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Abstract
In many human-centric applications for Machine
Learning instances will adapt to a classifier after
its deployment. The field of strategic classifica-
tion deals with this issue by aiming for a classifier
that balances the trade-off between correctness
and robustness to manipulation. This task is made
harder if the underlying manipulation structure
(i.e. the set of manipulations available at every
instance) is unknown to the learner. We propose
a novel batch-learning setting in which we use
unlabeled data from previous rounds to estimate
the manipulation structure. We show that in this
batch-learning setting it is possible to learn a close
to optimal classifier in terms of the strategic loss
even without knowing the feasible manipulations
beforehand. In line with recent advances in the
strategic classification literature, we do not as-
sume a best-response from agents but only require
that observed manipulations are feasible.

1. Introduction
Consider the following scenario: a college or university
has large amounts of records of students who at some point
applied to the school, got admitted and then either succeeded
or failed at obtaining a degree. Based on these records,
the university sets (and publishes) admission criteria with
the intent to admit students that are likely to successfully
graduate. It then receives a set of applications for admission
for the next year, some of which will lead to admission.
In the next year (and upcoming years), the university will
need to set and publish admission criteria again, its aim
still being to attract and admit students that are likely to
succeed. This scenario differs from a classic (statistical)
decision-making setup in several ways: first, the entities
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that decisions are to be made for are human beings, and
as such may actually adapt their application materials (as
best as they can) to fit the published admission criteria. The
decision maker may not know in advance in what ways
the applicants can modify their credentials to get accepted.
In addition, when it is time to publish a decision rule for
the next round, the decision maker does not have feedback
on the quality of last year’s admission yet (since students
usually take several years before they graduate or leave
school without a degree). Thus the only information about
the results from the last published decision rule was the set
of (potentially strategically modified) applications.

Many human-centric real-life applications of machine learn-
ing, such as decisions on loan applications or bail recom-
mendations, share characteristics with the above sketched
scenario: there is a need for transparent classification and
therefore a need (or maybe even a legal requirement) of
publishing the decision rule to be used. This requirement
for transparency, while in most scenarios well justified, has
the effect that individuals might use this knowledge to adapt
to or game the rules, i.e. they might change their feature vec-
tors strategically in order to receive a desired outcome from
the published classifier. However, this change of features
often does not correspond to a change in their ground-truth
label. Such feature manipulations then yield a loss in accu-
racy of the learned classifier after its publication. Moreover,
often by the time the next round of decision making is due,
the outcomes from the previous rounds are not known yet.
That is, in addition to some labelled data to start with, a
learner has access only to unlabelled data that potentially
contains manipulated features in subsequent rounds.

The field of strategic classification, first proposed by Hardt
et al (Hardt et al., 2016), studies the phenomenon of learning
classifiers which are robust to strategic manipulations. The
goal in strategic classification is to design a decision rule
which is accurate as well as designed to withstand feature
manipulations. There are two main motivations for discour-
aging such feature changes: either manipulated instances
will be misclassified after the manipulation (resulting in
false positives) or true positive instances are forced to mis-
represent themselves in order to be classified correctly. This
second consideration is also known as “social burden” (Milli
et al., 2019) as individuals typically face a cost for this.
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It is a common assumption in the strategic classification
literature, that the manipulation structure is known in terms
of either a cost-of-manipulations function or a manipulation
graph (the set of possible manipulations for each instance)
and considers the strategic classification setup as a one-time
decision making problem. However such knowledge of the
feature manipulation capabilities is not always available, in
particular not with exact accuracy. Furthermore, in most
decision making setups where a decision rule (classifier) is
learned from available data, the decision making is not a
one-time event, but rather the learned decision rule is to be
repeatedly employed over a long time, and ideally updated
to adapt to potential changes in the data generation. In
this work, we focus on the scenario where such changes
are (only) the result of strategic feature adaptations to the
published decision rules.

We propose a novel formalization of this batch-learning
setting for strategic classification. In our framework, learn-
ing and data-generation proceed in rounds. Initially, the
learner receives a labeled sample S0 from some underlying
(unmanipulated) distribution. Given this sample of labeled
data, the learner decides on (and publishes) a classifier h0.
From then on, in each round t, the learner receives an un-
labeled sample from the same data distribution, with the
caveat that the features were strategically manipulated in
response to ht−1. The learner then decides on classifier
ht, based on labeled data sample S0 and unlabeled samples
S1, S2, . . . St−1. While the learner does not have access
to the underlying feature manipulation capabilities of the
instances, we assume that the true manipulation structure
is a member of a class of possible such structures (graphs).
We show that by exploiting the observed distribution shift in
this batch-learning setting it is possible to learn the optimal
classifier in terms of the so-called strategic loss (Lechner
& Urner, 2022) even without knowing the underlying ma-
nipulation capabilities. For a wide range of combinations
of hypothesis classesH and manipulation graph classes G,
we provide first positive results and analysis in this learning
setup. More specifically, we derive bounds on sufficient
sample sizes as well as the number of rounds for the learner
to produce a classification rule with low loss. We focus
in particular on graph classes which are totally ordered by
inclusion, which captures the case in which it is unknown
how manipulation costs compare to the value of being clas-
sified with the desired label. We show that in these cases
batch-learning is possible if the VC-dimension of the loss-
class of (G × H) is finite. Roughly, the finiteness of the
VC-dimension of the loss class, makes it possible to success-
fully estimate the distribution shift caused by a deployed
hypothesis. The total order on the manipulation graphs
allows to use this information to do a binary search on a
discretized version of the hypothesis class.

Lastly, we show that for totally ordered G andH with finite

VC-dimension it is possible to successfully improperly learn
H with respect to G in the robustly realizable case with only
access to unmanipulated data. In order to achieve this last re-
sult, we introduce a new paradigm, called maximally robust
empirical risk minimization (MRERM) and use it to recreate
the compression argument from (Montasser et al., 2019).
MRERM picks a hypothesis that is robust with respect to
the maximal graph that allows for robust realizability of the
sample, in case such a maximal graph exists. However, such
a maximal graph may not exist in some finite VC classes.
We use the set-theoretic concept of ultrafilters to define an
extension of the hypothesis class that is guaranteed to have
an MRERM for every realizable sample and has the same
VC dimension as our original class.

1.1. Related Work

The concern that learning outcomes might be compromised
when agents adapt their feature vectors in response to pub-
lished classification rules was first pointed out over a decade
ago (Dalvi et al., 2004; Brückner & Scheffer, 2011). The
area has received substantial interest from the research com-
munity in recent years, both in the context of adversarial
robustness (Feige et al., 2015; Cullina et al., 2018; Mon-
tasser et al., 2019; 2021) and robustness to strategic feature
manipulations. Hardt et al. formally introduced the setup
where agents aim to improve their decision outcomes and
termed it “strategic classification” (Hardt et al., 2016). In
addition to the cost of induced misclassification, previous
work has pointed out that changes to the decision boundary
aiming to prevent false positives, may force true positive
instances to manipulate their features for retaining their pos-
itive classification. This (also undesirable) effect has been
summarized under the concept of “social burden” (Milli
et al., 2019; Jagadeesan et al., 2021). It has also been shown
that the cost of social burden might be disproportionately
paid by underrepresented or disadvantaged sub-groups of
a population (Milli et al., 2019; Hu et al., 2019). Recent
work on strategic classification has pointed out that strate-
gic feature modification can also be a positive effect, for
example when applicants respond by studying better for
tests and learning specific skills (Haghtalab et al., 2020),
and addressed this phenomenon through a causality lense
(Miller et al., 2020; Tsirtsis & Rodriguez, 2020; Shavit et al.,
2020). Some recent works have further explored this inter-
play between gaming and improvement (Chen et al., 2021)
and aligned incentives (Levanon & Rosenfeld, 2022).

While many previous studies in this area have taken a game
theoretic perspective, some recent work has analyzed strate-
gic classification in a PAC learning framework (Zhang &
Conitzer, 2021; Sundaram et al., 2021; Lechner & Urner,
2022). Similarly, our work follows a new trend of not re-
quiring agents to be cost-minimizing agents (Jagadeesan
et al., 2021; Chen et al., 2020), as there is a potential limit
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of the rationality of agents (Jagadeesan et al., 2021). In
the PAC learning setting, the consideration of irrational
agents is modelled by capturing the sets of possible manipu-
lations in the manipulation graph (Zhang & Conitzer, 2021),
which only distinguishes between feasible and infeasible
manipulations. Using this notion of manipulation graph the
objectives of discouraging strategic manipulations for the
sake of avoiding misclassification and avoiding contribu-
tions to social burden have been jointly modelled in a loss
function, the strategic loss (Lechner & Urner, 2022). We
adopt this notion of loss and frame our learning goals in
terms of the strategic loss function.

There has been some recent work on learning with respect
to unknown manipulation structures in an online setting
(Dong et al., 2018). The first results in this line of research
was given in form of regret bounds for linear classifiers un-
der the assumption that only instances of one label would
manipulate (Dong et al., 2018). Similarly, Ahmadi et al
introduce a version of the perceptron algorithm which takes
possible feature manipulations into account (Ahmadi et al.,
2021). They show finite mistakes bounds for their algorithm
for both known and unknown cost functions under a linear
separability assumptions, which is akin to our strategically
robust realizability assumption. Both works (Dong et al.,
2018; Ahmadi et al., 2021) do not require any knowledge of
unmanipulated data in their setting but assume immediate
label feedback for each (possibly manipulated) classified
instance. Thus their results are complementary to our results
in the strategic realizable case where we achieve robustness
without having access to manipulated data. Furthermore,
both works assume that agents are cost-minimizing, i.e.,
best-response. We also note that the notion of loss in those
settings is slightly different, as they do not incorporate the
notion of social burden into their success criterion. In the
strategic PAC learning setting, there are known sufficient
conditions for the strategic loss to be robust with respect to
inaccuracies on the assumed manipulation structure (Lech-
ner & Urner, 2022). Furthermore, PAC-learnability guaran-
tees been shown with respect to an unknown manipulation
(or perturbation) structure in both strategic classification
(Lechner & Urner, 2022) and in adversarially robust clas-
sification (Montasser et al., 2021) with the assumption of
an additional oracle. Both of these works require an ora-
cle access that might be unrealisitic in real-world settings.
While the oracle in the latter is more realistic and no fur-
ther assumptions on the perturbation sets are needed, these
learning guarantees additionally require the Littlestone di-
mension of the hypothesis class being used to be finite. This
assumption is not fulfilled by most classes we consider in
this paper (e.g., the simple class of thresholds classifiers as
well as general finite VC-classes).

Finally, our framework bears some similarities with the set-
ting of lifelong learning (Pentina & Lampert, 2014; Pentina

& Ben-David, 2015; Balcan et al., 2015; Pentina & Urner,
2016; Balcan et al., 2020). In lifelong learning, a learning
algorithm aims to perform well and adapt to a stream of
related, but not identical learning tasks. Our setup distin-
guishes itself from standard lifelong learning goals in that
the changes in input data are actually induced by the pub-
lished decision rules from the previous round, while the
actual target task remains the same.

1.2. Overview on our results

We consider a novel strategic batch-learning problem in
which the manipulation graph is learned alongside the clas-
sification rule in order to achieve optimal classification (Defi-
nition 2.5). Importantly, we only assume prior knowledge of
a graph class G which contains the true manipulation graph,
but not exact knowledge of the true manipulation graph.
We propose a formal learning protocol (Definition 2.2) and
success criterion (Definition 2.5) for this setup and show
that learning in this setting is possible for a wide variety of
hypothesis classesH and graph classes G.

In Section 3 we present possibility results for proper learn-
ing under the strategic batch learning protocol. As a warm-
up, and to illustrate the intuition behind our techniques for
a simple class, we start in Subsection 3.1 with presenting
an algorithm (Algorithm 3.1) for the hypothesis class of
thresholds and the class of manipulation graphs which al-
low manipulations within a fixed radius (while the radius
of the underlying true manipulation graph is not known).
We then show that this algorithm has sample complexity
O(

log( 1
δ )

ϵ2 ) and round complexity O(1) in the (robustly) re-

alizable case, as well sample complexity O(
log( 1

δϵ )

ϵ2 ) round
complexity O(log( 1ϵ )) in the agnostic case (Observation 3.1
and Theorem 3.2).

In Subsection 3.2, we then move on to analyse proper strate-
gic batch learning for general VC-classes. First, we show
that if the joint loss class of some G × H with respect to
the manipulation loss ℓmani (Definition 2.4) is finite, we can
learn the manipulation structure for a particular hypothesis
fromH (Lemma 3.6 and Observation 3.7). We then use this
to show a general learnability result for the strategic batch
setting for classes with finite VC((G ×H)ℓmani) and finite
VC(H). We furthermore give a generalization of Algo-
rithm 3.1 in Algorithm 3.2 that works for arbitrary hypothe-
sis classesH (with finite VC((G×H)ℓmani) = d1 and finite
VC(H) = d2) and totally ordered graph classes G. We show
that this algorithm has sample complexity O(

d1+d2+
1
δ

ϵ2 ) and
round complexity O(1) in the realizable case (Observa-
tion 3.10) and sample complexity O(

d1+d2+
1
δϵ

ϵ2 ) and round
complexity O(log( 1ϵ )) in the agnostic case (Theorem 3.11).

Finally, we also explore a more general, non-proper learning
setup for cases where VC((G ×H)ℓmani) is not necessarily
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finite. In Section 4, we note that there are classes H of
finite VC-dimension for which this VC((G × H)ℓmani) is
not finite despite G being totally ordered and which cannot
be learned with respect to such G by any proper learner.
Extending techniques from the literature on learning under
adversarial perturbations (Montasser et al., 2019), we show
that every H with finite VC-dimension can be improperly
learned with respect to any totally ordered graph class G
in the realizable setting (Theorem 4.2), even if the actual
underlying manipulation structure is not available to the
learner.

Due to space limitations, we defer all technical proofs to the
Appendix.

2. Setup
Basic learning theoretic notions We start by providing
some general notation. We adopt standard notation and ter-
minology for machine learning concepts (Shalev-Shwartz &
Ben-David, 2014). We consider a classification task given
by an unknown ground-truth distribution P over X ×{0, 1}.
We use the notation PX to denote the marginal of P over the
feature space X . We denote the set of all finite sequences of
feature vectors (eg. samples from Pm

X ) by X ∗, and the set of
all finite sequences of labeled feature vectors (eg. samples
from Pn) by (X × {0, 1})∗. As is standard in PAC-type
learning guarantees the learner is evaluated with respect to a
fixed hypothesis classH ⊂ F = {0, 1}X . The performance
of a hypothesis is evaluated by means of a loss function
ℓ : H×X×{0, 1} → R, and the goal is to learn a hypothesis
h with small expected loss LP (h) = E(x,y)∼P [ℓ(h, x, y)].
The approximation error ofH with respect to loss ℓ on dis-
tribution P is optP (H) = infh∈H LP (h), and it indicates
how suitable class H is for task P . We use superscripts
to identify specific loss functions. The standard (binary)
classification loss is denoted as ℓ0/1 (and L0/1

P (h) denotes
the corresponding expected loss). A (standard) learner is
a function A : (X × {0, 1})∗ → {0, 1}X that takes in a
labelled sample and outputs a hypothesis. The requirement
for learnability of a class H with loss function ℓ in the
PAC framework (Valiant, 1984) is the existence of func-
tion m : (0, 1)2 → N, and a learner A such that, for all
ϵ, δ ∈ (0, 1), and all m ≥ m(ϵ, δ) we have

PS∼Pm [LP (A(S)) ≤ optP (H) + ϵ] ≥ 1− δ.

It is well known, that a binary hypothesis class is PAC-
learnable with respect to loss ℓ0/1 if and only if its VC-
dimension is finite (Blumer et al., 1989; Vapnik & Chervo-
nenkis, 1971). Learnability in the realizable setting refers
to the above guarantee under the additional condition that
optP (H) = 0. And a learner A is called a proper learner
forH if A(S) ∈ H for all samples S ∈ (X × {0, 1})∗.

Strategic classification In strategic classification, indi-
viduals (modelled as the members of the domain X ) will
try to receive a preferred label (here y = 1) by manipu-
lating their feature vectors according to some admissible
manipulation. We model the set of admissible feature ma-
nipulations as a manipulation graph g = (X , Eg), where
a manipulation from x to x′ is admissible if and only if
the (directed) edge (x, x′) exists in Eg. We will denote the
neighborhood set of a point x ∈ X according to graph g by
Bg(x) = {x′ ∈ X : (x, x′) ∈ Eg}. We will denote the true
manipulation graph by g→. We do not assume this graph to
be known during the learning process. Rather, we assume
the learner has prior knowledge of some graph class G such
that g→ ∈ G. The class of all manipulation graphs will be
denoted by Gall.

We assume, that if an admissible manipulation for the pre-
ferred label (i.e. the label 1) is available to an instance x
given a published classifier h, then some manipulation to a
positively labeled instance will occur. However, we do not
assume that this is necessarily a best-response manipulation,
in the sense that the instance will “move as far as possible”.
The following definition formalizes this notion of classifier
induced manipulations for a sample of instances.

Definition 2.1 (Classifier induced manipulation of a sample).
Let g be a manipulation graph and h be a hypothesis. We
say π : X → X is a (g, h)-induced manipulation if

π(x)


= x if h(x) = 1 or

Bg(x) ∩ h−1(1) = ∅
∈ Bg(x) ∩ h−1(1) if h(x) = 0 and

Bg(x) ∩ h−1(1) ̸= ∅

Now for a labeled sequence S = ((x1, y1), . . . , (xm, ym))
of instances and sequence Π = (π1, . . . , πm)
of (g, h)-induced manipulations π1, . . . , πm,
we define the Π-manipulated sample SΠ =
((π1(x1), y1), . . . (πm(xm), ym)). Similarly for an
unlabeled sample S = (x1, x2, . . . xm), the Π-manipulated
sample is defined by SΠ = (π1(x1), . . . πm(xm)).

Note that the above definition allows for repeated feature
vectors xi = xj (with i ̸= j) in the sequence S to move
to differing manipulated instances πi(xi) ̸= πj(xj). For
simplicity, we will often just refer to the sequence Π as a
(g, h)-induced manipulation without specifically referring
to its components π1, . . . , πm.

To model repeated decision-making scenarios (such as the
university admission task outlined in the introduction), we
introduce a formal batch-learning protocol. In our protocol,
a learner receives one non-manipulated labelled sample
from the distribution, publishes an initial hypothesis ĥ0, and
then, in each round t, successively observes strategically
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manipulated (but unlabeled) samples in response to the last
published hypothesis ĥt−1. Recall that we denote the true
underlying manipulation graph by g→.

Definition 2.2 (Strategic batch-learning protocol). Let
(mi)i∈N be a sequence of sample sizes, mi ∈ N.

Round 0: The learner receives a labeled sample S ∼ Pm0

and, in response, publishes classifier ĥ0 : X → {0, 1}.

Round t for t ≥ 1: The learner receives an unlabeled sam-
ple S′ = SΠ ∈ Xmt , which is a Π-manipulated ver-
sion of some an unlabeled sample S ∼ Pmt

X , where
Π is a (g→, ĥt−1)-induced manipulation. In response,
the learner publishes classifier ĥt.

We call a learner A that operates according to the above
protocol, a strategic batch learner. Note that the learner
receives only one labeled sample from the data-generating
process, in the first round. And the only information about
the underlying manipulation structure g→ it receives, are the
unlabeled, manipulated samples in the subsequent rounds.

The goal is to output a hypothesis with low strategic loss:

Definition 2.3 (Strategic Loss (Lechner & Urner, 2022)).
For a given manipulation graph g, the strategic loss ℓg :
F × X × Y → {0, 1} is defined by

ℓg(h, x, y) =


1 if h(x) ̸= y

1 if h(x) = 0 and
Bg(x) ∩ h−1(1) ̸= ∅

0 otherwise.

That is, a classifier h suffers strategic loss 1, if it misclassi-
fies an instance (x, y), or if it assigns label 0 to x while there
exists an admissible manipulation x′ for x with h(x′) = 1.
The following loss captures the second condition only:

Definition 2.4 (Manipulation Loss). The manipulation loss
ℓmani : Gall ×F × X → {0, 1} is defined by

ℓmani(g, h, x) =


1 if h(x) = 0 and

Bg(x) ∩ h−1(1) ̸= ∅
0 otherwise

We note that for a fixed manipulation graph g, the manip-
ulation loss ℓmani(g, ·, ·) corresponds to the strategic com-
ponent loss defined in (Lechner & Urner, 2022). Moreover,
ℓg(h, x, y) ≤ ℓmani(g, h, x) + ℓ0/1(h, x, y).

We now define our success criterion for a strategic batch
learner:

Definition 2.5. A strategic batch learner A is said to
learn hypothesis class H under graph class G with sam-
ple complexity mG,H : (0, 1)2 → N and round complexity

TG,H : (0, 1)2 → N, if for every ϵ, δ ≥ 0, and every P over
X×{0, 1} and every true manipulation graph g→ ∈ G, after
T = T (ϵ, δ) many rounds, A outputs hypothesis hT satisfy-
ing Lg→

P (hT ) ≤ infh′∈H Lg→

P (h′) + ϵ, with probability at
least (1− δ) over the sample generation.

We say a learner A is a successful strategic batch learner
in the realizable case with sample complexity mreal

G,H and
round complexity T real

G,H, if it satisfies the above criterion for
all distributions P ∈ P→, where P→ denotes the set of all
distributions over X × {0, 1} with infh∈H Lg→

P ′ (h′) = 0.

We call the learner A proper for a hypothesis class H if it
only outputs hypotheses ht ∈ H from the classH (in every
round t).

3. Proper Batch Learning
3.1. Class of Thresholds

We start by showing that learning with respect to an un-
known manipulation graph for the hypothesis class of thresh-
olds with a simple graph class is possible. Consider X = R.
The class of thresholds is defined asHthres = {ha,0 : R→
{0, 1} : ha,0(x) = 1 iff x > a} ∪ {ha,1 : R → {0, 1} :
ha,1(x) = 1 iff x ≥ a}. We now look at the graph class
consisting of fixed-radius manipulation graphs gr, which
for any x has outgoing edges to every x′ with x′ − x ≤ r,
i.e. Gf.r. = {gr = (R, Er) : (x, x

′) ∈ Er iff x′ ≤ x+ r}.

We show that for this simple class there can be indeed a
successful strategic batch-learner. We first note that under
the robust realizability assumption, the learner only needs
one round to learn a close to optimal classifier and does not
require access to any manipulated samples.

Observation 3.1. The Strategic Batch-Learning for Thresh-
olds Algorithm (Algorithm 1) is a proper learner for the
strategic-batch learning problem forHthres and Gf.r. in the
realizable case with sample complexity mreal

H,G = O(
log( 1

δ )

ϵ2 )

and round complexity T real
H,G = 1.

Next, we show that there also is an algorithm that solves
the strategic-batch learning problem for these classes in the
agnostic case.

Theorem 3.2. The Strategic Batch-Learning for Thresh-
olds Algorithm (Algorithm 1) is a proper learner for the
strategic-batch learning problem forHthres and Gf.r. in the
hypothesis-agnostic case with sample complexity mH,G =

O(
log( 1

δϵ )

ϵ2 ) and round complexity TH,G = O(log( 1ϵ )).

This is achieved by Algorithm 1 (formal proofs are provided
in the appendix). In the first step the algorithm uses the
labelled sample S0 to generate candidate graphs (which are
stored as an ordered list G0), in such a way that the sample
losses on S0 for the corresponding optimal hypotheses in-
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Algorithm 1 Strategic Batch-Learning for Thresholds
1: Input: parameters ϵ, ϵ′

2: receive sample S0 ∼ Pm

3: L
0/1
0 ← infh′∈Hthres

L
0/1
S0

(h′)

4: for i = 0, . . . , 1
ϵ do

5: ri ← max{r : infh′∈Hthres
Lgr
S0
(h′) = L

0/1
0 + i · ϵ}

6: end for
7: G0 ← [gr0 , gr1 , . . . , gr 1

ϵ

]

8: ĥ0 ← argminh′∈Hthres
L
gr0
S0

(h′)

9: publish ĥ0

10: receive sample S1, where S′
1 ∼ Pm and S1 = SΠ1

1 for
some sequence of (g→, ĥ0)-induced manipulations Π1.

11: rmax ← max{r : gr ∈ G0 and Lmani
S1

(gr, ĥ
0) = 0}

12: rmin ← min{r : gr ∈ G0 and Lmani
S0

(gr, ĥ
0) ≥

Lmani
S0

(grmax
, ĥ0)− ϵ′ and Lmani

S1
(g, ĥ0) = 0}

13: G1 ← {gr ∈ G0 : r ∈ [rmin, rmax]}
14: k1 = ⌊ |G1|

2 ⌋
15: ĝ1 ← G1[k1], where G[k] refers to the k-th element of
G

16: ĥ1 ← argminh∈H′ Lĝ1

S0
(h)

17: for rounds t = 2, . . . , T do
18: publish ĥt−1

19: receive sample St, where S′
t ∼ Pm and St = SΠt

t

for some sequence of (g→, ĥt−1)-induced manipula-
tions Πt.

20: Gt ← {g ∈ Gt−1 : Lmani
St

(g, ĥt−1) = 0}
21: Gt0 ← {g ∈ Gt : Lmani

S0
(g, ĥt−1) ≥

maxg′∈Gt Lmani
S0

(g′, ĥt−1)− ϵ′}
22: if ĝt−1 ∈ Gt0 then
23: Gt ← [Gt[0], . . . ,Gt[kt−1]] ∩ Gt0
24: else
25: Gt ← Gt0
26: end if
27: kt ← ⌊ |G

t|
2 ⌋

28: ĝt ← Gt[kt]
29: ĥt ← minh∈H′ Lĝt

S0
(h)

30: end for

creases in ϵ-steps. Choosing an appropriate sample size, we
can guarantee that S0 is ϵ-representative in terms of strate-
gic loss ℓg for all g ∈ Gf.r.. That is, the observed sample
losses on S0 are ϵ-close to the corresponding expected losses
according to distribution P . This then guarantees that opti-
mizing the sample loss for one of the generated candidates
yields a close-to-optimal hypothesis on the ground-truth
distribution.

We further use the fact, that for any h ∈ Hthres, any dis-
tribution P over X × {0, 1} any sample S and any radii
r1 ≤ r2, we have that L

gr1
P (h) ≤ L

gr2
P (h) as well as

L
gr1
S (h) ≤ L

gr2
S (h). Now let gt−1 = gr be the current

candidate graph. Then the algorithm publishes a hypothesis
ht−1 = argminh∈Hthres

Lgt−1

S0
. There are two possibilities:

(1) Lg→

S0
(ht−1) and Lg→

P (ht−1) are significantly higher than

Lgt−1

S0
(ht−1). Therefore we have r < r→. Furthermore,

with high probability, we will observe a manipulated sample
St which was manipulated more than gt−1 would predict.
Thus, gt−1 would not be in the updated sets of candidate
graphs Gt0 consistent with the observed St. Similarly graphs
gr′ with r′ < r are eliminated from the candidate set. (2)
Lg→

S0
(ht−1) and Lg→

P (ht−1) are not significantly higher than

Lgt−1

S0
(ht−1). In this case, the observed sample St would

be consistent with the current gt−1. In this case all can-
didate graphs gr′′ with r < r′′ are eliminated from the
candidate set. In the case in which r > r→, this obviously
does not pose a problem. Now consider the case in which
r < r→. Then for h∗ = argminh∈Hthres

Lg→
(h) we have

that Lgr
P (h∗) ≤ Lgr→

P (h∗). Now assuming that S0 is ϵ′′-
representative for P with respect to Hthres and loss ℓg for
every g ∈ Gg.r., then Lgr

P (ht−1) ≤ Lgr
S0
(ht−1) + ϵ′′ ≤

Lgr
S0
(h∗) + ϵ′′ ≤ Lgr

P (h∗) + 2ϵ′′ ≤ Lg→

P (h∗) + 2ϵ′′. Thus,
in this case, despite r < r→, the selected hypothesis is still
close to optimal in terms of ℓg

→
. Thus, the elimination of

graphs with radius greater than r does not hinder success.
Thus, the distinction of the two cases can be exploited by
the algorithm to do a binary search on the candidate set.

We also note that the way the candidate hypotheses are
picked, we always pick the maximal radius for a given
sample loss. This leads to corresponding maximally robust
hypotheses, allowing for the first hypotheses to be successful
in the realizable case as shown in Observation 3.1.

3.2. General VC-Classes

We will now show that similar learning guarantees in our
strategic batch learning setup are possible for more general
hypothesis classes and graph classes. We start by addressing
the problem of estimating the manipulation graph from two
unlabeled samples, an un-manipulated and a manipulated
sample, from the marginal distributions. To this aim, we
define the loss class of the Cartesian product of a hypothesis

6
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classH and a graph class G.

Definition 3.3. The loss class of G × H with respect to
ℓmani is defined as

(G ×H)ℓmani =

{{x ∈ X : ℓmani(g, h, x) = 1} : g ∈ G and h ∈ H}

Furthermore for a fixed h let the class Gℓmani,h be defined as

Gℓmani,h = {{x ∈ X : ℓmani(g, h, x) = 1} : g ∈ G}

We will define VC(Gℓmani,H) = suph∈H VC(Gℓmani,h).

Observation 3.4. • The VC-dimension of (Gf.r. ×
Hthres)ℓmani is 2.

• Let Hhalf = {hw : w ∈ Rd : hw(x) = 1 iff
xTw ≥ 0} the hypothesis class of linear half spaces
and Gdf.r. = {gr = (X , Egr ) : (x, x′) ∈ Egr iff
||x − x′||2 ≤ r} be the class of fixed-radius balls
in Rd. Then the VC dimension of (Gdf.r. ×Hhalf )ℓmani

is at most 2d.

We can now use this definition to derive a sample com-
plexity bound for estimating the region of manipulation
for any particular h ∈ H from one manipulated and one
un-manipulated sample. We use the following notion of
disagreement between two manipulation graphs:

Definition 3.5. Given a distribution D over a domain set
X (a.k.a. a marginal distribution), a classifier h and two
manipulation graphs, g, g′

Dis(D,h)(g, g
′) =

D[{x ∈ X : ℓmani(g, h, x) ̸= ℓmani(g′, h, x)}]

Lemma 3.6. Let G,H be such that VC(Gℓmani,H) = d. Let
Agraph : X ∗ × X ∗ × H → 2G be a learner following the
Empirical Manipulation Estimation Paradigm (as defined
in Algorithm 2 ). Then Agraph has the following success
guarantee for learning the manipulation graph:

For every marginal distribution PX , every g→ ∈ G, every
h ∈ H and every sequence of (g→, h)-induced manipula-
tions Π, and every ϵ, δ ∈ (0, 1),

if m ≥ C
d+log( 1

δ )

ϵ2 (for some universal constant C) with
probability at least (1− δ), over samples S1 ∼ Pm

X , S2 ∼
Pm
X , for every ĝ ∈ Agraph(S1, S

Π
2 , h),

Dis(PX ,h)(g
→, ĝ) ≤ ϵ.

and
g→ ∈ Agraph(S1, S

Π
2 , h).

The key tool for proving the above lemma is the no-
tion of a sample S1 being ϵ-representative with respect to
(G ×H)ℓmani . For any g ∈ G and h ∈ H the empirical ma-
nipulated loss over such a sample is ϵ-close to its true loss.
Standard uniform convergence theory (see, e.g., (Shalev-
Shwartz & Ben-David, 2014) Chapter 4) shows that, given a
class of finite VC-dimension, for any data generating distri-
bution, a large enough sample will be ϵ-representative with
respect to that class.

Observation 3.7. If an un-manipulated sample S1 is ϵ-
representative with respect to (G ×H)ℓmani , then it can be
indefinitely re-used by Agraph for any hypothesis h ∈ H
and any manipulated ϵ-representative samples SΠ

2 . Thus
if VC(G × H)ℓmani = d, then m ≥ C

d+log( 1
δ )

ϵ2 (for some
universal constant C) , implies that with probability 1− δ
any S1 ∼ Pm is repeatedly reusable by Agraph to guarantee
ϵ-success as in the Lemma above. This allows us to reuse
the initial unmanipulated sample in all subsequent steps.

Algorithm 2 EmpiricalManipulationEstimation (realizable)
Input: graph class G, hypothesis h, input samples S1 and
SΠ
2 ,parameter ϵ

Output set of candidate manipulation graphs Gc
Lmax ← maxg∈G Lmani

S1
(g, h) s.t. Lmani

S2
(g, h) = 0

Gc ← {g ∈ G : Lmani
S1

(g, h) ∈ [Lmax − ϵ, Lmax]}

To generalize the above algorithms to richer classes and
higher data dimensions, will now define a partial order for
the graph class. We will then show that if a graph class is
totally ordered with respect to this partial order, we can give
a similar algorithm to the one in the threshold case with a
similar guarantee.

Definition 3.8. For a hypothesis classH, let the ℓmani−H-
induced partial order⪯H on manipulation graphs be defined
by: g1 ⪯H g2, if and only if for every h ∈ H and every
x ∈ X , we have ℓmani(g1, h, x) ≤ ℓmani(g2, h, x).
A graph class G is totally ordered with respect to ⪯H if for
every distinct g1, g2 ∈ G, we have that either g1 ⪯H g2 or
g2 ⪯H g1. For a subset A ⊂ G of a totally ordered graph
class, we define max⪯H as the graph g ∈ A with g′ ⪯ g
for all g′ ∈ A.

Observation 3.9. • A graph class G is totally ordered
with respect to the class of all hypotheses F if and only
if for every distinct g1, g2 ∈ G either g1 is a subgraph
of g2 or g2 is a subgraph of g1.

• For H1 ⊂ H2 and two graphs g1, g2 g1 ⪯H2
g2 im-

plies g1 ⪯H1
g2. Thus, if a graph class G is totally

ordered with respect to H2 it is also totally ordered
with respect toH1.

• If G is totally ordered with respect to H, then
VC(Gℓmani,H) = 1.

7
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• There are G and H, such that VC(H) = d and G
is totally ordered with respect to H, but VC((H ×
G)ℓmani) =∞.

We can now generalize our threshold algorithm to an algo-
rithm for totally ordered graph classes (Algorithm 3). This
algorithm essentially works in the same way: It first iden-
tifies the maximal graph g0 for which there is a hypothesis
with maximum accuracy that is still robust with respect to g0.
The corresponding optimal hypothesis is the first hypothesis
ĥ0 published by the algorithm. For the robust-realizable
case, this is sufficient to guarantee success (see Observa-
tion 3.10), as we get uniform convergence ofH both in terms
of ℓm with respect to G and in terms of 0/1-loss, which is
sufficient to guarantee uniform convergence in terms of the
strategic loss. For the agnostic case other candidate graphs
are generated in a similar fashion. The upper bound on the
strategic loss is increased by ϵ-steps, and for each such in-
crement the maximal graph gi, which allows for a classifier
h ∈ H with corresponding loss Lgi

S0
(h) to be smaller than

that bound, is identified. For these 1
ϵ many candidate graphs

{g0, . . . , g 1
ϵ
} we can then perform a kind of binary search

by always publishing the optimal classifier with respect to
the current median classification graph. We can then update
the set of candidate graphs in each round by observing the
manipulations caused by the published classifiers. We are
guaranteed to always observe manipulations if robustness
was under-estimated, giving the algorithm sufficient feed-
back for the binary search to terminate successfully. This
yields the guarantee in Theorem 3.11.

Observation 3.10. Let VC(H × G)ℓmani = d1 and
VC(H) = d2. Furthermore let G be totally ordered with
respect toH. Then Algorithm 3 is a successful proper strate-
gic batch learner in the realizable case with sample com-
plexity mreal

H,G(ϵ, δ) = O(
(d1+d2) log(d1+d2)+

1
δ

ϵ2 ) and round
complexity T real

H,G(ϵ, δ) = 1.

Theorem 3.11. Let VC(H × G)ℓmani = d1 and
VC(H) = d2. Furthermore, let G be totally ordered
with respect to H. Then Algorithm 3 is a successful
proper strategic batch learner with sample complexity
mH,G(ϵ, δ) = O(

(d1+d2) log(d1+d2)+log( 1
δϵ )

ϵ2 ) and round
complexity TH,G(ϵ, δ) = O(log( 1ϵ )).

4. Improper Learning
As noted in Observation 3.9, it can be the case that VC(H)
and VC(G)ℓmani,H are finite, but VC(G × H)ℓmani is still
infinite. In particular, this is the case for any G that contains
a g ∈ G such that VC(Hℓg ) is infinite, whereHℓg is the loss
class ofH with respect to the strategic loss ℓg . Furthermore,
it has been shown that there are hypothesis classesH with
finite VC-dimension but infinite VC-dimension of the loss
classHℓg , which are not properly strategically robust learn-

Algorithm 3 Strategic Batch-Learning for totally ordered
graph classes

1: Input: parameters ϵ, ϵ′, hypothesis class H, graph
class G

2: receive sample S0 ∼ Pm

3: L
0/1
0 ← infh′∈H L

0/1
S0

(h′)

4: for i = 0, . . . , 1
ϵ do

5: gi ← max⪯H{g : infh′∈H Lg
S0
(h′) = L

0/1
0 + i · ϵ}

6: end for
7: set G0 = [g0, g1, g2, . . . , g 1

ϵ
]

8: ĥ0 ← argminh∈H Lg0
S0
(h)

9: publish ĥ0

10: receive sample S1, where S′
1 ∼ Pm and St = SΠt

t for
some sequence of (g→, h0)-induced manipulations Π1.

11: gmax ← max⪯H{g ∈ G0 : Lmani
S1

(g, ĥ0) = 0}
12: gmin ← min⪯H{g ∈ G0 : Lmani

S0
(g, ĥ0) ≥

Lmani
S0

(g, ĥ0)− ϵ′ and Lmani
S1

(g, ĥ0) = 0} ]
13: G1 ← {g ∈ G0 : g ⪯H gmax and gmin ⪯H g}
14: k1 = ⌊ |G1|

2 ⌋
15: ĝ1 ← G1[k1]
16: ĥ1 ← argminh∈H′ Lĝ1

S0
(h)

17: for rounds t = 2, . . . , T do
18: publish ĥt−1

19: receive sample St, where S′
t ∼ Pm and St = SΠt

t

for some sequence of (g→, ht−1)-induced manipula-
tions Πt.

20: Gt ← {g ∈ Gt−1 : Lmani
St

(g, ĥt−1) = 0}
21: Gt0 ← {g ∈ Gt : Lmani

S0
(g, ĥt−1) ≥

maxg′∈Gt Lmani
S0

(g′, ĥt−1)− ϵ′}
22: if ĝt−1 ∈ Gt0 then
23: Gt ← [Gt[0], . . . ,Gt[kt−1]] ∩ Gt0
24: else
25: Gt ← Gt0
26: end if
27: kt ← ⌊ |G

t|
2 ⌋

28: ĝt ← Gt[kt]
29: ĥt ← minh∈H′ Lĝt

S0
(h)

30: end for
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able by any learner (Lechner & Urner, 2022). The following
observation is a corollary of these results from the literature.

Observation 4.1. There are classes H of finite VC-
dimension and graph classes G which are totally ordered
with respect to H, such that there is no proper successful
batch-learner forH and G for any finite sample and round
complexity, not even in the realizable case.

However, in the PAC-learning setting with a fixed hypoth-
esis class it has been shown that any class of finite VC
dimension can be improperly strategically robustly learned
(Montasser et al., 2019; Lechner & Urner, 2022). We can
generalize these positive results in the realizable case to a
setting where the manipulation graph is unknown, but the
learner is given the prior knowledge that the true manipula-
tion graph comes from a known, totally ordered graph class.
We exploit the fact that here we assume realizability in the
strategically robust sense and that therefore any sample will
be robustly realizable with probability 1. Now let G be a
totally ordered graph class and H a hypothesis class. We
define the maximally robust graph in G with respect to a
sample S and classH as

MGH,G(S) = max
⪯H
{g ∈ G : min

h∈H
Lg
S(h) = 0}.

In cases where this maximum does indeed exist, we then de-
fine a maximally robust empirical risk minimizer (MRERM)
with respect toH and G as the hypothesis inH minimizing
the strategically robust loss with respect to MGH,G(S), i.e.,

MRERMH,G(S) ∈ argmin
h∈H

L
MGH,G(S)
S (h).

In cases where the maximum graph does not exist, we need
to instead pick a hypothesis hmax

S that is simultaneously
robust with respect to every graph in G for which S is H-
realizable to achieve our guarantee. Such a hypothesis might
not always exist withinH. However, we can extendH to a
class H′, with VC(H′) = VC(H) and such that for every
finite sample S ⊂ X the class H′ contains a hypothesis
hmax
S . In order to define such a hypothesis class and general

MRERM rigorously we need to use the set-theoretic concept
of ultrafilters. For an explanation and proof that suchH′ and
MRERM always exist, we refer the reader to the appendix.

We note that in the realizable setting, the maximal graph
used for the estimation here will always overestimate the
robustness of the true manipulation graph g→. We use this
fact to define a successful improper learner and prove the
following theorem based on techniques from the literature
on PAC learning with respect to adversarial perturbations
(Montasser et al., 2019).

Theorem 4.2. Let VC(H) be finite and let G be totally
ordered with respect to H. Then there is a strategically
robust (improper) PAC-learner (i.e., a PAC-learner with

respect to ℓg
to

-loss) which is successful for every g→ ∈
G in the strategically robustly realizable case (i.e. when
infh∈H Lg→

P (h) = 0).

Note that the learner is successful, even without knowing
the true manipulation graph g→ and without receiving any
local perturbation sets as input.

5. Ethics discussion
As machine learning applications seem to be infiltrating all
aspects of society as well as individual people’s lives, it
becomes increasingly important to develop tools and frame-
works to analyze and provide performance and safety guar-
antees for diverse settings beyond the standard one-time
supervised learning task from iid data. We view our work
in line with studies that aim to provide solid foundations for
non-standard learning settings and make such foundations
applicable to more realistic application scenarios. We be-
lieve that developing a more thorough understanding and
dependable theory will ultimately benefit machine learning
practitioners as well as policymakers that need to shape
the legal landscape in which machine learning practitioners
operate.

While our work does not include implementations of algo-
rithms or algorithmic frameworks (and as such can not be
abused “directly”), we do believe that the algorithms we
develop will be beneficial in scenarios of repeated learning
and decision-making tasks with strategic agents. Whether
such an application is morally commendable highly depends
on the actors and objects of the application (as it does in any
decision-making scenario that involves or affects human
lives). We acknowledge that (as has been pointed out in
the literature (Hu et al., 2019)) policies that are designed to
discourage or prevent strategic responses to decision rules,
might disproportionately affect underrepresented and/or dis-
advantaged segments of society. Developing mechanisms
to address (and potentially counteract) such effects is an im-
portant complementary task to our study, which is however
not a part of this submission.
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A. Note on the maximally robust ERM paradigm
The proof of Theorem 4.2, employs the notions of a maximal graph within G and maximal ERM hypothesis within the class
H. Recall the definitions from Section 4:

• MGH,G(S) = max⪯H{g ∈ G : minh∈H Lg
S(h) = 0}

• MRERMH,G(S) ∈ argminh∈HL
MGH,G(S)
S (h)

However, in general, these do not necessarily exist in these classes. In this section, we show that we can always embed the
original classes G andH in such a way that the above notions are well-defined.

Consider a fixed sample S = ((x1, y1), . . . , (xm, ym)) that is realizable with respect to the strategic loss for some g→ ∈ G.
Then the set

GS = {g ∈ G : min
h∈H
Lg
S(h) = 0} ⊆ G

is not empty, and we can define a new manipulation graph MGH,G(S) by taking the union of all edge sets of graphs in GS
as the new edge set for this maximal graph. Now, if the set

argminh∈HL
MGH,G(S)
S (h)

is not empty, then we can choose any element in this set to define a maximally robust ERM hypothesis MRERMH,G(S).
Note that this is always the case if the graph class G (and therefore the set GS) is finite.

Thus we now focus on the case where GS induced by some S is infinite and the set argminh∈HL
MGH,G(S)
S (h) is empty.

We will use the concept of an ultrafilter to define a maximal hypothesis hmax
S for the sample S. Finally, we will show that

adding all possible (over all labelled samples S) such maximal hypotheses yields a hypothesis classH′ withH ⊂ H′ and
VC(H′) = VC(H).
Definition A.1 (Filter). Let Z be some set and let F ⊆ 2Z be a collection of subsets of Z . We call F a filter if the following
conditions are satisfied:

• F ̸= ∅

• ∅ /∈ F

• F is upwards inclusion closed: if A ∈ F and A ⊆ B, then B ∈ F

• F is closed under finite intersections: if A ∈ F and B ∈ F , then (A ∩B) ∈ F .

A filter F is an ultrafilter if for every domain subset C ⊆ Z , either C or its complement C̄ is a member of F .

It can be shown (using Zorn’s lemma) that every filter F can be extended to an ultra-filter. That is, there always exists an
ultrafilter F̃ with F ⊆ F̃ .

We will start by defining a filter over GS . Note that GS is totally ordered. A final segment G ⊆ GS is a subset such that
g ∈ G and g ⪯ g′ implies g′ ∈ G. Now consider the collection F ⊆ 2GS defined by:

F = {G ⊆ GS | G contains a final segment of GS}.

It is not difficult to see that F is indeed a filter. Let F̃ denote an ultra-filter extending if (that is, F ⊆ F̃).

Recall that for every g ∈ GS there exists at least one h ∈ H such that Lg
S(h) = 0. Let τ : GS → H be a function that

assigns every manipulation graph g ∈ GS such a hypothesis hg = τ(g). The image of τ is thus a subset HS ⊆ H of the
hypothesis class of empirical risk minimizers corresponding to the graphs in GS :

HS = {hg | g ∈ GS}.

12
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We can consider the set HS as indexed by GS and therefore inheriting the order of GS (and we can thus refer to final
segments ofHS etc). Note that, if for some x ∈ X , and y ∈ {0, 1}, there exists a final segment ofHS , in which all functions
assign x the same label y, then the set

{g ∈ GS | hg(x) = y} ∈ F

is an element of the filter F (since the filter is upward inclusion closed). For such cases, the limit function hmax
S will assign

this label y to x.

Observe that for every x, the set {g ∈ GS | hg(x) = y} is the complement (in GS) of the set {g ∈ GS | hg(x) = 1− y},
and thus exactly one of these sets is a member of the ultrafilter F̃ that contains F . We can thus define the limit function on
the whole domain X by

hmax
S (x) =

{
1 if {g ∈ GS | hg(x) = 1} ∈ F̃
0 else.

That is, for every x ∈ X , y ∈ {0, 1}, we have hmax
S (x) = y if and only if {g ∈ GS | hg(x) = y} ∈ F̃ . The ultra-filter

F̃ serves to define a tie-breaker label for all domain elements x that are not “eventually” assigned the same label - x’s for
which every final segment of GS contains both g’s with hg(x) = 0 and g’s with hg(x) = 1.

It remains to show that this so-defined limit function hmax
S (x) has empirical strategic loss 0 on S for all graphs in GS and

that adding all such limit functions to the hypothesis classH will not increase its VC-dimension.

For the first property, consider some g ∈ GS and some (x, y) ∈ S. If y = 0, then all functions hg′ for g ⪯ g′ assign 0

to all points in Bg(x) (since each hg′ is an empirical risk minimizer for the empirical strategic loss Lg′

S ). If y = 1, then
all these functions assign label 1 to x. Since the set {g′ ∈ GS | g ⪯ g′} is a member of F and therefore a member of F̃ ,
the first case implies that hmax

S (x′) = 0 for all x′ ∈ Bg(x) and the second case implies that hmax
S (x) = 1. In both cases

ℓg(hmax
S , (x, y)) = 0, and since this holds for all (x, y) ∈ S and all g ∈ GS , we have

Lg
S(h

max
S (x)) = 0.

Now we consider the extended hypothesis class

H′ = H ∪ {hmax
S ∈ {0, 1}X | S ∈ (X × {0, 1})∗}

where we added the limit functions (as defined above) for all possible labeled samples S over X × {0, 1}. In order to show
thatH′ has the same VC-dimension asH, we argue that any finite set that is shattered byH′ is already shattered byH.

Consider domains points x1, x2, . . . , xd, shattered byH′, and some labels y1, y2, . . . yd. Assume this labeling is realized by a
limit function hmax

S (that came from some labeled sample S), that is hmax
S (xi) = yi for all i ∈ [d]. Note that hmax

S (xi) = yi
implies that for each i the set

{g ∈ GS | hg(xi) = yi} ∈ F̃

Since ultra-filters are closed under finite intersections, the set

{g ∈ GS | hg(xi) = yi for all i ∈ [d]}

is also a member of the ultrafilter F̃ , and therefore not empty. Thus, there exists a g ∈ GS and corresponding ERM function
hg ∈ HS ⊆ H with hg(xi) = yi for all i ∈ [d]. Thus, any labeling on a finite set of points that is realized by some limit
function, is also already realized by a hypothesis fromH. Therefore, VC(H′) = VC(H), and we can use the larger class
H′ to define the maximally robust ERM hypothesis, we set

• MGH,G(S) = (X , E) with E =
⋃

{g∈G:minh∈H Lg
S(h)=0} Eg

• MRERMH,G(S) =

{
h ∈ argminh∈HL

MGH,G(S)
S (h) if this set is not empty

hmax
S as defined above, otherwise.

13
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B. Proofs
Definition B.1. Let ℓstr : Gall ×F × X × {0, 1} be the loss defined by

ℓstr(g, h, x, y) = max{ℓ0/1(h, x, y), ℓmani(g, h, x)}.

The loss class of G ×H with respect to ℓstr is defined by

(G ×H)ℓstr =

{{(x, y) ∈ X × {0, 1} : ℓstr(g, h, x, y) = 1}} : h ∈ H, g ∈ G}.
Claim B.2. Let d = VC((G ×H)ℓmani) + VC(H). Then, VC((G ×H)ℓstr) ≤ d log(d).

Proof. We follow the same argument as in (Lechner & Urner, 2022). Let us denote (g, h)ℓmani = {(x, y) ∈ X × {0, 1} :
ℓmani(g, h, x) = 1} and hℓ0/1 = {(x, y) ∈ X × {0, 1} : ℓ0/1(h, x, y) = 1}. Lastly, let (g, h)ℓstr = {(x, y) ∈ X × {0, 1} :
ℓstr(g, h, x, y) = 1}. We can easily see that (g, h)ℓstr(g, h) = (g, h)ℓmani ∪ hℓ0/1 . Thus, (G × H)ℓstr = {A ∪ B : A ∈
Hℓ0/1 , B ∈ (G ×H)ℓmani}. Thus, by standard arguments about VC-classes (e.g. exercises in (Shalev-Shwartz & Ben-David,
2014)), we get the claimed result.

B.1. Proper Batch Learning

B.1.1. CLASS OF THRESHOLDS

Observation 3.1. The Strategic Batch-Learning for Thresholds Algorithm (Algorithm 3.1) is a proper learner for the
strategic-batch learning problem forHthres and Gf.r. in the realizable case with sample complexity mreal

H,G = O(
log( 1

δ )

ϵ2 ) and
round complexity T real

H,G = 1.

Proof. This is a special case of Observation 3.10, as the graphs in Gf.r. are totally ordered with respect to F (and thus also
with respect toHthres.

Theorem 3.2. The Strategic Batch-Learning for Thresholds Algorithm (Algorithm 1) is a proper learner for the strategic-
batch learning problem for Hthres and Gf.r. in the agnostic case with sample complexity mH,G(ϵ, δ) = O(

log( 1
δϵ )

ϵ2 ) and
round complexity TH,G(ϵ, δ) = O(log( 1ϵ )).

Proof. We note that the graphs in Gf.r. are totally ordered with respect to F (and thus also with respect to Hthres. We
also find that (Gf.r. ×Hthres)ℓmani) is the class of intervals over the real line and thus C ∈ VC((Gf.r. ×Hthres)ℓmani) = 2.
Therefore we can treat this Theorem as a special case of Theorem 3.11 (and refer the reader to the proof of that theorem).

B.1.2. GENERAL VC-CLASSES

Observation 3.4

• The VC-dimension of (Gf.r. ×Hthres)ℓmani is 2.

• Let Hhalf = {hw : w ∈ Rd : hw(x) iff xTw ≥ 0} the hypothesis class of linear half spaces and Gdf.r. = {gr =
(X , Egr ) : (x, x′) ∈ Egr iff ||x − x′||2 ≤ r} be the class of fixed-radius balls in Rd. Then the VC dimension of
(Gdf.r. ×Hhalf )ℓmani is at most 2d.

Proof. • We note that the elements of (Gf.r. ×Hthres)ℓmani correspond exactly to the class of intervals over the real line.
The VC-dimension of that class is known to be 2 (Shalev-Shwartz & Ben-David, 2014).

• We note, that the elements of (Gdf.r. ×Hhalf )ℓmani are sets Cw,r = {x ∈ Rd : −r ≤ xTw ≤ 0}. Now if we take any
set C of 2d + 1 points, then there is one point x ∈ C such that x is in the convex hull of the remaining points, i.e.,
x ∈ conv(C \ {x}). Now it is impossible for any Cw,r to achieve Cw,r ∩C = {x}. Thus the set C cannot be shattered
by (Gdf.r. ×Hhalf )ℓmani . Therefore VC((Gdf.r. ×Hhalf )ℓmani) ≤ 2d.

14
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Lemma 3.6. Let G,H be such that VC(Gℓmani,H) = d. Then any Empirical Manipulation Estimation learner (such as
Algorithm 3.2 below) has the following success guarantee for learning the manipulation graph:

For every marginal distribution PX , every g→ ∈ G, every h ∈ H and every sequence of (g→, h)-induced manipulations Π,
and every ϵ, δ ∈ (0, 1),

if m ≥ C
d+log( 1

δ )

ϵ2 (for some universal constant C) with probability ≥ (1− δ), over samples S1 ∼ Pm
X , S2 ∼ Pm

X , for every
ĝ ∈ Agraph(S1, S

Π
2 , h),

Dis(PX ,h)(g
→, ĝ) ≤ ϵ.

and

g→ ∈ Agraph(S1, S
Π
2 , h).

Proof. We note it is sufficient to show that there is a constant C, such that for i.i.d P samples S1 and S2 of size m ≥
C

d+log( 1
δ )

ϵ2 with probability 1− δ, we have Lmani
S1

∈ [Lmax − ϵ
2 , Lmax], to guarantee that if we run Agraph with parameter

ϵ
2 , we get:

• Dis(PX ,h)(g
→, g) ≤ ϵ for all g ∈ Agraph(S1, S

Π
2 , h).

• and g→ ∈ Agraph(S1, S
Π
2 , h).

First we note, that for any samples S1 and S2 and the true manipulation graph g→, we have Lmani
SΠ
2

(g→, h) = 0, as
the sequence of mappings Π replaces every sample point which can be manipulated in S2 (i.e., all sample points with
ℓ(g→, h) = 1), with a sample point x′ with h(x′) = 1 (i.e., a sample point with ℓmani(g→, h, x′) = 0). From g→ ∈ G, it
follows that we have g→ ∈ {g ∈ G : Lmani

SΠ
2

(g, h) = 0}. Then this implies

Lmax = max{Lmani
S1

(g, h) : g ∈ G,Lmani
SΠ
2

(g, h) = 0}

≥ Lmani
S1

(g→, h).

Now from VC-theory, we know that there exists a universal constant C, such that a sample size of m ≥ d+log( 1
δ )

ϵ2 guarantees
that with probability 1− δ

2 we have that a sample S ∼ Pm is ϵ
8 -representative with respect to Gℓmani,h.

Now let S1 and S2 be ϵ
8 -representative with respect to (G × {h})ℓmani). We want to show that Lmax − ϵ

2 ≤ L
mani
S1

(g→, h).
We note that there exists gmax ∈ G, such that Lmax = Lmani

S1
(gmax, h) and Lmani

SΠ
2

(gmax, h) = 0.

Because of the ϵ
8 -representativeness of both samples, we get for every g ∈ G, we have

|Lmani
S1

(g, h)− Lmani
S2

(g, h)| ≤

|Lmani
S1

(g, h)− Lmani
PX

(g, h)|+ |Lmani
S2

(g, h)− Lmani
PX

(g, h)| ≤ ϵ

4
.

Furthermore we note, that for any manipulation graph g, |Lmani
SΠ
2

(g, h) − Lmani
S2

(g, h)| ≤ 1
|S2| |{x ∈ S2 : x ̸∈ SΠ

2 }| =
Lmani
S2

(g→, h).

It now follows that:

Lmax = Lmani
S1

(gmax, h)

≤ |Lmani
S1

(gmax, h)− Lmani
S2

(gmax, h)|
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+|Lmani
S2

(gmax, h)− Lmani
SΠ
2

(gmax, h)|

≤ ϵ

4
+ Lmani

S2
(g→, h)

≤ ϵ

2
+ Lmani

S1
(g→, h).

Putting everything together, we have Lmani
S1

(g→, h) ∈ [Lmax − 1
ϵ , Lmax]. This concludes our proof.

Observation 3.7
If an un-manipulated sample S1 is ϵ-representative with respect to (G × H)ℓmani , then it can be indefinitely re-used by
Agraph for any hypothesis h ∈ H and any manipulated ϵ-representative samples SΠ

2 . Thus if VC(G ×H)ℓmani = d, then

m ≥ C
d+log( 1

δ )

ϵ2 (for some universal constant C) , implies that with probability 1− δ any S1 ∼ Pm is repeatedly reusable
by Agraph to guarantee ϵ-success as in the Lemma above, This allows us to reuse the initial unmanipulated sample in all
subsequent steps.

Proof. We note that in order for sample S1 to guarantee success in Lemma 1 we only required it to be ϵ
4 -representative with

respect to Gℓmani,h. If VC((H× G)ℓmani) = d, then there exists a sample size m ≥ C
d+log( 1

δ )

ϵ2 that with probability 1− δ
over the sample generation S1 ∼ Pm, we have that S1 is ϵ

4 -representative with respect to (G ×H)ℓmani . This implies that
with probability 1− δ, S1 is ϵ

4 -representative w.r.t. Gℓmani,h for all h ∈ H simultaneously, proving the obervation.

Observation 3.9.

• A graph class G is totally ordered with respect to the class of all hypotheses F if and only if for every distinct g1, g2 ∈ G
either g1 is a subgraph of g2 or g2 is a subgraph of g1.

• For H1 ⊂ H2 and two graphs g1, g2 g1 ⪯H2 g2 implies g1 ⪯H1 g2. Thus, if a graph class G is totally ordered with
respect toH2 it is also totally ordered with respect toH1.

• If G is totally ordered with respect toH, then VC(Gℓmani,H) ≤ 1.

• There are G andH, such that VC(H) = d and G is totally ordered with respect toH, but VC((H× G)ℓmani) =∞.

Proof. • ”→”: Let G be totally ordered with respect to F . This means for any two graphs g1, g2 ∈ G, we have either
g1 ⪯F g2 or g2 ⪯F g1. Without loss of generality, assume g1 ⪯F g2. We want to show that this implies that g1
is a subgraph of g2. For the purpose of contradiction, assume the opposite. This means that there exists an edge
(x, x′) ∈ Vg1 , such that (x, x′) ̸∈ Vg2 . Now consider any function f ∈ F with f(x) = 0 and f(x) = 1. Then
ℓmani(g1, f, x) = 1 ≥ 0 ≥ ℓmani(g2, f, x), which contradicts g1 ⪯F g2.

”←” Let G such that for every two graphs g1, g2 ∈ G, we have either Eg1 ⊂ Eg2 or Eg2 ⊂ Eg1 . Without loss of
generality, assume Eg1 ⊂ Eg2 . We want to show that this implies g1 ⪯F g2. For the sake of contradiction, we assume
the opposite. This means that there exists an f ∈ F and a x ∈ X , such that ℓmani(g1, f, x) = 1 and ℓmani(g2, f, x) = 0.
ℓmani(g1, f, x) = 1 implies that f(x) = 0 and that there is an x′ ∈ X such that f(x′) = 1 and such that (x, x′) ∈ Eg1 .
Now this implies that (x, x′) ∈ Eg2 as well. From f(x) = 0 and f(x′) = 1 it follows that ℓmani(g2, f, x) = 1,
contradicting our assumption.

• This follows directly from the definitions. If for g1 and g2, we have g1 ⪯H2
g2 then for all h ∈ H2 and all x ∈ X , we

have ℓmani(g1, h, x) = 1 implies ℓmani(g2, h, x) = 1. SinceH1 ⊂ H2 for all h ∈ H1 we thus have ℓmani(g1, h, x) = 1
implies ℓmani(g2, h, x) = 1. Thus g1 ⪯H1 g2.
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• Take any h ∈ H and any {x1, x2} = C ⊂ X . Assume that C was shattered by Gℓmani,h. Then there is some g1,
such that ℓmani(g1, h, x1) = 1 and ℓmani(g1, h, x2) = 0. We know that G is totally ordered with respect to H. Thus
we know that for any g2 ∈ G, we either have g1 ⪯H g2, which implies that ℓmani(g2, h, x1) = 1 or g2 ⪯H g1
which implies ℓmani(g2, h, x2) = 0. Thus there is no g2 ∈ G with ℓmani(g2, h, x1) = 0 and ℓmani(g2, h, x2) = 1,
contradicting that C is shattered by Gℓmani,h. Thus VC(Gℓmani,h) ≤ 1. Since h ∈ H was picked arbitrarily we have
VC((G)ℓmani,H) = suph∈H(VC(Gℓmani,h)) ≤ 1.

• For VC((H×G)ℓmani) to be infinite it is sufficient to find one g and a hypothesis classH such that VC(H×{g})ℓmani =
∞. In Theorem 5 in (Lechner & Urner, 2022), we have seen that there are classesH with VC(H) = 1 and manipulation
graphs g, such that VC(H×{g})ℓmani =∞. Lastly we note that if we pick G = {g}, then G is trivially totally ordered
with respect toH.

Observation 3.10. Let VC(H × G)ℓmani = d1 and VC(H) = d2. Furthermore let G be totally ordered with respect
to H. Then Algorithm 3.2 is a successful proper strategic batch learner in the realizable case with sample complexity
mreal

H,G(ϵ, δ) = O(
(d1+d2) log(d1+d2)+log( 1

δ )

ϵ2 ) and round complexity T real
H,G(ϵ, δ) = 1.

Proof. We assume to be in the realizable case, i.e. infh∈H Lg→

P (h) = 0. Thus with probability 1, the sample S0 will be
realizable under Lg→

as well. This implies infh∈H L
0/1
S0

(h) = 0. Therefore, in line 3 of Algorithm 3, we set L0/1
0 to

0. We then determine g0 to be the maximal graph according to ⪯H to yield infh∈H Lg0
S0
(h) = 0 (line 5). From this and

the realizability assumption, if follows that g→ ⪯H g0. In line 8, we now define ĥ0, to be argminh∈H Lg0
S0
(h). From

g→ ⪯H g0, it follows that Lg→

S0
(ĥ0) = 0 as well. Now, we can choose a sample size m ∈ O(

(d1+d2) log(d1+d2)+log( 1
δ )

ϵ2 ),
large enough to guarantee ϵ

8 -representativeness with respect toHℓg→ , (G ×H)ℓmani as well as (G ×H)ℓstr simultaneously
with probability at least 1− δ

2 . Now with probability 1− δ, S0 ∼ Pm and S′
1 ∼ Pm are both such ϵ

8 -representative samples.
First we note, that this guarantees that Lg→

P (ĥ0) ≤ ϵ
8 with probability 1− δ

2 .

This implies that an ϵ
8 -representative sample S′

1 at most a fraction of ϵ
4 can be manipulated by a (g→, ĥ0)-induced

manipulation. We now assume that the parameter ϵ in the algorithm, is the same as the ϵ in our sample complexity analysis
(our algorithm lets us set this parameter. We can assume that we know in advance what the size of the first sample will be.).
Now if S′

1 is ϵ
8 -representative with respect to ℓg

→
, then for g1 (as chosen in line 5), we have Lg1

S′
1
(ĥ0) ≥ Lg1

S0
(ĥ0)− ϵ

4 ≥
infh∈H Lg1

S0
(ĥ0) − ϵ

4 = 3ϵ
4 . Since L

0/1
S0

(ĥ0) = 0, we have L
0/1
S′
1
(ĥ0) ≤ ϵ

4 . Thus Lmani
S′
1

(g1, ĥ
0) ≥ 3ϵ

4 −
ϵ
4 = ϵ

2 . Now we

noticed before that only at most a fraction of ϵ
4 samples in S′

1 get replaced in S1. Thus g1 does not fulfill Lmani
S′
1

g1(ĥ0) = 0.

Therefore G1 = {g0}. Which means that for all consecutive rounds t, we get ĥt = infh∈H Lg0
S0
(h), which yields the

guarantee Lg→

P (ĥt) ≤ Lg0
P (ĥt) ≤ ϵ

8 .

Theorem 3.11.

Let VC(H× G)ℓmani = d1 and VC(H) = d2. Furthermore let G be totally ordered with respect toH. Then Algorithm 3.2
is a successful proper strategic batch learner with sample complexity mH,G(ϵ, δ) = O(

(d1+d2)(log(d1+d2))+
1
δϵ

ϵ2 ) and round
complexity TH,G(ϵ, δ) = O(log( 1ϵ )).

Proof. We will first argue that among the candidate graphs G0 we pick in round 0, there is a candidate graph gi, which
yields a close-to-optimal hypothesis h, given some amount of ϵ-representativeness and for certain choices of parameters.

Assume we have a sample S0 which is ϵ
16 -representative with respect to (G × H)ℓstr . Then S0 is ϵ

16 -representative with
respect toHℓg for every g ∈ G. Now let us run the algorithm with the parameter ”ϵ” set as ϵ

4 . Let G0 be defined as in the
algorithm (line 7). Furthermore for every gi ∈ G0, define hi = argminh∈H Lgi

S0
(h) andH′ = {h0, . . . , h 4

ϵ
}. Now let h∗

denote the optimal hypothesis h∗ = argminh∈H LP (g
→)(h). Now let j = ⌈

4(Lg→
S0

(h∗)−L
0/1
0 )

ϵ ⌉+1. Now we compare h∗ to
hj from the candidate setH′. By definition of gj and hj , we know that jϵ

4 + L
0/1
0 = L

gj
S0
(hj) ≤ L

gj
S0
(h∗). Furthermore, we
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know that Lg→

P (h∗) ≤ Lg→

S0
(h∗) + ϵ

16 ≤ ( (j−1)ϵ
4 +L

0/1
0 ) + ϵ

16 < jϵ
4 +L

0/1
0 . Thus g→ ⪯Hthres

gj . Therefore, Lg→

P (hj) ≤
Lgj

P (hj) ≤ Lgj

S0
(hj)+

ϵ
16 ≤ Lgj

S0
(h∗)+ ϵ

16 = jϵ
4 +L

0/1
0 + ϵ

16 = (j−2)ϵ)
4 +L

0/1
0 + 9ϵ

16 ≤ Lg→

S0
(h∗)+ 9ϵ

16 ≤ Lg→

P (h∗)+ 10ϵ
16 .

This shows that there is indeed a hypothesis in our candidate-set that is close to optimal.

We now note that the graph elimination that happens in lines 13 to 15 and lines 20 to 21 is equivalent to the estimation of
Algorithm 2, which we know to keep the optimal graph if the samples encountered are ϵ′

8 -representative. We further note
that the update in line 23 only occurs, if the sample St = S′Π

t was not significantly manipulated according to ĥt−1. Thus
gt−1 already sufficiently accounted for all possible manipulation caused by g→, which means that eliminating candidate
graphs g with gt−1 ⪯H g will not cause a miss-estimation of g→ that causes more that 2ϵ′ difference in strategic loss.
Thus the elimination of graphs will yield an approximately optimal hypothesis. Furthermore this is a kind of binary search
which eliminates half the candidates in each step (as the algorithm always picks the median candidate in line 15 and line 26
respectively and the elimination either eliminates all graphs smaller or all graphs greater to the current candidate.) Therefore
the algorithm needs at most O(log( 1ϵ )) rounds.

Lastly, we note that a sample size of m = O(
(d1+d2) log(d1+d2)+log(

log( 1
ϵ
)

δ )

ϵ2 ) is sufficient to guarantee that in each of the
O(log( 1ϵ )) rounds, the probability of receiving an ϵ

16 -representative sample is at least 1− δ
log( 1

ϵ )
. Thus via union bound the

sample size of m = O(
(d1+d2) log(d1+d2)+log(

log( 1
ϵ
)

δ )

ϵ2 ) is sufficient to guarantee (ϵ, δ)-learning success.

B.2. Improper Learning

Observation 4.1. There are classesH of finite VC-dimension and graph classes G which are totally ordered with respect to
H, such that there is no proper successful batch-learner forH and G for any finite sample and round complexity, not even in
the realizable case.

Proof. This follows directly from Theorem 4 of (Lechner & Urner, 2022) (which is an adaptation of Theorems 1 and 4 of
(Montasser et al., 2019) for the strategic loss). The theorem states that there exists a classH and a fixed manipulation graph
g of VC-dimension 1 which cannot be properly PAC-learned with respect to strategic loss by any proper learner. If we now
consider thisH and the graph class G = {g}, then it is easy to see that G is totally ordered with respect toH (as it only has
one element). FurthermoreH was picked to have VC dimension 1. Furthermore if proper batch-learning was possible forH
and G, then proper PAC-learning would be possible forH with respect to ℓg , which we know to be impossible. This proves
the theorem.

Theorem 4.2. Let VC(H) be finite and let G be totally ordered with respect to H. Then there is a strategically robust
(improper) PAC-learner which is successful for every g→ ∈ G in the strategically robustly realizable case (i.e. when
infh∈H Lg→

P (h) = 0).

Proof. This is an adaptation of Theorem 4 from (Montasser et al., 2019) (and its adaptation to strategic loss in (Lechner &
Urner, 2022)). The main difference here is that those theorems focus on the robustness with respect to a fixed (and known)
manipulation graph, whereas in our setting we want to guarantee robustness with respect to an unknown element of a totally
ordered graph class G. Thus we cannot use any knowledge of this graph in the learning process, which makes it impossible
to use robust empirical risk minimization (RERM) with respect to the true manipulation graph. However, we can use the
realizability assumption and define Maximally Robust Empirical Risk Minimization(MRERM) with respect to a totally
ordered graph class G. First let us define

gmax(S,H,G) =
max
⪯H
{g ∈ G : for all h ∈ RERMg,H(S) : Lg

S(h) = 0}.

The set of maximally robust empirical risk minimizers with respect to G and H is then defined by MRERMG,H(S) =
RERMgmax(S,H),H(S). We can now replace all use of the fixed deterministic RERMg,H algorithm for a fixed manipulation
graph (or pertubation sets) in the proof of Theorem 4 of (Montasser et al., 2019) by a fixed deterministic MRERMG,H-
algorithm.

We note that for any S′ ⊂ S, we have gmax(S,H,G) ⪯H gmax(S
′,H,G). Furthermore, we note that under the realizability

assumption, we have gmax(S,H,G) ≥ g→ and thus Lg→

S (MRERMG,H(S)) = 0 with probability 1 over the sample
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generation. We can now follow the proof of (Montasser et al., 2019) with some modified definitions, mainly replacing
RERM with MRERM and replacing the inflated sample according to the true manipulation graph (which we don’t know) with
an inflated sample according to the gmax(S,H,G): For a training sample S = {(x1, y1), . . . , (xm, ym)}, we can now define
the inflated sample according to the maximal graph that still allows realizability according toH: Let the inflated (potentially
infinite) sample Sgmax

be defined as Sgmax
= S ∪ (

⋃
i∈{1,...,m}:yi=0{(x, 0) : x ∈ Bgmax(S,H,G)(xi)}). We now want to

define a discretized version of this inflated sample. From standard PAC-learning theory we know that there is a positive integer
n ∈ O(VC(H)) that guarantees for any distribution D over X × {0, 1} with infh∈H L

0/1
D (h) = 0, for n i.i.d. D-distributed

samples S′ = {(x′
1, y

′
1), . . . , (x

′
n, y

′
n)}, with nonzero probability, every h ∈ H satisfying L

0/1
S′ (h) = 0 also LD(h) ≤ 1

3 .
Now let Ĥ = {MRERMG,H(L) : L ⊂ S and |L| = n}. We note that |Ĥ| ≤ |{MRERMG,H(L) : L ⊂ S and |L| =
n}| ≤ ( emn )n. Now consider the dual spaceW of function w(x,y) : H → {0, 1} defined by w(x,y)(h) = 1[[]h(x) ̸= y]
and every (x, y) ∈ Sgmax

. The VC-dimension ofW is now at most the dual VC-dimension of H, which is known to be
upper-bounded by VC∗ ≤ 2VC(H)+1. We now define Ŝgmax to be a subset of Sgmax which includes exactly one element
(x, y) ∈ §gmax

for each distinct classification {w(x,y)(h)}hinĤ of Ĥ realized function of w(x,y) ∈ W . By the Sauer lemma

we have |Ŝgmax
| ≤ ( e|Ĥ|

VC∗(H) )
VC∗(H), which for m > 2VC(H) is at most ( e2m

VC(H) )
VC(H)VC∗(H). We can now note that for

any T ∈ N and any h1, . . . , hT ∈ Ĥ if 1
T

∑T
t=1 1[ht(x) = y] > 1

2 for every (x, y) ∈ Ŝgmax
, then 1

T

∑T
t=1 1[ht(x) = y] >

1
2 for every (x, y) ∈ Sgmax

as well, which would then imply L
gmax(S,G,H)
S (Majority(h1, . . . , hT )) = 0, which implies

Lg→

S (Majority(h1, . . . , hT )) = 0. We can now find these functions h1, . . . , hT in exactly the same way as in (Montasser
et al., 2019)(via using the α-Boost algorithm). The resulting classifier ĥ = Majority(h1, . . . , hT ) satisfies Lg→

S (ĥ) = 0.
Furthermore we note that each of the classifiers ht is the result of MRERMG,H(Lt) for some Lt ⊂ S with |Lt| = n. Thus,
the classifier ĥ is representable as the value of an (order-dependent) reconstruction function of set size

nT = O(VC(H) log(|Ŝgmax |))

= O(VC(H)2VC∗(H) log( m

VC(H)
).

Thus invoking Lemma 11 of (Montasser et al., 2019)1 with respect to Lg→
if m > cVC(H)2VC∗(H) log(VC(H)VC∗(H))

(for a sufficiently large numerical constant c), we have that with probability at least 1− δ,

Lg→

P (ĥ) ≤

O(VC(H)2VC∗(H)) log( m

VC(H)
) log(m) +

1

m
log(

1

δ
).

This concludes our proof.

1We need a slight adaptation from adversarial loss to strategic loss here, but the proof for this goes through exactly as is for strategic
manipulation loss as argued in (Lechner & Urner, 2022).
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