
Metagenomic Binning using Connectivity-constrained Variational Autoencoders

Andre Lamurias 1 2 Alessandro Tibo 1 Katja Hose 1 3 Mads Albertsen 4 Thomas Dyhre Nielsen 1

Abstract
Current state-of-the-art techniques for metage-
nomic binning only utilize local features for the in-
dividual DNA sequences (contigs), neglecting ad-
ditional information such as the assembly graph,
in which the contigs are connected according to
overlapping reads, and gene markers identified in
the contigs. In this paper, we propose the use of a
Variational AutoEncoder (VAE) tailored to lever-
age auxiliary structural information about contig
relations when learning contig representations for
subsequent metagenomic binning. Our method,
CCVAE, improves on previous work that used
VAEs for learning latent representations of the
individual contigs, by constraining these represen-
tations according to the connectivity information
from the assembly graph. Additionally, we incor-
porate into the model additional information in
the form of marker genes to better differentiate
contigs from different genomes. Our experiments
on both simulated and real-world datasets demon-
strate that CCVAE outperforms current state-of-
the-art techniques, thus providing a more effective
method for metagenomic binning.

1. Introduction
Microbes influence all aspects of life, from our health to
the production of enzymes and materials. Studying the
genomes, functions, and interactions of microbial commu-
nities is beneficial to human life and our environment. As
we only know the genomes of a small percentage of all
existing microbes, more advanced methods are necessary
for increasing the genome recovery rate. Metagenomics is
a rapidly growing field focusing on the analysis and sepa-

1Department of Computer Science, Aalborg University, Aal-
borg, Denmark 2NOVA LINCS, NOVA School of Science and
Technology, Lisbon, Portugal 3Institute of Logic and Computation,
TU Wien, Vienna, Austria 4Center for Microbial Communities,
Aalborg University, Aalborg, Denmark. Correspondence to: Andre
Lamurias <a.lamurias@fct.unl.pt>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

ration of DNA of entire communities of organisms. This is
a complex problem since i) current high-throughput DNA
sequencing technologies only produce fragmented genome
reads and ii) due to the incompleteness of current reference
databases, the full genome of most microbes in environmen-
tal samples remains unknown (Pasolli et al., 2019).

One of the key challenges in metagenomics is the ability
to accurately group DNA subsequences according to their
genomic origin, a process known as metagenomic binning.
In general, binning is a two-step process, where the first
step defines a notion of similarity between DNA sequences
and the second step consists of grouping these sequences
into clusters, which are referred to as bins.1 The input to the
binning process is a set of assembled contiguous DNA se-
quences (contigs). Contigs are obtained by representing the
fragmented sequences as a graph, called an assembly graph,
where each node represents a contig and the edges repre-
sent overlaps between contigs. Most binners only use local
features of the individual contigs (Yang et al., 2021), thus
failing to take full advantage of the relational information
embedded within the assembly graph. Since, by construc-
tion, connected contigs share similar DNA sub-fragments,
we hypothesize that the assembly graph holds potentially im-
portant information that can be exploited during the binning
process.

The contribution of this work is a novel Connectivity-
Constrained variational AutoEncoder (CCVAE) combin-
ing the advantages of existing binning approaches based
only on local contig representations with domain-specific
knowledge from the assembly graph and gene markers.
Our model builds on top of the Variational Autoencoder
(VAE) (Kingma & Welling, 2014) model proposed by Nis-
sen et al. (2021), which we extend with domain-specific
relational contig information. To the best of our knowledge,
this is the first approach to leverage information from both
the assembly graph and marker gene features within a prob-
abilistic model for metagenomics binning. We report on
extensive experiments using both simulated and real-world
datasets for evaluating the performance of CCVAE and
compare our approach to current state-of-the-art techniques.
The results show that CCVAE outperforms current tech-

1In the remainder of this paper, the terms clusters and bins will
be used interchangeably.

1

Metagenomic Binning using Connectivity-constrained Variational Autoencoders

niques in terms of both accuracy and efficiency, with an im-
provement of 5.4% over the best existing method. The code
and data used in the experiments are available at https:
//github.com/MicrobialDarkMatter/ccvae.

2. Domain background
The genome of an organism is the collection of all its ge-
netic information, represented in the form of a sequence of
DNA bases (A T C G). In an environmental sample, we
encounter a combination of genomes from multiple individu-
als. The general metagenomic workflow starts by extracting
and sequencing DNA fragments from the environmental
sample. High-throughput sequencing devices produce raw
electrical signals from the DNA fragments, which are con-
verted into sequences over letters corresponding to the four
DNA bases. This procedure generates millions to billions of
such reads, which may originate from any of the genomes
of all the organisms in the sample. A further complicating
factor is that the reads only correspond to segments of the
genomes, starting from random positions on the genome
and with variable lengths, see Figure 1a. Depending on the
technology used, reads are classified as short reads (100-
150 bases) or long reads (2-30k bases). While longer read
lengths are preferable for fully reconstructing the genome,
up until recently long reads have also been more prone to
errors (Sereika et al., 2021).

To obtain full microbial genomes, which are in the order of
millions of bases, we need to combine the reads into longer
sequences. As one environmental sample contains numer-
ous identical copies of a microbial species, the reads will be
a collection from these organisms starting at random loca-
tions on the genome and, hence, also have partial overlaps if
enough reads are sampled. The process of combining these
reads is called assembly and it involves finding overlaps
between reads to obtain contiguous sequences, called con-
tigs. Assemblers split reads into long k-mers and count how
many times each k-mer occurs in the reads (see Figure 1b
and c). The tool flye (Kolmogorov et al., 2020), for example,
uses a k-mer size of 17 for generating the assembly graph.
These k-mers are then structured in a de Brujin graph (Com-
peau et al., 2011) where the nodes are (k−1)-mers and they
are linked by k-mers. Each edge adds another base to the
sequence (see Figure 1d). Each walk of the de Brujin graph
generates a sequence. Note that a node can have outdegree
greater than one, leading to branches in the graph. For ex-
ample, after the D edge in Figure 1 d, the path can continue
through edge E or L, since both contain the k − 1 sequence
of that node (A T T). The de Brujin graph can be further
simplified so that each node corresponds to the last letter of
its (k − 1)-mer and non-branching paths are merged (see
Figure 1e). Finally, the nodes of the assembly graph (see
Figure 1f) represent contiguous sequences of DNA bases

(contigs), and the edges represent k-mers connecting con-
tigs. The edges have a weight equal to the number of times
the k-mer connecting the two nodes occurs in the data (see
Figure 1c). Although this graph is directed, in practice we
do not take into account the direction of the edges. This is
because the sequence associated with the nodes is not used
directly, and the features we extract from the contigs do not
take into account the sequence.

Figure 1 shows an example assembly graph generation start-
ing from the reads. In a real scenario, the reads are much
longer, leading to longer contigs and, in practice, contigs
smaller than 1kbp are discarded as these are assumed to
be experimental artifacts. Furthermore, larger overlaps are
also necessary to generate significant contigs, due to the
repetitive nature of DNA. Assembly methods such as flye
implement specific strategies to deal with repeats, which are
sequences that repeat consecutively in genomes, leading to
loops in the assembly graph. We extract features from the
contig sequences, which we describe below.

Since the genome of each organism will be split into several
contigs, advanced methods are required to recover high-
quality genomes from a set of contigs. These methods are
referred to as binners as they attempt to partition contigs
into different genome-specific bins. As reads correspond
to actual DNA sequences present in the sample, the read
coverage of a contig will be correlated to the number of or-
ganisms in the sample. For example, if two organisms with
the exact same genome exist in the sample, that genome will
be sequenced twice, while a genome of an organism with
double the number of copies in the sample will be sequenced
four times. This property is called abundance and is a use-
ful feature for binning contigs since contigs from the same
genome should have similar abundance value (Albertsen
et al., 2013). Read coverage is calculated by mapping the
reads of the dataset to the contig sequences. Each base pair
of a contig will overlap with zero or more contigs, therefore,
the mean base coverage is used to represent the abundance
of a contig.

Another useful property for binning are the k-mer frequen-
cies of a contig, generally of size 3 or 4 (also known as
k-mer composition). It has been shown that contigs from
the same genome exhibit similar k-mer patterns (Burge et al.,
1992). The k-mer frequencies are calculated by counting
the number of times each of the possible k-mers occurs in
the sequences. Note that this is different from the assembly
process, where larger k-mer sizes are used. Longer k-mers
would be less frequent and lead to a larger number of k-
mer features, so smaller sizes are often more desirable for
binning.

We can detect which genes are encoded in the contigs by
comparing their sequences with reference databases when
available. An important set of genes are the Single Copy

2

https://github.com/MicrobialDarkMatter/ccvae
https://github.com/MicrobialDarkMatter/ccvae

Metagenomic Binning using Connectivity-constrained Variational Autoencoders

Figure 1. Assembly graph generation. a) The DNA sequences are read from an environmental sample. The raw signal is then converted
into sequences of DNA bases (A G C T). b) While finding the best alignments, the reads are broken into k-mers (k = 4 in this example,
but usually it is much larger), and matching k-mers are aligned. c) k-mers (denoted with bold blue letters for the sake of compactness) are
associated with their multiplicity. d) k-mers are organized in a de Bruijn graph. Here, nodes are (k − 1)-mers and edges are k-mers. e)
Each sequential path is grouped into contigs x1, x2, x3, x4, and x5. A contig contains a sequence of DNA bases (denoted with red letters
in the de Bruijn graph). f) The assembly graph is finally produced, where nodes are contigs and edges are the multiplicities of k-mers
connecting the contigs.

Genes (SCG), which occur only once in the full genome but
which are essential for the functioning and reproduction of
the microbes. Information about the SCGs can be incorpo-
rated into the binning process since two contigs with the
same SCG must belong to different genomes and should
therefore appear in different bins. From this perspective,
an element of the binning task is to partition contigs into
bins that contain a single copy of all the genes in the set of
SCGs.

3. Related Work
In recent years, several binners have been proposed based
on k-mer composition and abundance features (Yang et al.,
2021). One of the best-performing binners based on these
features is MetaBAT2 (Kang et al., 2019). MetaBAT2 uses
these two features to compute a pairwise distance matrix for
all contig pairs, calculated with a k-mer frequency distance
probability and abundance distance probability. The former
is based on an empirical posterior probability obtained from
a set of reference genomes. A graph-based clustering algo-
rithm is then used to bin the contigs based on their distances,
where the contigs are linked according to their similarity
scores. MaxBin2 (Wu et al., 2016) is another method that
uses an Expectation-Maximization algorithm to estimate the
probability of a contig belonging to a particular bin. The
SCGs associated with each contig are used to estimate the
number of bins. Although more k-mer composition and
abundance methods have been proposed (Lu et al., 2017;
Yu et al., 2018), MetaBAT2 and MaxBin2 are the most
established and commonly used ones.

More recently, deep learning-based methods have been used
to improve metagenomic binning. Deep learning models
present an advantage over other statistical methods since the
former types of models have the potential to learn more com-

plex patterns in the data that would otherwise be difficult to
model with standard methods. VAMB (Nissen et al., 2021)
is a binner based on a Variational Autoencoder (Kingma &
Welling, 2014) that encodes k-mer composition and abun-
dance features in a low dimensional embedding, which is
subsequently used for clustering/binning. However the us-
age of deep learning for metagenomics is still in its early
stages and very few works have otherwise explored how
to adapt existing algorithms for the metagenomics domain,
in particular for data generated by more recent sequencing
technologies that produce longer reads (Sereika et al., 2021).

Some recent works have attempted to use the assembly
graph to improve metagenomic binning. The common
assumption is that contigs that are linked in the assem-
bly graph should also be binned together. For example,
GraphBin (Mallawaarachchi et al., 2020) refines bins from
other tools using information from the assembly graph.
Specifically, GraphBin navigates the assembly graph us-
ing a label propagation algorithm and refines clusters that
were separated in the binning process, but which never-
theless contain contigs that are linked in the assembly
graph. Recent models use Graph Neural Networks (GNN)
to learn features from the assembly graph. RepBin (Xue
et al., 2021) proposed a Graph Convolution Network-based
method that was tested on assembly graphs with high ho-
mophily. GraphMB (Lamurias et al., 2022) is also based on
GNNs, but using a VAE for training contig-specific features
which together with a GNN provided graph-level contig
representations for clustering. Other recent works also in-
corporate some sort of additional information into the model
specification or during model training (Pan et al., 2022;
Kieft et al., 2022; Mallawaarachchi & Lin, 2022), but none
of these capture the domain information contained in both
the assembly graph and SCGs.

3

Metagenomic Binning using Connectivity-constrained Variational Autoencoders

Table 1. Symbol definitions
SYMBOL DEFINITION

xt k-mer frequencies
xa abundance features
l length of node in base pairs

nt, na dimension of feature vectors
wt, wa, wkl k-mer, abundance and KL weights

x̂t, x̂a reconstructed features
µz , σz mean and variance of node representations

G Assembly Graph
u, v nodes in G

w(u, v) weight of edge between u and v
zl contig-specific representations
zg graph representations
y node labels

GM set of single-copy genes
Ŷ single-copy genes of a node

4. Methodology
In the following, we use x to denote vectors in Rn (includ-
ing scalars) and X for sets. In CCVAE, the data is always
represented as an assembly graph G = (V, E), where V and
E represent the sets of nodes and edges, respectively. Each
node u ∈ V correspond to a contig of length ℓ(u) ∈ N, rep-
resented as a tuple of features xu = (xu

t ∈ Rnt , xu
a ∈ Rna),

where xu
t are the contig’s k-mer frequencies and xu

a rep-
resents the relative abundances. In all experiments, we
consider xu as the concatenation of xu

t and xu
a which has

size nt+na. The dimensionalities nt and na of both vectors
depend on the specific datasets. Each node u ∈ V is either
associated with a genome (categorical) label yu or a set
(possible ∅) of SCGs Ŷ(u) (up to 104) when genome labels
are not available. The SCGs are inferred by CheckM (Parks
et al., 2015), a standard metagenomic evaluation tool. Note
that in both scenarios CCVAE remains completely unsuper-
vised with respect to the genome labels, which are only used
in the quantitative evaluations. The set of edges (u, v) ∈ E
represents the pairs of nodes connected by the assembly
graph. We adopt this more compact notation instead of a
sparse adjacency matrix. See Table 1 for a summary of the
symbols used throughout this paper.

The edges in the assembly graph do not necessarily imply
that the nodes should have the same label, due to sequencing
errors and genomes with similar sequences, creating erro-
neous edges in the assembly graph. To mitigate this issue,
each edge (u, v) ∈ E is assigned a weight w(u, v) ∈ [0, 1],
which represents the normalized multiplicity of the k-mer
that supports that edge (see Figure 1) and can thus be seen
as the edge confidence. Here, 0 and 1 mean low and high
normalized multiplicity, respectively. Nodes connected by
edges with higher normalized multiplicity are more likely
to belong to the same genome and are therefore more likely
to have the same label.

Figure 2. A Variational Autoencoder is used to learn node repre-
sentations zℓ. The graph structure and node pairs with same SCGs
are used to guide the training process so that contigs with same
SCG (represented by G1, etc. inside each node) are pushed away
and contigs connected by the graph are pushed together. The final
representations are clustered into metagenomic bins and evaluated.

We learn contig representations by encoding k-mers xt and
relative abundances xa with a VAE (see Figure 2). A VAE
consists of an encoder E, parameterized by θE and a de-
coder D, parameterized by θD, where θ = θE ∪ θD. Each
xt is normalized to have zero mean and unitary variance,
while each component of xa is normalized to have a sum
equal to 1 across all the relative abundances. If na = 1, we
do not do this normalization but instead normalize xa the
same way as xt.

The loss function used for training the model consists of
three components

L = Lvae + Le + Lscg,

where Lvae captures the loss related to the contig-specific
features and Le and Lscg incorporate information about the
assembly graph and SCGs, respectively.

4.1. Learning contig-specific representations

The loss function related to the contig specific features is
adopted from (Nissen et al., 2021) and consists of three
components2:

Lvae(xt, xa; θE , θD) =Lt + La + Lkl

=wt ∥xt − x̂t∥2

− wa xT
a log(x̂a + c)

− wkl DKL(N (µz, σz) ∥ N (0, I)),

(1)

where DKL is Kullback-Leibler divergence, c is a small con-
stant which we set to e−9, (µz , log σ2) = E((xt, xa); θE),
and (x̂t, x̂a) = D(z; θE). Thus, the reconstruction error is
separated into two terms capturing the k-mer compositions
and abundances of the contigs, respectively. The k-mer

2In all of our experiments, wa = (1 − α) log(na + 1)−1,
wt = α/nt, and wkl = (nzβ)

−1, where nz is the dimension of
µz , α = 0.15 and β = 200. See also (Nissen et al., 2021).

4

Metagenomic Binning using Connectivity-constrained Variational Autoencoders

reconstruction error, represented by the first line in Equa-
tion 1, corresponds to the Mean Squared Error (MSE) loss.
The abundance reconstruction error, represented by the sec-
ond line, corresponds to the Cross-Entropy loss since the
abundance features can be modeled as probabilities, and a
softmax function is applied to the reconstructed abundance
features x̂a before calculating the loss. However, if na = 1,
we do not use the softmax function on x̂a but instead use
the MSE loss for the abundance features also, in which case
the abundance loss function becomes:

La = wa ∥xa − x̂a∥2. (2)

Learning is performed using gradient descent with one
Monte Carlo sample z for the latent representation, for
which the reparameterization trick is used:

z = µz + ϵ · σ, (3)

where ϵ ∼ N (0, I).

Finally, we use z = µz produced by E as node features in
the following sections.

4.2. Edge and SCG losses

We expand on the VAE model by introducing additional
domain-specific information in the form of the assembly
graph edges:

Le(z
u, zv; θ) = −w(u, v) log(σ(< zu, zv >))

−Q · Evn∼Pn(v) log(1− σ(< zu, zvn >)),

(4)

where θ are the model parameters, σ is the sigmoid function,
< ·, · > denotes the scalar product, w(u, v) is the edge
weight between nodes u and v, Pn is a negative sampling
distribution, and Q is the number of negative sampled. This
way, we are constraining nodes with edges between them
to have more similar features z than randomly sampled
nodes. This is equivalent to the weighted binary cross-
entropy, considering node pairs in the assembly graph as the
positive label.

Similarly, we incorporate the SCG annotation by consider-
ing that contigs with overlapping SCGs should be in dif-
ferent clusters, and therefore have different representations.
This is captured by the loss component

Lscg = −
∑

u,v∈V
I[|Ŷ(u) ∩ Ŷ(v)| > 0]

log(1− σ(< zu, zv >)),

(5)

where I is the indicator function and Ŷ(u) and Ŷ(v) are
the sets of SCGs for nodes u and v, respectively. This
loss encourages different features for nodes with the same

Algorithm 1 Training CCVAE
Input: K-mer features xt, abundance features xa, assem-
bly graph G , and single copy genes Ŷ network parame-
ters θ = θE ∪ θD, number of batches N , loss coefficients
αe, αscg

Initialize encoder and decoder network parameters
θE , θD
while true do

for i = 1, 2, . . . , N do
Sample latent variable zi ∼ qθ(zi|xi)
Compute reconstruction losses Lt(xt, , D(zi)) and
La(xa, , D(zi)) and KL divergence loss Lkl(zi)
(Lvae) (Equation 1)
Compute edge prediction loss Le(G, zi) (Equation
4)
Compute total batch loss L = Lvae + αeLe

Update encoder and decoder network parameters θ
using Adam optimizer on L

end for
Compute SCG loss αscgLscg(Ŷ, z) (Equation 5) for
all pairs and update encoder parameters θE

end while

SCGs. We want nodes with the same SCGs to be in different
clusters, to reduce the contamination of the final results.

Algorithm 1 shows how we combine different training ob-
jectives into our training loop. We divide the edge set V into
N mini-batches. The features of the nodes corresponding
to those edges are fed-forward to the model and used to
calculate the reconstruction and KLD losses. At the end of
each epoch, we optimize for the SCG objective, since only a
small percentage of the nodes of each dataset are annotated
with SCGs, and many batches would otherwise not include
node pairs with SCGs.

4.3. Clustering

For the sake of consistency, we adopt the same clustering
algorithm as in (Nissen et al., 2021), which is a modified
version of the k-medoids algorithm that does not require an
initial specification of the number of clusters. The clustering
algorithm receives as input the concatenation of the contig-
specific and the graph-specific representations, i.e., zu =
(zuℓ , z

u
g), and consists of a three-step process: First, a seed

medoid is found by picking a random zu associated with
a node and calculating the cosine distance to all other zv.
If any node has more neighbors than the current medoid
within a small radius, that node is picked as the new medoid.
The second step consists in determining the cluster radius.
The distance from the chosen medoid to all other nodes
is calculated, and the algorithm tries to find an optimal
distance threshold that includes most of the nearby nodes
but is small enough to exclude distant nodes; this should

5

Metagenomic Binning using Connectivity-constrained Variational Autoencoders

correspond to a local minimum in a histogram plot of the
distances. The third step consists in removing the nodes
within that threshold from the list of nodes to cluster and
returning to step one until no more unclustered nodes are
left. A more detailed description of the algorithm can be
found in (Nissen et al., 2021).

4.4. Evaluation

To evaluate the quality of the bins (clusters), we adopt
the completeness (see Equation 6) and the contamination
(see Equation 7) criteria. Both criteria are domain-specific
and indicate the quality of the clusters, according to the
Minimum Information about a Metagenome-Assembled
Genome (MIMAG) standard set by the Genomic Standards
Consortium (Bowers et al., 2017). Completeness indicates
whether the genome is suitable for a specific downstream
analysis, while contamination indicates the fraction of the
genome that might be contaminated with sequences from
other genomes. These two metrics are required to submit a
genome to public databases and to report it in publications.
Using these criteria, we can classify a bin as a High Quality
(HQ) bin if completeness > 0.9 and contamination < 0.053.

The recommended way of calculating these metrics is to use
the list of SCGs as ground truth (recall that these genes are
present exactly once in the genomes of nearly all bacteria).
Some SCGs are collocated, meaning that they are in close
proximity in the DNA sequence, and so their occurrences
are not fully independent. For this reason, the ground truth
is defined in terms of a set of sets of SCGs, GM , where each
set of SCGs represents a group of collocated SCGs.

The completeness of a bin is given by:

COMP(GM , Ŷ) =
1

|GM |
∑

G∈GM

|G ∩ Ŷ|
|G|

, (6)

where Ŷ represents the multiset of SCGs associated with
the nodes of a single bin. The completeness takes value 1
(the maximum) when all genes from GM are identified in
the bin. Completeness can be associated with the concept
of recall since it measures the fraction of retrieved genes in
the bins.

The contamination of a bin is defined as

CONT(GM , Ŷ) =
1

|GM |
∑

G∈GM

1

|G|
(∑
g∈G

(∑
y∈Ŷ

I[g = y]
)
−1

)
,

(7)
where I is the indicator function which is 1 if g is equal
to y, and 0 otherwise. Here, we assume that if g /∈ Ŷ
the innermost summation in Equation 7 is 0. There is no

3HQ bins are also required to have the 5S, 16S and 23S rRNA
genes and 18 tRNA genes, however, we did not check for these
properties in this work.

maximum value of contamination since it will depend on
the number of times an SCG is duplicated, i.e., a value of
1 means that on average all genes from GM are duplicated
once, and 2 means that all genes have two additional copies
on average.

For simulated datasets, the genomes in the dataset are
known. Therefore, it is possible to map the node sequences
to those genomes and obtain the ground truth genome label
yu of each node. We followed the evaluation criteria for
simulated datasets with ground truth labels as described
in (Meyer et al., 2018): using the AMBER evaluation tool,
we evaluate the precision and recall of each bin according
to the labels of the nodes that constitute the cluster. If a bin
contains all the nodes associated with one label, then that
bin will have a recall of 1, and if it does not contain nodes
of any other labels, it will have a precision of 1. In these
metrics, we also take into account the length sequences as-
sociated with the nodes, because longer sequences will have
a larger impact on recovering the genome sequence than
shorter sequences.

Average precision (AP), average recall (AR), and F1 are
thus defined as follows:

AP =
1

K

K∑
k=1

TPk

TPk + FPk
AR =

1

K

K∑
k=1

TPk

TPk + FNk

F1 =
2 · AP · AR
AP + AR

,

where K is the number of clusters and

TPk =
∑
u∈Ck

ℓ(u)I[yk = yu] FPk =
∑
u∈Ck

ℓ(u)I[yk ̸= yu]

FNk =
∑
u/∈Ck

ℓ(u)I[yk = yu].

Here, yk is the label associated with the cluster Ck, calcu-
lated as the majority label of the node labels belonging to
Ck. Similar to the previous criterion, we considered as HQ
bins those with > 0.9 recall and > 0.95 precision.

5. Experiments
In this section, we present the experimental setup we used to
evaluate our approach on simulated and real-world datasets,
as well as the results obtained using the metrics previously
introduced.

5.1. Data

We perform experiments on one simulated dataset and six
Wastewater Treatment Plant (WWTP) datasets (Table 2).
These are the same datasets used by Lamurias et al. (2022),
where more details about data generation and processing
can be found. The WWTP datasets come from a previous

6

Metagenomic Binning using Connectivity-constrained Variational Autoencoders

Table 2. Datasets used in the experiments. STRONG100 is a sim-
ulated dataset, while the others are real-world datasets. nt is the
dimension of the k-mer frequency features and na is the dimension
of the abundance features.

DATASETS # NODES # EDGES nt na

STRONG100 852 1,952 136 1

AALE 45,831 33,173 136 4
MARI 41,559 35,001 136 4
DAMH 38,578 34,186 136 4
HJOR 21,589 9,742 136 4
HADE 79,609 44,470 136 4
VIBY 27,109 13,235 136 4

study (Singleton et al., 2021), where we have access to four
samples for each WWTP. Recall that the sample of each
treatment plant is associated with a set of contigs, hence the
abundance vector of each contig is of length four with one
entry for each sample.

While the simulated dataset has ground truth labels, map-
ping each node to a specific genome, for the real-world
datasets we do not have access to this information and we
instead follow common practice and estimate the quality
of the binning results in terms of the number of high and
medium quality bins (see Section 4.4). Note that our re-
sults differ from Lamurias et al. (2022) because in that work
CheckM was used, which attempts to find the most specific
set of SCGs for each bin. In this work, we used only the
standard set of Bacterial marker genes. The details of the
graphs of each dataset are reported in Table 2.

5.2. Parameters

The input dimensions of each dataset are specified in Table 2.
The nt value is the same for all datasets as we used k-
mers of size 4 and aggregated k-mers that were the same
as their reverse complement. Both the encoder and decoder
of the VAE consist of two hidden layers with 512 nodes
and leaky ReLU activations. µz and log σ2

z have sizes 32
for the simulated and 64 for the real-world datasets. The
VAE is trained using gradient descent for 1000 epochs with
a learning rate of 1e−3. We used mini-batches of 256 edges
and sampled 10 negative pairs from a uniform distribution.
The loss coefficients were set to αe = 0.1 and αscg = 0.3,
determined empirically through grid search on the Aale
dataset. We explore the effect of these coefficients, as well
as different configurations of the VAE, in Appendix A.

5.3. Results

We compare the results of CCVAE with four competitors
on the same datasets, using the default values specified in
the corresponding papers. All the methods take as input the
contig sequences and their abundances. We also compare

Table 3. Results on the simulated dataset. AP and AR denote
the average precision and recall over all bins. The F1 score is
calculated by considering the harmonic mean of the precision and
recall. VAMB* refers to the model trained with (αe = αscg = 0),
VAE+E refers to the model trained with L = Lvae + Le and
VAE+E+SCG to L = Lvae + Le + Lscg .

MODEL AP AR F1

METABAT2 0.907 0.513 0.655
VAMB 0.967 0.791 0.870
MAXBIN2 0.856 0.761 0.806
GRAPHBIN 0.854 0.530 0.654
GRAPHMB 0.969 0.765 0.855

VAMB* 0.894±0.021 0.864±0.006 0.878±0.009
VAE+E 0.978±0.001 0.812±0.009 0.887±0.005
VAE+E+S 0.973±0.001 0.843±0.015 0.903±0.009

with our optimized implementation of VAMB (Nissen et al.,
2021), which we call VAMB*. This is a special case of our
method where the edge and SCG losses are not taken into
account (αe = αscg = 0).

Specifically, we have compared our approach with
MetaBAT2 (Kang et al., 2019) and MaxBin2 (Wu et al.,
2016), which are generally considered state-of-the-art bin-
ners (Yue et al., 2020; Vosloo et al., 2021). In this
comparison, we have also included VAMB and Graph-
Bin (Mallawaarachchi et al., 2020), with the former being
included as it is the only published binner that uses deep
learning methods, and the latter because it also takes the
assembly graph as input. GraphBin runs on top of another
binner, so it requires the output of another binner as input.
We used MetaBAT2 as the input to GraphBin as it obtained
the best results among the three other binners we consid-
ered. We present the results of the simulated and real-world
datasets separately due to the different evaluation metrics
being used. We evaluate each of the four binners as well as
CCVAE with the three variations. To show the stability of
CCVAE, we ran the experiments three times.

5.3.1. SIMULATED DATA

Table 3 shows the results obtained on the simulated dataset,
where the metrics are calculated on the ground truth labels
of the contigs using the AMBER evaluation tool (Meyer
et al., 2018). These results indicate how the methods work
in a scenario where the original genome of each contig is
known. In this scenario, our method obtained better results
than the other baselines. Without taking into considera-
tion additional features, the VAMB* model obtained the
highest recall, however, the highest F1-score was obtained
using both the assembly graph and SCGs while training
(VAE+E+SCG model). This was an improvement of ap-
proximately 3.8% compared to VAMB, the best-performing
system we compared with.

7

Metagenomic Binning using Connectivity-constrained Variational Autoencoders

5.3.2. REAL-WORLD DATA

As shown in Table 4, we can see that our method outper-
forms the other binners in terms of total HQ bins recovered.
By training our model with additional connectivity informa-
tion, we can consistently obtain more HQ bins than every
other baseline method. In particular, we outperform both
VAMB and MetaBAT2, both of which only rely on local con-
tig features and thus fail to take advantage of the relational
contig information embedded within the assembly graph.
Our VAMB* model trained without additional information
outperformed the best-performing system on these datasets,
MetaBAT2, in terms of the total number of HQ bins across
all datasets. When training with the proposed method, the
total number of HQ bins is also higher.

The improvement is consistent across the datasets, demon-
strating the impact of our method to the metagenomics com-
munity. We saw a significant improvement on the Aale,
Mari, and Hade datasets and comparable results on the
Damh, Hjor, and Viby datasets. We recovered an average of
9.9 more genomes with our method when compared to the
VAMB* baseline, and 13.2 more genomes when compared
to MetaBAT2, a commonly used binner. This represents an
improvement of 3.8% and 5.2%, respectively. Comparing
to the VAMB* baseline, on the Aale dataset we recovered
4.6.0 more genomes, while on the Mari dataset we recovered
1.8 more and 1.1 more on the Hade dataset Furthermore, our
results have low variances in general, showing that it can
consistently obtain the same number of genomes.

As we do not have the ground truth for these datasets, we
do not know how many genomes should be recovered from
each dataset. It is therefore possible that for the Damh, Hjor,
and Viby datasets, the results obtained by our method and
MetaBAT2 are already close to the maximum number of
genomes that can be recovered from that data.

Effect of edge loss In both Table 3 and Table 4 we can
see in the last three rows how augmenting our model with
knowledge from the assembly graph and SCGs improves the
overall results. We first show the VAMB* model that is only
trained with the reconstruction and KLD losses. Adding
the assembly graph edges to the loss improves the results,
obtaining more HQ bins on average on most datasets, and
a higher F1-score on the simulated dataset. We observed
that in the simulated dataset, the homophily is not as high
as in other datasets (Xue et al., 2021) (56% vs 89-97%),
since it is based on long-read sequencing technology, similar
to our real datasets. This means that some contigs from
different genomes will be connected in the graph. The
improvement is therefore not as linear as expected, since we
are not accounting for erroneous edges.

Effect of SCG loss On both types of datasets, we also see
improvements when using the SCG loss in addition to the
edge loss, but the increase is not as pronounced as when
adding the edge loss. We see at least two possible reasons
for this: 1) comparably fewer nodes are associated with at
least one SCG, so the majority of the embeddings are not
affected by this loss component; 2) few nodes with the same
SCGs are connected in the assembly graph, so the edge
loss may already encourage an increasing distance between
these disconnected pairs of nodes.

6. Conclusion
This paper reports on interdisciplinary research between
data science and bioinformatics, addressing the problem of
metagenomic binning of contiguous DNA fragments (con-
tigs). This activity is key for understanding the diversity and
function of microbial communities, which have a direct im-
pact on both health and the environment. We have proposed
CCVAE, a novel method for learning feature representa-
tions for contigs, combining a variational autoencoder with
domain features in the form of marker genes identified in the
contigs as well as an assembly graph in which the contigs
are organized.

We have compared CCVAE with other state-of-the-art
metagenomic binning methods on both simulated and real-
world datasets. We observe that by exploiting the relational
information in the assembly graph, we can significantly
increase the number of high-quality genomes recovered
during the subsequent binning process as compared to the
state-of-the-art baseline methods. On the simulated dataset,
we saw a considerable improvement in the F1-score over
the other methods. By leveraging the SCGs features, we can
obtain additional improvements on both types of datasets.

This work represents an initial step in the exploration of
graph learning methods for metagenomic binning and we
believe that there are several promising directions for further
work. Using Graph Neural Networks (GNN) is a natural
next step on which we have run preliminary experiments.
Previously, Lamurias et al. (2022) proposed a 2-step model,
where local features of a GNN model are defined by the em-
beddings of a VAE. We intend to combine our loss function
with this GNN-based model, and training it end-to-end, so
that both the VAE and GNN models are trained at the same
time. Additionally, we plan to refine the clustering step in
order to better take into account the distribution of SCGs
over the different clusters. This will involve refining the
loss function to promote high completeness and low con-
tamination of the clusters. We expect that these challenges
will have an impact on both the machine learning and the
bioinformatics communities.

8

Metagenomic Binning using Connectivity-constrained Variational Autoencoders

Table 4. Results on real-world datasets, in terms of the number of High-Quality bins. VAMB and our methods (VAE, VAE+E,
VAE+E+SCG) correspond to the average and standard deviation of 5 runs. The highest score on each dataset is bolded. VAMB*
refers to the model trained with (αe = αscg = 0), VAE+E refers to the model trained with L = Lvae + Le and VAE+E+SCG to
L = Lvae + Le + Lscg .

DATASET AALE MARI DAMH HJOR HADE VIBY TOTAL

METABAT2 53 41 50 28 51 30 253
VAMB 42±2 37.3±5.7 41.3±1.5 22±1 47.3±1.5 19±2 208.9
MAXBIN2 20 20 21 14 21 20 116
GRAPHBIN2 16 21 23 16 15 16 107
GRAPHMB 46 48 43 25 52 23 237
VAMB* 55.8±1.3 45.6±0.9 49.8±1.1 26.2±0.8 51.3±2.1 27.6±0.9 256.3
VAE+E 58.8±1.4 47.8±0.9 49.8±1.4 28.4±0.9 52.0±1.1 29.0±0.9 265.8
VAE+E+SCG 60.4±0.4 47.4±1 49.8±0.8 27.8±1.2 52.4±1.9 29.0±0.8 266.2

Acknowledgment
This work was partially funded by VILLUM FONDEN
under grant agreement number 34299. Alessandro Tibo is
now working at AstraZeneca AB R&D, Gothenburg.

References
Albertsen, M., Hugenholtz, P., Skarshewski, A., Nielsen,

K. L., Tyson, G. W., and Nielsen, P. H. Genome se-
quences of rare, uncultured bacteria obtained by differen-
tial coverage binning of multiple metagenomes. Nature
biotechnology, 31(6):533–538, 2013.

Bowers, R. M., Kyrpides, N. C., Stepanauskas, R., Harmon-
Smith, M., Doud, D., Reddy, T., Schulz, F., Jarett, J.,
Rivers, A. R., Eloe-Fadrosh, E. A., et al. Minimum infor-
mation about a single amplified genome (MISAG) and a
metagenome-assembled genome (MIMAG) of bacteria
and archaea. Nature biotechnology, 35(8):725–731, 2017.

Burge, C., Campbell, A. M., and Karlin, S. Over-and
under-representation of short oligonucleotides in DNA
sequences. Proceedings of the National Academy of Sci-
ences, 89(4):1358–1362, 1992.

Compeau, P. E., Pevzner, P. A., and Tesler, G. How to
apply de Bruijn graphs to genome assembly. Nature
biotechnology, 29(11):987–991, 2011.

Kang, D. D., Li, F., Kirton, E., Thomas, A., Egan, R., An,
H., and Wang, Z. MetaBAT 2: an adaptive binning al-
gorithm for robust and efficient genome reconstruction
from metagenome assemblies. PeerJ, 7:e7359, 2019.

Kieft, K., Adams, A., Salamzade, R., Kalan, L., and Anan-
tharaman, K. vRhyme enables binning of viral genomes
from metagenomes. Nucleic Acids Research, 50(14):
e83–e83, 05 2022. ISSN 0305-1048. doi: 10.1093/
nar/gkac341. URL https://doi.org/10.1093/
nar/gkac341.

Kingma, D. P. and Welling, M. Auto-encoding variational
bayes. In ICLR 2014, Banff, AB, Canada, April 14-16,
2014, Conference Track Proceedings, 2014. URL http:
//arxiv.org/abs/1312.6114.

Kolmogorov, M., Bickhart, D. M., Behsaz, B., Gurevich,
A., Rayko, M., Shin, S. B., Kuhn, K., Yuan, J., Pole-
vikov, E., Smith, T. P., et al. metaFlye: scalable long-read
metagenome assembly using repeat graphs. Nature Meth-
ods, 17(11):1103–1110, 2020.

Lamurias, A., Sereika, M., Albertsen, M., Hose, K.,
and Nielsen, T. D. Metagenomic binning with assem-
bly graph embeddings. Bioinformatics, 38(19):4481–
4487, 08 2022. ISSN 1367-4803. doi: 10.1093/
bioinformatics/btac557. URL https://doi.org/
10.1093/bioinformatics/btac557.

Lu, Y. Y., Chen, T., Fuhrman, J. A., and Sun, F. COCA-
COLA: binning metagenomic contigs using sequence
composition, read coverage, co-alignment and paired-end
read linkage. Bioinformatics, 33(6):791–798, 2017.

Mallawaarachchi, V. and Lin, Y. Metacoag: Binning metage-
nomic contigs via composition, coverage and assembly
graphs. In International Conference on Research in Com-
putational Molecular Biology, pp. 70–85. Springer, 2022.

Mallawaarachchi, V., Wickramarachchi, A., and Lin, Y.
GraphBin: refined binning of metagenomic contigs using
assembly graphs. Bioinformatics, 36(11):3307–3313,
2020.

Meyer, F., Hofmann, P., Belmann, P., Garrido-Oter, R.,
Fritz, A., Sczyrba, A., and McHardy, A. C. AMBER:
assessment of metagenome binners. GigaScience, 7(6):
giy069, 2018.

Nissen, J. N., Johansen, J., Allesøe, R. L., Sønderby, C. K.,
Armenteros, J. J. A., Grønbech, C. H., Jensen, L. J.,
Nielsen, H. B., Petersen, T. N., Winther, O., et al. Im-
proved metagenome binning and assembly using deep

9

https://doi.org/10.1093/nar/gkac341
https://doi.org/10.1093/nar/gkac341
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1312.6114
https://doi.org/10.1093/bioinformatics/btac557
https://doi.org/10.1093/bioinformatics/btac557

Metagenomic Binning using Connectivity-constrained Variational Autoencoders

variational autoencoders. Nature biotechnology, pp. 1–6,
2021.

Pan, S., Zhu, C., Zhao, X.-M., and Coelho, L. P. A
deep siamese neural network improves metagenome-
assembled genomes in microbiome datasets across differ-
ent environments. Nature communications, 13(1):1–12,
2022.

Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz,
P., and Tyson, G. W. CheckM: assessing the quality of
microbial genomes recovered from isolates, single cells,
and metagenomes. Genome research, 25(7):1043–1055,
2015.

Pasolli, E., Asnicar, F., Manara, S., Zolfo, M., Karcher, N.,
Armanini, F., Beghini, F., Manghi, P., Tett, A., Ghensi, P.,
et al. Extensive unexplored human microbiome diversity
revealed by over 150,000 genomes from metagenomes
spanning age, geography, and lifestyle. Cell, 176(3):
649–662, 2019.

Sereika, M., Kirkegaard, R. H., Karst, S. M., Michaelsen,
T. Y., Sørensen, E. A., Wollenberg, R. D., and Albertsen,
M. Oxford nanopore R10.4 long-read sequencing enables
near-perfect bacterial genomes from pure cultures and
metagenomes without short-read or reference polishing.
bioRxiv, 2021.

Singleton, C. M., Petriglieri, F., Kristensen, J. M.,
Kirkegaard, R. H., Michaelsen, T. Y., Andersen, M. H.,
Kondrotaite, Z., Karst, S. M., Dueholm, M. S., Nielsen,
P. H., et al. Connecting structure to function with the re-
covery of over 1000 high-quality metagenome-assembled
genomes from activated sludge using long-read sequenc-
ing. Nature communications, 12(1):1–13, 2021.

Vosloo, S., Huo, L., Anderson, C. L., Dai, Z., Sevillano, M.,
and Pinto, A. Evaluating de novo assembly and binning
strategies for time series drinking water metagenomes.
Microbiology spectrum, 9(3):e01434–21, 2021.

Wu, Y.-W., Simmons, B. A., and Singer, S. W. MaxBin 2.0:
an automated binning algorithm to recover genomes from
multiple metagenomic datasets. Bioinformatics, 32(4):
605–607, 2016.

Xue, H., Mallawaarachchi, V., Zhang, Y., Rajan, V., and
Lin, Y. RepBin: Constraint-based graph representa-
tion learning for metagenomic binning. arXiv preprint
arXiv:2112.11696, 2021.

Yang, C., Chowdhury, D., Zhang, Z., Cheung, W. K., Lu,
A., Bian, Z., and Zhang, L. A review of computational
tools for generating metagenome-assembled genomes
from metagenomic sequencing data. Computational and
Structural Biotechnology Journal, 2021.

Yu, G., Jiang, Y., Wang, J., Zhang, H., and Luo, H. BMC3C:
binning metagenomic contigs using codon usage, se-
quence composition and read coverage. Bioinformatics,
34(24):4172–4179, 2018.

Yue, Y., Huang, H., Qi, Z., Dou, H.-M., Liu, X.-Y., Han,
T.-F., Chen, Y., Song, X.-J., Zhang, Y.-H., and Tu, J. Eval-
uating metagenomics tools for genome binning with real
metagenomic datasets and cami datasets. BMC bioinfor-
matics, 21(1):1–15, 2020.

10

Metagenomic Binning using Connectivity-constrained Variational Autoencoders

A. Hyperparameter optimization
We performed several experiments to find the optimal architecture for the VAE, as well as to find the optimal loss coefficients
αe and αscg . All experiments were run on the Aale dataset, and the results were averaged over 3 runs. We picked the values
that obtained the highest average number of HQ bins. In case of a draw, we picked the one with the shortest running time.

Table 5. Effect of the number of VAE layers (encoder and decoder) on the HQ bins and running time.
VAE LAYERS HQ RUNTIME

1 56.7±1.9 1:33:02
2 57.0±0.8 2:01:09
3 54.8±1.8 3:01:42

Table 6. Effect of the number of hidden units on the HQ bins and running time.
HIDDEN UNITS HQ RUNTIME

32 11.0±4.3 1:34:29
64 38.0±2.4 1:46:52
128 49.7±0.5 1:48:40
256 54.3±2.1 1:45:57
512 57.7±0.9 1:46:04
1024 57.7±0.5 1:50:34

Table 7. Effect of the latent dimension size on the HQ bins and running time.
DIMENSION SIZE HQ RUNTIME

16 54.7±0.9 2:02:25
32 58.3±1.2 2:01:04
64 60.0±1.4 2:08:19
128 59.3±1.2 2:14:48

Table 8. Effect of the loss coefficients αe and αscg on the HQ bins. For brevity, we omit the standard deviations and show only the
averages over three runs.

αe/αscg 0 0.1 0.2 0.3 0.5 1
0 57.0 58.3 55.3 55.0 50.3 47.7
0.1 58.3 58.3 58.7 59.7 59.0 57.3
0.2 59.0 57.3 57.3 56.7 57.3 57.7
0.3 57.0 54.7 55.7 56.3 55.3 54.3
0.5 49.0 50.7 50.0 49.0 48.7 48.7
1 43.0 42.3 41.3 41.0 41.7 45

11

