loss learning
can improve model performance for classification tasks is
an avenue for future work, due to the variety of architectures
and datasets.

Other Multiclass Problems and Label Noise We also
compared LEGENDRETRON against multinomial logistic
regression on 15 datasets that are publicly available from the
LIBSVM library (Chang & Lin, 2011), the UCI machine
learning repository (Asuncion & Newman, 2007; Dua &
Graff, 2017), and the Statlog project (King et al., 1995).
We note that we did not compare our proposed method
with other multiclass classification methods such as ker-
nel methods explored in Zien & Ong (2007) and Li et al.
(2018), as these methods are centred on the task of classifi-
cation, whereas our focus is on jointly learning multiclass
probabilities and proper canonical losses through the canon-
ical link function. To assess the robustness against label
noise, we also compare the classification accuracy of LEG-
ENDRETRON and multinomial logistic regression where
labels in the training set are corrupted with probability η.
That is, for any true label yn, we instead train our models
on the potentially corrupted label given by

ỹn =

{
yn with probability 1− η,

c with probability η where c ∈ Y \ {yn}
.

We applied symmetric label noise in our experiments which
is the case where the probability of ỹn = c for each
c ∈ Y \ {yn} is η

C−1 . We run both LEGENDRETRON and

multinomial logistic regression for each dataset 20 times,
where each run randomly splits the dataset into 80% training
and 20% testing sets. Our results in Table 3 show that LEG-
ENDRETRON outperforms multinomial logistic regression
under a t-test at 99% significance for most datasets and label
noise settings. The performance of LEGENDRETRON is on
par with multinomial logistic regression on the svmguide2,
wine and iris datasets. Multinomial logistic regression
only statistically outperforms LEGENDRETRON on the dna
dataset. LEGENDRETRON consistently outperforms multi-
nomial logistic regression especially strongly on problems
where the number of classes is greater than 10. The better
performance of LEGENDRETRON can partially be attributed
to greater model capacity afforded by v−1 which allows
logit estimates to adapt to problems with more classes by
adding more nonlinearities. We note that the Lipschitz
and strongly monotone properties of ∇g1,∇g2, . . . ,∇gB
are dependent only on inputs which remain uncorrupted
so probability estimates would respect the true rankings of
classes by design. We conjecture that these properties allow
for more adaptive shrinking or expanding of logit variations
depending on the level of label noise present; offering a
form of tolerance to label noise.

7. Conclusion and Broader Impact
In this work, we proposed a general approach which jointly
learns proper canonical losses and multiclass probabili-
ties. Our contributions advance the recent work on learning
losses with probabilities based on the seminal work within
Kakade et al. (2011); Nock & Menon (2020); Walder &
Nock (2020) by providing a natural extension to the mul-
ticlass setting. The practical nature and generality of our
model is owed to the general parameterisation of Fully In-
put Convex Neural Networks, with theoretical support from
Legendre functions, structures from information geometry
and hallmark results from convex analysis.

By grounding losses in properness for the multiclass setting,
we have demonstrated that our model improves upon exist-
ing methods that aim to solve multiclass problems through
binary reductions, and also outperforms the natural baseline
of multinomial logistic regression. Separately, we have also
provided conditions under which a composition of gradients
of differentiable convex functions is the gradient of another
differentiable convex function.

While it is possible for advances in machine learning to
bring positive and negative societal impacts, the present
work remains general and not specific to any application so
it is unlikely to bring about any immediate negative societal
impact. We anticipate that our results will find applications
in multiclass classification and probability estimation, as
well as variational inference.
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Figure 2. Test performance v.s. training set size for the MNIST, Kuzushiji-MNIST and Fashion-MNIST datasets. We compare the ten-class
classification accuracy of LEGENDRETRON (LT), multinomial logistic regression (MLR) and ISGP-LINKGISTIC (ISGP) where the ISGP
combines 10 one-vs-rest binary models while the former two algorithms model the probabilities of all 10 classes jointly.

Table 3. Average test classification accuracies (%) for LEGENDRETRON (LT) and multinomial logistic regression (MLR) on LIBSVM,
UCI and Statlog datasets; at varying levels of label noise (η). Numbers of the method are bolded when it performs statistically better at a
significance level of 99% under a t-test. Absence of bolding indicates both methods have statistically similar performance.

Dataset # Features # Classes η = 0% η = 20% η = 50%
LT MLR LT MLR LT MLR

aloi 128 1,000 88.11±0.03 10.34±0.42 83.03±0.06 7.07±0.45 75.23±0.07 3.53±0.29
sector 55,197 105 89.71±0.18 8.77±0.73 81.00±0.28 4.12±0.44 57.38±0.31 3.17±0.47
letter 16 26 79.82±0.30 53.37±0.25 74.17±0.21 51.24±0.28 64.28±0.26 46.78±0.41
news20 62,061 20 75.65±0.72 63.09±0.58 73.48±0.20 50.49±1.16 51.72±0.16 31.54±1.83
Sensorless 48 11 88.31±0.19 34.42±0.46 82.63±0.99 32.70±0.50 52.02±0.78 29.35±0.84
vowel 10 11 79.72±1.03 44.58±1.08 63.77±1.36 43.44±1.17 40.94±1.61 35.42±1.45

usps 256 10 95.23±0.16 93.79±0.17 92.88±0.15 92.95±0.19 90.23±0.26 90.48±0.27
segment 19 7 95.95±0.24 87.86±0.40 92.21±0.40 87.28±0.40 86.56±0.47 82.75±0.46
satimage 36 6 86.97±0.19 83.93±0.28 84.93±0.25 81.16±0.28 77.44±0.29 77.39±0.29
glass 36 6 58.72±1.94 52.09±1.88 53.72±1.98 50.47±2.11 42.56±1.92 45.47±1.67
vehicle 18 4 76.91±0.65 64.94±0.43 73.59±0.79 63.06±0.53 60.94±1.25 55.18±1.20
dna 180 3 92.79±0.30 94.43±0.19 82.61±0.51 89.55±0.31 58.23±1.05 64.18±0.81
svmguide2 20 3 56.01±1.40 56.01±1.40 56.01±1.40 56.01±1.40 51.65±2.81 52.41±3.04
wine 13 3 96.94±1.14 97.78±0.59 90.97±1.92 96.25±0.99 69.44±2.89 77.36±2.46
iris 4 3 86.67±3.89 83.00±2.08 80.00±3.71 81.50±2.27 63.50±5.13 70.67±3.83
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A. Convex Analysis: Relevant Background and List of Theorems
A.1. Background

To motivate the results studied in this section, we first note that in general, the composition of two monotone functions in
RC−1 is not necessarily another monotone function in RC−1. This means that methods to design monotonic functions in
R cannot be applied to functions defined on RC−1, leaving the methods discussed in Section 2 unsuitable for the general
multiclass setting. Separately, we note that the composition of two gradients of differentiable convex functions is not
necessarily the gradient of another convex function. In general, to claim that a function f : RC−1 → RC−1 is the gradient
of a convex function g : RC−1 → R, requires f to satisfy a notion of monotonicity generalised to higher dimensions.
The connection between convex functions and their gradients is well known in convex analysis via the notion of maximal
cyclically monotone functions. This is a combination of two notions of monotonicity: maximal monotonicity and cyclical
monotonicity. These are defined within the following list of definitions and theorems.

A.2. List of Theorems

Definition A.1 ((Rockafellar et al., 2009, Definition 12.1)). A function f : RC−1 → RC−1 is monotone if 〈f(x) −
f(z),x− z〉 ≥ 0 for all x, z ∈ RC−1. Moreover, it is strictly monotone when the inequality is strict whenever x 6= z.

The following two definitions require the notion of the graph of a function f : RC−1 → RC−1 which is defined as
gph(f) = {(x,y) : x ∈ RC−1,y ∈ f(x)}.
Definition A.2 ((Bauschke & Combettes, 2011, Definition 20.20)). Let f : RC−1 → RC−1 be a monotone function. Then
f is maximally monotone if there exists no monotone function g : RC−1 → RC−1 such that gph(f) ( gph(g).

Definition A.3 ((Bauschke & Combettes, 2011, Definition 22.10)). Let f : RC−1 → RC−1. For an arbitrary integer n ≥ 2,
f is n-cyclically monotone if for any {(xi,yi)}i=1,...,n ⊂ gph(f) it follows that

n∑
i=1

〈yi,xi+1 − xi〉 ≤ 0 where xn+1 = x1.

f is cyclically monotone if it is n-cyclically monotone for any integer n ≥ 2. In addition, if gph(f) 6⊂ gph(g) for any
cyclically monotone function g 6= f then f is maximal cyclically monotone.

Theorem A.4 ((Rockafellar et al., 2009, Theorems 12.17 & 12.25)). Let f : RC−1 → RC−1. Then f = ∇h for a
differentiable convex function h : RC−1 → R if and only if f is maximal cyclically monotone. That is, f is maximally
monotone and cyclically monotone.

Theorem A.5 ((Rockafellar et al., 2009, Proposition 12.3)). Let f : RC−1 → RC−1 be a differentiable function. Then f is
monotone if and only if ∇f(x) is positive semi-definite for all x ∈ RC−1. Moreover, if ∇f(x) is positive definite for all
x ∈ RC−1 \ {0} then f is strictly monotone.

Theorem A.6 ((Bauschke & Combettes, 2011, Corollary 20.25)). Let f : RC−1 → RC−1 be a monotone and continuous
function. Then f is maximally monotone.

Theorem A.7 ((Borwein & Wiersma, 2007, Theorem 3)). Let f : RC−1 → RC−1 be maximally monotone and continuously
differentiable. Then f(x) = ∇F (x) + Lx where F is a differentiable convex function, and L is a skew symmetric matrix.

Theorem A.8 ((Meenakshi & Rajian, 1999, Theorem 3)). Let A,B ∈ R(C−1)×(C−1) be symmetric and positive semi-
definite matrices. Then AB is positive semi-definite if and only if it is symmetric.

Theorem A.9 ((Bhatia, 2013, Theorem VIII.4.6)). Let V ⊂ R(C−1)×(C−1) be a real vector space whose elements are
matrices with real eigenvalues. Denote λi(M) as the i-th smallest eigenvalue for any matrix M ∈ V . Let A,B ∈ V then

λi(A) + λ1(B) ≤ λi(A+B) ≤ λi(A) + λC−1(B).

A.3. Remarks

Theorem A.4 serves as a criterion and characterisation of differentiable convex functions through their gradients. Theorems
A.6 to A.8 are hallmark results from the rich literature of convex analysis and monotone operators that tie together conditions
under which a differentiable composite function is the gradient of a convex function. Notably, Theorem A.7 is a rewritten

12
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Figure 3. Plots of partial losses corresponding various proper losses when true probability is 1.

version of the Asplund decomposition of maximal monotone operators (Asplund, 1968) which tells us it suffices to focus on
maximal monotonicity. We refer the reader to Appendix E for the usage of Theorems A.5 to A.8 in the proof of Theorem
4.2.

Theorem A.9 allows us to obtain a lower bound on the smallest eigenvalue of the sum of two real-valued matrices with real
eigenvalues. This is particularly useful to prove positive definiteness in Theorem 4.3. We refer the reader to Appendix F for
its usage in the proof of Theorem 4.3.

B. Examples of Binary Proper Losses
Denote y ∈ {−1, 1} a label and p = Pr(Y = 1|x) be the true probability that Y = 1|x. Let ŷ and p̂ be the predicted class
and probability estimate of Y = 1 given input x. Below are the analytical formulas of partial losses for various examples of
binary proper losses where it is assumed that p = 1. Figure 3 shows the plots of the below partial losses.

`1(p̂)

0− 1 [[ŷ(p̂) = 1]]
square (1− p̂)2

log − log(p̂)

Matsushita 1
2

√
1−p̂
p̂

C. Proof of equivalent conditions on subdifferentials for strictly convex functions
(⇒) Suppose f is strictly convex and assume for a proof by contradiction that there exists some x,y ∈ domf such that
x 6= y with f(x) + 〈φ,y − x〉 ≥ f(y) for some φ ∈ ∂f(x).

13



LEGENDRETRON: Uprising Proper Multiclass Loss Learning

Fix λ ∈ (0, 1). Then we have

f(x) + 〈φ, (λx + (1− λ)y)− x〉 = f(x) + (1− λ)〈φ,y − x〉
≤ f(λx + (1− λ)y) by definition of a subgradient
< λf(x) + (1− λ)f(y) by strict convexity of f
≤ f(x) + (1− λ)〈φ,y − x〉 by the above assumption.

Thus, we have a contradiction so we must have the subdifferential of f for all x ∈ domf is given by

∂f(x) = {φ ∈ Rn : 〈φ,y − x〉 < f(y)− f(x),∀y ∈ Rn} .

(⇐) Suppose the subdifferential of f for any x ∈ domf is given by

∂f(x) = {φ ∈ Rn : 〈φ,y − x〉 < f(y)− f(x),∀y ∈ Rn} .

Fix x,y ∈ domf and λ ∈ (0, 1). Consider φ ∈ ∂f(λx + (1− λ)y). Then we have

f(λx + (1− λ)y) + (1− λ)〈φ,x− y〉 < f(x),

f(λx + (1− λ)y) + λ〈φ,y − x〉 < f(y).

Multiplying the first inequality by λ and the second by (1− λ), summing them gives us f(λx+ (1− λ)y) < λf(x) + (1−
λ)f(y). This holds for arbitrary x,y ∈ domf and λ ∈ (0, 1) so it follows that f is strictly convex.

D. Proof of Proposition 3.3
(⇒) Fix q ∈ ∆C−1. Suppose ` is proper. Then we have

L(p, q) = p>`(q) = q>`(q) + (p− q)>`(q) = L(q) + (p− q)>`(q)

and also,

0 ≤ L(p, q)− L(p, p) = L(q) + (p− q)>`(q)− L(p)

=⇒ −(p− q)>`(q) ≤ −L(p)− (−L(q)).

Recall that L is concave so it follows that −L is convex. Hence, −`(q) ∈ ∂(−L)(q) which means −`(q) is a subgradient of
−L at q and L(p, q) = −(−L(q))− (p− q)>(−`(q)).

(⇐) Suppose there exists a convex function f : ∆C−1 → R such that for all q ∈ ∆C−1, there exists a subgradient φ ∈ ∂f(q)
and L(p, q) = −f(q)− (p− q)>φ.

For all p ∈ ∆C−1, we have

L(p, q)− L(p, p) = f(p)− f(q)− (p− q)>φ
≥ 0 since φ is a subgradient of f at q

=⇒ L(p, p) ≤ L(p, q).

Hence, ` is a proper loss.

To prove that ` is strictly proper if and only if there exists a strictly convex function f : ∆C−1 → R such that for all
q ∈ ∆C−1, there exists a subgradient φ ∈ ∂f(q) such that L(p, q) = −(p− q)>φ− f(q) for all p ∈ ∆C−1. This follows
immediately by definitions of strictly proper losses and subdifferentials from which the above inequalities become strict.

We are left to prove that L(p, q) = (p− q)>`(q) + L(q) when L is differentiable. We first note that L is concave so −L is
convex. Recall that L(p, q) = p>`(q) = L(q) + (p− q)>`(q) from the workings within Appendix D. Setting f = −L for
Proposition 3.3, we can deduce −`(q) = −∇L(q)∀q ∈ ri(∆C−1) for a proper loss ` which follows by the uniqueness of
subgradients for differentiable functions. That is,∇L(q) = `(q),∀q ∈ ri(∆C−1).

14
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E. Proof of Theorem 4.2
(1) =⇒ (2). This follows from Schwarz’s theorem on the equality of mixed partial derivatives. (2) =⇒ (3). This follows
from Theorem A.8 since the Jacobian of a composite function is a product of matrices. (3) =⇒ (4). This follows from
Theorem A.5. We are left to prove (4) =⇒ (1).

(4) =⇒ (1). Since f ◦ g is monotone and continuous, it follows from Theorem A.6 that f ◦ g is maximally monotone.
From Theorem A.7, (f ◦ g)(x) = ∇F (x) + Lx for a differentiable convex function F and a skew-symmetric matrix L.
Since f ◦ g is differentiable then it follows that F is twice-differentiable. This gives us Jf◦g = ∇2F + L> where ∇2F is
symmetric by Schwarz’s theorem on the equality of mixed partial derivatives. Theorems A.5 and A.8 tell us that Jf◦g is
also symmetric. As Jf◦g and ∇2F are both symmetric, then we must have L> = 0 = L. That is, f ◦ g = ∇F where F is
twice-differentiable and convex.

F. Proof of Theorem 4.3
Fix x ∈ RC−1. The Jacobian of f ◦ g is given by

Jf◦g(x) = Jf (g(x))Jg(x).

Here we aim to prove that Jf◦g(x) is positive definite. We first note that Jg(x) is invertible since |Jg(x)| > 0. Now, note
that Jf◦g(x) is similar to the matrix

(Jg(x))
1
2 Jf (g(x))Jg(x)(Jg(x))−

1
2 = (Jg(x))

1
2 Jf (g(x))(Jg(x))

1
2

where the square root of the matrix Jg(x) is given by (Jg(x))
1
2 which is known to be symmetric since Jg(x) is symmetric

and positive definite. Since Jf (g(x)) is also symmetric, it follows that (Jg(x))
1
2 Jf (g(x))(Jg(x))

1
2 is symmetric. As Jg(x)

and Jf (g(x)) are positive definite, we have∣∣∣(Jg(x))
1
2 Jf (g(x))(Jg(x))

1
2

∣∣∣ = |Jf (g(x))| |(Jg(x))| > 0.

It follows that (Jg(x))
1
2 Jf (g(x))(Jg(x))

1
2 is positive definite, meaning it has positive eigenvalues λ1, . . . ,λC−1 ∈ R

that can be denoted such that λ1 ≤ λ2 ≤ · · · ≤ λC−1. Since similar matrices have the same eigenvalues, it follows that
λ1, . . . ,λC−1 are also the eigenvalues of Jf◦g(x).

Denote S = 1
2 (Jf◦g(x) + (Jf◦g(x))>) and A = 1

2 (Jf◦g(x)− (Jf◦g(x))>) as the symmetric and skew-symmetric parts of
Jf◦g(x) respectively. It is well known that for any skew-symmetric matrix A and any z ∈ RC−1, we have z>Az = 0. To
prove that Jf◦g(x) is positive definite, it suffices to prove that z>Jf◦g(x)z = z>Sz > 0 for any z ∈ RC−1 \ {0}.

Firstly, recall that all eigenvalues of Jf◦g(x) are real and positive, and the fact that the transpose of Jf◦g(x), (Jf◦g(x))>,
has the same eigenvalues as Jf◦g(x). That is, all eigenvalues of (Jf◦g(x))> are real and positive. Secondly, S =
1
2 (Jf◦g(x) + (Jf◦g(x))>) is symmetric so all of its eigenvalues must be real. Hence, Theorem A.9 gives us the following
bound for the smallest eigenvalue λ1(S)

λ1(S) ≥ λ1

(
1

2
Jf◦g(x)

)
+ λ1

(
1

2
(Jf◦g(x))>

)
=

1

2

(
λ1(Jf◦g(x)) + λ1((Jf◦g(x))>)

)
> 0.

The Rayleigh quotient for S and any z ∈ RC−1 \ {0}, is given by z>Sz
‖z‖2 , and satisfies the inequality

λ1(S) ≤ z>Sz

‖z‖2
≤ λC−1(S).

Hence, we have

z>Sz

‖z‖2
≥ λ1(S) > 0 for all z ∈ RC−1 \ {0} .
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Thus, z>Jf◦g(x)z = z>Sz > 0,∀z ∈ RC−1 \ {0} and so, Jf◦g(x) is positive definite. This holds for arbitrary x ∈ RC−1

so it follows that f ◦ g is the gradient of a twice-differentiable convex function F by Theorem 4.2 with F being strictly
convex since Jf◦g(x) is positive definite. In other words, f ◦ g is the gradient of a twice-differentiable Legendre function.

G. Proof of Theorem 5.1
Proof of Properties of LogSumExp+ and softmax+ Since positive definiteness of Ju(x) for all x ∈ RC−1 implies
strict convexity of f and strict convexity of f implies invertibility of u, it suffices to prove that Ju(x) is positive definite for
all x ∈ RC−1.

Fix x ∈ RC−1. For ease of notation, we denote M as Ju(x) where Mij refers to the entry within the i-th row and j-th
column of Ju(x). Consider any row i ∈ {1, . . . ,C − 1}. We have

Mii =
exp(xi)

1 +
∑C−1
k=1 exp(xk)

(
1− exp(xi)

1 +
∑C−1
k=1 exp(xk)

)
,

Mij = − exp(xi)

1 +
∑C−1
k=1 exp(xk)

exp(xj)

1 +
∑C−1
k=1 exp(xk)

.

Observe thatMii−
∑
j 6=i |Mij | = exp(xi)

1+
∑C−1

k=1 exp(xk)

(
1−

∑C−1
k=1 exp(xk)

1+
∑C−1

k=1 exp(xk)

)
> 0. This holds for arbitrary i ∈ {1, . . . ,C−1}

so it follows that Ju(x) is strictly diagonally dominant. This implies that Ju(x) is positive definite so it follows that f is
strictly convex. This completes the proof of the key properties of the LogSumExp+ function and its gradient softmax+.

Proof of functions learned by LEGENDRETRON are inverse canonical links We first note that v−1 = (∇g1)◦ (∇g2)◦
· · · ◦ (∇gB) is indeed invertible since the RHS is invertible by the strong convexity of g1, g2, . . . , gB . Since each ∇gi is
symmetric and positive definite, it follows that v−1 is the gradient of a twice-differentiable Legendre function by applying
Theorem 4.3 recursively. It follows from Theorem 4.2 that Jv−1(x) is symmetric. We also have that |Jv−1(x)| > 0 so
Jv−1(x) is positive definite for all x ∈ RC−1.

Recall that LogSumExp+ is twice-differentiable with gradient u = softmax+ and Hessian Ju(x) being strictly diagonally
dominant. That is, Ju(x) is symmetric and positive definite. Applying Theorem 4.3 on u ◦ v−1 allows us to deduce that
u ◦ v−1 is the gradient of a twice-differentiable Legendre function that maps to ∆̃C−1 so u ◦ v−1 can be set as the inverse of
an implicit canonical link function.

H. Proof of Corollary 5.2
Let u = softmax+ and fix g to be the gradient of a twice-differentiable Legendre function with positive Hessian everywhere.
Note that LogSumExp+ is twice-differentiable and Legendre so u−1 and g satisfy the sufficient conditions of Theorem 4.3.
It follows that u−1 ◦ g is the gradient of a twice-differentiable Legendre function defined on a compact set Ω. The result
then follows from using Proposition 3 of Huang et al. (2021).

I. Experimental Details
I.1. Network Architecture and Optimisation Details

Experiment details on architecture and optimisation parameters for LEGENDRETRON (LT) and multinomial logistic
regression (MLR). Here we denote α as the learning rate, λ as weight decay, γ as the multiplicative rate of decay applied to
α every S epochs through a step-wise learning rate scheduler. We used the Adam optimiser for all experiments.
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Dataset(s) Model B H M α γ S Epochs Batch Size

MNIST/FMNIST/KMNIST LT 1 4 4 0.001 0.7 4 200 128
MNIST/FMNIST/KMNIST MLR \ \ \ 0.001 0.7 4 200 128
aloi LT 2 2 4 0.01 0.95 4 360 64
aloi MLR \ \ \ 0.01 0.95 4 360 64
LIBSVM/UCI/Statlog (other datasets) LT 2 2 4 0.01 0.95 4 240 64
LIBSVM/UCI/Statlog (other datasets) MLR \ \ \ 0.01 0.95 4 240 64

I.2. LogSumExp trick for softmax+

Let u = softmax+ and consider x ∈ RC−1. We have

log(Π−1(u(x))) =

(
log

(
exp(x1)

1 +
∑C−1
k=1 exp(xk)

)
, . . . , log

(
exp(xC−1)

1 +
∑C−1
k=1 exp(xk)

)
, log

(
1

1 +
∑C−1
k=1 exp(xk)

))>

where log on the LHS is applied elementwise. We seek an alternate expression for log(Π−1(u(x))) that is numerically
stable.

Let x∗ = max(x1, . . . ,xC−1) and S = exp(−x∗) +
∑C−1
k=1 exp(xk − x∗). We can write

log(Π−1(u(x))) =

(
log

(
exp(x1 − x∗)

S

)
, . . . , log

(
exp(xC−1 − x∗)

S

)
, log

(
exp(−x∗)

S

))>
= (x1 − x∗ − log(S), . . . ,xC−1 − x∗ − log(S),−x∗ − log(S))

>
.

It can be observed that this expression is numerically stable for all large values of x∗.
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