
FlexRound: Learnable Rounding based on Element-wise Division
for Post-Training Quantization

Jung Hyun Lee * 1 Jeonghoon Kim * 1 Se Jung Kwon 1 Dongsoo Lee 1

Abstract
Post-training quantization (PTQ) has been gain-
ing popularity for the deployment of deep neural
networks on resource-limited devices since unlike
quantization-aware training, neither a full train-
ing dataset nor end-to-end training is required at
all. As PTQ schemes based on reconstructing
each layer or block output turn out to be effec-
tive to enhance quantized model performance, re-
cent works have developed algorithms to devise
and learn a new weight-rounding scheme so as
to better reconstruct each layer or block output.
In this work, we propose a simple yet effective
new weight-rounding mechanism for PTQ, coined
FlexRound, based on element-wise division in-
stead of typical element-wise addition such that
FlexRound enables jointly learning a common
quantization grid size as well as a different scale
for each pre-trained weight. Thanks to the recip-
rocal rule of derivatives induced by element-wise
division, FlexRound is inherently able to exploit
pre-trained weights when updating their corre-
sponding scales, and thus, flexibly quantize pre-
trained weights depending on their magnitudes.
We empirically validate the efficacy of FlexRound
on a wide range of models and tasks. To the best
of our knowledge, our work is the first to carry
out comprehensive experiments on not only image
classification and natural language understanding
but also natural language generation, assuming a
per-tensor uniform PTQ setting. Moreover, we
demonstrate, for the first time, that large language
models can be efficiently quantized, with only a
negligible impact on performance compared to
half-precision baselines, achieved by reconstruct-
ing the output in a block-by-block manner.

*Equal contribution 1NAVER Cloud, Seongnam, South Korea.
Correspondence to: Jung Hyun Lee <onliwad101@gmail.com>,
Jeonghoon Kim <jeonghoon.samuel@gmail.com>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

1. Introduction
In recent years, deep neural networks have achieved un-
precedented success across a wide variety of domains such
as computer vision, natural language processing, and auto-
matic speech recognition. Unfortunately, as these networks
continue to improve and surpass human-level performance,
the computational resources and memory usage required
also increases as the architecture becomes more complex.
To reduce the model size and accelerate inference opera-
tions, many researchers have attempted diverse compression
techniques such as network quantization (Courbariaux et al.,
2016) and network pruning (Han et al., 2016). In this paper,
we concentrate on network quantization due to the advan-
tage that INT4 or INT8 quantization allows us to accelerate
quantized neural networks using off-the-shelf accelerators
such as the NVIDIA A100 Tensor Core GPU (Wu et al.,
2020) or ARM Cortex MCUs (Kim et al., 2021).

Network quantization techniques can be broadly divided
into two categories: quantization-aware training (QAT) and
post-training quantization (PTQ). QAT is a method where
the quantization of the networks is incorporated during the
trianing process, as proposed by various research works such
as Jung et al. (2019); Jain et al. (2019); Zhao et al. (2020);
Esser et al. (2020); Lee et al. (2021). We note that QAT
results in a marginal performance difference between the
full-precision and quantized versions of the neural network.
Yet, QAT requires end-to-end retraining or fine-tuning on
a full training dataset, which often causes an enormous
amount of time and resources to obtain a quantized neural
network with competitive performance. Furthermore, a
whole training dataset may not be available due to data
privacy issues or demands to utilize legacy models. Such
drawbacks of QAT are the reasons why researchers recently
pay more attention to PTQ (Zhao et al., 2019; Wang et al.,
2020; Nahshan et al., 2021) that needs neither a full training
dataset nor end-to-end learning at all.

PTQ had been initially performed via rounding-to-nearest
by minimizing the quantization error in the parameter space.
However, this approach suffers from severe performance
degradation. Since it is reported that the loss degradation
resulting from quantization can be approximated as the
second-order error in Taylor Expansion by viewing quan-

1

FlexRound: Learnable Rounding based on Element-wise Division for Post-Training Quantization

tized weights as perturbed weights, Nagel et al. (2020) and
Li et al. (2021) substantiate that reconstructing each output
of layer or block is equivalent to minimizing the approxima-
tion of loss degradation resulting from quantization under
some assumptions. Accordingly, recent works (Nagel et al.,
2020; Li et al., 2021; Hubara et al., 2021; Wei et al., 2022)
have suggested to reconstruct each output of layer or block
by devising and learning a new weight-rounding scheme,
deviating from rounding-to-nearest, as an effort to preserve
the performance of a full-precision model even after PTQ.
However, all those new rounding schemes designed in ex-
isting studies either round or quantize pre-trained weights
adaptively via element-wise addition.

We propose a novel post-training weight quantization
method, called FlexRound, which departs from the typi-
cal element-wise addition approaches and instead employs
an element-wise division perspective. By jointly learning a
common quantization grid size and the division factor for
pre-trained weights, FlexRound offers a new approach to
PTQ. Interestingly, thanks to the reciprocal rule of deriva-
tives induced by element-wise division, FlexRound can in-
herently leverage pre-trained weights when updating an in-
dividual scale for each pre-trained weight. Specifically, we
corroborate that a relatively wider range of discrete values
needs to be explored when quantizing pre-trained weights
of large magnitude. The rationale behind such an approach
is that the magnitude of a weight can be interpreted as its rel-
ative importance within the network. Given that weights of
larger magnitude have a greater impact on the network’s per-
formance than those of smaller magnitude, as demonstrated
by research such as (Han et al., 2016), to maintain the per-
formance of a pre-trained model even after quantization, it is
important to relax the constraints associated with quantizing
weights of large absolute value compared to those of small
absolute value (i.e., important weights can be quantized to
one of not only its two nearest discrete values but also to dis-
crete values further away from it). Accordingly, FlexRound
can quantize pre-trained weights flexibly depending on their
own magnitudes, thereby leading to better performance.

Our contributions are threefold:

• We propose FlexRound as a new rounding scheme for
post-training weight quantization based on the prin-
ciple of element-wise division in order to allow for
jointly learning not only a separate scale for every pre-
trained weight but also a common quantization grid
size across a group (e.g., a channel or a layer).

• We theoretically and empirically demonstrate that such
a new rounding scheme based on element-wise division
takes into consideration the magnitude of pre-trained
weights when updating their corresponding scales so
that FlexRound can quantize pre-trained weights of

large magnitude (i.e., important pre-trained weights)
more flexibly than rounding either up or down only.

• To the best of our knowledge, we are the first to perform
extensive experiments in a per-tensor uniform PTQ set-
ting on natural language generation as well as image
classification and natural language understanding, us-
ing numerous models such as ResNet, MobileNetV2,
BERT, GPT-Neo, OPT, and GPT-2. We also, for the
first time, conduct the uniform PTQ reconstruction for
large language models like LLaMA on both common
sense reasoning and causal language modeling tasks.

2. Related Work
Recently, many researchers have attempted to quantize a
wide range of models for various tasks such as computer
vision and natural language understanding/generation with-
out any (re)training. Outlier channel splitting (OCS) (Zhao
et al., 2019) replicates channels entailing outliers, and then,
halves outliers of those channels. Despite the fact that OCS
explicitly addresses outliers, it still experiences severe ac-
curacy degradation when both weights and activations are
quantized to low-bit. As an alternative solution, Wang et al.
(2020) proposed Bit-Split that splits an integer into several
bits and optimizes them separately. While the performance
of Bit-Split is comparable to that of a full-precision model
in a low-bit setting, it may not be as effective for certain
architectures such as MobileNetV2.

To overcome the limitations discussed above, Nagel et al.
(2020) and Hubara et al. (2021) minimize the mean squared
error (in a layer-by-layer fashion) between the full-precision
layer’s output and its quantized layer’s output by inventing
and learning a new weight-rounding mechanism dubbed as
AdaRound and AdaQuant, respectively. As such a layer-
wise reconstruction error minimization opens the door to 4-
bit PTQ regime, Li et al. (2021) proposed block-wise recon-
struction, titled BRECQ, to consider cross-layer dependency
along with the possibility of fully quantizing MobileNetV2
to 4-bit. In addition to block-wise reconstruction, Wei et al.
(2022) proposed QDrop that drops the quantization of acti-
vations at random during the PTQ reconstruction to induce
activation quantization to be synchronized with weight quan-
tization. Both BRECQ and QDrop, however, are based on
AdaRound that rounds weights only either up or down at
most with a ‘fixed’ quantization grid size. AdaQuant can
simultaneously learn a quantization grid size and quantize
weights adaptively, but incurs severe performance degrada-
tion when quantizing MobileNetV2 in low-bit regimes.

As another line of PTQ research, some PTQ techniques are
exclusively specialized in quantizing language models such
as BERT and GPT-like models. Bondarenko et al. (2021)
first applied PTQ to BERT by introducing a per-embedding-

2

FlexRound: Learnable Rounding based on Element-wise Division for Post-Training Quantization

(a) A new rounding scheme based on element-wise division in a per-tensor uniform
PTQ setting. s1 and S are updated toward minimizing the reconstruction error, L.

(b) Rounding functions with learned parame-
ters s1 and S as shown in (a).

Figure 1. Illustration of FlexRound in the per-tensor uniform PTQ reconstruction. s1 is a common quantization grid size across a layer,
and S(i,j) is the division factor for a pre-trained weight W(i,j), both of which are positive and learnable. As shown in (b), with different
learned S(i,j) via (a), FlexRound flexibly quantizes pre-trained weights by observing W(2,4) < W(3,2) but Ŵ(2,4) > Ŵ(3,2).

group activation quantization scheme to deal with highly
dynamic activation ranges. Bai et al. (2021) studied the
PTQ reconstruction in parallel for BERT. Yao et al. (2022)
proposed ZeroQuant that quantizes BERT and GPT-3 in a
group-wise weight quantization manner driven by token-
wise activation quantization via layer-by-layer knowledge
distillation (while a dedicated CUDA kernel is required for
ZeroQuant). Dettmers et al. (2022) quantizes large lan-
guage models (LLMs) like OPT with vector-wise weight
quantization and mixed-precision decomposition with FP16
activations. To avoid the use of FP16 activations, Xiao et al.
(2022) proposed SmoothQuant that shifts the difficulty of
activation quantization to weight quantization, allowing for
INT8 quantization of both weights and activations in LLMs.
Unfortunately, both Dettmers et al. (2022) and Xiao et al.
(2022) assume that the outliers in activations would appear
in a certain pattern.

Most of the aforementioned PTQ studies are targeted to
either vision models or language models only, not to both.
To the best of our knowledge, our work is the first to carry
out extensive experiments on diverse tasks ranging from
image classification and natural language understanding to
natural language generation under a per-tensor uniform PTQ
setting. Additionally, we for the first time show that LLMs
can be efficiently quantized, with only a minor impact on
accuracy compared to half-precision baselines, attained by
reconstructing each block output, without the assumption
that the activation outliers would appear in a certain pattern.

3. Methodology
This section begins by introducing the notations used
throughout the paper and the background of post-training
quantization (PTQ). We then provide the concept and design
of FlexRound for the uniform PTQ reconstruction method.
We finally delve into the advantages of utilizing the principle
of element-wise division in FlexRound.

3.1. Preliminaries

Notations A scalar, a vector, and a matrix (or a tensor)
are expressed as a non-bold letter, a small bold letter, and
a capital bold letter (e.g. s, s and S) respectively. Ŵ
indicates the quantized counterpart of W . The input to a
2D convolution or a linear layer is represented as X if all
previous layers are intact, or as X̃ if all previous layers
are quantized. The entries of a matrix A are denoted as
A(i,j), while the entries of a 4-dimensional tensor A are
denoted as A(i,j,k,l). We let ⊙ and / indicate element-wise
product and element-wise division, respectively, similar to
the broadcasting process in Python Numpy. ⌊·⌉ and ⌊·⌋
express the rounding function and the floor function. || · ||F
represents the Frobenius norm.

PTQ Background The conventional uniform PTQ ap-
proach is to quantize pre-trained weights W to be Ŵ =

s1

⌊
W
s1

⌉
via rounding-to-nearest, where a quantization grid

size s1 ∈ R>0 is set to minimize ∥W − Ŵ ∥2F , but the min-
imization of the quantization error in the parameter space is
not equivalent to that of the final task loss. As Li et al. (2021)
proves that the loss degradation resulting from quantization
can be approximated as the quadratic form of the network
output and its Hessian matrix, several studies have strove
to minimize ∥WX − Ŵ X̃∥2F layer-by-layer or block-by-
block with respect to continuous variables V with a small
amount of data, where Ŵ is either s1(⌊W

s1
⌋+ h(V)) with

a certain function h(·) (Nagel et al., 2020) or s1
⌊
W+V

s1

⌉
(Hubara et al., 2021). However, all these rounding mecha-
nisms are founded on element-wise addition.

3.2. FlexRound

Unlike prior works based on element-wise addition, we
exploit element-wise division for quantizing pre-trained

3

FlexRound: Learnable Rounding based on Element-wise Division for Post-Training Quantization

weights. We can formulate our proposed weight-rounding
scheme based on element-wise division as follows:

Ŵ = s1

⌊W
S

⌉
, (1)

where S is the division factor for W whose shape is equal
to that of W while all entries of S as well as s1 are positive
and learnable. Similarly to preceding studies, both s1 and S

are updated as an attempt to minimize ∥WX − Ŵ X̃∥2F .

Eq. 1 indicates that the basic formula of FlexRound sup-
ports per-tensor uniform PTQ. Although FlexRound can also
adopt per-channel weight quantization by simply replacing
a scalar s1 with a vector s1, as we show later, per-tensor
uniform PTQ (via FlexRound) can be sufficient to achieve
the performance of a full-precision model. Therefore, we
focus on the per-tensor uniform PTQ reconstruction unless
otherwise specified. The overall procedure of FlexRound in
a per-tenor uniform PTQ setting is described in Figure 1.

Let us discuss how to design S in detail. We first start for-
mulating S as S = s1⊙S2, where S2 is the matrix or tensor
scaling W whose shape is equal to that of W while every
element of S2 is positive and learnable. When S = s1⊙S2,
Eq. 1 is enough to perform well compared to existing weight-
rounding schemes based on element-wise addition in a
per-tensor uniform PTQ setting, as we show later. How-
ever, to further improve the performance of a new weight-
rounding scheme based on element-wise division, we com-
plement S2 as follows. For a linear layer W ∈ RCout×Cin ,
S2 is complemented with an additional learnable tensor
s3 ∈ RCout×1

>0 . Motivated from a wide acknowledgement
that the statistics of output channels can vary greatly (Nagel
et al., 2019; Lou et al., 2020), we take into account the
variation of output channel’s statistics by supplementing S2

with s3. For a 2D convolution W ∈ RCout×Cin×H×W , in
particular, S2 is complemented with two additional learn-
able tensors s3 ∈ RCout×1×1×1

>0 and s4 ∈ R1×Cin×1×1
>0 .

Hence, S is formulated as s1 ⊙ S2 ⊙ s3 (as illustrated in
Figure 2) for a linear layer, or as s1 ⊙ S2 ⊙ s3 ⊙ s4 for a
2D convolution so that Eq. 1 is transformed into

Ŵ =

s1

⌊
W

s1⊙S2⊙s3

⌉
for a linear layer

s1

⌊
W

s1⊙S2⊙s3⊙s4

⌉
for a 2D convolution

. (2)

We refer to Eq. 2 as ‘FlexRound.’ Here, every element of S2,
s3, and s4 is initialized to 1 in order to facilitate learning
from the traditional rounding-to-nearest method, namely,
s1

⌊
W
s1

⌉
. All parameters (s1, S2, s3, and s4) are updated to

minimize ∥WX − Ŵ X̃∥2F subject to the constraint that
all entries of s1, S2, s3, and s4 are positive.

In Eq. 2, element-wise division serves a similar purpose as
element-wise addition in creating a more effective rounding
scheme than rounding-to-nearest. By implementing such

= 𝑠! ⊙ ⊙𝑺𝟐𝑺 𝑠#

Figure 2. Formation of S in Eq. 1 for a linear layer W . s1 is a
common quantization grid size across a layer, S2 is the matrix
scaling W , and s3 is an additional vector supporting S2 to account
for the variation of output channel’s statistics in W . As a result,
S = s1 ⊙ S2 ⊙ s3 is the division factor for a linear layer W .

a new rounding policy through element-wise division, we
can make s1, S2, s3, and s4 all learnable. This allows
FlexRound to learn a common quantization grid size (i.e.,
s1) jointly with the rounding process (e.g., S2 ⊙ s3 or S2 ⊙
s3 ⊙ s4 in FlexRound). Furthermore, the reciprocal rule
of derivatives induced by element-wise division enables
FlexRound to leverage pre-trained weights when learning
the corresponding scales, as demonstrated both theoretically
and empirically by the following proposition.

Proposition 3.1. Let L be the reconstruction error com-
puted from Eq. 2 and S′ be the matrix (or tensor) scaling
pre-trained weights W in Eq. 2, i.e., S′ = S2 ⊙ s3 (or
S2 ⊙ s3 ⊙ s4). Then, the gradient of L with respect to an
entry of S′, ∂L

∂S′
(i,j)

(or ∂L
∂S′

(i,j,k,l)
) is proportional to its cor-

responding pre-trained weight, W(i,j) (or W(i,j,k,l)), when
using the straight-through estimator (Bengio et al., 2013).

Proposition 3.1 implies that, for a linear layer, an element
S′
(i,j) is (partially) affected by W(i,j) so that W (i,j) =⌊
W(i,j)

s1⊙S′
(i,j)

⌉
can also be updated and influenced by W(i,j).

In other words, as the magnitude of a pre-trained weight
W(i,j) is larger, the chance of W (i,j) receiving a larger up-
date during the PTQ reconstruction becomes higher. The
magnitude of a weight can be regarded as a metric to mea-
sure the importance of a weight for pruning unimportant
weights (Han et al., 2015). Consequently, weights of larger
magnitude play a more important role than those of smaller
magnitude (Han et al., 2016). To reduce the performance
gap between a full-precision pre-trained model and its quan-
tized version, it would be reasonable to relax the constraint
on quantizing pre-trained weights of large magnitude (i.e.,
potentially important pre-trained weights) by allowing them
to have higher chances of being quantized to one of not just
the two closest quantization grids but also more distant ones
than those of smaller magnitude. The above implication is
also identically applicable to a 2D convolution.

Figure 3 shows the amount of weight updates via FlexRound
for MobileNetV2 and ResNet-18. On the left side and the
center side of Figure 3, histograms describe the change of
W (i,j,k,l) grouped for small pre-trained weights (|W | < 1,
left) and large pre-trained weights (|W | > 1, center). On
the right side, scatter plots show the amount of grid shifts

4

FlexRound: Learnable Rounding based on Element-wise Division for Post-Training Quantization

(a) MobileNetV2

(b) ResNet-18

Figure 3. Weight updates through FlexRound of the first 2D convolution in the first block of (a) MobileNetV2 and (b) ResNet-18, after
quantizing pre-trained weights to 4-bit (via FlexRound) while activations are kept in full-precision.

Figure 4. Amount of grid shifts from the grids obtainable from
RTN in the second 2D convolution of the sixth block of Mo-
bileNetV2 when only weights are quantized to 4-bit via FlexRound.
Unlike the right side of Figure 3, weights of large magnitude are
quantized with similar flexibility to those of moderate magnitude.

from the grids obtainable from rounding-to-nearest (RTN).
We note that MobileNetV2 and ResNet-18 are quantized
distinctively due to FlexRound. For example, in the case
of MobileNetV2 as in Figure 3(a), the change of W (i,j,k,l)

attained by minimizing L is more aggressive (i.e., rounding
can be deviated from more than one-step up or one-step
down) when the absolute value of W(i,j,k,l) is larger than
one, which means that FlexRound more flexibly quantizes
pre-trained weights of large magnitude as illustrated in red
dotted squares in Figure 3(a). The amount of aggressively
rounded weights in the first 2D convolution of the first
block of MobileNetV2 is around 12.8% of the total. For
ResNet-18, however, there are no pre-trained weights whose
magnitudes are larger than one. Thus, most pre-trained
weights are rounded either up or down as seen in Figure 3(b)

Figure 5. Number of grid shifts from the grids attainable from RTN
in the query projection of the first self-attention layer of BERTBASE

fine-tuned on the MRPC dataset when quantizing both weights and
input activations of self-attention and feed-forward layers to 8-bit
via FlexRound. FlexRound can provide up to about 60 grid shifts
from the grids obtainable from RTN.

(e.g., only about 1.5% weights are rounded aggressively in
the first 2D convolution of the first block of ResNet-18).
Different rounding results of AdaRound, AdaQuant, and
FlexRound are visually compared in Appendix A.

Even if FlexRound takes into account the magnitude of pre-
trained weights when updating their corresponding scales,
one might question that FlexRound seems to quantize pre-
trained weights of moderate magnitude more flexibly than
those of large magnitude as seen in the right side of Figure 3.
Our aim with FlexRound is to emphasize that pre-trained
weights with relatively larger magnitude are more likely to
be quantized with higher flexibility compared to those with
relatively smaller magnitude. As explained in Appendix B,

5

FlexRound: Learnable Rounding based on Element-wise Division for Post-Training Quantization

Table 1. Top-1/Top-5 accuracy (%) on ImageNet when only weights are quantized to 4-bit. “B + X” denotes the implementation of X in
the setting of BRECQ. The s1 column indicates whether s1 is fixed or can be learned during the PTQ reconstruction. The S2 and s3, s4

columns represent the presence (O) or absence (X) of each in FlexRound, respectively. For instance, the formula for FlexRound (Ours)
and Ablation Study 1 is Eq. 2, and that for Ablation Study 2 is Ŵ = s1⌊W /s1 ⊙ S2⌉.

Method s1 S2 s3, s4 ResNet-18 ResNet-50 MobileNetV2

Full-precision N/A N/A N/A 71.00/89.97 76.63/93.04 72.62/90.67

B + AdaQuant Learnable N/A N/A 67.50/87.75 72.79/90.77 15.17/32.89
B + AdaRound Fixed N/A N/A 70.18/89.38 75.86/92.62 69.46/88.85

B + FlexRound (Ours) Learnable O O 70.28/89.44 75.95/92.68 70.82/89.67
→ Ablation Study 1 Fixed O O 70.09/89.43 75.88/92.61 69.47/88.85
→ Ablation Study 2 Learnable O X 70.22/89.45 75.92/92.63 70.51/89.49

∣∣∣ ∂L
∂S′

(i,j)

∣∣∣ is directly proportional to
∣∣∣∣W(i,j)

∂L
∂Ŵ(i,j)

∣∣∣∣. No mat-

ter how large the magnitude of W(i,j) is, if
∣∣∣∣ ∂L
∂Ŵ(i,j)

∣∣∣∣ is close

to zero,
∣∣∣ ∂L
∂S′

(i,j)

∣∣∣ would be also zero. In this sense, pre-

trained weights of large magnitude can be quantized to the

grids obtainable from RTN. If
∣∣∣∣ ∂L
∂Ŵ(i,j)

∣∣∣∣ is (significantly)

larger than zero, pre-trained weights of large magnitude
can be quantized to the grids far from two nearest ones
as seen in Figure 4. In short, while the magnitude of pre-
trained weights influences the updates to their corresponding
scales in FlexRound, it does not necessarily imply that larger
weights must be quantized more flexibly than smaller ones.

Note that FlexRound can quantize weights more flexibly as
the bit-width increases. Comparing the right side of Figure 3
with Figure 5, FlexRound can provide more grid shifts from
the grids obtainable from RTN as a higher bit-width is used.
Unlike AdaRound that must round weights either up or
down regardless of the number of bits used, FlexRound
enables more flexible weight quantization as the bit-width
increases, thus being better suited for quantizing models
that require higher bit-widths (e.g., LLMs) than AdaRound.

4. Experiments
In this section, we first empirically confirm the importance
of learning a quantization grid size s1 jointly with the round-
ing process and the distinct contribution of additional ten-
sors s3 and s4 to FlexRound. Then, we compare the perfor-
mance of FlexRound with that of the state-of-the-art PTQ
methods in a per-tensor uniform PTQ setting in the follow-
ing cases: image classification on ImageNet (Russakovsky
et al., 2015) with ResNet (He et al., 2016) and MobileNetV2
(Sandler et al., 2018) (Section 4.2), natural language under-
standing (NLU) on GLUE (Wang et al., 2018) with BERT
(Devlin et al., 2018) and GPT-Neo (Black et al., 2021) (Sec-
tion 4.3), natural language generation (NLG) on WikiText2
(Merity et al., 2016) and Penn Treebank (PTB) (Marcus
et al., 1993) with GPT-Neo and OPT (Zhang et al., 2022),

and NLG on WebNLG (Gardent et al., 2017) with GPT-2
(Radford et al., 2019) (Section 4.3). Finally, we validate that
large language models (LLMs) can be quantized with only
a marginal impact on accuracy compared to half-precision
baselines by block-wise output reconstruction, without as-
suming that the activation outliers would occur in a cer-
tain pattern. We study LLaMA (Touvron et al., 2023) by
adopting per-channel weight quantization and per-tensor
activation quantization for six common sense reasoning
benchmarks: BoolQ (Clark et al., 2019), PIQA (Bisk et al.,
2020), HellaSwag (Zellers et al., 2019), WinoGrande (Sak-
aguchi et al., 2021), ARC easy and challenge (Clark et al.,
2018), and OpenBookQA (Mihaylov et al., 2018), and the
causal language modeling task on WikiText2 (Section 4.3).

For brevity, we let “B + X” and “Q + X” indicate that a
certain rounding scheme ‘X’ is performed in the experimen-
tal setup described in BRECQ (Li et al., 2021) or QDrop
(Wei et al., 2022), respectively (an experimental setup in-
cludes the definition of a block unit for reconstruction error
minimization or how much the probability of dropping the
quantization of activations is). As introduced in BRECQ
and QDrop, we also use the LSQ technique (Esser et al.,
2020) when updating an activation step size for activation
quantization. All experimental results are conducted by our
own implementation based on open-source codes.

4.1. Ablation Study

Ablation Study 1 Although AdaRound demonstrates
the state-of-the-art performance among previous PTQ ap-
proaches, it is unable to learn the quantization grid size
s1 jointly with the rounding process, as discussed in Sec-
tion 2. To understand the significance of learning s1 jointly
with the rounding process, we evaluate the performance of
FlexRound with a fixed s1 (Ablation Study 1 in Table 1)
on the ImageNet dataset with weights quantized to 4-bit
(activations are not quantized). As seen in Table 1, when s1
is fixed, FlexRound performs similarly to AdaRound for all
models except for ResNet-18. This indicates that regardless
of the quantization method used, whether it be AdaRound or
FlexRound, using a fixed s1 prevents further improvements

6

FlexRound: Learnable Rounding based on Element-wise Division for Post-Training Quantization

Table 2. Top-1/Top-5 accuracy (%) on ImageNet with only weights quantized. “B + X” is the implementation of X in the BRECQ’s setup.

Method # Bits (W/A) ResNet-18 ResNet-50 MobileNetV2

Full-precision 32/32 71.00/89.97 76.63/93.04 72.62/90.67

B + AdaQuant 4/32 67.50/87.75 72.79/90.77 15.17/32.89
B + AdaRound 4/32 70.18/89.38 75.86/92.62 69.46/88.85
B + FlexRound (Ours) 4/32 70.28/89.44 75.95/92.68 70.82/89.67

B + AdaQuant 3/32 57.09/80.82 52.13/75.22 0.20/0.79
B + AdaRound 3/32 68.79/88.62 74.31/91.81 62.51/84.52
B + FlexRound (Ours) 3/32 68.65/88.54 74.38/91.81 66.87/87.56

B + AdaQuant 2/32 0.23/0.92 0.10/0.50 0.10/0.50
B + AdaRound 2/32 61.99/84.81 48.47/77.09 39.57/66.18
B + FlexRound (Ours) 2/32 62.57/84.84 63.67/85.72 46.04/72.48

Table 3. Top-1/Top-5 accuracy (%) on ImageNet when both weights and activations are quantized. “B + X” and “Q + Y” represent the
implementation of X in the BRECQ’s setting and that of Y in the QDrop’s setting, respectively.

Method # Bits (W/A) ResNet-18 ResNet-50 MobileNetV2

Full-precision 32/32 71.00/89.97 76.63/93.04 72.62/90.67

B + AdaRound 4/4 69.18/88.85 74.44/91.80 61.05/83.30
B + FlexRound (Ours) 4/4 69.32/88.83 74.56/91.87 63.74/85.01
Q + AdaRound 4/4 69.20/88.96 74.90/92.15 65.42/86.23
Q + FlexRound (Ours) 4/4 69.26/88.81 75.08/92.20 66.66/87.21

B + AdaRound 3/3 64.83/86.12 67.01/87.28 3.74/11.54
B + FlexRound (Ours) 3/3 64.99/85.93 68.29/87.89 25.43/48.28
Q + AdaRound 3/3 65.71/86.96 70.49/89.93 39.86/66.00
Q + FlexRound (Ours) 3/3 65.43/86.60 70.74/89.78 51.49/76.90

in the performance of the quantized model. However, when
learning s1 jointly with the rounding process, FlexRound
outperforms AdaRound for every model. The ability to
learn s1 jointly with the rounding process is a critical aspect
in closing the performance gap between a full-precision
model and its quantized counterpart. FlexRound possesses
this capability in contrast to AdaRound since it is based on
element-wise division, as mentioned in Section 3.2.

Ablation Study 2 To justify the inclusion of additional
tensors s3 and s4 in FlexRound, we conduct an ablation
study in which FlexRound is tested on the ImageNet dataset
with weights quantized to 4-bit while keeping activations
unquantized, and the results are compared with FlexRound
without the use of s3 and s4 (Ablation Study 2 in Table 1).
As shown in the last two rows in Table 1, the presence
of s3 and s4 increases the top-1 accuracy for all models.
Interestingly, FlexRound without the use of s3 and s4 also
outperforms both AdaQuant and AdaRound, which would
support our claim that a new rounding scheme shifted from
element-wise addition to element-wise division is the key to
improving the quantization quality significantly.

4.2. ResNet and MobileNetV2 on ImageNet

We quantize ResNet-18, ResNet-50, and MobileNetV2 in
the low-bit PTQ reconstruction with 1024 randomly sam-

pled images. Linear symmetric per-tensor quantization for-
mat is assumed for quantizing weights and/or activations,
whereas in contrast, Li et al. (2021) and Wei et al. (2022)
adopt linear asymmetric per-channel quantization format,
which causes discrepancies between the results obtained
in our own implementation of BRECQ and QDrop and
those reported in Li et al. (2021) and Wei et al. (2022).
For FlexRound, the output of each layer or block is recon-
structed during 5k iterations while all learnable parameters
(i.e., s1, S2, s3, and s4) are updated by using one learning
rate (e.g., 4e-4 for the ResNet models quantized by 3-bit
or 4-bit, or 1e-3 for the ResNet models quantized by 2-bit
and MobileNetV2). The first and last layers are quantized
to 8-bit and the batch normalization layer is folded into
convolution, as in Li et al. (2021). Our experiments are per-
formed based on full-precision pre-trained models provided
in the BRECQ github repository1, unless otherwise noted.
The experiments based on full-precision pre-trained models
available from the official PyTorch repository are given in
Appendix C. We report the median over five random trials.

Assuming the quantization of weights only, we compare
FlexRound with AdaRound and AdaQuant, which both uti-
lize the principle of element-wise addition. Table 2 shows
that FlexRound consistently outperforms those two addition-
based rounding policies. Note that the performance of

1https://github.com/yhhhli/BRECQ

7

https://github.com/yhhhli/BRECQ

FlexRound: Learnable Rounding based on Element-wise Division for Post-Training Quantization

Table 4. Performance on GLUE. For evaluation metrics, matched and mismatched accuracies are reported for MNLI, F1 score and
accuracy are reported for QQP, and accuracy is reported for MRPC. “Q + X” implies the implementation of X in the QDrop’s setting.
Both weights and input activations of attention and feed-forward sub-layers are quantized to 8-bit in a per-tensor asymmetric scheme.

Dataset Method BERTBASE BERTLARGE GPT-Neo125M GPT-Neo1.3B GPT-Neo2.7B

Full-precision 84.49/85.20 86.05/85.98 79.11/79.63 85.12/86.04 86.36/87.02

MNLI Q+AdaRound 83.69/84.61 85.75/85.86 72.67/74.11 84.90/85.82 86.33/86.75
Q+FlexRound (Ours) 84.53/84.98 85.93/85.99 72.94/74.24 85.56/86.14 86.41/86.89

Full-precision 88.06/91.08 88.66/91.59 85.20/88.99 88.26/91.28 88.62/91.50

QQP Q+AdaRound 87.65/90.58 87.48/90.62 72.97/79.35 87.98/91.04 88.38/91.27
Q+FlexRound (Ours) 87.81/90.83 88.38/91.31 73.75/80.65 88.27/91.18 88.60/91.39

Full-precision 85.05 85.54 80.15 85.05 87.99

MRPC Q+AdaRound 81.62 82.35 75.25 84.80 85.78
Q+FlexRound (Ours) 84.07 84.31 75.49 85.05 86.76

Table 5. Performance of GPT-Neo and OPT fine-tuned on WikiText2 and PTB, respectively. The perplexity (PPL) is employed as a
performance metric. The lower PPL, the better. “Q + X” means the implementation of X in the QDrop’s setting. Both weights and input
activations of attention and feed-forward sub-layers are quantized to 8-bit in a per-tensor asymmetric scheme.

Dataset Method GPT-Neo125M GPT-Neo1.3B GPT-Neo2.7B OPT125M OPT1.3B OPT2.7B

Full-precision 21.96 12.09 10.78 19.85 11.52 10.27

WikiText2 Q+AdaRound 30.52 12.47 14.09 27.96 12.66 10.97
Q+FlexRound (Ours) 24.30 12.37 12.43 21.43 12.02 10.63

Full-precision 24.20 16.09 14.70 16.50 11.62 10.80

PTB Q+AdaRound 31.40 16.63 19.80 20.28 13.00 12.02
Q+FlexRound (Ours) 26.03 16.32 16.87 17.68 12.22 11.29

AdaQuant is inferior to that of AdaRound in Table 2. Corre-
spondingly, FlexRound would be compared to AdaRound
only to save space hereafter. Table 3 provides model ac-
curacy when AdaRound and FlexRound (quantizing both
weights and activations) are associated with the settings
of BRECQ or QDrop. It is worth noting that in Table 3,
FlexRound is particularly effective for MobileNetV2 (which
includes weights of large magnitude) for the reasons ex-
plained in Section 3.2. It is also interesting to see that even
when both weights and activations of the ResNet models are
quantized to 4-bit under a per-tensor uniform PTQ setting,
the performance degradation (compared to a full-precision
pre-trained model) is negligible (less than 2%) in Table 3.

4.3. Language Models

All language models in this paper are based on the structure
of Transformer (Vaswani et al., 2017). To reduce the pre-
cision of such models to 8-bit, unless otherwise stated, we
employ a linear asymmetric per-tensor quantization scheme
for both weights and activations. The reconstruction step
for PTQ is applied to each Transformer layer, including
both attention and feed-forward sub-layers. All weights in
attention and feed-forward sub-layers are quantized to 8-bit.
Activations are quantized to 8-bit on-the-fly before each lin-
ear layer, while the inputs of the softmax and normalization
layers remain at full-precision as suggested in Zafrir et al.

Table 6. Performance of GPT-2 medium (M) and large (L) fine-
tuned on WebNLG via LoRA. “Unseen”, “Seen”, and “All” rep-
resent the BLEU score for unseen, seen, and all categories in the
test set of WebNLG. The higher the BLEU score, the better. “Q +
X” indicates the implementation of X in the QDrop’s setting. Both
weights and input activations of attention and feed-forward sub-
layers are quantized to 8-bit in a per-tensor asymmetric scheme.

Model Method Unseen Seen All

Full-precision (LoRA) 47.16 62.31 55.43

GPT-2 M Q+AdaRound 45.70 60.92 54.05
Q+FlexRound (Ours) 46.85 61.83 55.06

Full-precision (LoRA) 48.06 64.39 56.97

GPT-2 L Q+AdaRound 48.09 63.98 56.75
Q+FlexRound (Ours) 48.42 64.47 57.16

(2019) and Zhang et al. (2020). We utilize pre-trained lan-
guage models (PLMs) and datasets from the HuggingFace
(Wolf et al., 2020) repository, with the exception of GPT-2
and LLaMA experiments. The experiments for the question-
answering task with a fine-tuned BERT on the SQuADv1
(Rajpurkar et al., 2016) dataset is presented in Appendix G.

BERT and GPT-Neo on GLUE We evaluate the natural
language understanding (NLU) performance of FlexRound
using a variety of models including BERTBase, BERTLarge,
GPT-Neo125M, GPT-Neo1.3B, and GPT-Neo2.7B fine-tuned

8

FlexRound: Learnable Rounding based on Element-wise Division for Post-Training Quantization

Table 7. Zero-shot performance of LLaMA-33B on 6 common sense reasoning tasks (BoolQ, PIQA, HellaSwag, WinoGrande, ARC easy
and challenge, and OBQA) and the causal language modeling task on WikiText2. The accuracy (%) and the perplexity (PPL) are reported
for common sense reasoning tasks and the causal language modeling task, respectively. The lower PPL, the better. “Q + X” expresses the
implementation of X in the QDrop’s setting. The weights of attention and feed-forward sub-layers are quantized to 8-bit in a per-channel
asymmetric format, whereas the input activations of those sub-layers are quantized to 8-bit in a per-tensor asymmetric scheme.

Model Method BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA WikiText2

Half-precision 68.38 80.09 79.21 72.93 58.92 45.48 42.00 6.35

LLaMA-33B Q+AdaRound 64.86 74.65 68.64 57.93 49.28 36.95 41.00 10.39
Q+FlexRound (Ours) 69.08 79.16 77.43 72.53 56.61 44.97 44.00 6.82

on the GLUE benchmark. We only report the experimental
results on the MNLI, QQP, and MRPC datasets due to space
limit. All experimental results are presented in Appendix H.
The learning rate applied to all learnable parameters (s1,
S2, and s3) is selected to be 2e-4 for BERT and to be 3e-4
for GPT-Neo regardless of the task to demonstrate that ‘Q +
FlexRound’ can broadly surpass ‘Q + AdaRound’ without
the need of significant efforts to select the optimal learning
rate for each task. Reconstruction process is performed by
using 1024 random samples for 20K iterations. The last,
randomly initialized layer remains in full-precision. Fur-
ther experimental details are deferred to Appendix H. In
Table 4, we report the performance of ‘Q + AdaRound’ and
‘Q + FlexRound’ that are potentially promising as shown in
Table 3. We can notice that ‘Q + FlexRound’ yields better
NLU scores than ‘Q + AdaRound’ for all models and NLU
tasks. In particular, for the MNLI and QQP datasets, ‘Q +
FlexRound’ can achieve comparable or even superior per-
formance to a full-precision model in a per-tensor uniform
PTQ setting with the exception of GPT-Neo125M.

GPT-Neo and OPT on WikiText2 and PTB We test
the natural language generation (NLG) performance of
FlexRound using fine-tuned PLMs including GPT-Neo125M,
GPT-Neo1.3B, GPT-Neo2.7B, OPT125M, OPT1.3B, and
OPT2.7B on the WikiText2 dataset and PTB dataset. Fine-
tuned PLMs (for NLG) are quantized by AdaRound and
FlexRound in a per-tensor quantization manner with 128
random samples drawn from downstream task training data.
More details on the experimental setup are provided in
Appendix I. As presented in Table 5, it is clear that ‘Q
+ FlexRound’ is superior to ‘Q + AdaRound’ for all models
and datasets, which means that FlexRound is also effective
for NLG as well as image classification and NLU. Notice
that even for the OPT models, the performance of ‘Q +
FlexRound’ is close to that of a full-precision model.

GPT-2 on WebNLG To this point, we have applied full
fine-tuning for downstream tasks to BERT, GPT-Neo, and
OPT. For language models, however, there are various fine-
tuning techniques (Houlsby et al., 2019; Liu et al., 2022; Hu
et al., 2022) that can perform better with fewer trainable pa-
rameters than full fine-tuning. To evaluate the compatibility

of FlexRound with other fine-tuning methods, we perform
experiments on quantizing GPT-2 merged with LoRA (Hu
et al., 2022), one of the state-of-the-art fine-tuning methods.
We choose 128 examples from the training set of WebNLG
at random for reconstruction. More experimental details are
given in Appendix J. Table 6 shows that ‘Q + FlexRound’
excels ‘Q + AdaRound’, and performs similarly or even
better than the full-precision model with LoRA. Hence,
FlexRound is also compatible with other state-of-the-art
fine-tuning techniques in addition to full fine-tuning.

LLaMA on Common Sense Reasoning and WikiText2
Finally, we evaluate the zero-shot performance of LLaMA-
33B on six common sense reasoning benchmarks and one
casual language modeling task on WikiText2. It is intended
to justify that LLMs can be efficiently quantized with only
negligible accuracy degradation compared to half-precision
baselines by block-by-block reconstructing output, without
assuming that the outliers in activations would emerge in
a certain pattern. In Table 7, for reconstruction, 512 sam-
ples are randomly selected from the training dataset of C4
(Raffel et al., 2020). We use linear asymmetric per-channel
quantization for weights but linear asymmetric per-tensor
quantization for activations. The zero-shot and five-shot
performances of LLaMA-7B, LLaMA-13B, and LLaMA-
33B as well as those experimental details are given in Ap-
pendix K. Table 7 shows that ‘Q + FlexRound’ can maintain
the accuracy of the half-precision baseline, surpassing ‘Q
+ AdaRound’. Without any assumption about the activa-
tion outliers in LLMs, FlexRound can quantize LLMs while
preserving the performance of half-precision baselines.

5. Conclusion
We propose a new rounding scheme, FlexRound, for post-
training weight quantization under the principle of element-
wise division, to enable jointly learning both a common
quantization grid size and an individual scale for each pre-
trained weight. We validate that FlexRound can flexibly
quantize pre-trained weights by updating their correspond-
ing scales depending on their own magnitudes. Hence,
FlexRound can be applied to various models including even
large language models with negligible accuracy degradation.

9

FlexRound: Learnable Rounding based on Element-wise Division for Post-Training Quantization

References
Bai, H., Hou, L., Shang, L., Jiang, X., King, I., and

Lyu, M. R. Towards efficient post-training quantiza-
tion of pre-trained language models. arXiv preprint
arXiv:2109.15082, 2021.

Bengio, Y., Leonard, N., and Courville, A. Estimating or
propagating gradients through stochastic neurons for con-
ditional computation. arXiv preprint arXiv:1308.3432,
2013.

Bisk, Y., Zellers, R., Gao, J., Choi, Y., et al. Piqa: Reasoning
about physical commonsense in natural language. In Pro-
ceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

Black, S., Gao, L., Wang, P., Leahy, C., and Biderman, S.
GPT-Neo: Large Scale Autoregressive Language Model-
ing with Mesh-Tensorflow, March 2021. URL https:
//doi.org/10.5281/zenodo.5297715. If you
use this software, please cite it using these metadata.

Bondarenko, Y., Nagel, M., and Blankevoort, T. Under-
standing and overcoming the challenges of efficient trans-
former quantization. In Proceedings of the 2021 Con-
ference on Empirical Methods in Natural Language Pro-
cessing, pp. 7947–7969. Association for Computational
Linguistics, November 2021. doi: 10.18653/v1/2021.
emnlp-main.627. URL https://aclanthology.
org/2021.emnlp-main.627.

Clark, C., Lee, K., Chang, M.-W., Kwiatkowski, T., Collins,
M., and Toutanova, K. BoolQ: Exploring the surpris-
ing difficulty of natural yes/no questions. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, Volume 1 (Long
and Short Papers), pp. 2924–2936, Minneapolis, Min-
nesota, June 2019. Association for Computational Lin-
guistics. doi: 10.18653/v1/N19-1300. URL https:
//aclanthology.org/N19-1300.

Clark, P., Cowhey, I., Etzioni, O., Khot, T., Sabharwal, A.,
Schoenick, C., and Tafjord, O. Think you have solved
question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Courbariaux, M., Hubara, I., Soudry, D., El-Yaniv, R., and
Bengio, Y. Binarized neural networks: Training deep
neural networks with weights and activations constrained
to +1 or-1. arXiv preprint arXiv:1602.02830, 2016.

Dettmers, T., Lewis, M., Belkada, Y., and Zettlemoyer, L.
Llm. int8 (): 8-bit matrix multiplication for transformers
at scale. arXiv preprint arXiv:2208.07339, 2022.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805,
2018.

Esser, S. K., McKinstry, J. L., Bablani, D., Appuswamy,
R., and Modha, D. S. Learned step size quantization. In
International Conference on Learning Representations,
2020. URL https://openreview.net/forum?
id=rkgO66VKDS.

Gao, L., Tow, J., Biderman, S., Black, S., DiPofi, A., Foster,
C., Golding, L., Hsu, J., McDonell, K., Muennighoff, N.,
Phang, J., Reynolds, L., Tang, E., Thite, A., Wang, B.,
Wang, K., and Zou, A. A framework for few-shot lan-
guage model evaluation, September 2021. URL https:
//doi.org/10.5281/zenodo.5371628.

Gardent, C., Shimorina, A., Narayan, S., and Perez-
Beltrachini, L. The WebNLG challenge: Generating
text from RDF data. In Proceedings of the 10th In-
ternational Conference on Natural Language Gener-
ation, pp. 124–133, Santiago de Compostela, Spain,
September 2017. Association for Computational Lin-
guistics. doi: 10.18653/v1/W17-3518. URL https:
//aclanthology.org/W17-3518.

Han, S., Pool, J., Tran, J., and Dally, W. Learning both
weights and connections for efficient neural network.
Advances in neural information processing systems, 28,
2015.

Han, S., Mao, H., and Dally, W. J. Deep compression: Com-
pressing deep neural networks with pruning, trained quan-
tization and huffman coding. In International Confer-
ence on Learning Representations, 2016. URL https:
//arxiv.org/pdf/1510.00149.pdf.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Houlsby, N., Giurgiu, A., Jastrzebski, S., Morrone, B.,
De Laroussilhe, Q., Gesmundo, A., Attariyan, M., and
Gelly, S. Parameter-efficient transfer learning for nlp.
In International Conference on Machine Learning, pp.
2790–2799. PMLR, 2019.

Hu, E. J., yelong shen, Wallis, P., Allen-Zhu, Z., Li, Y.,
Wang, S., Wang, L., and Chen, W. LoRA: Low-rank adap-
tation of large language models. In International Confer-
ence on Learning Representations, 2022. URL https:
//openreview.net/forum?id=nZeVKeeFYf9.

Hubara, I., Nahshan, Y., Hanani, Y., Banner, R., and Soudry,
D. Accurate post training quantization with small cal-
ibration sets. In Proceedings of the 38th International

10

https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715
https://aclanthology.org/2021.emnlp-main.627
https://aclanthology.org/2021.emnlp-main.627
https://aclanthology.org/N19-1300
https://aclanthology.org/N19-1300
https://openreview.net/forum?id=rkgO66VKDS
https://openreview.net/forum?id=rkgO66VKDS
https://doi.org/10.5281/zenodo.5371628
https://doi.org/10.5281/zenodo.5371628
https://aclanthology.org/W17-3518
https://aclanthology.org/W17-3518
https://arxiv.org/pdf/1510.00149.pdf
https://arxiv.org/pdf/1510.00149.pdf
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9

FlexRound: Learnable Rounding based on Element-wise Division for Post-Training Quantization

Conference on Machine Learning, volume 139 of Pro-
ceedings of Machine Learning Research, pp. 4466–4475.
PMLR, 2021. URL https://proceedings.mlr.
press/v139/hubara21a.html.

Jain, S. R., Gural, A., Wu, M., and Dick, C. H. Trained
quantization thresholds for accurate and efficient fixed-
point inference of deep neural networks. arXiv preprint
arXiv:1903.08066, 2019.

Jung, S., Son, C., Lee, S., Son, J., Han, J.-J., Kwak, Y.,
Ju Hwang, S., and Choi, C. Learning to quantize deep
networks by optimizing quantization intervals with task
loss. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 4350–4359, 2019.

Kim, S., Park, G., and Yi, Y. Performance evaluation of
int8 quantized inference on mobile gpus. IEEE Access, 9:
164245–164255, 2021.

Lee, J. H., Yun, J., Hwang, S. J., and Yang, E. Cluster-
promoting quantization with bit-drop for minimizing
network quantization loss. In 2021 IEEE/CVF In-
ternational Conference on Computer Vision (ICCV),
pp. 5350–5359. IEEE Computer Society, 2021. URL
https://doi.ieeecomputersociety.org/
10.1109/ICCV48922.2021.00532.

Li, Y., Gong, R., Tan, X., Yang, Y., Hu, P., Zhang, Q., Yu,
F., Wang, W., and Gu, S. BRECQ: Pushing the limit of
post-training quantization by block reconstruction. In
International Conference on Learning Representations,
2021. URL https://openreview.net/forum?
id=POWv6hDd9XH.

Liu, X., Ji, K., Fu, Y., Tam, W., Du, Z., Yang, Z., and Tang,
J. P-tuning: Prompt tuning can be comparable to fine-
tuning across scales and tasks. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pp. 61–68, 2022.

Lou, Q., Guo, F., Kim, M., Liu, L., and Jiang., L. Autoq:
Automated kernel-wise neural network quantization. In
International Conference on Learning Representations,
2020. URL https://openreview.net/forum?
id=rygfnn4twS.

Marcus, M. P., Santorini, B., and Marcinkiewicz, M. A.
Building a large annotated corpus of English: The
Penn Treebank. Computational Linguistics, 19(2):
313–330, 1993. URL https://www.aclweb.org/
anthology/J93-2004.

Merity, S., Xiong, C., Bradbury, J., and Socher, R. Pointer
sentinel mixture models, 2016.

Mihaylov, T., Clark, P., Khot, T., and Sabharwal, A. Can
a suit of armor conduct electricity? a new dataset
for open book question answering. arXiv preprint
arXiv:1809.02789, 2018.

Nagel, M., Baalen, M. v., Blankevoort, T., and Welling,
M. Data-free quantization through weight equalization
and bias correction. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 1325–
1334, 2019.

Nagel, M., Amjad, R. A., Van Baalen, M., Louizos, C., and
Blankevoort, T. Up or down? Adaptive rounding for post-
training quantization. In Proceedings of the 37th Inter-
national Conference on Machine Learning, volume 119
of Proceedings of Machine Learning Research, pp. 7197–
7206. PMLR, 2020. URL https://proceedings.
mlr.press/v119/nagel20a.html.

Nagel, M., Fournarakis, M., Amjad, R. A., Bondarenko,
Y., van Baalen, M., and Blankevoort, T. A white pa-
per on neural network quantization. arXiv preprint
arXiv:2106.08295, 2021.

Nahshan, Y., Chmiel, B., Baskin, C., Zheltonozhskii, E.,
Banner, R., Bronstein, A. M., and Mendelson, A. Loss
aware post-training quantization. Machine Learning, 110
(11):3245–3262, 2021.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
Sutskever, I., et al. Language models are unsupervised
multitask learners. OpenAI blog, 1(8):9, 2019.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring
the limits of transfer learning with a unified text-to-text
transformer. The Journal of Machine Learning Research,
21(1):5485–5551, 2020.

Rajpurkar, P., Zhang, J., Lopyrev, K., and Liang, P. SQuAD:
100,000+ Questions for Machine Comprehension of Text.
arXiv e-prints, art. arXiv:1606.05250, 2016.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,
Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein,
M., et al. Imagenet large scale visual recognition chal-
lenge. International journal of computer vision, 115(3):
211–252, 2015.

Sakaguchi, K., Bras, R. L., Bhagavatula, C., and Choi, Y.
Winogrande: An adversarial winograd schema challenge
at scale. Communications of the ACM, 64(9):99–106,
2021.

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and
Chen, L.-C. Mobilenetv2: Inverted residuals and linear
bottlenecks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 4510–4520,
2018.

11

https://proceedings.mlr.press/v139/hubara21a.html
https://proceedings.mlr.press/v139/hubara21a.html
https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00532
https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00532
https://openreview.net/forum?id=POWv6hDd9XH
https://openreview.net/forum?id=POWv6hDd9XH
https://openreview.net/forum?id=rygfnn4twS
https://openreview.net/forum?id=rygfnn4twS
https://www.aclweb.org/anthology/J93-2004
https://www.aclweb.org/anthology/J93-2004
https://proceedings.mlr.press/v119/nagel20a.html
https://proceedings.mlr.press/v119/nagel20a.html

FlexRound: Learnable Rounding based on Element-wise Division for Post-Training Quantization

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E.,
Azhar, F., Rodriguez, A., Joulin, A., Grave, E., and Lam-
ple, G. Llama: Open and efficient foundation language
models, 2023.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., and
Bowman, S. R. Glue: A multi-task benchmark and anal-
ysis platform for natural language understanding. arXiv
preprint arXiv:1804.07461, 2018.

Wang, P., Chen, Q., He, X., and Cheng, J. Towards accurate
post-training network quantization via bit-split and stitch-
ing. In International Conference on Machine Learning,
pp. 9847–9856. PMLR, 2020.

Wei, X., Gong, R., Li, Y., Liu, X., and Yu, F. QDrop:
Randomly dropping quantization for extremely low-bit
post-training quantization. In International Conference
on Learning Representations, 2022. URL https://
openreview.net/forum?id=ySQH0oDyp7.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C.,
Moi, A., Cistac, P., Rault, T., Louf, R., Funtowicz, M.,
Davison, J., Shleifer, S., von Platen, P., Ma, C., Jernite,
Y., Plu, J., Xu, C., Le Scao, T., Gugger, S., Drame, M.,
Lhoest, Q., and Rush, A. Transformers: State-of-the-art
natural language processing. In Proceedings of the 2020
Conference on Empirical Methods in Natural Language
Processing: System Demonstrations, pp. 38–45, Online,
October 2020. Association for Computational Linguistics.
doi: 10.18653/v1/2020.emnlp-demos.6. URL https:
//aclanthology.org/2020.emnlp-demos.6.

Wu, H., Judd, P., Zhang, X., Isaev, M., and Micikevi-
cius, P. Integer quantization for deep learning infer-
ence: Principles and empirical evaluation. arXiv preprint
arXiv:2004.09602, 2020.

Xiao, G., Lin, J., Seznec, M., Demouth, J., and Han,
S. Smoothquant: Accurate and efficient post-training
quantization for large language models. arXiv preprint
arXiv:2211.10438, 2022.

Yao, Z., Aminabadi, R. Y., Zhang, M., Wu, X., Li, C., and
He, Y. Zeroquant: Efficient and affordable post-training
quantization for large-scale transformers. arXiv preprint
arXiv:2206.01861, 2022.

Zafrir, O., Boudoukh, G., Izsak, P., and Wasserblat, M.
Q8bert: Quantized 8bit bert. In 2019 Fifth Workshop
on Energy Efficient Machine Learning and Cognitive

Computing-NeurIPS Edition (EMC2-NIPS), pp. 36–39.
IEEE, 2019.

Zellers, R., Holtzman, A., Bisk, Y., Farhadi, A., and Choi,
Y. Hellaswag: Can a machine really finish your sentence?
arXiv preprint arXiv:1905.07830, 2019.

Zhang, S., Roller, S., Goyal, N., Artetxe, M., Chen, M.,
Chen, S., Dewan, C., Diab, M., Li, X., Lin, X. V.,
et al. Opt: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068, 2022.

Zhang, W., Hou, L., Yin, Y., Shang, L., Chen, X., Jiang, X.,
and Liu, Q. Ternarybert: Distillation-aware ultra-low bit
bert. arXiv preprint arXiv:2009.12812, 2020.

Zhao, R., Hu, Y., Dotzel, J., De Sa, C., and Zhang, Z. Im-
proving neural network quantization without retraining
using outlier channel splitting. In International confer-
ence on machine learning, pp. 7543–7552. PMLR, 2019.

Zhao, X., Wang, Y., Cai, X., Liu, C., and Zhang, L. Lin-
ear symmetric quantization of neural networks for low-
precision integer hardware. In International Confer-
ence on Learning Representations, 2020. URL https:
//openreview.net/forum?id=H1lBj2VFPS.

12

https://openreview.net/forum?id=ySQH0oDyp7
https://openreview.net/forum?id=ySQH0oDyp7
https://aclanthology.org/2020.emnlp-demos.6
https://aclanthology.org/2020.emnlp-demos.6
https://openreview.net/forum?id=H1lBj2VFPS
https://openreview.net/forum?id=H1lBj2VFPS

FlexRound: Learnable Rounding based on Element-wise Division for Post-Training Quantization

A. Comparison of Rounding Results of AdaRound, AdaQuant, and FlexRound

(a) MobileNetV2

(b) ResNet-18

Figure 6. Scatter plot of the amount of grid shifts from rounding-to-nearest grid in the first layer of the first block in MobileNetV2 and
ResNet-18 when only weights are quantized to 4-bit.

Figure 6 shows the comparison of rounding results of AdaRound, AdaQuant, and FlexRound. As shown in Figure 6(a),
FlexRound can quantize pre-trained weights more flexibly than AdaRound and AdaQuant for both ResNet-18 and Mo-
bileNetV2, thereby obtaining better performance than AdaRound and AdaQuant.

13

FlexRound: Learnable Rounding based on Element-wise Division for Post-Training Quantization

B. Proof of Proposition 3.1
Let S′ be S2 ⊙ s3 for a linear layer, or S2 ⊙ s3 ⊙ s4 for a 2D convolution.

For a linear layer,

∂L
∂S′

(i,j)

=
∂Ŵ(i,j)

∂S′
(i,j)

∂L
∂Ŵ(i,j)

=
∂

∂S′
(i,j)

(
s1

⌊ W(i,j)

s1S′
(i,j)

⌉) ∂L
∂Ŵ(i,j)

= s1
∂

∂S′
(i,j)

(⌊ W(i,j)

s1S′
(i,j)

⌉) ∂L
∂Ŵ(i,j)

= s1
∂

∂S′
(i,j)

(W(i,j)

s1S′
(i,j)

) ∂L
∂Ŵ(i,j)

(∵ Straight-Through Estimator)

= s1
W(i,j)

s1

∂

∂S′
(i,j)

(1

S′
(i,j)

) ∂L
∂Ŵ(i,j)

= W(i,j)

(
− 1

S′2
(i,j)

) ∂L
∂Ŵ(i,j)

= −
W(i,j)

S′2
(i,j)

∂L
∂Ŵ(i,j)

.

For a 2D convolution, Proposition 3.1 can be proved by just replacing Ŵ(i,j) and S′
(i,j) with Ŵ(i,j,k,l) and S′

(i,j,k,l),
respectively.

14

FlexRound: Learnable Rounding based on Element-wise Division for Post-Training Quantization

C. ResNet-18, ResNet-50, and MobileNetV2 on ImageNet with Pre-trained Models from the
Official PyTorch Repository2

Table 8. Top-1/Top-5 accuracy (%) on ImageNet when only weights are quantized. “B + X” expresses the implementation of X in the
BRECQ’s setting. Here, we employ pre-trained models available from the official PyTorch repository.

Method # Bits (W/A) ResNet-18 ResNet-50 MobileNetV2

Full-precision 32/32 69.76/89.08 76.15/92.87 71.88/90.29

B + AdaQuant 4/32 67.55/87.73 74.09/91.77 0.48/0.53
B + AdaRound 4/32 69.15/88.70 75.51/92.73 67.76/88.12
B + FlexRound (Ours) 4/32 69.21/88.76 75.59/92.63 69.56/89.02

B + AdaQuant 3/32 60.75/83.41 66.19/87.08 0.10/0.52
B + AdaRound 3/32 67.98/88.17 74.51/92.20 60.18/83.52
B + FlexRound (Ours) 3/32 68.02/88.03 74.61/92.11 64.85/86.38

B + AdaQuant 2/32 1.13/4.10 0.12/0.60 0.10/0.50
B + AdaRound 2/32 63.01/85.20 68.31/88.98 33.10/60.58
B + FlexRound (Ours) 2/32 63.73/85.41 70.57/90.07 38.09/64.90

Table 9. Top-1/Top-5 accuracy (%) on ImageNet when both weights and activations are quantized. “B + X” and “Q + Y” represent the
implementation of X in the BRECQ’s setting and that of Y in the QDrop’s setting, respectively. Here, we employ pre-trained models
available from the official PyTorch repository.

Method # Bits (W/A) ResNet-18 ResNet-50 MobileNetV2

Full-precision 32/32 69.76/89.08 76.15/92.87 71.88/90.29

B + AdaRound 4/4 68.32/88.13 74.28/92.02 28.46/52.60
B + FlexRound (Ours) 4/4 68.34/88.19 74.42/92.04 55.25/78.61
Q + AdaRound 4/4 68.19/88.18 74.68/92.02 56.68/80.95
Q + FlexRound (Ours) 4/4 68.23/88.22 74.83/92.11 61.56/84.18

B + AdaRound 3/3 64.44/85.73 68.80/88.79 2.11/7.24
B + FlexRound (Ours) 3/3 64.61/85.85 69.62/89.19 8.80/21.79
Q + AdaRound 3/3 65.33/86.60 71.80/90.72 32.41/59.27
Q + FlexRound (Ours) 3/3 65.28/86.49 71.84/90.48 41.51/68.02

2https://pytorch.org/vision/stable/models.html

15

https://pytorch.org/vision/stable/models.html

FlexRound: Learnable Rounding based on Element-wise Division for Post-Training Quantization

D. Cross-Layer Equalization and Absorbing High Biases as Preprocessing

Table 10. Top-1/Top-5 accuracy (%) of MobileNetV2 with only weights quantized to 4-bit on ImageNet. Here, the “pre-trained model
from BRECQ” and “pre-trained model from PyTorch” columns show the results when using the pre-trained model provided from the
BRECQ github repository and the official PyTorch repository, respectively. “B + X” denotes the implementation of X in the setting of
BRECQ. “Replacing ReLU6” indicates that every ReLU6 in MobileNetV2 is replaced by ReLU. “CLE” and “AHB” stand for cross-layer
equalization and absorbing high biases, respectively.

Method pre-trained model
from BRECQ

pre-trained model
from PyTorch

Full-precision 72.62/90.67 71.88/90.29
Replacing ReLU6 + CLE + AHB 69.64/88.83 71.53/90.19

B + AdaRound 69.46/88.85 67.76/88.12
Replacing ReLU6 + CLE + AHB + B + AdaRound 0.18/0.67 70.03/89.36

B + FlexRound 70.82/89.67 69.56/89.02
Replacing ReLU6 + CLE + AHB + B + FlexRound 0.18/0.67 69.44/89.00

It is known that preprocessing pre-trained weights through cross-layer equalization (CLE) and absorbing high biases (AHB)
exhibits a noticeable enhancement for the per-tensor quantization performance in vision models (Nagel et al., 2019; 2021).
To detect the effect of CLE and AHB on AdaRound and FlexRound as preprocessing, as seen in Table 10, we also quantize
the weights of MobileNetV2 preprocessed via CLE and AHB to 4-bit using AdaRound and FlexRound in a linear symmetric
per-tensor quantization format. Following Nagel et al. (2019), every ReLU6 in MobileNetV2 is replaced by ReLU when
applying CLE and AHB to MobileNetV2. When using the pre-trained model provided from the official PyTorch repository3,
utilizing CLE and AHB as preprocessing enhances the performance of ‘B + AdaRound’ but not ‘B + FlexRound’ so that
‘Replacing ReLU6 + CLE + AHB + B + AdaRound’ shows better accuracy than ‘B + FlexRound’ as well as ‘B + AdaRound’.
In contrast, when using the pre-trained model provided from the BRECQ github repository4, utilizing CLE and AHB as
preprocessing seriously hinders both ‘B + AdaRound’ and ‘B + FlexRound’ from performing well. Depending on how a
model is pre-trained, exploiting CLE and AHB as preprocessing can or cannot be effective. However, no matter which
pre-trained model is chosen, ‘B + FlexRound’ can consistently quantize weights well without any preprocessing, which
implies that FlexRound would have its own advantages compared to other post-training weight quantization methods (that
might need preprocessing for better performance).

3https://pytorch.org/vision/stable/models.html
4https://github.com/yhhhli/BRECQ

16

https://pytorch.org/vision/stable/models.html
https://github.com/yhhhli/BRECQ

FlexRound: Learnable Rounding based on Element-wise Division for Post-Training Quantization

E. Ablation Study on Sample Size

Figure 7. Ablation study on sample size when quantizing MobileNetV2 to 4-bit. Only weights are quantized to 4-bit, with activations kept
in full-precision.

No matter how much data is used, B+FlexRound always outperforms B+AdaRound. When the sample size decreases from
64 to 32, the accuracy of B+FlexRound declines by almost one percent. Correspondingly, a sample size of 32 would be a
breakthrough point.

17

FlexRound: Learnable Rounding based on Element-wise Division for Post-Training Quantization

F. Combining an Additive Approach with a Division-based Approach

Table 11. Top-1/Top-5 accuracy (%) on ImageNet when only weights are quantized. “B + X” expresses the implementation of X in the
BRECQ’s setting.

Method # Bits (W/A) ResNet-18 ResNet-50 MobileNetV2

Full-precision 32/32 71.00/89.97 76.63/93.04 72.62/90.67

B + AdaQuant 4/32 67.50/87.75 72.79/90.77 15.17/32.89
B + AdaQuant + FlexRound 4/32 69.81/89.21 75.65/92.58 70.15/89.34
B + FlexRound (Ours) 4/32 70.28/89.44 75.95/92.68 70.82/89.67

B + AdaQuant 3/32 57.09/80.82 52.13/75.22 0.20/0.79
B + AdaQuant + FlexRound 3/32 67.93/88.08 74.01/91.68 65.58/86.63
B + FlexRound (Ours) 3/32 68.65/88.54 74.38/91.81 66.87/87.56

B + AdaQuant 2/32 0.23/0.92 0.10/0.50 0.10/0.50
B + AdaQuant + FlexRound 2/32 61.13/83.93 63.57/85.81 44.56/71.25
B + FlexRound (Ours) 2/32 62.57/84.84 63.67/85.72 46.04/72.48

One might wonder whether or not there comes any benefit from combining both element-wise addition and element-wise
division. Although it would be interesting to combine AdaRound with FlexRound, such a combination would be challenging
due to the fact that AdaRound cannot learn a quantization grid size, s1 jointly with rounding. Alternatively, we combine
AdaQuant with FlexRound. AdaQuant + FlexRound is superior to AdaQuant but inferior to FlexRound. This might be due
to the naive combination of AdaQuant with FlexRound. Considering both element-wise addition and element-wise division
would be an interesting future work.

18

FlexRound: Learnable Rounding based on Element-wise Division for Post-Training Quantization

G. BERT on SQuAD

Table 12. F1 score for BERTBase and BERTLarge on the SQuADv1 dataset when both weights and activations are quantized to 8-bit. “Q +
X” represent the implementation of X in the QDrop’s setting.

Method # Bits (W/A) BERTBase BERTLarge

Full-precision 32/32 87.05 89.31

Q + AdaRound 8/8 86.90 88.89
Q + FlexRound (Ours) 8/8 87.25 89.25

Table 13. Hyper-parameter selection for fine-tuning BERTBase and BERTLarge on the SQuADv1 dataset.

Learning rate Batch size Epoch Maximum sequence length Document stride

1e-4 32 4 384 128

Table 12 shows the performace of FlexRound on the SQuADv1 (Rajpurkar et al., 2016) dataset5 for the BERT models.
Both BERTBase and BERTLarge are uncased models. For reconstruction, we select 1024 samples from the training dataset of
SQuADv1 at random without any modification. For ‘Q + FlexRound’, the learning rate is set to 1e-4 for both models. For
both ‘Q + AdaRound’ and ‘Q + FlexRound’, the batch size and the number of iterations for reconstruction are 64 and 20k
respectively. We use the Adam optimizer for all methods and models. The other experimental setting of ‘Q + AdaRound’
follows Wei et al. (2022).

Table 13 shows the hyper-parameter selection for fine-tuning. The same configuration is used for both BERTBase and
BERTLarge. The other setting for fine-tuning and the evaluation method are the same as HuggingFace repository6.

5https://huggingface.co/datasets/squad
6https://github.com/huggingface/transformers/tree/main/examples/pytorch/

question-answering

19

https://huggingface.co/datasets/squad
https://github.com/huggingface/transformers/tree/main/examples/pytorch/question-answering
https://github.com/huggingface/transformers/tree/main/examples/pytorch/question-answering

FlexRound: Learnable Rounding based on Element-wise Division for Post-Training Quantization

H. BERT and GPT-Neo on GLUE

Table 14. Hyper-parameter selection for fine-tuning BERTBase, BERTLarge, GPT-Neo125M, GPT-Neo1.3B, and GPT-Neo2.7B on GLUE.

Configuration BERTBase BERTLarge GPT-Neo125M GPT-Neo1.3B GPT-Neo2.7B

Learning Rate 2e-5 2e-5 2e-5 2e-5 1e-5
Batch Size 32 32 32 32 16

Epoch 3
Maximum Sequence Length 128

Weight Decay 0.01

Table 15. Performance of BERT and GPT-Neo fine-tuned on GLUE. For evaluation, matched and mismatched accuracies are reported for
MNLI, F1 score and accuracy are reported for QQP, Mathews correlation is reported for CoLA, Pearson and Spearman correlations are
reported for STS-B, and accuracy is reported for the others. “Q + X” indicates the implementation of X in the QDrop’s setting.

Dataset Method BERTBASE BERTLARGE GPT-Neo125M GPT-Neo1.3B GPT-Neo2.7B

Full-precision 84.49/85.20 86.05/85.98 79.11/79.63 85.12/86.04 86.36/87.02

MNLI Q+AdaRound 83.69/84.61 85.75/85.86 72.67/74.11 84.90/85.82 86.33/86.75
Q+FlexRound (Ours) 84.53/84.98 85.93/85.99 72.94/74.24 85.56/86.14 86.41/86.89

Full-precision 88.06/91.08 88.66/91.59 85.20/88.99 88.26/91.28 88.62/91.50

QQP Q+AdaRound 87.65/90.58 87.48/90.62 72.97/79.35 87.98/91.04 88.38/91.27
Q+FlexRound (Ours) 87.81/90.83 88.38/91.31 73.75/80.65 88.27/91.18 88.60/91.39

Full-precision 91.25 92.13 85.15 91.36 92.46

QNLI Q+AdaRound 91.16 92.24 80.87 91.40 92.04
Q+FlexRound (Ours) 91.16 92.04 80.52 91.54 92.50

Full-precision 93.00 92.78 89.91 93.35 94.50

SST-2 Q+AdaRound 92.66 93.00 84.75 92.55 93.81
Q+FlexRound (Ours) 92.43 93.58 83.03 93.12 94.04

Full-precision 58.55 63.57 37.83 57.42 58.88

CoLA Q+AdaRound 56.79 54.30 20.15 58.93 57.14
Q+FlexRound (Ours) 57.53 60.57 21.59 59.30 57.37

Full-precision 88.52/88.20 88.98/88.89 79.87/80.12 88.94/88.90 89.75/89.82

STS-B Q+AdaRound 88.00/87.53 86.87/86.69 68.55/68.25 88.97/88.77 89.03/88.91
Q+FlexRound (Ours) 88.29/87.91 88.82/88.76 67.65/68.34 88.82/88.58 89.06/88.69

Full-precision 85.05 85.54 80.15 85.05 87.99

MRPC Q+AdaRound 81.62 82.35 75.25 84.80 85.78
Q+FlexRound (Ours) 84.07 84.31 75.49 85.05 86.76

Full-precision 64.62 71.19 64.98 76.17 80.87

RTE Q+AdaRound 63.54 66.79 62.82 75.09 80.51
Q+FlexRound (Ours) 64.62 68.95 62.82 76.17 81.23

To investigate the natural language understanding performance of FlexRound for BERT7 to GPT-Neo8, we directly fine-tune
pre-trained models on the GLUE9 benchmark. For BERT, we use uncased models. Hyper-parameter selection for fine-tuning
a pre-trained model is given in Table 14. We use the Huggingface repository10 for fine-tuning without any modification.

In Table 15, for reconstruction, we randomly sample 1024 examples from the training dataset without any modification.

7https://huggingface.co/bert-base-uncased
8https://huggingface.co/EleutherAI/gpt-neo-1.3B
9https://huggingface.co/datasets/glue

10https://github.com/huggingface/transformers/tree/main/examples/pytorch/
text-classification

20

https://huggingface.co/bert-base-uncased
https://huggingface.co/EleutherAI/gpt-neo-1.3B
https://huggingface.co/datasets/glue
https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-classification
https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-classification

FlexRound: Learnable Rounding based on Element-wise Division for Post-Training Quantization

For all experiments, the batch size is 64, and the maximum sequence length of all experiments is 128. We use the Adam
optimizer for all methods and models. In the QDrop’s setting, the probability of dropping activation quantization is set to
0.5. The experimental setting of ‘Q + AdaRound’ follows Wei et al. (2022). We also utilize the Huggingface repository11

for the evaluation method without any modification.

For some datasets (QNLI, SST-2, and STS-B), ‘Q + FlexRound’ does not outperform ‘Q + AdaRound’ as shown in Table 15.
This suggests that there may be certain tasks where FlexRound has room for improvement. However, this outcome is due to
the fact that the learning rate for s1, S2, and s3 is set to 2e-4 for BERT and 3e-4 for GPT-Neo to demonstrate that ‘Q +
FlexRound’ can broadly surpass ‘Q + AdaRound’ without the need of significant efforts to select the optimal learning rate
for each task. When the learning rate is fine-tuned for the datasets where ‘Q + FlexRound’ falls short of ‘Q + AdaRound’,
we can observe that ‘Q + FlexRound’ outperforms ‘Q + AdaRound’ in most cases, as depicted in the table below.

Table 16. Performance of BERT and GPT-Neo fine-tuned on GLUE after tuning the learning rate of s1, S2, and s3 for the tasks where ‘Q
+ FlexRound’ falls short of ‘Q + AdaRound’. Pearson and Spearman correlations are reported for STS-B, and accuracy is reported for the
others. “Q + X” indicates the implementation of X in the QDrop’s setting.

Dataset Method BERTBASE BERTLARGE GPT-Neo125M GPT-Neo1.3B GPT-Neo2.7B

Full-precision 91.25 92.13 85.15 91.36 92.46

QNLI Q+AdaRound 91.16 92.24 80.87 91.40 92.04
Q+FlexRound (Ours) 91.16 92.26 82.72 91.54 92.50

Full-precision 93.00 92.78 89.91 93.35 94.50

SST-2 Q+AdaRound 92.66 93.00 84.75 92.55 93.81
Q+FlexRound (Ours) 92.66 93.58 83.72 93.12 94.04

Full-precision 88.52/88.20 88.98/88.89 79.87/80.12 88.94/88.90 89.75/89.82

STS-B Q+AdaRound 88.00/87.53 86.87/86.69 68.55/68.25 88.97/88.77 89.03/88.91
Q+FlexRound (Ours) 88.29/87.91 88.82/88.76 69.25/69.58 89.20/88.99 89.06/88.96

11https://github.com/huggingface/transformers/tree/main/examples/pytorch/
text-classification

21

https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-classification
https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-classification

FlexRound: Learnable Rounding based on Element-wise Division for Post-Training Quantization

I. GPT-Neo and OPT on WikiText2 and PTB

Table 17. Hyper-parameter selection for fine-tuning GPT-Neo125M, GPT-Neo1.3B, GPT-Neo2.7B, OPT125M, OPT1.3B, and OPT2.7B on the
WikiText2 and PTB datasets.

Dataset Configuration GPT-Neo125M GPT-Neo1.3B GPT-Neo2.7B OPT125M OPT1.3B OPT2.7B

WikiText2 Learning rate 3e-5 4e-6 1e-6 3e-5 3e-6 2e-6
Batch size 8 4 2 8 4 2

PTB Learning rate 9e-5 1e-5 6e-6 1e-5 9e-6 6e-6
Batch size 8 4 2 8 4 2

Table 18. Hyper-parameter selection for ‘Q + FlexRound’ in Table 5. For all experiments, the sample size and the number of iterations are
set to 128 and 500, respectively.

Dataset Configuration GPT-Neo125M GPT-Neo1.3B GPT-Neo2.7B OPT125M OPT1.3B OPT2.7B

WikiText2 Learning rate 5e-3 4e-4 4e-3 3e-5 7e-6 1e-5
Batch size 32 16 8 32 16 8

PTB Learning rate 5e-3 7e-3 7e-3 5e-5 3e-5 8e-6
Batch size 32 16 8 32 16 8

To evaluate FlexRound for natural language generation tasks, we utilize GPT-Neo12 and OPT13 fine-tuned on the WikiText2
14 and PTB 15 datasets for 10 epochs. Table 17 reports hyper-parameter selection for fine-tuning a pre-trained language
model. We utilize the Huggingface repository16 for fine-tuning without any modification.

For reconstruction, We extract 128 random samples from the training dataset without any modification, and the number
of iterations is fixed to 500. We use the Adam optimizer for all methods and models. The learning rate and batch size for
‘Q + FlexRound’ in Table 5 are shown in Table 18. The batch size of ‘Q + AdaRound’ is same as the batch size of ‘Q +
FlexRound’. The other experimental setting of ‘Q + AdaRound’ follows Wei et al. (2022). The probability of dropping
activation quantization is set to 0.5 in the QDrop’s setting. We also use the Huggingface repository17 for the evaluation
method without any modification.

12https://huggingface.co/EleutherAI/gpt-neo-1.3B
13https://huggingface.co/facebook/opt-1.3b
14https://huggingface.co/datasets/wikitext
15https://huggingface.co/datasets/ptb_text_only
16https://github.com/huggingface/transformers/tree/main/examples/pytorch/

language-modeling
17https://github.com/huggingface/transformers/tree/main/examples/pytorch/

language-modeling

22

https://huggingface.co/EleutherAI/gpt-neo-1.3B
https://huggingface.co/facebook/opt-1.3b
https://huggingface.co/datasets/wikitext
https://huggingface.co/datasets/ptb_text_only
https://github.com/huggingface/transformers/tree/main/examples/pytorch/language-modeling
https://github.com/huggingface/transformers/tree/main/examples/pytorch/language-modeling
https://github.com/huggingface/transformers/tree/main/examples/pytorch/language-modeling
https://github.com/huggingface/transformers/tree/main/examples/pytorch/language-modeling

FlexRound: Learnable Rounding based on Element-wise Division for Post-Training Quantization

J. GPT-2 on WebNLG
In Table 6, we utilize the GPT-2 models and the WebNLG dataset available from the LoRA repository18. Namely, all LoRA
checkpoints are loaded from the repository and merged to GPT-2. For reconstruction in all experiments, we use 128 random
samples from the training dataset of WebNLG without any modification, and the number of iterations and the batch size are
set to 500 and 8 respectively. For ‘Q + FlexRound’, the learning rate is set to 5e-3 for GPT-2 medium and 3e-3 for GPT-2
large, respectively. The other experimental setup of ‘Q + AdaRound’ follows Wei et al. (2022).

18https://github.com/microsoft/LoRA

23

https://github.com/microsoft/LoRA

FlexRound: Learnable Rounding based on Element-wise Division for Post-Training Quantization

K. LLaMA on Common Sense Reasoning and WikiText2

Table 19. Zero-shot performance of LLaMA-7B, LLaMA-13B, and LLaMA-33B on 6 common sense reasoning benchmarks (BoolQ,
PIQA, HellaSwag, WinoGrande, ARC easy and challenge, and OBQA) and the causal language modeling task on WikiText2. The
accuracy (%) and the perplexity (PPL) are reported for common sense reasoning tasks and the causal language modeling task, respectively.
The lower PPL, the better. “Q + X” implies the implementation of X in the QDrop’s setting. The weights of attention and feed-forward
sub-layers are quantized to 8-bit in a per-channel asymmetric format, whereas the input activations of those sub-layers are quantized to
8-bit in a per-tensor asymmetric scheme.

Model Method # Bits (W/A) BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA WikiText2

Half-precision 16/16 73.15 77.31 72.96 67.09 52.48 41.38 42.40 8.90

LLaMA-7B Q+AdaRound 8/8 70.12 75.08 69.89 65.82 51.47 39.42 39.00 10.38
Q+FlexRound (Ours) 8/8 73.76 76.66 71.75 67.01 52.31 40.02 42.20 9.25

Half-precision 16/16 68.53 79.11 76.23 70.01 59.89 44.54 42.20 7.73

LLaMA-13B Q+AdaRound 8/8 66.09 76.44 72.06 66.30 57.32 43.00 39.60 9.07
Q+FlexRound (Ours) 8/8 68.59 78.67 75.21 70.64 58.88 43.60 41.20 8.01

Half-precision 16/16 68.38 80.09 79.21 72.93 58.92 45.48 42.00 6.35

LLaMA-33B Q+AdaRound 8/8 64.86 74.65 68.64 57.93 49.28 36.95 41.00 10.39
Q+FlexRound (Ours) 8/8 69.08 79.16 77.43 72.53 56.61 44.97 44.00 6.82

Table 20. Five-shot performance of LLaMA-7B, LLaMA-13B, and LLaMA-33B on 6 common sense reasoning benchmarks (BoolQ,
PIQA, HellaSwag, WinoGrande, ARC easy and challenge, and OBQA). The accuracy (%) is reported for common sense reasoning tasks.
“Q + X” implies the implementation of X in the QDrop’s setting. The weights of attention and feed-forward sub-layers are quantized
to 8-bit in a per-channel asymmetric format, whereas the input activations of those sub-layers are quantized to 8-bit in a per-tensor
asymmetric scheme.

Model Method # Bits (W/A) BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA

Half-precision 16/16 76.33 79.38 75.35 69.69 65.78 45.56 44.00

LLaMA-7B Q+AdaRound 8/8 68.38 76.55 72.60 70.40 62.75 44.45 42.20
Q+FlexRound (Ours) 8/8 76.76 78.07 74.17 69.14 64.14 45.05 43.60

Half-precision 16/16 81.90 79.98 78.41 75.61 70.79 50.43 47.20

LLaMA-13B Q+AdaRound 8/8 67.95 77.80 74.32 73.01 64.52 45.82 44.40
Q+FlexRound (Ours) 8/8 78.29 80.20 77.26 75.37 67.68 49.32 46.40

Half-precision 16/16 85.96 82.48 82.20 80.03 74.87 56.23 47.00

LLaMA-33B Q+AdaRound 8/8 68.38 80.09 79.21 72.93 58.92 45.48 42.00
Q+FlexRound (Ours) 8/8 85.32 80.90 80.52 78.37 71.72 53.16 46.80

24

FlexRound: Learnable Rounding based on Element-wise Division for Post-Training Quantization

Table 21. Zero-shot performance of LLaMA-7B, LLaMA-13B, and LLaMA-33B on 6 common sense reasoning benchmarks (BoolQ,
PIQA, HellaSwag, WinoGrande, ARC easy and challenge, and OBQA) and the causal language modeling task on WikiText2. The
accuracy (%) and the perplexity (PPL) are reported for common sense reasoning tasks and the causal language modeling task, respectively.
The lower PPL, the better. “B + X” implies the implementation of X in the BRECQ’s setting. The weights of attention and feed-forward
sub-layers are quantized to 4-bit in a per-channel asymmetric format, whereas the input activations of those sub-layers are kept in
half-precision.

Model Method # Bits (W/A) BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA WikiText2

Half-precision 16/16 73.15 77.31 72.96 67.09 52.48 41.38 42.40 8.90

LLaMA-7B B+AdaRound 4/16 70.46 77.04 71.73 68.27 51.73 40.44 42.00 9.69
B+FlexRound (Ours) 4/16 70.73 77.75 71.97 66.06 50.80 40.27 42.20 9.18

Half-precision 16/16 68.53 79.11 76.23 70.01 59.89 44.54 42.20 7.73

LLaMA-13B B+AdaRound 4/16 67.55 78.94 75.50 69.85 58.42 43.00 43.40 8.07
B+FlexRound (Ours) 4/16 66.39 78.78 75.52 70.40 59.55 43.77 42.80 7.90

Half-precision 16/16 68.38 80.09 79.21 72.93 58.92 45.48 42.00 6.35

LLaMA-33B B+AdaRound 4/16 69.39 79.27 77.77 72.69 57.03 44.62 43.00 6.88
B+FlexRound (Ours) 4/16 67.19 80.25 79.01 72.61 57.79 44.88 43.80 6.63

Table 22. Five-shot performance of LLaMA-7B, LLaMA-13B, and LLaMA-33B on 6 common sense reasoning benchmarks (BoolQ,
PIQA, HellaSwag, WinoGrande, ARC easy and challenge, and OBQA). The accuracy (%) is reported for common sense reasoning tasks.
“B + X” implies the implementation of X in the BRECQ’s setting. The weights of attention and feed-forward sub-layers are quantized to
4-bit in a per-channel asymmetric format, whereas the input activations of those sub-layers are kept in half-precision.

Model Method # Bits (W/A) BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA

Half-precision 16/16 76.33 79.38 75.35 69.69 65.78 45.56 44.00

LLaMA-7B B+AdaRound 4/16 74.10 77.75 73.60 68.90 57.79 44.11 43.00
B+FlexRound (Ours) 4/16 73.46 78.35 74.43 69.14 63.43 43.43 43.80

Half-precision 16/16 81.90 79.98 78.41 75.61 70.79 50.43 47.20

LLaMA-13B B+AdaRound 4/16 78.65 79.54 76.79 75.53 63.38 47.10 45.20
B+FlexRound (Ours) 4/16 78.78 79.71 77.40 75.30 67.05 48.04 46.00

Half-precision 16/16 85.96 82.48 82.20 80.03 74.87 56.23 47.00

LLaMA-33B B+AdaRound 4/16 84.65 80.96 80.03 78.37 67.51 51.19 44.60
B+FlexRound (Ours) 4/16 86.64 81.83 81.26 79.01 70.66 53.24 45.00

For all experiments, we employ the evaluation code from Eleuther AI’s lm-evaluation-harness (Gao et al., 2021) for common
sense reasoning bechmarks and the evaluation method in the Huggingface repository19 for the causal language modeling
task on WikiText2 without any modification. For reconstruction in all experiments, we use 512 random samples from the
training dataset of C4, and the number of iterations is set to 5000. We use the Adam optimizer for all methods and models.
For ‘Q + FlexRound’ in Table 19 and Table 20, the batch size and the learning rate are set to 4 and 3e-3 for LLaMA-7B
and LLaMA-13B, and 2 and 1e-3 for LLaMA-33B. For ‘B + FlexRound’ in Table 21 and Table 22, the batch size and
the learning rate are set to 4 and 2e-4 for LLaMA-7B, 4 and 1e-4 for LLaMA-13B, and 2 and 1e-4 for LLaMA-33B. The
probability of dropping activation quantization is set to 0.5 in the QDrop’s setting. The other experimental setups of ‘B +
AdaRound’ and ‘Q + AdaRound’ follow Li et al. (2021) and Wei et al. (2022), respectively.

19https://github.com/huggingface/transformers/tree/main/examples/pytorch/
language-modeling

25

https://github.com/huggingface/transformers/tree/main/examples/pytorch/language-modeling
https://github.com/huggingface/transformers/tree/main/examples/pytorch/language-modeling

FlexRound: Learnable Rounding based on Element-wise Division for Post-Training Quantization

L. LLaMA fine-tuned via LoRA on WikiText2 and PTB

Table 23. Performance of LLaMA-7B, LLaMA-13B, and LLaMA-33B fine-tuned via LoRA on WikiText2 and PTB, respectively. In
LoRA, the query and value projection weights are adapted with a LoRA rank of 4. The perplexity (PPL) is employed as a performance
metric. The lower PPL, the better. “Q + X” means the implementation of X in the QDrop’s setting. The weights of attention and
feed-forward sub-layers are quantized to 8-bit in a per-channel asymmetric format, whereas the input activations of those sub-layers are
quantized to 8-bit in a per-tensor asymmetric scheme.

Dataset Method # Bits (W/A) LLaMA-7B LLaMA-13B LLaMA-33B

Half-precision (LoRA) 16/16 5.53 5.07 4.06

WikiText2 Q+AdaRound 8/8 6.19 5.80 4.86
Q+FlexRound (Ours) 8/8 5.73 5.29 4.32

Half-precision (LoRA) 16/16 9.09 8.47 7.21

PTB Q+AdaRound 8/8 9.85 9.23 8.21
Q+FlexRound (Ours) 8/8 9.28 8.66 7.43

Table 24. Performance of LLaMA-7B, LLaMA-13B, and LLaMA-33B fine-tuned via LoRA on WikiText2 and PTB, respectively. In
LoRA, the query and value projection weights are adapted with a LoRA rank of 4. The perplexity (PPL) is employed as a performance
metric. The lower PPL, the better. “B + X” implies the implementation of X in the BRECQ’s setting. The weights of attention and
feed-forward sub-layers are quantized to 3-bit or 4-bit in a per-channel asymmetric format, whereas the input activations of those
sub-layers are kept in half-precision.

Dataset Method # Bits (W/A) LLaMA-7B LLaMA-13B LLaMA-33B

Half-precision (LoRA) 16/16 5.53 5.07 4.06

B+AdaRound 4/16 5.72 5.31 4.33
WikiText2 B+FlexRound (Ours) 4/16 5.63 5.14 4.17

B+AdaRound 3/16 6.41 6.20 4.98
B+FlexRound (Ours) 3/16 5.88 5.33 4.40

Half-precision (LoRA) 16/16 9.09 8.47 7.21

B+AdaRound 4/16 9.27 8.77 7.35
PTB B+FlexRound (Ours) 4/16 9.13 8.51 7.25

B+AdaRound 3/16 10.16 8.98 7.67
B+FlexRound (Ours) 3/16 9.27 8.61 7.34

For the LoRA configuration, we apply LoRA to the query and value projection weights with a LoRA rank of 4. The batch
size and the number of epochs are set to 128 and 15, respectively. For LLaMA-7B, LLaMA-13B, and LLaMA-33B, the
learning rate is set to 1e-4, 2e-4, and 4e-5 for Wikitext2 and 5e-4, 4e-4, and 6e-4 for PTB.

For all experiments, we employ the evaluation method in the Huggingface repository20 for WikiText2 and PTB without any
modification. For reconstruction in all experiments, we use 256 random samples from the training dataset of WikiText2 and
PTB respectively, and the number of iterations is set to 5000. We use the Adam optimizer for all methods and models. For
the experiments of ‘Q + FlexRound’ on WikiText2 in Table 23, the batch size and the learning rate are set to 4 and 5e-3 for
LLaMA-7B, 4 and 2e-3 for LLaMA-13B, and 2 and 2e-3 for LLaMA-33B. For the experiments of ‘Q + FlexRound’ on PTB
in Table 23, the batch size and the learning rate are set to 4 and 2e-3 for LLaMA-7B, 4 and 1e-3 for LLaMA-13B, and 2 and
3e-3 for LLaMA-33B. For the experiments of ‘B + FlexRound’ with 4-bit weight quantization on WikiText2 in Table 24, the
batch size and the learning rate are set to 4 and 5e-4 for LLaMA-7B and LLaMA-13B, and 2 and 2e-4 for LLaMA-33B. For
the experiments of ‘B + FlexRound’ with 4-bit weight quantization on PTB in Table 24, the batch size and the learning
rate are set to 4 and 5e-4 for LLaMA-7B and LLaMA-13B, and 2 and 1e-3 for LLaMA-33B. For the experiments of ‘B +
FlexRound’ with 3-bit weight quantization on WikiText2 in Table 24, the batch size and the learning rate are set to 4 and

20https://github.com/huggingface/transformers/tree/main/examples/pytorch/
language-modeling

26

https://github.com/huggingface/transformers/tree/main/examples/pytorch/language-modeling
https://github.com/huggingface/transformers/tree/main/examples/pytorch/language-modeling

FlexRound: Learnable Rounding based on Element-wise Division for Post-Training Quantization

3e-4 for LLaMA-7B and LLaMA-13B, and 2 and 3e-4 for LLaMA-33B. For the experiments of ‘B + FlexRound’ with 3-bit
weight quantization on PTB in Table 24, the batch size and the learning rate are set to 4 and 7e-4 for LLaMA-7B, 4 and 6e-4
for LLaMA-13B, and 2 and 6e-4 for LLaMA-33B. The probability of dropping activation quantization is set to 0.5 in the
QDrop’s setting. The other experimental setups of ‘B + AdaRound’ and ‘Q + AdaRound’ follow Li et al. (2021) and Wei
et al. (2022), respectively.

27

