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Abstract
This paper focuses on the cluster description prob-
lem where, given a dataset and its partition into
clusters, the task is to explain the clusters. We in-
troduce a new approach to explain clusters by con-
structing a polyhedron around each cluster while
minimizing either the complexity of the resulting
polyhedra or the number of features used in the
description. We formulate the cluster description
problem as an integer program and present a col-
umn generation approach to search over an expo-
nential number of candidate half-spaces that can
be used to build the polyhedra. To deal with large
datasets, we introduce a novel grouping scheme
that first forms smaller groups of data points and
then builds the polyhedra around the grouped data,
a strategy which out-performs the common ap-
proach of sub-sampling data. Compared to state
of the art cluster description algorithms, our ap-
proach is able to achieve competitive interpretabil-
ity with improved description accuracy.

1. Introduction
Machine learning (ML) is becoming an omnipresent aspect
of the digital world. While ML systems are increasingly au-
tomating tasks such as image tagging or recommendations,
there is increasing demand to use them as decision support
tools in a number of settings such as criminal justice (Rudin
& Ustun, 2018; Završnik, 2021; Berk, 2012), medicine (Ra-
jkomar et al., 2019; Ustun & Rudin, 2016; Varol et al., 2017),
and marketing (Ma & Sun, 2020; Hair Jr & Sarstedt, 2021;
Dzyabura & Yoganarasimhan, 2018). Thus it is becoming
increasingly critical that human users leveraging these ML
tools understand and critique the outputs of the ML models
to trust and act upon the recommendations. This is espe-
cially true for clustering, an unsupervised machine learning
task, where a set of unlabelled data points are partitioned
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into groups (Xu & Wunsch, 2005). Clustering is often used
in industry as a tool to find sub-populations in a dataset such
as customer segments (Kansal et al., 2018), different media
genres (Daudpota et al., 2019), or even patient subgroups in
clinical studies (Wang et al., 2020). In these settings, practi-
tioners often care less about the actual cluster assignments
(i.e. which user is in which group) but rather a description
of the groups found (i.e. a segment of users that consistently
buy certain kinds of products). Unfortunately, many clus-
tering algorithms only output cluster assignments, forcing
users to work backwards to construct cluster descriptions.

This paper focuses on the cluster description problem, where
a fixed clustering partition of a set of data points with real or
integer coordinates is given and the goal is to find a compact
description of the clusters. This problem occurs naturally
in a number of settings where a clustering has already been
performed either by a black-box system, or on unseen or
complex data (for example a graph structure) and needs to
be subsequently explained using features that may not have
even been used in the initial cluster assignment.

In this paper we introduce a new method for cluster descrip-
tion that treats each data point as a vector in Rn and works
by constructing a polyhedron around each cluster to act as
its explanation, henceforth referred to as polyhedral descrip-
tions. Each polyhedron is obtained by intersecting a (small)
number of half spaces. We measure the interpretability of
these polyhedra using two different notions: complexity,
which is defined to be the number of half-spaces used plus
the sum of the number of nonzero coefficients used to de-
fine each half-space, or sparsity, which is defined to be the
number of features used across all half-spaces defining the
polyhedra. If the convex hulls of the data points in each
cluster do not intersect, then the half spaces defining the
convex hull of the points in a cluster gives a polyhedral
description for the cluster. However, such polyhedra may
not have desirable interpretability characteristics as it might
require a large number of half-spaces or involve many fea-
tures. In this case a simpler explanation with some error
might be more desirable. Furthermore, if the convex hulls of
the clusters intersect then no error-free polyhedral descrip-
tion exists. Figures 1 and 2 show examples of the polyhedra
associated with both cases.

In our setting, the accuracy of a cluster explanation is mea-
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Figure 1. (Left) A sample set of clusters to be explained where the convex hulls do
not intersect and perfect explanation is possible. (Middle) Polyhedral description
using convex hull of clusters. (Right) Lower complexity polyhedral description.

Figure 2. (Left) Sample set of clusters where convex
hulls intersect and perfect explanation is impossible.
(Right) Polyhedral description for clusters where con-
vex hull intersects with best accuracy.

sured by the fraction of data points that are correctly ex-
plained (i.e. included in the polyhedron of their cluster and
not included in other polyhedra). This framework allows the
cluster explanation to trade-off accuracy with interpretabil-
ity. Moreover, we can explicitly optimize the interpretability
of the final polyhedral descriptions with respect to both com-
plexity and sparsity. While a polyhedron may not initially
seem like an interpretable model class, additional constraints
placed on the half-spaces that construct the polyhedron al-
lows cluster descriptions from popular interpretable model
classes such as rule sets (Lawless et al., 2021; Wang et al.,
2017; Rudin & Ertekin, 2018) and score cards (Ustun &
Rudin, 2017).

1.1. Related Work

Existing work in interpretable clustering can be broadly di-
vided into two groups: cluster description, where cluster
assignments are given and the task is to explain them (our
work builds on this line of research); or interpretable clus-
tering approaches, where cluster assignments are generated
using an interpretable model class.

A common approach for cluster description is to simply use
a supervised learning algorithm to predict the cluster label
assignments that are already given (Jain et al., 1999; De Kon-
inck et al., 2017; Kauffmann et al., 2019). Broadly this can
be seen as the application of multi-class classification (Aly,
2005) to cluster description. However, multi-class classi-
fication and cluster description differ in a few important
characteristics. In multi-class classification the objective
is to maximize classification accuracy, whereas the aim of
cluster description is to explain the given clusters as sim-
ply as possible. In other words, cluster description aims
to optimize interpretability with constraints on accuracy.
Multi-class classification models are also expected to per-
form inference (i.e. make a prediction on new data). In
cluster description there is no guarantee that the explanation
is a partition of the feature space, and thus new data points
can possibly fall outside all existing cluster descriptions.

In a recent work Carrizosa et al. (2022) introduce an integer

programming (IP) framework for selecting a single proto-
type data point from each cluster and build a ball around
it to act as a description for the cluster. While selecting a
prototype point has an intuitive appeal, the resulting expla-
nation can be misleading or uninformative if clusters are
not compact or isotropic (i.e. have equal variance in all
directions). Davidson et al. (2018) introduce a version of
the cluster description problem where each data point has
an associated set of tags coming from a discrete set. The
goal of their formulation is to find a disjoint set of tags for
each cluster such that each data point in a cluster is covered
by at least one tag assigned to that cluster, which they call
the disjoint-tag descriptor minimization problem (DTDM).
If we interpret each half-space in a polyhedral description
as a tag, our approach bares a superficial resemblance to
the DTDM problem but it also differs in a number of ways.
First, a data point satisfies a description in the polyhedral
description setting only if it satisfies all the conditions in the
description, whereas in the DTDM a data point only needs
to satisfy one of the tags used to describe the cluster. Unlike
the DTDM, our framework does not require data be pro-
vided with discrete tags and allows for real valued features.
Finally, a data point is not considered correctly described in
the polyhedral description problem if it meets a description
for another cluster, a constraint not included in the DTDM.
We note that this constraint ensures that cluster descriptions
are informative (i.e. describe only a single cluster).

There has also been extensive work on constructing clusters
using interpretable model classes such as decision trees with
uni-variate splits (Bertsimas et al., 2021; Fraiman et al.,
2013; Liu et al., 2000; Moshkovitz et al., 2020; Frost et al.,
2020; Dasgupta et al., 2020), or rule sets (Chen et al., 2016;
Chen, 2018; Pelleg & Moore, 2001; Carrizosa et al., 2022).
The important distinction between this line of work and our
setting is that this line of research assumes that the cluster
assignment is not fixed. Most similar to our work is the
use of multi-polytope machines to perform the clustering
(Lawless et al., 2021). However, our approach differs from
this line of work as the cluster assignments are fixed in
the cluster description problem, and the aim is optimize
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interpretability not the quality of the clustering itself. The
cluster description setting can also be modeled as an IP as
opposed to a mixed-integer non-linear program (MINLP)
which allows our approach to scale to larger datasets.

1.2. Main Contributions

We summarize our main contributions as follows:

• We introduce the polyhedral description problem
which aims to explain why the data points in the same
cluster are grouped together by building a polyhedron
around them. We also show that this is an NP-Hard
problem.

• We formulate the polyhedral description problem as
an (exponential size) integer program where variables
correspond to candidate half-spaces that can be used in
the polyhedral description of the clusters. We present
a column-generation algorithm to search over the (ex-
ponentially many) candidate half-spaces efficiently.

• We introduce a novel grouping scheme to summarize
input data. This approach helps reduce the size of the
IP instances and enables us to handle large datasets.
We also present empirical results that show that our
grouping scheme out-performs the commonly used
approach of sub-sampling data points.

• We present numerical experiments on a number of real
world clustering datasets and show that our approach
performs favorably compared to state-of-the-art cluster
description approaches.

The remainder of the paper is organized as follows. Sec-
tion 2 formalizes the polyhedral description problem and
presents an exponential sized IP formulation for construct-
ing optimal polyhedral descriptions together with a column
generation approach for solving it. Section 3 introduces a
novel grouping scheme to enable the IP approach to deal
with large scale data. Finally, Section 4 presents numerical
results on a suite of UCI clustering data sets.

2. Problem Formulation
We now formally introduce the Polyhedral Description Prob-
lem (PDP). The input data for the problem consists of a set
of n data points with m real-valued features X = {xi ∈
Rm}ni=1, a partition of the data points in X into K clusters
C1, . . . , CK , where each Ck denotes the set of data points
belonging to cluster k, and a set of candidate half-spaces H
from which we can construct polyhedra. Assuming the data
points to be real-valued is not a restrictive assumption in
practice, as categorical data can be converted to real-valued
features via a one-hot encoding scheme. Let xi

d be the d-th

feature of the data point xi and ki be its cluster assignment.
For a given w ∈ R

m and b ∈ R, the half-space associ-
ated with (w, b) is the set h = {x ∈ R

m : wTx ≤ b}.
For the remainder of the paper we refer to the half-space
and the hyperplane defining a half-space interchangeably
(i.e. refer to ∥w∥0 as the number of features used in a half-
space). A polyhedron is the intersection of a finite number
of half-spaces (Boyd et al., 2004).

A perfect solution to the PDP is a set of polyhedra {Pk}Kk=1

such that x ∈ Ck for all x ∈ Pk and x /∈ Ck for all x /∈ Pk.
Note that when the convex hulls of the clusters intersect
no such solution exists. In our formulation, we aim to find
good solutions and allow the polyhedra to explain up to α
data points incorrectly:

∣∣∣∣{xi ∈ X : xi /∈ Pki ∨ xi ∈ ∪k′ ̸=kiPk′
}∣∣∣∣ ≤ α

We say that a data point x ∈ X is correctly explained if
x ∈ Pki

and x /∈ ∪k′ ̸=ki
Pk′ . To improve the interpretability

of the resulting descriptions we consider a restricted set of
candidate half-spaces H that are defined by sparse hyper-
planes with small integer coefficients. More precisely, we
consider half-spaces that have the form {x ∈ Rm : wTx ≤
b} for integral w with maximum value W , maxd |wd| ≤ W ,
and at most β non-zero values, ∥w∥0 ≤ β. Note that these
restrictions on the set of candidate half-spaces may cause
the PDP to be infeasible, even if the convex hulls of the
points in each cluster do not intersect.

It is important to note that this approach does not require
the polyhedra to be non-intersecting, but rather penalizes
data points that fall into multiple polyhedra. From a practi-
cal perspective, adding such a restriction on the polyhedra
would lead to a computationally challenging problem. It
may also be overly restrictive in settings where the inter-
section of polyhedra is unlikely to contain any data (see
Appendix A for an illustrative example). In our computa-
tional experiments we observed only a small number of data
points in the intersection of multiple polyhedra while there
were many examples of polyhedra intersecting. We consider
two variations of the PDP that add additional restrictions on
the polyhedral descriptions to help improve interpretability.

Low-Complexity PDP (LC-PDP): This variant restricts
the complexity of the polyhedral description. Similar to
previous work on rule sets (Lawless et al., 2021), we define
complexity of a half-space as the number of non-zero terms
in the half-space plus one, and the complexity of the polyhe-
dron as the sum of the complexities of the half-spaces that
compose it.

Sparse PDP (Sp-PDP): The second variant we consider
puts a limit on the total number of features in all the half-
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spaces used in the polyhedral descriptions (i.e. sparsity).
Unfortunately, both variants of the PDP are strongly NP-
Hard (see Appendix B for proof).

Theorem 2.1. Both the Low Complexity and Sparse Poly-
hedral Description Problems are strongly NP-Hard.

2.1. Integer Programming Formulation for the PDP

Given a set of candidate half-spaces H that can be used in a
polyhedral description, we next formulate the optimization
version of both variants of the PDP as an integer program.
In practice, enumerating all possible candidate half-spaces,
even in this restricted setting, is computationally impractical
and we describe a column generation approach to handle
this in the subsequent section. Let Hi = {(w, b) ∈ H :
wTxi > b} be the set of half-spaces that data point i falls
outside, and in a slight abuse of notation let Hd = {(w, b) ∈
H : wd ̸= 0} be the set of half-spaces that use feature d.
The complexity of a half-space h = (w, b) is defined to be
ch = ∥w∥0 + 1.

Let zhk be the binary decision variable indicating whether
half-space h is used in the polyhedral description of clus-
ter k ∈ K = {1, . . . ,K}. Note that we can recover the
polyhedral description for cluster k from these binary vari-
ables as Pk =

⋂
h∈Ik

h where Ik = {h ∈ H : zhk = 1}.
We use a binary variable ξi to indicate whether data point
i is mis-classified (i.e. either not included in its cluster’s
polyhedron or is incorrectly included in another cluster’s
polyhedron). Let yd be a binary variable indicating whether
feature d ∈ D = {1, . . . ,m} is used in any of the half-
spaces chosen for the polyhedral descriptions. With these
definitions, an IP formulation for the PDP is as follows:

min θ1
∑
k∈K

∑
h∈H

chzhk + θ2
∑
d∈D

yd (1)

s.t. ξi +
∑
h∈Hi

zhk ≥ 1 ∀xi ∈ X ,∀k ̸= ki (2)

Mξi −
∑
h∈Hi

zhki
≥ 0 ∀xi ∈ X (3)

∑
k∈K

∑
h∈Hd

zhk ≤ Myd ∀d ∈ D (4)

∑
xi∈X

ξi ≤ α (5)

ξi, zhk, yd ∈ {0, 1} (6)

where M is a suitably large constant. A natural choice is
the smallest upper bound for the total number of half-spaces
used (if an existing heuristic solution exists), or simply
|H|. Note that in practice the choice of M can be chosen
independently for constraints (3) and (4). The objective

consists of two terms that capture both variants of the PDP.
The first term captures the complexity of the half-spaces
used (LC-PDP), and the second captures the sparsity (Sp-
PDP). θ1 and θ2 control the relative importance of each
term. Note that if θ1 = 1, θ2 = 0 we get the LC-PDP, and
similarly if θ1 = 0, θ2 = 1 we get the Sp-PDP.

Constraint (2) tracks false positives (i.e. data points that are
included in a wrong cluster’s polyhedron) and constraint (3)
tracks false negatives (i.e. data points that are not included in
their respective cluster’s polyhedron). Constraint (4) tracks
which features are used in the polyhedral descriptions. If
θ2 = 0 (i.e. sparsity is not a consideration) then constraint
(4) can be removed and the problem can be decomposed
into a separate problem for each cluster. Constraint (5) sets
an upper bound α on the number of data points that are
not properly explained. We denote the problem (1)-(6) as
the master integer program (MIP), and its associated linear
relaxation, taken by relaxing constraint (6) to allow for non-
integer values, as the master LP (MLP).

2.2. Column Generation

Enumerating every possible half-space is computationally
intractable and thus it is not practical to solve the MIP us-
ing standard branch-and-bound techniques (Land & Doig,
1960). Instead, we use column generation (Gilmore & Go-
mory, 1961) to solve the MLP by searching over the best
possible candidate half-spaces to consider in the master
problem. Once we solve the MLP to (near) optimality or
exceed a computational budget, we then use the set of can-
didate half-spaces generated during column generation to
find a solution to the MIP. To solve the MLP we start with
a restricted initial set of half-spaces Ĥ ⊂ H. We denote
the MLP solved using only Ĥ the restricted master linear
program (RMLP). In other words, the RMLP is the MLP
where all variables corresponding to H \ Ĥ are set to 0.
Once this small instance of the MLP is solved, we use the
optimal dual solutions to the problem to identify a missing
variable (i.e. half-space) that has a negative reduced cost.
The problem to find such a half-space is called the pricing
problem and can be solved by another integer program. If a
new half-space with a negative reduced cost is found then
we add it to the set Ĥ and this process is repeated until either
no such half-space can be found, which represents a certifi-
cate of optimality for the MLP, or a given computational
budget is exceeded.

Let (µ, γ, ϕ) be the optimal dual solution to the RMLP
where µik ≥ 0 is the dual value corresponding to constraint
(2) for data point i and cluster k, γi ≥ 0 is the dual value
corresponding to constraint (3) for data point i, and ϕd ≤ 0
is the dual value corresponding to constraint (4) for feature
d, respectively. Since the decision variables zhk in the MIP
are defined for a half-space and a specific cluster k, we
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define a separate pricing problem for each cluster, which can
be solved in parallel. Using the optimal dual solution, the
reduced cost ρ(h,k) for a missing variable zhk corresponding
to a half-space h /∈ Ĥ for a cluster k is:

ρ(h,k) = θ1ch −
∑

xi∈X\Ck

µik1(w
Txi > b) +

∑
xi∈Ck

γi1(w
Txi > b)−

∑
d∈D

ϕd1(wd ̸= 0)

Where 1(x) is the indicator function and equals 1 if the
literal x is true, and 0 otherwise. Note that the reduced
cost is non-negative for all half-spaces already included in
the restricted master problem by the optimality of the dual
solution (i.e. ρ(h,k) ≥ 0 ∀h ∈ Ĥ). For a given cluster k let
w ∈ Zm and b ∈ R be the decision variables representing
the hyperplane used to construct a candidate half-space. We
also introduce variables w+, w− ∈ Z≥0 that represent the
positive and negative components of the hyperplane (i.e.
w+

d = max(0, wd) and w−
d = max(0,−wd)). Let yd be

the binary variable indicating whether feature d is used in
the hyperplane, and similarly y+d , y

−
d represent whether a

positive or negative component of feature d is used. Finally
let δi be the binary variable indicating whether data point
xi ∈ X is correctly included, for data points in Ck, or
excluded, for data points in X \ Ck, in the half-space. With
these decision variables in mind, the pricing problem to find
a candidate half-space for cluster k can be formulated as
follows:

min θ1(
∑
d∈D

(y+d + y−d ) + 1)−
∑

xi∈X\Ck

µik(1− δi)

+
∑

xi∈Ck

γiδi −
∑
d∈D

ϕd(y
+
d + y−d )

(7)

s.t.

(w+ − w−)Txi − b ≤ Mδi ∀xi ∈ Ck (8)

(w+ − w−)Txi − b ≥ ϵ−Mδi ∀xi ∈ X \ Ck (9)

y+d ≤ w+
d ≤ Wy+d ∀d ∈ D (10)

y−d ≤ w−
d ≤ Wy−d ∀d ∈ D (11)∑

d∈D

(y+d + y−d ) ≤ β (12)

y+d + y−d ≤ 1 ∀d ∈ D (13)∑
d∈D

(w+
d + w−

d ) ≥ 1 (14)

w+
d , w

−
d ∈ Z≥0 ∀d ∈ D (15)

yd, δi ∈ {0, 1} ∀d ∈ D, xi ∈ X
(16)

The objective of the problem is to minimize the reduced
cost of the new column. Note that ch is defined by ∥w∥0+1
which can be represented by the yd variables in the objective.
Constraint (8) tracks whether a data point in Ck is included
in the half-space and similarly Constraint (9) tracks whether
or not each data point outside of Ck is not included in the
half-space. M is a suitably large constant that can be com-
puted based on the data set and settings for W,β. In the
latter constraint ϵ is a small constant to ensure the constraint
is a strict inequality. Constraints (10) and (11) put a bound
on the maximum integer coefficient size of the hyperplane,
and constraint (12) puts a bound on the ℓ0 norm of the hy-
perplane. Finally, constraints (13) and (14) exist to exclude
the trivial solution where w = 0.

3. Grouped Data for Scalability
For problems with a large number of data points it can be
computationally challenging to solve the IP formulation in-
troduced in the preceding section. A standard approach for
clustering or cluster description for large datasets is to sim-
ply sub-sample data points to consider in the optimization
problem (see Carrizosa et al. (2022) for an example of the
approach). While this approach has intuitive appeal, it fails
to leverage all the information present in the given problem.
Instead, we use a novel technique where we create smaller
groups of data points that we treat as a single entity and
perform the cluster description on the grouped data. This
approach also effectively reduces the size of the problem
instance without discarding any data points.

3.1. Description Error in Grouped Data

In this section we formalize the notion of grouping data
points and present results on its impact on the accuracy of
the resulting cluster description. We start by partitioning
each cluster Ck into a set of smaller groups Gk where each
data point is assigned to a single group and Ck = ∪G∈Gk

G,
and define G = ∪K

k=1Gk. We say that a group G ∈ G
is correctly explained if all data points x ∈ G are cor-
rectly explained. Let P = {Pk}Kk=1 be a solution to the
PDP (i.e. a set of polyhedral descriptions). We define the
true cost COST (P) =

∑K
k=1

∑
x∈Ck

1((x /∈ Pk) ∨ (x ∈⋃
k′ ̸=k Pk′)) to be the number of data points incorrectly

explained by the solution. For simplicity we exclude the
explicit dependence of the dataset X and the cluster assign-
ments C from the inputs to the cost function. The scheme
by which the groups are constructed can be viewed as a
separate clustering task that can be performed by a cluster-
ing algorithm. In practice, compared to both k-means and
DBSCAN we found that using a hierarchical clustering al-
gorithm with a bound on the maximal linkage of each group
performed the best empirically in preliminary experiments.

We define the grouped cost COSTG(P) =
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k=1

∑
G∈Gk

|G|1(∃x ∈ G s.t. (x /∈ Pk) ∨ (x ∈⋃
k′ ̸=k Pk′))), as the mis-classification cost of each group

weighted by the size of the group. A natural corollary of this
definition is that for any solution P the grouped cost over-
estimates the true cost (i.e. COSTG(P) ≥ COST (P)). Let
P∗
G = argminP COSTG(P) and P∗ = argminP COST (P)

be the optimal solutions to the grouped problem and
original problem respectively. We now show that solving
the PDP over groups versus the individual data points leads
to mis-classifying at most |Gmax| times the optimal number
of data points, where |Gmax| is the size of the largest group
(see Appendix C for proof).

Theorem 3.1. The optimal solution to the grouped problem,
with any grouping scheme, incurs a cost no more than
|Gmax| times the cost of the optimal solution to the full
problem instance. Formally:

COST (P∗
G) ≤ |Gmax|COST (P∗)

While |Gmax| may seem like a relatively large factor, it is
important to note that even creating small groups can have
large impacts on the size of problem instances that can be
solved via integer programming (i.e. even groups of size 2
reduces the size of the IP formulation significantly). Note
that Theorem 3.1 places no assumption on how the groups
were formed (i.e. the grouping scheme), and thus provides
a general bound for any grouping approach. A natural ques-
tion is whether placing additional restrictions on how groups
are formed can lead to a stronger guarantee. One such pos-
sible restriction is to ensure that the grouping is optimal
with respect to a clustering evaluation metric. Silhouette
coefficient is a popular clustering evaluation metric that has
been used in a line of recent work on optimal interpretable
cluster (Lawless et al., 2021; Bertsimas et al., 2021).

Unfortunately, the following result shows that the bound in
Theorem 3.1 is tight in the sense that there exists an instance
where the grouped cost is equal to |Gmax| times the optimal
cost on the full problem even when a large number of groups
are used via an optimal grouping scheme with respect to the
silhouette coefficient (see Appendix D for proof).

Theorem 3.2. Even for |Gk| = |Ck| − 2 ∀k ∈ K, K = 2,
and an optimal grouping scheme with respect to silhouette
coefficient, there exists an instance where:

COST (P∗
G) = |Gmax|COST (P∗)

Note that although this theorem uses silhoeutte coefficient,
we believe that the bound is also tight for any other cluster
evaluation metric. The emphasis of this result is that even
when groups are constructed in a reasonable manner, there
still exists an instance where the upper bound is tight. We
also note that these are worst-case bounds and in practice
grouping performs much better. Unlike accuracy, grouping

data points can have ambiguous affects on the interpretabil-
ity of the final solution (i.e. can lead to solutions that are
simpler or more complex).

3.2. Integer Programming Formulation with Grouping

We next describe how to integrate the grouped data into the
original IP formulation presented in Section 2.1. The goal
of the approach is to summarize the information about each
group in such a way that the resulting integer program scales
linearly with the number of groups. For this purpose we start
with constructing the smallest hyper-rectangle that contains
all the data points in each group. Let xH

G,d = maxx∈Gxd

and xL
G,d = minx∈Gxd be the maximum and minimum

value for coordinate d for the points in group G. The hyper-
rectangle RG for the group G is defined as the set RG ={
x ∈ R

m : xH
G,d ≥ xd ≥ xL

G,d ∀d = 1, . . . ,m
}
. In our

new formulation we consider a group to be mis-classified if
any part of the hyper-rectangle is mis-classified. Note that
this is a stronger condition than the previous section where
a group is mis-classified if any data point is mis-classified.
However, modelling the pricing problem to track whether
each individual data point is correctly classified would not
reduce the problem size of the pricing problem, eliminating
the computational benefit of leveraging grouping. It is also
worth noting this difference only occurs for non-axis parallel
half-spaces (i.e. β > 1).

Let w+ and w− again represent the positive and negative
components of the hyperplane (i.e. w+

d = max(wd, 0),
w−

d = max(−wd, 0)). A hyper-rectangle for group G
is fully inside a half-space h = (w, b) (i.e. RG ⊂ h)
if (w+)T (xH

G ) − (w−)T (xL
G) ≤ b. Similarly, a hyper-

rectangle for a group G is fully outside a half-space (i.e.
RG∩h = ∅) if (w+)T (xL

G)− (w−)T (xH
G ) > b. Note these

conditions are akin to ensuring the worst-case corner of the
hyper-rectangle is within a given half-space.

We can now integrate the hyper-rectangle approach into
the IP formulation as follows. In the master problem, let
H+

G and H−
G represent the set of half-spaces that group

G does not fully fall within or fall outside respectively.
Formally H+

G = {h ∈ H : (w+)T (xH
G ) − (w−)T (xL

G) >
b} and H−

G = {h ∈ H : (w+)T (xL
G) − (w−)T (xH

G ) >
b}. Constraints (2), (3), and (5) in the MLP/MIP are thus
updated to the following:

ξG +
∑

h∈H−
G

zhk ≥ 1 ∀k ̸= kG, ∀G ∈ G (17)

MξG −
∑

h∈H+
G

zhk ≥ 0 ∀k = kG, ∀G ∈ G (18)

∑
i∈G

|Gi|ξi ≤ α (19)
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where kG is the cluster of group G. Note that constraints
(17) and (18) are nearly identical to the non-grouped version
except the sets of hyperplanes are now defined for hyper-
rectangles. Constraint (19) now weights the error of the
solution by the size of the group.

To alter the pricing problem for the grouped setting we
update the constraints that check whether or not a data point
is correctly included in the half-space to check the entire
hyper-rectangle. Specifically we update constraints (8) and
(9) to the following:

(w+)T (xH
G )− (w−)T (xL

G)− b ≤ Mδi ∀G ∈ Gk

(20)

(w+)T (xL
G)− (w−)T (xH

G )− b ≥ ϵ−Mδi ∀G ∈ G \ Gk

(21)

3.3. Empirical Evaluation

To evaluate the performance of our grouped data approach
versus sub-sampling data points we ran a sequence of ex-
periments on synthetic data. Data was generated using a
Gaussian mixture model where cluster centers were sampled
uniformly from [−1, 1]m, and n data points were generated
around the sampled center for each cluster with a covari-
ance matrix of σI where I is the m × m identity matrix.
The parameter σ controls the difficulty of the description
problem as larger values of σ lead to clusters with consid-
erable overlap making a perfect explanation unlikely. To
construct the groups for our approach we use hierarchical
clustering with a limit on the maximal linkage distance χ,
which is akin to setting a maximum diameter on the size of
the groups. We tested a range of different χ values to get
different number of groups. To provide a fair comparison
between the two approaches we sub-sampled the same num-
ber of data points (uniformly at random) as the number of
groups. The same set of candidate half-spaces, generated
by considering all possible uni-variate splits, is also used
for both approaches. For all of the following results we
created 50 random instances using the above simulation
procedure with K = 3, m = 10, and n = 10000 and then
ran both approaches and averaged the performance over the
50 instances, and 5 random sub-samples. Figure 3 shows
the results of the synthetic experiments. The results show
that for an equivalent number of samples (i.e. groups for the
grouped data and data points for the sub-sampled data) the
grouping approach is able to find explanations with a lower
error rate.

4. Numerical Results
To evaluate our approach we ran experiments on a suite of
clustering datasets from the UCI Machine Learning repos-
itory (Asuncion & Newman, 2007). Details on how the
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Figure 3. Relative performance of grouping data versus sub-
sampling. Error rate is what percentage of dataset is not properly
explained by the explanation generated using each approach. Sam-
ple size is the number of groups or data points for the grouped and
sub-sampled approach respectively.

data was pre-processed and other implementation details
can be found in the Appendix. Note that for certain choices
of α the MIP and MLP may be infeasible. As α is not
given as a constraint for the application a priori in these
datasets, we use a two-stage procedure to first find a feasi-
ble α then optimize for interpretability. In the first phase
we replace the objective in the MIP (1) with α which we
take as a continuous decision variable and solve via column
generation. The goal of the first stage is thus to optimize
for the accuracy of the descriptions. We then take the op-
timal α∗ from the first stage and multiply it by a tolerance
factor (i.e. (1 + κ)α∗ for a small κ) and use it in constraint
(5) in the second stage to optimize for interpretability of
the descriptions. For the following experiments we used
κ = 0.05. We benchmark our approach against three com-
mon algorithms for cluster description: Classification and
Regression Trees (CART) (Breiman et al., 2017), Iterative
Mistake Minimization Trees (IMM) (Frost et al., 2020), and
Prototype Descriptions (PROTO) (Carrizosa et al., 2021).
We do not compare against the Disjoint-Tag Minimization
Model (Davidson et al., 2018) as the approach requires data
in a different form to the preceding algorithms.

We present results for both the low complexity (LC-PDP)
and sparse (Sp-PDP) variants of our algorithm. We also con-
sider two different settings for β and W : PDP-1 which has
W = β = 1 and PDP-3 which has W = 10, β = 3. For the
following results, the pre-fix of the algorithm denotes the ob-
jective used and the suffix denotes the setting for W and β.
To construct an initial set of candidate half-spaces, for each
cluster we enumerate the p maximum and minimum values
for each feature (p = 10 for the following experiments) and
construct half-spaces with uni-variate splits at each of the
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Table 1. Cluster description accuracy (%). The percentage of data points in the original reference clustering that are correctly explained.
Bolded numbers indicate best accuracy for each dataset.

dataset n m K IMM CART PROTO PDP-1 PDP-3

adult 32561 108 3 99.93 99.63 66.40 99.95 99.95
bank 4521 51 7 97.74 92.79 80.1 97.74 97.74
default 30000 23 2 100.00 100.00 99.2 100.00 100.00
seeds 210 7 2 98.57 98.57 98.10 99.05 100.00
zoo 101 17 4 100.00 100.00 95.05 100.00 100.00
iris 150 4 2 100.00 100.00 100.00 100.00 100.00
framingham 3658 15 8 100.00 100.00 82.8 100.00 100.00
wine 178 13 2 97.19 97.19 96.63 98.88 98.88
libras 360 90 10 82.50 78.06 78.61 98.06 98.06
spam 4601 57 2 99.98 99.98 94.07 99.98 99.98

Table 2. Cluster description sparsity and complexity for explanation. Bolded numbers indicate best sparsity and complexity respectively
for each dataset.

Sparsity Complexity
dataset IMM CART Sp-PDP-1 Sp-PDP-3 IMM CART LC-PDP-1 LC-PDP-3

adult 2 2 1 1 10 10 10 10
bank 6 6 5 5 44 42 40 40
default 1 1 1 1 4 4 4 4
seeds 1 1 2 3 4 4 4 4
zoo 3 3 3 3 18 18 14 14
iris 1 1 1 1 4 4 4 4
framingham 3 3 3 3 48 48 48 44
wine 1 1 4 2 4 4 10 6
libras 9 9 18 18 98 82 84 80
spam 1 1 1 1 4 4 4 4

values. For all results we set a 300 second time limit on
the overall column generation procedure and a 30 second
time limit on solving an individual pricing problem. We
add all solutions found during the execution of the pricing
problem with negative reduced cost to the master problem.
We also use the grouping approach outlined in Section 3 for
all datasets with more than 4000 data points, with the aim of
getting the number of groups within 30000/K. We perform
the grouping by using hierarchical clustering with a maxi-
mum linkage of χ = 0.05. All models were implemented
in python using Gurobi 9.1 and run on a computer with 16
GB of RAM and a 2.7 GHz processor.

Table 1 shows the performance of each algorithm with re-
spect to cluster description accuracy. Overall PDP is able
to dominate the other benchmark algorithms, achieving the
best accuracy on every benchmark dataset. Surprisingly,
PDP-1 and PDP-3 perform almost identically, with PDP-3
only outperforming PDP-1 on the seeds dataset. Overall,
PROTO is the least competitive approach, likely due to be-
ing the most restrictive function class relative to decision
trees and polyhedra. Table 2 shows the number of features
used in the cluster descriptions and their complexity. Note
that PROTO does not appear in this table or the complexity
table as the output for each cluster is simply a representa-
tive data point and a radius, and thus has no natural analog

for sparsity or complexity. For CART and IMM we com-
pute the complexity by considering each internal branching
node as a half-space and report the total complexity of half-
spaces needed to explain each cluster, counting a half-space
multiple times if it is used to describe multiple clusters to
provide a fair comparison to polyhedra. We report results
for Sp-PDP as it directly optimizes this metric, whereas
we report complexity for the LC-PDP. Sp-PDP performs
competitively with IMM and CART getting the best sparsity
in all but three datasets. Of the three datasets where it is
outperformed by CART it is important to note that Sp-PDP
achieves considerably better accuracy highlighting that the
gains in explanation accuracy can come at a cost to the in-
terpretability of the explanation. LC-PDP also performs
competitively with the decision tree based approaches only
being outperformed on datasets where it achieves higher
cluster accuracy. A natural question is whether Sp-PDP
and LC-PDP can achieve equal sparsity and low-complexity
by sacrificing the increased accuracy. Figure 4 shows the
Pareto curve of cluster description accuracy versus expla-
nation sparsity on the wine dataset where CART and IMM
achieve lower sparsity. The curve shows that PDP domi-
nates the decision tree approaches, achieving equal sparsity
at the same level of accuracy. Results in Appendix H show
similar results for every dataset where PDP achieves lower
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Table 3. Computation Time (s) for each algorithm. F-PDP represents the time to do the first phase solve (i.e. minimizing α).
Data CART IMM PROTO F-PDP-1 F-PDP-3 LC-PDP-1 LC-PDP-3 Sp-PDP-1 Sp-PDP-3

adult 0.06 0.34 900.00 300.00 300.00 300.00 300.00 300.00 300.00
bank 0.01 0.04 2100.00 300.00 300.00 300.00 300.00 300.00 300.00
default 0.04 0.11 600.00 2.98 3.19 2.80 4.53 300.00 300.00
framingham 0.01 0.02 2400.00 300.00 300.00 300.00 300.00 300.00 300.00
iris 0.00 0.00 135.91 0.11 0.09 0.18 0.16 0.59 0.56
libras 0.02 0.02 3000.00 300.00 300.00 300.00 300.00 300.00 300.00
seeds 0.00 0.00 600.00 0.63 1.66 300.00 300.00 300.00 300.00
spam 0.01 0.02 118.00 300.00 300.00 300.00 300.00 300.00 300.00
wine 0.00 0.00 489.52 300.00 300.00 300.00 300.00 300.00 300.00
zoo 0.00 0.00 72.55 0.18 0.13 300.00 300.00 300.00 300.00

sparsity or complexity.
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Figure 4. Pareto curve of cluster description accuracy and sparsity
of the explanation on the LIBRAS dataset.

Table 3 summarizes the total computation time for all the
methods. F-PDP-1/3 are the times needed for the first stage
of our procedure (i.e. minimizing α). Although both de-
cision tree methods run significantly faster than PDP, all
results reported are run within a practical five minute time
limit. PDP also outperforms the other IP based method
(PROTO) on many datasets. It may appear unusual that
PDP takes the full time limit on small datasets like wine.
However, in these datasets there tends to be a high degree
of degeneracy (i.e. many equivalent solutions with the same
objective) and the column generation procedure continues
until the certification of optimality. Thus even though PDP
reaches the time limit, in many cases running the algorithm
for a shorter time limit will give the same quality solution.

5. Conclusion
In this paper we introduced a novel approach for cluster
description that works by constructing a polyhedron around
each cluster. As opposed to existing approaches, our algo-
rithm is able to explicitly optimize for the complexity or

sparsity of the resulting explanations. We formulated the
problem as an integer program and present both a column
generation procedure to deal with an exponential number
of candidate half-spaces and a grouping scheme to help the
approach scale to large datasets. Compared to state of the
art cluster description algorithms our approach is able to
achieve competitive performance in terms of explanation
accuracy and interpretablity when measured by sparsity and
complexity.
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A. Illustrative Example on Non-Intersection of
Polyhedral Descriptions

Consider a simple example where we have two clusters
representing dogs and cats and two binary features - one
indicating whether the animal barks and the other if it me-
ows. A simple polyhedral description for these clusters
is BARKS = TRUE for the dog cluster and MEOWS =
TRUE for the cat cluster. However, the two polyhedra inter-
sect in the improbable region where an animal both barks
and meows. For this simple example, a solution could be to
use BARKS = FALSE for the cat cluster. However, if we
increase the number of animals, each with their own new
binary feature for the noise they make (i.e. a frog cluster
with a binary feature for ribbets), then our polyhedral de-
scriptions can either intersect, with one simple half-space
per cluster, or the description needs to add additional condi-
tions (i.e. BARKS = FALSE and RIBBETS = FALSE for
the cat cluster) which make the resulting description harder
to interpret solely for scenarios that are unlikely to occur in
real world data.

B. Proof of Theorem 2.1
Proof. We prove the hardness of the LC-PDP and Sp-PDP
by showing the associated decision version is NP-Complete.
Formally, the decision version of the PDP checks whether
there exists a polyhedral description subject to a bound
on the objective (i.e. complexity or sparsity respectively).
This is in contrast to the optimization version of the PDP
which involves minimizing the complexity or sparsity of the
solution.

We start by noting that membership in NP is straightforward.
Given a solution it is verifiable in polynomial time whether
or not the given polyhedra correctly explain the given clus-
ters and this certificate has encoding length polynomially
bounded by that of the input. We prove NP-Hardness by a re-
duction from 3-SAT. Specifically, we consider yes-instances
of the 3-SAT problem and show that if a given 3-SAT in-
stance is a yes-instance a constructed LC-PDP instance is
feasible.

Consider a 3-SAT problem with n variables v1, v2, . . . , vn
and m clauses K1,K2, . . .Km. Each clause Ki consists of
three conditions (vi1 ∨ vi2 ∨ vi3) where vij corresponds to
either one of the original variables or its complement. We
now construct a LC-PDP instance with 2n candidate half-
spaces in 2n dimensional feature space with m+n+1 data
points. We focus specifically on the simplest form of the
problem - explaining only one cluster. Clearly if explaining
one cluster is NP-Hard, explaining multiple cluster will also
be NP-Hard. Let C0 be the cluster to be explained.

For each variable vi in the 3-SAT instance, the PDP instance
has two dimensions dvi and dv̄i . The set of candidate half-
spaces consist of hvi = {x : xdvi

≤ 0.5} and hv̄i = {x :
xdv̄i

≤ 0.5} for each vi . We next describe how to construct
n+m+ 1 data points for the PDP instance:

• We generate one data point x0 in C0 that has a value of
0 for every feature.

• For each variable vi in the original 3-SAT problem we
add one new data point xvi outside the cluster to be
explained that has 1s for features dvi and dv̄i , and 0s
otherwise.

• We also add one data point xKi for every clause Ki

in the original 3-SAT problem, which has 1 for the
features corresponding to the original conditions in the
clause dvi1 , dvi2 , dvi2 and 0s otherwise. (For instance
if Ki = (v1 ∨ v̄2 ∨ v3), then the associated data point
has 1s for features dv1 , dv̄2 , dv3 and 0s for the rest.)

Finally we add a bound on the complexity of the instance of
2n. Note that because each half-space uses one feature, this
is equivalent to adding a constraint that at most n half-spaces
can be used.
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The above instance can clearly be set-up in polynomial time.
It now suffices to show that solving the associated PDP
yields a valid solution to the 3-SAT problem.

We start be claiming that the solution to the LC-PDP yields
solutions where exactly one of hvi and hv̄i is used. Assume
not, then the solution to the LC-PDP must have a solution
where either both half-spaces hvi and hv̄i or neither one of
them are used. However, at least one of hvi and hv̄i must be
used, otherwise xvi would not be classified correctly. More-
over, a feasible solution cannot use multiple half-spaces
corresponding to one variable, given that each variable has
at least one half-space used, because it would contradict the
complexity bound that at most n half-spaces used. Thus the
claim must be true.

We can now interpret the half-spaces selected as the variable
settings in the original 3-SAT problem (i.e. vi = T if hvi

is selected and vi = F if hv̄i is selected). We now claim
that any feasible solution to the LC-PDP corresponds to
a solution of the 3-SAT instance. Note that for each data
point outside C0 there exists at least one half-space selected
that excludes it. By construction we know for every clause
in the original 3-SAT problem there is an associated data
point xKi outside the cluster to be explained that is only
excluded by the half-spaces corresponding to the conditions
in the clause hv1i , hv2i , hv13 . Thus at least one of the half-
spaces corresponding to the conditions must be used, and
by extension every clause must be satisfied. Given that the
PDP has no numerical data, the problem is also strongly NP-
Complete. An identical proof also works if we replace the
complexity bound with a sparsity bound (as each half-space
uses a new dimension) thus also completing the claim for
Sp-PDP.

C. Proof of Theorem 3.1
Proof. We start by noting some properties of COSTG(P)
and COST (P). First, for a fixed solution P we have
COSTG(P) ≥ COST (P), which follows from the fact
that the grouped cost over-estimates error (i.e. counts all
members of group as mis-classified if any individual data
point in the group is mis-classified). By the optimality of
the solutions P∗

G, and P∗, for the grouped and un-grouped
problems respectively, we also have that COSTG(P∗

G) ≤
COSTG(P∗) and COST (P∗) ≤ COST (P∗

G) respectively.
Rearranging the three inequalities we get:

COSTG(P∗) ≥ COST (P∗
G) ≥ COST (P∗)

This implies that if we can get a bound on the difference
between the grouped cost and full cost of P∗ we can get a
bound on the sub-optimality of P∗

G for the full problem.

Take P∗ and consider the grouped cost relative to the original

cost. Looking at each group G individually there are three
possible cases: All the data points in a group are correctly
classified, all data points in the group are misclassified, and
the group has both data points that are both classified cor-
rectly and incorrectly. In the former two cases, the grouped
cost is identical to the original cost, so it suffices to consider
the last case. Note that the additional increase in cost for
that group is equal to the number of correctly classified data
points in the group. In the worst case, there are at most
|G| − 1 such points. Thus, the cost in the grouped setting
is at most |G| times the original cost for data points in that
group. Overall, in the worst case this is the only case in the
dataset and every group it affects is the largest possible size
|Gmax| completing the proof. Note that no aspect of the
proof uses how the groups were constructed, so the result
holds for any grouping scheme.

D. Proof of Theorem 3.2
For reference, we start with the definition of the silhouette
coefficient for a given clustering.

Definition D.1 (Silhouette Coefficient). Consider data point
xi ∈ Ck, and a distance matrix d where entries dij capture
distance between data points xi and xj .
Let r(xi) denote the average distance between data point xi

and every other data point in the same cluster:

r(xi) =
1

|Ck| − 1

∑
xj∈Ck

dij

Let q(xi) denote the average distance between data point xi

and every data point in the second closest cluster:

q(xi) = min
l=1,...,K:l ̸=k

1

|Cl|
∑

xj∈Cl

dij

For data point xi the silhouette score s(xi) is defined as:

s(xi) =
q(xi)− r(xi)

max(q(xi), r(xi))
.

The silhouette score for a set of cluster assignments is the
average of the silhouette scores for all the data points. The
possible values range from -1 (worst) to +1 (best).

Proof. Consider the following simple example with two
clusters and a single feature x:

• For the first cluster C1 there are three data points at the
origin (x = 0) and m data points placed individually
at increments of −d2 (i.e. one data point at x = −d2,
one data point at x = −2d2 and so on).

• For the second cluster C2 there is one data point at
the origin, 2 data points at x = d1, and m data points
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placed at increments of d2 after d1 (i.e. one data point
at x = d1 + d2, one data point at x = 2d2 + d1 and so
on).

• We set d1 < d2.

Figure 5 shows a visualization of the setting.

Consider the following groupings which we claim are op-
timal with respect to the silhouette coefficient. For C1 all
three data points at the origin form one group and every
other data point is in its own group. Evidently this is the
optimal grouping for |G1| = |C1| − 2 as every group has
an intra-cluster distance of 0 and an inter-cluster distance
of d2 giving a silhouette score for the grouping of 1. For
C2 we group the one data point at the origin and the 2 data
points at x = d1 together, and every other data point is in
its own group. Suppose this was not optimal with respect
to the silhouette coefficient for |G2| = |C2| − 2. Clearly
an optimal grouping will have the two points at x = d1
together as they have an intra-cluster distance of 0. Thus the
only scenarios are that the point at x = d1 + d2 is included
in that group or two of the m points spaced at increments
of d2 are grouped together. Simple arithmetic shows that
both scenarios result in a silhouette coefficient larger than
the given grouping, proving its optimality.

An optimal solution to the original problem is to use a single
half-space {x ∈ R : x ≤ 0} for C1 and {x ∈ R : x ≥ d1}
for C2 respectively, which incurs a cost of 1. Note that under
the optimal grouping scheme outlined above one group with
3 points from C1 overlaps with one group with 3 points
from C2. Thus an optimal solution to the grouped problem
is to use a single half-space {x ∈ R : x ≤ d1} for C1 and
{x ∈ R : x ≥ d1 + ϵ}, where ϵ < d2, for C2 respectively
as no solution will incur a grouped cost less than 3. This
optimal solution to the grouped problem incurs a true cost
of 3 (as the three points in 3 point group in C2 are mis-
classified), completing our claim.

E. Implementation Details
We pre-process all datasets by using a min-max scaler to
normalize numeric feature values between 0 and 1, encode
all categorical features using one-hot encoding, and for
all supervised learning datasets remove the target variable.
To create a reference cluster assignment we use k-means
clustering using k-means++ initialization scheme with 100
random restarts. To select the number of clusters we tune k
between 2 and 10 and select the k with the best silhouette
score.

For all approaches we used the same k-means clustering as
a reference cluster assignment to be explained. For CART

we used the cluster assignments as labels for the classifier.
For both CART and IMM we set the number of leaf nodes
to be the number of clusters to provide a fair comparison
to the polyhedral description approach. While IMM is an
algorithm for generating new clusters not explaining the ref-
erence clustering, we interpreted the resulting tree as an ex-
planation for the initial clustering. While in principle IMM
should under-perform CART which explicitly optimizes for
classification accuracy we found that IMM outperformed
CART with respect to explanation accuracy on a number
of datasets. We implemented the Prototype description IP
model using Gurobi 9.1 (Gurobi Optimization, LLC, 2022)
and Python, and placed a 300 second time limit on the so-
lution time. To allow the prototype description model to
scale to larger datasets we implemented the sub-sampling
scheme outlined in the original paper and sub-sampled 125
candidate prototypes and 500 data points for each cluster.

F. Qualitative Comparison
Figure 6 shows three sample cluster descriptions for the zoo
dataset to compare each model class’s interpretability. For
this example we use the best reference k-means clustering
which resulted in four clusters, and describe the second clus-
ter (which is composed primarily of birds). The prototype
explanation for the cluster is a ladybird. While having a rep-
resentative animal is easy to understand, without the added
context that the cluster is primarily birds it is not obvious
what are the defining characteristics of the cluster. For in-
stance, ladybirds are also predators and have eggs, which
could also define clusters. The decision tree description
requires that the cluster has no tail, is a predator, and is not
domestic. Compared to both the decision tree and prototype
explanation, the polyhedral description, simply that the clus-
ter is all airborne, provides a parsimonious summary of the
cluster that gives intuition about its defining characteristic.
This further underscores that a full partition of the feature
space for a description, as necessary for a decision tree, may
lead to more complicated descriptions.

G. Additional Computation Time Results
To give a sense for how PDP scales with n, m and K,
Tables 4 and 5 show the computation time to solve the final
restricted master integer program and the pricing problem
respectively. The results in Table 4 show that the algorithm
scales reasonably with n,m and K. Only one result exceeds
the 300s time limit - Libras for Sp-PDP-3. This is due to the
fact that the this dataset has 90 features and the reference
clustering has 10 clusters and our formulation scales with
both the number of candidate half-spaces (impacted by m)
and the number of clusters. We note that the two largest
datasets, adult and default, both have solve times within
approximately one minute.
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Figure 5. (Top) Visualization of points to be explained in instance for Theorem 3.2. (Bottom) Optimal grouping with respect to silhouette
coefficient for |Gk| = |Ck| − 1.

Figure 6. Sample cluster descriptions for the same cluster on the zoo dataset. (Left) A prototype. (Middle) A decision tree. (Right) A
polyhedral description.

Table 5 shows the average time to solve the pricing problem
program during column generation. For the most part, all
the pricing problems can be solved in under 5 seconds. The
exception again being libras which has 90 features and 10
reference clusters and reaches the 30 second time limit on
multiple occasions.

H. Pareto Curves
For the majority of datasets evaluated in Section 4, PDP
either dominates the benchmark algorithms (i.e. achieves
better accuracy and/or interpretability) or achieves the same
performance. However, there are three datasets where the

comparison is inconclusive. In wine, PDP achieves bet-
ter accuracy but higher complexity. Likewise in the seeds
and libras datasets PDP achieves better accuracy but higher
sparsity. A natural question is whether PDP can achieve
comparable accuracy by sacrificing accuracy. Figures 7 and
4 show the pareto curves for accuracy versus complexity
and sparsity. The results show that PDP in fact dominates
the existing algorithms on all three datasets, achieving the
same interpretability at the same level of accuracy while
also being able to achieve better accuracy at lower inter-
pretability.
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Table 4. Computation Time (s) to solve the Master Integer Program after column generation.
dataset n m K Feas-PDP-1 Feas-PDP-3 LC-PDP-1 LC-PDP-3 Sp-PDP-1 Sp-PDP-3

zoo 101 17 4 0.02 0.01 0.03 0.05 0.07 0.13
iris 150 4 2 0.00 0.00 0.00 0.00 0.00 0.00
wine 178 13 2 0.09 0.16 0.23 0.29 0.35 0.49
seeds 210 7 2 0.02 0.02 0.08 0.03 0.09 0.03
libras 360 90 10 28.64 42.03 33.39 112.95 191.76 300.00
framingham 3658 15 8 3.87 4.84 1.95 1.62 2.72 2.33
bank 4521 51 7 88.51 85.60 107.78 115.11 176.62 221.22
spam 4601 57 2 2.22 2.12 2.96 2.65 3.21 5.17
default 30000 23 2 0.81 0.84 0.25 0.25 1.07 0.53
adult 32561 108 3 52.37 60.41 11.13 10.60 18.40 20.85

Table 5. Average computation time (s) to solve the Pricing Problem during execution of column generation framework.
dataset n m K Feas-PDP-1 Feas-PDP-3 LC-PDP-1 LC-PDP-3 Sp-PDP-1 Sp-PDP-3

zoo 101 17 4 0.03 0.02 0.02 0.02 0.02 0.02
iris 150 4 2 0.02 0.01 0.01 0.01 0.01 0.01
wine 178 13 2 0.02 0.02 0.02 0.02 0.04 0.11
seeds 210 7 2 0.04 0.03 0.03 0.02 0.06 0.18
libras 360 90 10 1.72 30.00 13.53 30.00 21.83 30.00
framingham 3658 15 8 1.10 1.06 1.08 1.03 1.09 1.05
bank 4521 51 7 2.04 4.17 2.30 4.10 2.30 7.68
spam 4601 57 2 0.39 0.39 0.42 0.40 0.56 0.46
default 30000 23 2 1.62 1.82 2.30 4.03 1.89 1.96
adult 32561 108 3 3.00 3.61 2.52 6.67 2.93 9.03

0.955 0.960 0.965 0.970 0.975 0.980 0.985 0.990
Accuracy

4

5

6

7

8

9

10

Co
m

pl
ex

ity

Wine
LC-PDP
CART
IMM

0.986 0.987 0.988 0.989 0.990
Accuracy

1.0

1.2

1.4

1.6

1.8

2.0

Sp
ar

sit
y

Seeds

Figure 7. Pareto curves for wine and seeds with respect to accuracy and complexity and sparsity respectively. Note that for both plots the
marker for CART and IMM are at the same point.
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