
Speeding Up Bellman Ford via Minimum Violation Permutations

Silvio Lattanzi 1 Ola Svensson 2 Sergei Vassilvitskii 1

Abstract
The Bellman-Ford algorithm is a basic primi-
tive for computing single source shortest paths
in graphs with negative edge-weights. Its running
time is governed by the order the algorithm ex-
amines vertices for iterative updates on the value
of their shortest path. In this work we study this
problem through the lens of ‘Algorithms with Pre-
dictions,’ and show how to leverage auxiliary in-
formation from similar instances to improve the
running time. We do this by identifying the key
problem of Minimum Violation Permutations, and
give algorithms with strong approximation guar-
antees as well as formal lower bounds. We com-
plement the theoretical analysis with an empirical
evaluation, showing that this approach can lead to
a significant speed up in practice.

1. Introduction
Traditionally, worst-case analysis has been the main tool
for understanding algorithms’ performance, as it gives in-
sight into both the complexity and practicality of algorithms.
There are however, numerous examples where worst-case
analysis is overly pessimistic, as the “typical” instances
seen by the algorithm are far from those generating worst-
case bounds. A recent line of work attempts to rigorously
analyze this setting by developing algorithms that get the
best of both worlds — they are consistent, performing near-
optimally on such ‘typical’ examples, but are also robust,
doing not much worse than their classical counterparts on
atypical instances.

Formally, these algorithms are parameterized by some “ad-
vice” that can be efficiently learned from past data. Exam-
ples in this area include efficient data structures (Kraska
et al., 2018; Mitzenmacher, 2018), algorithms for online re-

1Google Research 2EPFL, Switzerland. Correspon-
dence to: Silvio Lattanzi <silviol@google.com>, Ola
Svensson <ola.svensson@epfl.ch>, Sergei Vassilvitskii
<sergeiv@google.com>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

source allocation (Lattanzi et al., 2020; Dinitz et al., 2021;
Gollapudi & Panigrahi, 2019), online-learning (Bhaskara
et al., 2020) and many others, see the overview by Mitzen-
macher & Vassilvitskii (2021) for more details. In many
of the settings learning the best advice for a sequence of
examples is relatively easy, and the main challenge lies in
using it. For instance, for scheduling (Lattanzi et al., 2020)
and matching (Dinitz et al., 2021) the best advice is obtained
by averaging the optimal solution on each instance.

In this work we give an example of the opposite problem.
We consider a basic computer science primitive, finding
single source shortest paths in a graph G = (V,E) with
negative weight edges. The Algorithms 101 solution for
this problem is to use the Bellman-Ford algorithm, which
repeatedly iterates through all of the vertices, updating the
best estimate for the distance from the source every time.
The algorithm terminates when no more updates are made.
An unspecified parameter of the algorithm is the order in
which the vertices should be processed. It is easy to see
that there is an ordering (that of increasing distance from s)
so that the algorithm terminates after a single pass through
the data. On the other hand, in the worst case, one may
require |V | iterations. Since each pass through the data
takes O(|E|) time, the choice of the ordering is critical – it
is the difference between a linear time O(|E|) algorithm,
and much higher running time of O(|E||V |).

From a worst case standpoint, there is almost nothing that
can be done. However suppose that you have access to
graphs G1, G2, . . . , Gk that arise from related shortest path
instances. A natural arising question is whether one can
exploit this “statistical” knowledge by computing the best
ordering for the collection of graphs, i.e. one that minimizes
the total running time of Bellman-Ford on G1, G2, . . . , Gk.
As we will see, this problem will turn out to have connec-
tions to the Feedback Arc Set problem, and is computa-
tionally non-trivial. Nonetheless, we will design effective
algorithms and show that this approach can beat traditional
Bellman-Ford on real world data.

1.1. Our Contributions

Our main goal is to improve the running time of the Bellman-
Ford algorithm in the setting when the examples are not
worst case. To do so, we introduce a pre-processing step

1

Speeding Up Bellman Ford via Minimum Violation Permutations

to the Bellman-Ford algorithm that, given a collection of
typical instances, selects a good order to examine the ver-
tices. In doing so, we allow for a larger (yet still polynomial)
pre-processing cost in order to have a smaller running time
per instance.

• We introduce the Minimum Violation Permutation
(MVP) problem that captures the problem of finding
the best ordering to relax vertices in the algorithm (Sec-
tion 2).

• We show how to approximate the MVP problem by first
getting a fractional solution via Linear Programming,
and then giving a rounding scheme (Section 3.1).

• We give another method that obtains a bi-criteria ap-
proximation, finding a collection of total orders, one
of which is good for each path (Section 3.2).

• We complement our algorithmic results with strong
theoretical lower bounds (Section 4).

• We bound the sample complexity and adapt our tech-
niques to the stochastic variant where we wish to mini-
mize the expected (and not worst-case) running time
of a given distribution of instances (Section A).

• Finally, we give an empirical evaluation of this prob-
lem, and show that a learned ordering can be effective
in speeding up the classical Bellman-Ford algorithm
(Section 5).

1.2. Related Work

There are three main avenues of related work. The first is
on using predictions to improve performance of algorithms.
This line of work started with the seminal work by Kraska
et al. (2018), which demonstrated improved empirical per-
formance. The setup was then extended by Mitzenmacher
(2018) (see also (Mahdian et al., 2007) for an early theoreti-
cal work) and modeled by Lykouris & Vassilvitskii (2021),
we point to the survey by Mitzenmacher & Vassilvitskii
(2021) for an overview of results. For the specific problem
of improving running times, Dinitz et al. (2021) was the
first to apply the algorithms with predictions framework to
show how to warm start the Hungarian algorithms for match-
ings. Chen et al. (2022) built upon this work to generalize to
warm starting multiple primal-dual based graph algorithms.
Importantly, in both of those papers the “advice” is given
in form of a set of dual solutions, whereas in our work we
look for a permutation of the nodes.

One of the applications of the techniques in (Chen et al.,
2022) is the single source shortest path problem with nega-
tive edge-weights. The proposed algorithm is significantly
different and is not based on the Bellman-Ford algorithm.
Instead, the authors use the idea that given an optimal dual
solution, we can transform the instance into one in which

there are no negative edge-weights and use one of the algo-
rithms for such instances (e.g. Dijkstra’s algorithm). This is
similar to the algorithm by Bernstein et al. (2022) that guar-
antees a near-linear running time on any instance without
advice. However, the latter algorithm is significantly more
complex than the Bellman-Ford method.

Another fundamental difference between the two algorithms
is the aforementioned advice/predictions that they receive.
As a result, the algorithms are incomparable from a running
time or experimental perspective. Indeed, both algorithms
run in linear time when the predictions are perfect but as
soon as there is an error in the prediction the running time
of the algorithms diverges because they use different forms
of advice and adjust their behavior differently. Finally, we
also note that the Chen et al. (2022) error measure of the
prediction is pseudo-polynomial (can depend on the value
of the distances) or they lose a

√
n-factor compared to our

polylogarithmic factor.

Next, as we will see the problem that is central to our anal-
ysis is that of Feedback Arc Set (FAS). Given a directed
graph, the FAS problem asks for the minimum (weight) set
of edges to be removed from the graph so that the remain-
der is acyclic. It is well known to be NP-hard, and hard to
approximate in general graphs assuming the unique games
conjecture (Guruswami et al., 2011; Svensson, 2013). For
the special case of tournament graphs (where each pair of
nodes has a directed edge between them), the problem ad-
mits a constant approximation. The best known theoretical
bounds for weighted FAS are due to (Even et al., 1998),
who give a O(log n log log n)-approximation. However, the
algorithms that achieve this approximation are relatively
complex. On the other hand, given the prominence of the
FAS problem, there has been empirical work on the problem,
and relatively simple greedy methods have been shown to
achieve good results (Simpson et al., 2016; Fox et al., 2010).
We will use these methods for our empirical evaluation in
Section 5.

Finally, previous authors have made the observation that
the Bellman-Ford algorithm’s running time is dependent
on the order in which the vertices are processed. We high-
light two works in this regard. The first, by Yen (1970)
showed how to reduce the worst case number of iterations
to |V |/2 by alternating between two orders in successive
iterations. A further improvement was made by Bannister
& Eppstein who proved that a random permutation leads to
|V |/3 iterations in expectation on any instance.

2. Preliminaries
Let G = (V,E) denote a weighted directed graph with
|V | = n nodes and |E| = m edges. For an edge e ∈ E
we let we be the weight of e, and note that some weights

2

Speeding Up Bellman Ford via Minimum Violation Permutations

may be negative, although the graph does not contain any
negative weight cycles.

Given a designated node s ∈ V , the Bellman-Ford algorithm
computes the shortest path from s to every node v ∈ V .
The algorithm maintains an upper bound on the shortest
distance, dv from s to v. It begins by setting dv = ∞
(except ds = 0) and proceeds by iterating over all of the
vertices, and relaxing all of the incoming edges, i.e. for
a vertex v, setting dv = miny:(y,v)∈E dy + w(y, v). It is
elementary to show that if G does not have any negative
weight cycles, the algorithm converges after at most n− 1
iterations through the full vertex order.

Formal problem statement. While the number of itera-
tions is n − 1 in the worst case, we can be more precise
about the number of iterations when considering a specific
ordering of the vertices.

Given a graph G and a node s ∈ V , let Pv =
(s, x1, x2, . . . , v) denote the shortest path from s to v. Let
<tot be an ordering on V where for two vertices u, v, we
have u <tot v if u appears earlier in the order. For a path P ,
let dist(<tot, P) be the number of edges in P reversed by
<tot, i.e., dist(<tot, P) = |{(u, v) ∈ P | v <tot u}|.

We start with the following easy to prove Lemma.

Lemma 2.1. Given a graph G, the running time of the
Bellman-Ford algorithm when using order <tot to process
the vertices is

O(m ·max
v∈V

dist(<tot, Pv)).

Proof. Consider a vertex v ∈ V and the shortest path Pv =
(s, x1, x2, . . . , xp−1, v). Denote the edges of Pv that <tot
reverses by (xij , xij+1) for j = 1, 2, . . . ,dist(<tot, Pv),
where we for notational simplicity let x0 = s and xp = v.
The statement follows by arguing that the shortest distance
from s to v is calculated in at most 2 dist(<tot, Pv) iterations
(since each iteration of Bellman-Ford takes time O(m)).
This follows from the following observation: in the first
iteration, all distances from s to vertices x1, x2, . . . , xi1 are
correctly calculated as we relax the vertices in the order of
Pv for these vertices. In the second iteration the correct
distance to xi1+1 is calculated (when we relax xi1+1), and
then by the same argument as the first iteration, the cor-
rect distances to xi1 + 2, . . . , xi2 are calculated in the third
iteration; and so on.

The above Lemma formally points to the benefit of pro-
cessing vertices in a good order. However the good order
is precisely the one that we are trying to find using the
Bellman-Ford algorithm, so without any additional informa-
tion this knowledge is moot.

Suppose, however, that the graph G is fixed, but the weights
on the edges are drawn from some unknown distribution.
What is the best ordering that we should use?

We first define an abstract problem of Minimum Violation
Permutation (MVP).

Definition 2.2. Given a vertex set V and a set of k paths
P1, P2, . . . , Pk, where each Pi ⊆ V , find a total order <tot
on V that minimizes the objective

max
i∈[k]

dist(<tot, Pi).

In order to see the relationship between MVP and the short-
est path problem, let G = (E, V) and a set of weight
functions w1, w2, . . . , wk. For each i ∈ [k], we define
P iv as the shortest path from s to v under wi. Now consider
the solution <tot to the MVP problem for the set of paths
∪i∈[k] ∪v∈V P iv. This is precisely the solution that reduces
the worst case running time of Bellman-Ford on any of the
graphs G. Specifically, the maximum number of iterations
of the Bellman-Ford algorithm on any of the k instances is
at most maxi∈[k],v∈V dist(<tot, P

i
v) which equals the value

of the solution <tot to the associated MVP instance.

3. Nearly Tight LP-Based Algorithms
Our algorithms in this section use a very natural lin-
ear programming relaxation. Consider a MVP instance
V, P1, . . . , Pk and let E be the edges appearing in the paths.
For each e ∈ E, we have a variable xe with the intended
meaning that xe indicates whether the edge e is reversed in
the total ordering.

minimize T

subject to
∑
e∈Pi

xe ≤ T, for every path Pi,∑
e∈C

xe ≥ 1, for every cycle C in (V,E),

(1)

xe ≥ 0 for every edge e ∈ E. (2)

The first set of constraints say that at most T edges should
be reversed in each path; the second set of constraints is
valid for any total ordering because any such ordering must
reverse at least one edge in any cycle. We refer to this linear
program as LP-MVP. We will also heavily rely on the fol-
lowing theorem proved in (Even et al., 1998), which in turn
builds upon earlier work on the unweighted version (Sey-
mour, 1995). Recall that n = |V | denotes the number of
vertices in the underlying graph (V,E).

Theorem 3.1. Suppose x satisfies (1) and (2), and let
w : E → R≥1 be arbitrary edge-weights taking value

3

Speeding Up Bellman Ford via Minimum Violation Permutations

at least one. There is a polynomial-time algorithm
that returns a feedback arc set of cost at most α · τ ,
where τ =

∑
e∈E xew(e) and α = O(min{log τ ·

log log τ, log n log log n}).

In the next subsection, we use this theorem to give nearly
tight bounds on the integrality gap of LP-MVP. Recall that
the integrality gap is defined as the largest ratio, over all
instances of MVP, of the optimal integral value divided by
the optimal value of the linear program relaxation LP-MVP.
Then, in Section 3.2, we give a bi-criteria algorithm with
improved guarantees. Finally, in Section 3.3 we state the
implications of these algorithms on the Bellman-Ford algo-
rithm.

3.1. Almost tight rounding of linear program

Our rounding algorithm of the linear program relies on a
structural property regarding directed graphs with no short
cycles. Structural questions in directed graphs are often
much more challenging than the counterpart in undirected
graphs, and many questions remain open in combinatorics.
However, (Fox et al., 2010) gave a result that is very close
to what we want to prove. Recall that the girth of a graph
is the length of the shortest cycle. Informally, they proved
that a directed graph with girth g has a feedback arc set
of size at most O(n2/g2). Moreover, this bound is tight.
Here, we give a simple proof that upper bounds the feedback
vertex set in directed graphs of large girth. Recall that, in
the feedback vertex set problem, we are given a directed
graph and the task is to find the minimum set of vertices to
be removed so that the remaining graph is acyclic.

Lemma 3.2. An n-vertex directed graph G with girth g has
a feedback vertex set of size O(τ · log τ log log τ), where
τ = n/g. Moreover, such a feedback vertex set can be found
in polynomial time.

Proof. We obtain digraph H from G by making two copies
of each vertex v, vin and vout, adding a new edge (vin, vout),
and redirecting the edges going into v to vin and those going
out of v so that they go out of vout. We will refer to the
edges of type (vin, vout) as new edges and the other edges as
original edges.

Now let x be fractional solution on H defined by letting xe
equal 1/g on the new edges and x equals 0 on the remaining
original edges. Note that x satisfies constraints (1) and (2)
since the graph has girth g. Letting the weight function w
equal 1 on new edges and ∞ on original edges, we have∑
e xew(e) = n/g = τ . Moreover, Theorem 3.1 implies

that we can in polynomial-time find a set F of only new
edges (since an original edge e has w(e) =∞) such that

|F | = O(τ · log τ log log τ) .

Algorithm 1 LP Rounding Algorithm
Input: A fractional solution x to LP-MVP.
Output: A total order <tot of V .

1: Let g =
√
n log n log log n and F = {e ∈ E | xe ≥

1/g}.
2: Use Lemma 3.2 to find V ′ such that |V ′| = O(g) and

graph (V \ V ′, E \ F) is acyclic.
3: Output<tot obtained by topological sorting (V \V ′, E\
F) and appending the vertices V ′ in an arbitrary order.

The vertices in the original graph corresponding to edges in
F is the desired feedback vertex set.

We remark that the above lemma is almost tight for g =√
n. Indeed, if we consider a cycle of length

√
n where

every vertex is replaced by a “cloud” of
√
n vertices and

every adjacent cloud is a complete bipartite graph, then
the smallest feedback vertex set equals

√
n. We conjecture

that this is the right bound, i.e., that any directed graph
of girth

√
n has a feedback vertex set of size O(

√
n). We

believe that this is an interesting problem in itself. Moreover,
an affirmative solution to this conjecture would imply a
tight rounding algorithm of the linear program LP-MVP
using the techniques we describe next (by replacing g =√
n log n log log n in Algorithm 1 by g =

√
n).

LP-rounding algorithm. Fix an instance V, P1, . . . , Pk
of MVP and let x be a fractional solution to LP-MVP. As
before, we let E denote the edges that appear in the paths.
The first step of our rounding algorithm (Algorithm 1) is
now to identify the edge set F = {e ∈ E : xe ≥ 1/g}
where g =

√
n log n log log n. Note that the feasibility of x

implies that (V,E \F) has girth at least g+1. Indeed, if we
consider a cycle C of length at most g, then

∑
e∈C xe ≥ 1

by the feasibility of x. This in turn implies that at least one
of the edges in C is in F . This allows us to use Lemma 3.2
in the second step of the algorithm to find a feedback vertex
set V ′ of (V,E \F) of size at mostO

(
n
g log n

g log log n
g

)
.

By the selection of g this equals O(g). Finally, Algorithm 1
outputs the total order <tot of V obtained by doing a topo-
logical sort of the acyclic graph (V \ V ′, E \ F) and then
appending the vertices V ′ in any order.

Algorithm 1 clearly runs in polynomial time. It remains to
upper bound its approximation guarantee.

Lemma 3.3. Algorithm 1 outputs a total order <tot such
that

max
i∈[p]

dist(<tot, Pi) = O(g · T + g) ,

where g =
√
n log n log log n.

Proof. We prove that dist(<tot, Pi) = O(g · T + g) for any

4

Speeding Up Bellman Ford via Minimum Violation Permutations

path Pi. If an edge (u, v) ∈ Pi is reversed in <tot, i.e.,
v <tot u, at least one of the following holds:

1. (u, v) ∈ F ,

2. {u, v} ∩ V ′ 6= ∅.

Indeed all other edges of Pi are part of the graph (V \V ′, E\
F) and thus correctly ordered in <tot by the topological sort.
We now bound the impact of F and V ′ on Pi separately. As
F only includes edges of fractional value at least 1/g,∑

(u,v)∈Pi

1{(u, v) ∈ F} ≤
∑

(u,v)∈Pi

x(u,v) · g

≤ T · g .

Now, since Pi is a path, we have that each vertex in Pi
takes part in at most 2 edges (exactly 2 if not an end point).
Therefore,∑

(u,v)∈Pi

1{{u, v} ∩ V ′ 6= ∅} ≤ 2 · |Pi ∩ V ′|

≤ 2|V ′| = O(g) .

Summing up the two bounds yields dist(<tot, Pi) = O(g ·
T + g), which in turn implies the lemma.

It is known that we can solve the linear program LP-MVP
via the ellipsoid method since we can separate efficiently
over the inequalities (it reduces to finding a negative cycle
in a graph). Moreover, we may assume that the optimal
solution has value at least 1. Indeed, otherwise the graph
(V,E) is acyclic and we can easily find an optimal solution
<tot of cost 0 by a simple topological sort. Our rounding
algorithm with an optimal solution to LP-MVP therefore
yields the following theorem:

Theorem 3.4. There is a O(
√
n log n log log n)-

approximation algorithm for the MVP problem.

Lower bound on the integrality gap We complement
the upper bound given by Theorem 3.4 with an al-
most matching lower bound on the integrality gap1 of
LP-MVP. Theorem 3.4 upper bounds this ratio by
O(
√
n log n log log n). We now show that it is lower

bounded by
√
n.

The description of the integrality gap instance of MVP is
as follows. Let q =

√
n. The set V of vertices consists

of q groups of vertices. Group i has q vertices denoted by

1We consider the interesting case when T ≥ 1 as the problem
becomes trivial when the optimal value is 0. Without this con-
straint, the linear program has a trivial integrality gap of n: take
a cycle of length n where each edge belongs to a path by itself in
the MVP instance. For this instance, 1/n is a feasible fractional
solution of value 1/n.

v(i)(1), v(i)(2), . . . , v(i)(q). It is instructive to think that
the groups are ordered, where the vertices of group i appear
before those of group i+ 1. The MVP instance has k = qq

paths: for every possible choice of i1, i2, . . . , iq ∈ [q], there
is a path

v(1)(i1)→ v(1)(i1 +1)→ · · · → v(q)(iq)→ v(q)(iq+1) ,

where we slightly abused notation and also identified v(i)(1)
by v(i)(q + 1).

Let E be the edges that appear in at least one of the paths
in the constructed MVP instances. Define x by letting xe
have value 1/q for every e ∈ E that go between vertices in
the same group; the remaining edges receive x-value 0. It
is easy to see that this definition of x satisfies (5) and (6).
Indeed, the non-negativity (6) of x is immediate. To see
that the cycle constraints (5) are satisfied, it is sufficient to
observe that the only cycles in (V,E) are of the type

v(i)(1)→ v(i)(2)→ · · · → v(i)(q)→ v(i)(1) .

That is, they only contain edges between vertices of the
same group (since all other edges in E go from a group of
index i to the consecutive index i+1). Moreover, the length
of the cycle is q and since x receives value 1/q on each of
these edges the cycle constraints are satisfied. Finally, since
each path P in the MVP instance contains exactly one edge
per group, we have

∑
e∈P xe = 1 and so the value of the

LP solution x is 1.

We now complete the analysis of the integrality gap instance
by showing that any integral solution to the MVP instance
has value at least

√
n. Indeed, any total order<tot of V must

violate at least one edge of the form v(i)(j)→ v(i)(j + 1),
where for notational convenience we also identify v(i)(1) by
v(i)(q + 1). Select i1 to be such an index corresponding to
a reversed edge in the first group. Similarly, let i2, . . . , iq ∈
[q] be the indices of reversed edges in the remaining groups.
Then the path defined for i1, i2, . . . , iq ∈ [q] have at least√
n reversed edges and so <tot has value at least

√
n.

This completes the description and analysis of the integrality
gap instance with a lower bound of

√
n. A final remark is

that the number k of paths in the constructed instance of
MVP is exponential in n. It is an interesting open problem
whether it is always possible to find a total order <tot that
is a O(polylog(k, n)) approximation. While this remains
open, we give a bi-criteria algorithm with similar guarantees
in the next subsection.

3.2. Polylogarithmic bi-criteria approximation

In this section, we give a bi-criteria algorithm that out-
puts a collection O of at most log2(k) total orders with
the guarantee: for any path Pi there is a total order <tot
∈ O such that dist(<tot, Pi) = O(log n log log n). Let

5

Speeding Up Bellman Ford via Minimum Violation Permutations

α = O(log n log log n) be the approximation guarantee
promised by Theorem 3.1.

Fix an MVP instance V, P1, . . . , Pk and a solution x to
LP-MVP of value T . As aforementioned, we can solve
LP-MVP to optimality in polynomial time and so we may
assume that T is at most the value of an optimal solution
to the MVP instance. Algorithm 2 now initializes P to be
the set of all paths. It then repeatedly proceeds as follows.
In Step 3, it defines the edge-weights so that w(e) equals
the number of remaining paths in P that e belongs to. In
Step 4, Algorithm 2 then uses Theorem 3.1 to find a <tot so
that the total weight of reversed arcs (i.e., the total weight
of the feedback arc set) is at most α ·

∑
e xew(e). It adds

this order to the collection O and then remove all paths in
P that have distance at most 2αT to <tot.

Algorithm 2 Bi-criteria Algorithm
Input: A fractional solution x to LP-MVP of value T .
Output: A collection O of total orders of V .

1: Let P = {P1, P2, . . . , Pk} be the family of paths.
2: repeat
3: Define edge-weights w(e) = |{Pi ∈ P | e ∈ Pi}|.
4: Apply Theorem 3.1 using x and w to obtain a total

ordering <tot such that the total weight of reversed
arcs is at most α ·

∑
e xew(e).

5: Add <tot to O.
6: Remove Pi ∈ P from P if dist(<tot, Pi) ≤ 2αT .
7: until P 6= ∅

From the description of the algorithm, it is clear that it only
terminates when for every Pi there is a total ordering <tot∈
O such that dist(<tot, Pi) ≤ 2αT . This thus approximates
the optimal cost within a O(log n log log n) factor if we
start with an optimal solution x to the linear program. It
remains to argue that the collection O is of cardinality at
most log2 k.

Lemma 3.5. Algorithm 2 outputs a collection O of total
orders of cardinality at most log2 k.

Proof. We prove the lemma by arguing that the cardinality
of P is at least halved in each iteration.

The total ordering <tot returned by Theorem 3.1 is such
that the total weight of the reversed arcs is at most α ·∑
e xew(e). Now recall that w(e) equals the number of

paths in P containing e. Thus,

α ·
∑
e∈E

xew(e) = α ·
∑
e∈E

xe
∑
Pi∈P

1{e ∈ Pi}

= α ·
∑
Pi∈P

∑
e∈Pi

xe ≤ α ·
∑
Pi∈P

T = α · |P|T.

Similarly, if we let F = {(u, v) ∈ E : v <tot u} be the
edges reversed by <tot, we can rewrite the total weight of
the reversed arcs as∑

e∈F
w(e) =

∑
e∈F

∑
Pi∈P

1{e ∈ Pi}

=
∑
Pi∈P

|Pi ∩ F | =
∑
Pi∈P

dist(<tot, Pi) .

Combining the above calculations gives
∑
Pi∈P dist(<tot

, Pi) ≤ α · |P|T . In other words, the average number of
edge-reversals over the paths in P is αT . By Markov’s
inequality, we then have that at most half of the paths have
more than 2αT reversals. By Step 6 of Algorithm 2, this
implies that P is halved in each iteration which yields the
lemma.

3.3. Implications on the running time of Bellman-Ford

In this section, we explain the implications of our LP-based
algorithms on the running time of Bellman-Ford. Recall
the setting outlined in the introduction: We are given a
graph G = (V,E), a source s ∈ S, and k weight func-
tions w1, w2, . . . , wk on the edges. It is instructive to think
that these weight functions are drawn from a distribution
of related weight functions. In particular, an improved run-
ning time will be possible by exploiting that the shortest
path problem on the different weight functions are related.
Formally this is captured as follows. For each i ∈ [k], we
define P iv as the shortest path from s to v under wi. Now
any ordering < of V has a worst-case running time over the
k instances that equals (see Lemma 2.1)

O

(
m · max

i∈[k],v∈V
dist(<,P iv)

)
,

where m = |E|. To find the ordering that minimizes the
running time is thus exactly the MVP problem for the set
of paths ∪i∈[k] ∪v∈V P iv . Plugging in Theorem 3.4 immedi-
ately yields the following speed-up of the the Bellman-Ford
algorithm:

Corollary 3.6. Given k shortest path instances w1, . . . , wk

on a graph G, we can in polynomial-time find an ordering
so that the running time of Bellman-Ford is at most Õ(

√
n)

times the running time given by an optimal ordering.

Here we use the Õ(·) notation to suppress logarithmic terms.
The speed-up is obtained by limiting the number of itera-
tions of Bellman-Ford and, for related instances, the above
corollary leads to up to Õ(1/

√
n) fewer iterations compared

to an implementation of Bellman-Ford that does not use a
learned ordering.

While a Õ(
√
n) speed up is significant, we can achieve

a much bigger reduction via our bi-criteria algorithm de-
scribed in Section 3.2. This is obtained by using a clever

6

Speeding Up Bellman Ford via Minimum Violation Permutations

idea that was already present in the early work of (Yen,
1970): to not keep the order fixed. While (Yen, 1970) alter-
nated between two total orders to achieve an upper bound
of n/2 iterations, we will alternate between O(log kn) or-
ders and achieve the optimal number of iterations up to
logarithmic factors. We remark that this implementation
of Bellman-Ford will alternate between O(log kn) orders
as the considered MVP instance contains at most kn paths,
i.e.,

∣∣∪i∈[k] ∪v∈V P iv∣∣ ≤ kn. More formally, given k short-
est path instances w1, . . . , wk on a graph G, we run Algo-
rithm 2 on the paths ∪i∈[k] ∪v∈V P iv to obtain a family O
of O(log kn) orders with the following guarantee:

max
i∈[k],v∈V

min
<∈O

dist(<,P iv) ≤ O(log n log log n)opt,

where opt is the value of maxi∈[k],v∈V dist(<tot, P
i
v) for

a total order <tot that minimizes this expression. Now if
we run Bellman-Ford where we alternate between these
orders, then by the same argument as in the proof of
Lemma 2.1 we have that the correct distance from s to v un-
der weight function wi is calculated in O(min<∈O dist(<
,P iv)) ≤ O(log n log log n)opt alternations. We thus get
the following corollary since one alternation takes time
O(m|O|) = O(m log kn).

Corollary 3.7. Given k shortest path instances w1, . . . , wk

on a graph G, we can in polynomial-time find O(log kn) or-
ders so that the running time of Bellman-Ford that alternates
between these orders is at most O(log(kn) · log n log log n)
times the running time given by an optimal ordering.

4. Hardness of Approximation
In this section we prove a strong hardness of approximation
result assuming the so-called V Label Cover conjecture, in-
troduced in (Brakensiek & Guruswami, 2021) in the similar
spirit as the unique games conjecture. We remark that the
definition of the V Label Cover conjecture is not needed to
understand our reduction, and as it requires the introduction
of a significant amount of additional notation, we refer the
interested reader to Section 3.1 and Conjecture 3.1 of (Brak-
ensiek & Guruswami, 2021) for the precise definitions.

Theorem 4.1. Assuming the V Label Cover conjecture, it is
hard to approximate the MVP problem within any constant
factor. In particular, for any constant c > 1, it is hard to
distinguish instances that have a solution of value 1 from
those that have no solution of value less than c.

The starting point of our hardness proof is a strong hardness
result for coloring hypergraphs that was proved in (Brak-
ensiek & Guruswami, 2021). Specifically, assuming the
V Label Cover conjecture, they proved the following (see
Theorem 1.2 in their paper). For every integer d ≥ 2, given
a d-uniform hypergraph G it is hard to distinguish between
the following cases where q = dd+

√
d− 1/2e:

• (Yes case:) There is a q-coloring of G such that the
vertices in each hyperedge receive distinct colors.

• (No case:) In any q-coloring there is a monochromatic
hyperedge.

Due to space constraints, we describe our reduction from the
hypergraph coloring problem in Appendix B. The reduction
allows us to translate the hardness of the hypergraph color-
ing problem to the MVP problem and we remark that any
improvement in the hardness of the coloring, e.g. improved
hardness factor or weakened assumption, would directly
translate to an improved hardness result of the MVP prob-
lem.

5. Experiments
In this section we complement our theoretical analysis of
the MVP problem along with the implications for speeding
up the Bellman-Ford algorithm with an empirical evaluation,
showing that substantial speed ups can be obtained.

We begin by describing the algorithms we use to compute a
solution to MVP, then describe the synthetic and real world
datasets along with the baselines we consider and finally
describe the results.

5.1. Solving MVP in Practice

Recall that the MVP problem has a close connection the the
Feedback Arc Set problem. While a rich theoretical litera-
ture exists for the latter, many of the theoretically optimal
methods do not scale, and are outperformed by simple, near
linear time heuristics.

Following the work of Simpson et al. (2016), we will adapt
the GreedyFas method, originally due to Eades et al. (1993),
which they showed to have the best performance. This al-
gorithm greedily selects vertices to construct a linear ar-
rangement of the vertices. The intuition behind the method
is to move all nodes with low in-degree to the beginning
of the list and those with low out-degree to the end. More
specifically, the algorithm maintains two lists, s1 and s2,
which are initialized to be empty. In every iteration, first all
sources (nodes with in-degree 0) are removed and appended
to s1, and all sinks (nodes with out-degree 0) are removed
and prepended to the list s2. Finally, a node u, with the
maximum difference between it’s in-degree and out-degree
is removed and appended to s1. This loop repeats until all
vertices are either in s1 or s2, at which point the two lists
are concatenated together. We present the pseudocode in
Algorithm 3.

We will use this linear time method since it is more efficient
than the LP-based methods developed in the previous sec-
tion, and as we will see it already leads to significant speed

7

Speeding Up Bellman Ford via Minimum Violation Permutations

improvements.

Algorithm 3 GreedyFas(G)

1: Input: a directed graph G
2: Output: a permutation of the nodes in G
3: s1 ← ∅, s2 ← ∅.
4: while G is not empty do
5: while G contains a source u do
6: s1 ← s1u
7: Remove u from G
8: end while
9: while G contains a sink u do

10: s2 ← us2
11: Remove u from G
12: end while
13: Pick the vertex u that minimize d−(u)− d+(u)
14: s1 ← s1u
15: Remove u from G
16: end while
17: Return s1s2

5.2. Experimental Setup

In all of our experiments, we begin with four weighted and
directed graphs G1, G2, G3 and H . The graphs Gi will
serve as a training set which we use to compute a solution
to the MVP problem, and the graph H will represent the
test where we evaluate the performance of this approach.
As we will see, the more similar Gi and H are, the bigger
the improvement we can obtain.

It remains to pick the starting node s. Observe, that if s
has out-degree 0 then Bellman-Ford will terminate after one
iteration no matter what ordering is used. To avoid such
trivial cases, we begin by identifying a set of nodes, S in H
that can reach at least half of the nodes in H via directed
paths. We then select a node s ∈ S uniformly at random.
The choice of s induces shortest path trees in each of the
training graphs, Gi, which then serve as input to the MVP
problem. We then run Algorithm 3 to obtain a permutation
on the nodes, and use that to evaluate the performance of
Bellman-Ford in the graph H . Specifically, the input to
Algorithm 3 is the graph formed by taking the union of the
shortest path trees in G1, G2, and G3.

Baselines We consider three kinds of baselines for evalu-
ating our algorithms. First, we appeal to the work of Ban-
nister & Eppstein and use a random ordering of the vertices.
Recall that the authors proved that in this case the expected
worst-case number of iterations is |V |/2. Interestingly we no-
tice that in practice this heuristic works substantially better
than what is predicted by the worst case bounds.

Second, for the real-world data which consists of temporal
graphs (where each edge has an arrival time), we consider

ordering nodes by the time they first appear in H . We call
this ordering temporal ordering.

Third, we considering the ordering of used by the Bellman-
Ford algorithm for the graphs G1, G2, and G3. We notice
that in practice the ordering on G3 gets better performances
and so we report only it in the experimental section. We call
this ordering in this section BF-3 ordering.

Metrics The key metric we report is the number of it-
erations performed by Bellman-Ford under the different
orders for vertex consideration. We remark that this met-
ric is structural, and does not favor the efficiency of one
implementation over another.

We will report the relative improvement in the number of
iterations before convergence. Formally, let BF (π) be the
number of times that the Bellman-Ford algorithm scans
the adjacency list of H before converging when using the
ordering π. The relative improvement of an ordering π′ over
a baseline, π, is 100× BF (π)−BF (π′)

BF (π) .

Finally in all of our experiments we report the average
improvement and the confidence interval over 100 runs of
our experiment where in each iteration we pick a (possibly)
different source.

5.3. Synthetic Data

We begin by studying the performance of our algorithm as
a function of similarity between the training data (graphs
G1, G2, G3) and the test graph H . We generate a layered
graph with 2, 500 layers of four nodes each. We add a fully
connected bipartite graph between successive layers, and
assign each edge a weight chosen uniformly at random from
integers in the range [−10, 10].

To artificially vary the similarity between graphs, in each
experiment we randomly permute node identifiers in the
last x% of the layers in each graph. As x increases from
0 to 100, the potential benefit of training data should fall
substantially.

In Figure 1, we show the relative improvement as a function
of x. As expected when x = 0, the improvement is near
100%, as the learned method finishes in one iteration. We
see the gain decrease as the correlation between training and
test data decreases. Notably, however, even when 90% of
the layers are permuted, we still see a statistically significant
improvement over the random baseline.

5.4. Real World Data

In this experiment we study the impact of our approach on
real world data. In particular we consider four real-world
temporal graphs from the Stanford Large Network Dataset

8

Speeding Up Bellman Ford via Minimum Violation Permutations

Random Ordering Temporal Ordering BF-3 Ordering

CollegeMsg 10.33%± 3.07% 6.07%± 2.71% 1.3%± 1.34%
email-Eu-core 24%± 3.57% 18.75%± 3.94% 3.17%± 2.38%
MathOverflow 21.27%± 2.45% 7.83%± 2.58% 0.85%± 1.39%

AskUbuntu 23.88%± 2.61% 7.15%± 2.11% 1.1%± 1.29%

Table 1. Relative improvement of the MVPbased ordering compared to Random Ordering, Temporal Ordering and BF-3 Ordering on
different real-world datasets.

Figure 1. The relative improvement of the learned ordering com-
pared to a random ordering as the correlation between G1, G2, G3

and Gtest decreases. The dotted line represents the confidence
interval at 95% confidence level.

Collection2: CollegeMsg (Panzarasa et al., 2009), email-
Eu-core (Paranjape et al., 2017), MathOverflow (Paranjape
et al., 2017)and AskUbuntu (Paranjape et al., 2017). These
datasets are diverse in their provenance and in their structure.
The CollegeMsg has 1899 nodes and 20296 temporal edges,
email-Eu-core has 986 nodes and 332334 temporal edges,
MathOverflow has 24818 nodes and 506550 temporal edge-
sand AskUbuntu has 159316 nodes and 964437 temporal
edges.

All of the datasets consist of a list of directed edges with
timestamps. To generate the four graphs G1, G2, G3 and
H we order the edges temporally and then split into four
contiguous groups with an equal number of edges.

In this experiment, in addition to the random order base-
line, we consider two new baselines given by the temporal
ordering in which nodes have been added to H and by
the ordering in which the node have been explored by the
Bellman-Ford algorithm in G3. Intuitively, the last two
ordering are likely to be a very good ordering for Bellman-
Ford because it implicitly captures the temporal order of the
graphs. We present the results in Table 1.

We observe that the learned ordering outperforms both base-
lines for all the datasets and in multiple cases with a sig-
nificant margin. The fact that the relative improvement is

2https://snap.stanford.edu/data/

lower for the temporal ordering and BF-3 ordering confirm
our intuition that this ordering is stronger baseline than the
random ordering for these problems.

6. Conclusion
In this work we showed how to find a good ordering of
vertices to significantly improve the running time of the
Bellman-Ford algorithm. We gave insights into the com-
putational complexity of the problem and coupled it with
experimental results showing the efficacy of relatively sim-
ple methods. Several interesting directions remain. First,
the MVP problem can be seen as an instance of 1-center
clustering under the particular dist functions between order-
ings. Fully resolving its complexity, as well as the natural
extension to k-center are challenging open questions. The
extension to k center can be seen as an instance of having
multiple predictions, as introduced by Anand et al. (2022);
Dinitz et al. (2022).

More broadly, this work continues a line of research showing
how access to some historical data about problem instances
can be rigorously analyzed to give additional improvement
of algorithm performance. Extending this approach to other
common algorithms is a fruitful avenue for future work.

References
Anand, K., Ge, R., Kumar, A., and Panigrahi, D. Online

algorithms with multiple predictions. In Chaudhuri, K.,
Jegelka, S., Song, L., Szepesvari, C., Niu, G., and Sabato,
S. (eds.), Proceedings of the 39th International Confer-
ence on Machine Learning, volume 162 of Proceedings of
Machine Learning Research, pp. 582–598. PMLR, 17–23
Jul 2022.

Bannister, M. J. and Eppstein, D. Randomized Speedup of
the Bellman–Ford Algorithm, pp. 41–47. doi: 10.1137/1.
9781611973020.6.

Bernstein, A., Nanongkai, D., and Wulff-Nilsen, C.
Negative-weight single-source shortest paths in near-
linear time. In 63rd IEEE Annual Symposium on Foun-
dations of Computer Science, FOCS 2022, Denver, CO,

9

https://snap.stanford.edu/data/

Speeding Up Bellman Ford via Minimum Violation Permutations

USA, October 31 - November 3, 2022, pp. 600–611. IEEE,
2022.

Bhaskara, A., Cutkosky, A., Kumar, R., and Purohit, M.
Online learning with imperfect hints. In Proceedings of
the 37th International Conference on Machine Learning,
ICML 2020, 13-18 July 2020, Virtual Event, volume 119
of Proceedings of Machine Learning Research, pp. 822–
831. PMLR, 2020. URL http://proceedings.
mlr.press/v119/bhaskara20a.html.

Brakensiek, J. and Guruswami, V. The quest for strong in-
approximability results with perfect completeness. ACM
Trans. Algorithms, 17(3):27:1–27:35, 2021.

Chen, J. Y., Silwal, S., Vakilian, A., and Zhang, F. Faster
fundamental graph algorithms via learned predictions.
CoRR, abs/2204.12055, 2022. doi: 10.48550/arXiv.
2204.12055. URL https://doi.org/10.48550/
arXiv.2204.12055.

Dinitz, M., Im, S., Lavastida, T., Moseley, B., and
Vassilvitskii, S. Faster matchings via learned duals. In
Ranzato, M., Beygelzimer, A., Dauphin, Y. N., Liang,
P., and Vaughan, J. W. (eds.), Advances in Neural
Information Processing Systems 34: Annual Conference
on Neural Information Processing Systems 2021,
NeurIPS 2021, December 6-14, 2021, virtual, pp. 10393–
10406, 2021. URL https://proceedings.
neurips.cc/paper/2021/hash/
5616060fb8ae85d93f334e7267307664-Abstract.
html.

Dinitz, M., Im, S., Lavastida, T., Moseley, B., and Vassil-
vitskii, S. Algorithms with prediction portfolios, 2022.
URL https://arxiv.org/abs/2210.12438.

Eades, P., Lin, X., and Smyth, W. A fast
and effective heuristic for the feedback arc set
problem. Information Processing Letters, 47(6):
319–323, 1993. doi: 10.1016/0020-0190(93)
90079-O. URL https://researchrepository.
murdoch.edu.au/id/eprint/27510/.

Even, G., Naor, J., Schieber, B., and Sudan, M. Ap-
proximating minimum feedback sets and multicuts in
directed graphs. Algorithmica, 20(2):151–174, 1998. doi:
10.1007/PL00009191. URL https://doi.org/10.
1007/PL00009191.

Fox, J., Keevash, P., and Sudakov, B. Directed graphs with-
out short cycles. Comb. Probab. Comput., 19(2):285–301,
2010. doi: 10.1017/S0963548309990460. URL https:
//doi.org/10.1017/S0963548309990460.

Gollapudi, S. and Panigrahi, D. Online algorithms for
rent-or-buy with expert advice. In Chaudhuri, K. and

Salakhutdinov, R. (eds.), Proceedings of the 36th Inter-
national Conference on Machine Learning, ICML 2019,
9-15 June 2019, Long Beach, California, USA, volume 97
of Proceedings of Machine Learning Research, pp. 2319–
2327. PMLR, 2019. URL http://proceedings.
mlr.press/v97/gollapudi19a.html.

Guruswami, V., Håstad, J., Manokaran, R., Raghavendra, P.,
and Charikar, M. Beating the random ordering is hard:
Every ordering CSP is approximation resistant. SIAM J.
Comput., 40(3):878–914, 2011.

Kraska, T., Beutel, A., Chi, E. H., Dean, J., and Polyzotis,
N. The case for learned index structures. In Proceedings
of the 2018 International Conference on Management of
Data, pp. 489–504. ACM, 2018.

Lattanzi, S., Lavastida, T., Moseley, B., and Vassilvitskii,
S. Online scheduling via learned weights. In Chawla, S.
(ed.), Proceedings of the 2020 ACM-SIAM Symposium
on Discrete Algorithms, SODA 2020, Salt Lake City, UT,
USA, January 5-8, 2020, pp. 1859–1877. SIAM, 2020.
doi: 10.1137/1.9781611975994.114. URL https://
doi.org/10.1137/1.9781611975994.114.

Lykouris, T. and Vassilvitskii, S. Competitive caching with
machine learned advice. J. ACM, 68(4):24:1–24:25, 2021.
doi: 10.1145/3447579. URL https://doi.org/10.
1145/3447579.

Mahdian, M., Nazerzadeh, H., and Saberi, A. Allocating
online advertisement space with unreliable estimates. In
MacKie-Mason, J. K., Parkes, D. C., and Resnick, P.
(eds.), Proceedings 8th ACM Conference on Electronic
Commerce (EC-2007), San Diego, California, USA, June
11-15, 2007, pp. 288–294. ACM, 2007.

Mitzenmacher, M. A model for learned bloom filters and
optimizing by sandwiching. In Advances in Neural Infor-
mation Processing Systems, pp. 464–473, 2018.

Mitzenmacher, M. and Vassilvitskii, S. Algorithms with
Predictions, pp. 646–662. Cambridge University Press,
2021. doi: 10.1017/9781108637435.037.

Panzarasa, P., Opsahl, T., and Carley, K. M. Patterns and
dynamics of users’ behavior and interaction: Network
analysis of an online community. Journal of the American
Society for Information Science and Technology, 60(5):
911–932, 2009.

Paranjape, A., Benson, A. R., and Leskovec, J. Motifs in
temporal networks. In Proceedings of the tenth ACM
international conference on web search and data mining,
pp. 601–610, 2017.

Seymour, P. D. Packing directed circuits fractionally. Comb.,
15(2):281–288, 1995.

10

http://proceedings.mlr.press/v119/bhaskara20a.html
http://proceedings.mlr.press/v119/bhaskara20a.html
https://doi.org/10.48550/arXiv.2204.12055
https://doi.org/10.48550/arXiv.2204.12055
https://proceedings.neurips.cc/paper/2021/hash/5616060fb8ae85d93f334e7267307664-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/5616060fb8ae85d93f334e7267307664-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/5616060fb8ae85d93f334e7267307664-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/5616060fb8ae85d93f334e7267307664-Abstract.html
https://arxiv.org/abs/2210.12438
https://researchrepository.murdoch.edu.au/id/eprint/27510/
https://researchrepository.murdoch.edu.au/id/eprint/27510/
https://doi.org/10.1007/PL00009191
https://doi.org/10.1007/PL00009191
https://doi.org/10.1017/S0963548309990460
https://doi.org/10.1017/S0963548309990460
http://proceedings.mlr.press/v97/gollapudi19a.html
http://proceedings.mlr.press/v97/gollapudi19a.html
https://doi.org/10.1137/1.9781611975994.114
https://doi.org/10.1137/1.9781611975994.114
https://doi.org/10.1145/3447579
https://doi.org/10.1145/3447579

Speeding Up Bellman Ford via Minimum Violation Permutations

Simpson, M., Srinivasan, V., and Thomo, A. Efficient com-
putation of feedback arc set at web-scale. Proceedings of
the VLDB Endowment, 10(3):133–144, 2016.

Svensson, O. Hardness of vertex deletion and project
scheduling. Theory Comput., 9:759–781, 2013.

Yen, J. Y. An algorithm for finding shortest routes from all
source nodes to a given destination in general networks.
Quarterly of Applied Mathematics, 27:526–530, 1970.

11

Speeding Up Bellman Ford via Minimum Violation Permutations

A. Stochastic Version
We bound the sample complexity and adapt our techniques to the stochastic version. In this setting, we are given a graph
G = (V,E), a source s, and a distribution D of weight functions on the edges. The goal is to find a permutation (or rather a
small family of permutations) of the vertices so as to minimize the expected running time of the Bellman-Ford algorithm on
the instance obtained by sampling the edge weights from D.

We use the following notation for a given weight function w on the edges of G. We let Pwv denote a fixed shortest path
from s to v under w. This is similar to the notation used in Section 3.3 and, as observed in that section, the running time of
Bellman-Ford with ordering < of V equals O(m ·maxv∈V dist(<,Pwv)) and so the expected running time is O(m) times

Ew∼D
[
max
v∈V

dist(<,Pwv)

]
.

We will achieve a near-optimal running time (up to polylogarithmic factors) by using the idea of alternating between a small
(logarithmic-sized) family O of orders (as also done in Corollary 3.7). For such a family O of orderings, the Bellman-Ford
algorithm that alternates between them, has a running time of O(m · |O|) times

Ew∼D [Val(O, w)] , where Val(O, w) = max
v∈V

min
<∈O

dist(<,Pwv) . (3)

To see the claim, observe that the shortest path Pwv from s to v is guaranteed to be calculated after the Bellman-Ford
Algorithm has relaxed the vertices in the order of arg min<∈O dist(<,Pwv) for min<∈O dist(<,Pwv) many iterations; and
since we now alternate between |O| many orders, each iteration that goes through all orders takes time m · |O|.

Our problem is then to find a small family O so as to minimize (3). We first bound the sample complexity of this problem
(Section A.1) and then obtain a good family of orderings (Section A.2).

A.1. Sample Complexity

As there is a finite number of permutations (n! many), we get the following uniform convergence guarantees via a standard
usage of concentration bounds and the union bound.
Lemma A.1. Let W be the weight functions obtained by k independent samples of D. Fix ε, δ > 0. If k ≥
n4 log n log(1/δ)/ε2, then with probability at least 1− δ the following holds

(1− ε)Ew∼D[Val(O, w)] ≤ 1

k

∑
w∈W

Val(O, w) ≤ (1 + ε)Ew∼D[Val(O, w)]

for every family O of at most n permutations.

Proof. By definition, we have 0 ≤ Val(O, w) ≤ n− 1 for any O and w. Now if we fix any O,
∑
w∈W Val(O, w) is a sum

of k independent random variables taking values in [0, n]. Hence, Hoeffding’s inequality implies

Pr

[∣∣∣∣∣1k ∑
w∈W

Val(O, w)− Ew∼D[Val(O, w)]

∣∣∣∣∣ > ε

]
≤ 2 exp

(
−2kε2

n2

)
.

There are at most (n!) + (n!)2 + . . .+ (n!)n ≤ nn2

ways to select at most n permutations, i.e., possible values of O. Thus,
by the union bound, we get that the inequalities of the lemma are satisfied with probability at least

1− nn
2

· 2 exp

(
−2kε2

n2

)
which is greater than 1− δ by the selection of k.

A.2. Finding Good Orderings for Bellman-Ford

Equipped with Lemma A.1, if we formW by taking k = Θ(n5) samples from D, then with overwhelming probability

1

2
Ew∼D[Val(O, w)] ≤ 1

k

∑
w∈W

Val(O, w) ≤ 2Ew∼D[Val(O, w)] (4)

12

Speeding Up Bellman Ford via Minimum Violation Permutations

for every family O of at most n permutations. We now proceed to consider the computational problem of finding a set O
so as to minimize 1

k

∑
w∈W Val(O, w). Our approach is an adaptation of the bi-criteria rounding algorithm described in

Section 3.2. We first adapt the linear program LP-MVP to the stochastic setting:

minimize
∑
w∈W

Tw

subject to
∑
e∈Pw

v

xe ≤ Tw, for every vertex v ∈ V and weight function w ∈W ,

∑
e∈C

xe ≥ 1, for every cycle C in (V,E), (5)

xe ≥ 0 for every edge e ∈ E. (6)

As described in 3.1, the linear program relaxes the problem of finding a total ordering of the vertices V . Hence, assuming (4)
holds, we have that the value of an optimal solution to the linear program is at most

2Ew∼D[Val(<,w)]

for any permutation < of the vertices. In other words, the value of the linear program is at most the value of an optimal
permutation. We now adapt our bi-criteria algorithm (Algorithm 2) to this setting. Recall that α = O(log n log log n) is the
approximation guarantee promised by Theorem 3.1.

Algorithm 4 Stochastic Bi-criteria Algorithm
Input: A fractional solution x to the linear program of value

∑
w∈W Tw.

Output: A collection O of total orders of V .
1: For w ∈ W , let Pw = {Pwv | v ∈ V } be the family of paths corresponding to weight function w.
2: repeat
3: Define edge-weights w(e) =

∑
w∈W |{Pwv ∈ Pw | e ∈ Pwv }|/Tw.

4: Apply Theorem 3.1 using x and w to obtain a total ordering <tot such that the total weight of reversed arcs is at most
α ·
∑
e xew(e).

5: Add <tot to O.
6: For w ∈ W , remove Pwv ∈ Pw from Pw if dist(<tot, P

w
v) ≤ 2αTw.

7: until P 6= ∅

The analysis of the above algorithm is similar to that of Algorithm 2. Indeed, by definition, we have∑
w∈W

Val(O, w) ≤ 2α
∑
w∈W

Tw

and we have the following version of Lemma 3.5:

Lemma A.2. Algorithm 4 outputs a collection O of total orders of cardinality at most log2(kn).

Proof. Similarly to the proof of Lemma 3.5, we prove the statement by arguing that
∑
w∈W |Pw| is at least halved in each

iteration. The statement then follows since
∑
w∈W |Pw| equals |W |n = kn initially.

The total ordering <tot returned by Theorem 3.1 is such that the total weight of the reversed arcs is at most α ·
∑
e xew(e).

By recalling the definition of w(e) and using that x is a feasible solution to the linear program,

α ·
∑
e∈E

xew(e) = α ·
∑
e∈E

xe
∑
w∈W

∑
Pw

v ∈Pw

1{e ∈ Pwv }/Tw

= α ·
∑
w∈W

∑
Pw

v ∈Pw

∑
e∈Pw

v

xe/Tw ≤ α ·
∑
w∈W

∑
Pw

v ∈Pw

1 ≤ α
∑
w∈W

|Pw| .

13

Speeding Up Bellman Ford via Minimum Violation Permutations

Moreover, if we let F = {(u, v) ∈ E : v <tot u} be the edges reversed by <tot, we can rewrite the total weight of the
reversed arcs as ∑

e∈F
w(e) =

∑
e∈F

∑
w∈W

∑
Pw

v ∈Pw

1{e ∈ Pwv }/Tw

=
∑
w∈W

∑
Pw

v ∈Pw

|Pwv ∩ F |/Tw =
∑
w∈W

∑
Pw

v ∈Pw

dist(<tot, P
w
v)/Tw .

Combining the above calculations gives∑
w∈W

∑
Pw

v ∈Pw

dist(<tot, P
w
v)/Tw ≤ α

∑
w∈W

|Pw| .

By Markov’s inequality, we have that at most half of the paths Pwv have dist(<tot, P
w
v) > 2αTw. By Step 6 of Algorithm 4,

this implies that
∑
w∈W |Pw| is halved in each iteration which yields the lemma.

We summarize the implications on Bellman-Ford. Given a distribution D of weight functions w on a graph G = (V,E)
with source s, we proceed as follows:

1. Sample k = Θ(n5) weight functions from D and letW be the obtained weights.

2. Use Algorithm 4 to obtain a family of O(log n) orderings O in polynomial-time with the guarantee∑
w∈W

Val(O, w) ≤ 2α
∑
w∈W

Tw .

3. Run the Bellman-Ford Algorithm where we alternate between the orders in O.

By Lemma A.1, we have with overwhelming probability (over the k samples) that

Ew∼D Val(O, w) ≤ 2
1

k

∑
w∈W

Val(O, w) ≤ O(α)Ew∼D max
v∈V

dist(<tot, P
w
v)

where <tot denotes an optimal ordering minimizing the expression of the right (i.e., the expected number of iterations of
Bellman-Ford with an optimal permutation forD). Moreover, as a single alternation of all orders inO takes timeO(m|O|) =
O(m log n) we have the following theorem by the same argument as for Corollary 3.7 (recall that α = O(log n log log n)).

Theorem A.3. Given a distribution D of shortest path instances on a graph G and source s, we can in polynomial-time
find O(log n) orders so that the expected running time of Bellman-Ford that alternates between these orders is at most
O(logn log log n) times the expected running time given by an optimal ordering for distribution D.

B. Proof of Theorem 4.1
Recall that the starting point of our hardness proof is a strong hardness result for coloring hypergraphs that was proved
by Brakensiek & Guruswami (2021). For convenience, we restate their result here. Assuming the V Label Cover conjecture,
they proved (see Theorem 1.2 in their paper) the following. For every integer d ≥ 2, given a d-uniform hypergraph G it is
hard to distinguish between the following cases where q = dd+

√
d− 1/2e:

• (Yes case:) There is a q-coloring of G such that the vertices in each hyperedge receive distinct colors.

• (No case:) In any q-coloring there is a monochromatic hyperedge.

We now describe our reduction from the hypergraph coloring problem. We then give the analysis and show that the above
stated hardness of the coloring problem implies the theorem.

In our reduction we set d to equal the constant c in the theorem statement. Recall q = dd+
√
d− 1/2e. Now starting with a

d-uniform hypergraph G = (V,E), we arbitrarily order the vertices V by < and construct a MVP instance as follows:

14

Speeding Up Bellman Ford via Minimum Violation Permutations

• For each vertex v ∈ V , the MVP instance has q elements, referred to as v(1), v(2), . . . , v(q). For ease of notation we
also refer to v(1) as v(q + 1).

• For each hyperedge e ∈ E with d vertices v1, v2, . . . vd indexed so that v1 < v2 < · · · < vd we construct q paths in
our MVP instance. Specifically, for each color i ∈ {1, 2, . . . , q}, the MVP instance has the path

v1(i)→ v1(i+ 1)→ v2(i)→ v2(i+ 1)→ · · ·
· · · → vd(i)→ vd(i+ 1) .

This completes the description of the reduction. Observe that it clearly runs in polynomial time in the size of G since d and
thus q is a constant. It remains to prove that it implies the stated hardness of the MVP problem. Specifically, we shall show
that the constructed MVP instance has a solution of value 1 in the yes case whereas in the no-case any solution has value at
least c. We start with the yes case, i.e., we assume that there is a coloring χ : V → {1, 2, . . . , q} of V such that the vertices
in each hyperedge receive distinct colors. Using this coloring we define the total ordering <tot of the elements as follows.
All elements corresponding to vertex u appear before those corresponding to vertex v in <tot if u < v. Further, the elements
corresponding to vertex v are ordered as

v(χ(v) + 1) <tot · · · <tot v(q) <tot v(1) <tot · · · <tot v(χ(v)) .

In words, the total order <tot satisfies v(i) <tot v(i+ 1) for all colors i except χ(v). Hence, by construction, any path P
corresponding to hyperedge e and color i has dist(P,<tot) equal to the number of vertices in e with color i. This is at most
1 in the yes case and thus the MVP instance has a total order of value 1 in this case.

We proceed to prove that any solution has value at least d in the no case. Consider any total order <tot of the elements of the
MVP instance and define a coloring χ : V → {1, . . . , q} by selecting an arbitrary color in

{i ∈ {1, . . . , q} | v(i+ 1) <tot v(i)}

for every vertex v. Note that the above set is empty as <tot cannot contain the cycle v(1)→ · · · → v(q)→ v(q+ 1) = v(1).
By the assumption of the no case, there must be a hyperedge e that is monochromatic with respect to χ. If we let i be the
color that the vertices of e receives, then the path corresponding to e and color i has all edges reversed. This implies that
<tot has value d.

We have thus proved that it is hard to distinguish whether the MVP instance has an optimal solution of value 1 or d = c for
any constant c. This completes the proof of the theorem.

15

