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Abstract
Recent ODE/SDE-based generative models, such
as diffusion models, rectified flows, and flow
matching, define a generative process as a time
reversal of a fixed forward process. Even though
these models show impressive performance on
large-scale datasets, numerical simulation re-
quires multiple evaluations of a neural network,
leading to a slow sampling speed. We attribute
the reason to the high curvature of the learned
generative trajectories, as it is directly related
to the truncation error of a numerical solver.
Based on the relationship between the forward
process and the curvature, here we present an
efficient method of training the forward pro-
cess to minimize the curvature of generative
trajectories without any ODE/SDE simulation.
Experiments show that our method achieves a
lower curvature than previous models and, there-
fore, decreased sampling costs while maintaining
competitive performance. Code is available at
https://github.com/sangyun884/fast-ode.

1. Introduction
Many machine learning problems can be formulated as dis-
covering the underlying distribution from observations. Ow-
ing to the development of deep neural networks, deep gen-
erative models exhibit superb modeling capabilities.

Classically, Variational Autoencoders (VAE) (Kingma
& Welling, 2013), Generative Adversarial Networks
(GAN) (Goodfellow et al., 2014), and invertible
flows (Rezende & Mohamed, 2015) have been extensively
studied. However, each model has its drawback. GANs have
dominated image synthesis for several years (Karras et al.,
2019; Brock et al., 2018; Karras et al., 2020b), but carefully
selected regularization techniques and hyperparameters are
needed to stabilize training (Miyato et al., 2018; Brock et al.,
2018), and their performance often does not transfer well to
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other datasets. Invertible flows enable exact maximum like-
lihood training, but the invertibility constraint significantly
restricts the architecture choice, which means that they can-
not benefit from the development of scalable architectures.
VAEs do not suffer from the invertibility constraint, but their
sample quality is not as good as other models.

Apart from the vanilla VAEs, recent studies utilize their hi-
erarchical extensions (Child, 2020; Vahdat & Kautz, 2020)
as they offer more expressivity to both inference and gen-
erative components by assuming nonlinear dependencies
between latent variables. However, they often have to rely
on heuristics such as KL-annealing or gradient skipping due
to training instabilities (Child, 2020; Vahdat & Kautz, 2020).
Although continuous normalizing flows (Chen et al., 2018)
do not suffer from the invertibility constraint and can be
trained on a stationary objective function, training requires
simulating ODEs, which prevents them from being applied
to large-scale datasets.

Recent ODE/SDE-based approaches attempt to settle these
issues by defining the generative process as a time rever-
sal of a fixed forward process. Diffusion models (Song
& Ermon, 2019; Song et al., 2020; Ho et al., 2020; Sohl-
Dickstein et al., 2015) define the generative process as a
time reversal of a forward diffusion process, where data is
gradually transformed into noise. By doing so, they can be
trained on a stationary loss function (Vincent, 2011) without
ODE/SDE simulation. Moreover, they are not restricted
by the invertibility constraint and can generate high-fidelity
samples with great diversity, allowing them to be success-
fully applied to various datasets of unprecedented scales (Sa-
haria et al., 2022; Ramesh et al., 2022). Rectified flow (Liu
et al., 2022) provides a different perspective on this model
class. From this viewpoint, the training of diffusion mod-
els can be seen as matching the forward and reverse vector
fields. Since stochasticity is not a root of the success of
these models (Karras et al., 2022) and rectified flow offers
an alternative perspective that is fully explained under the
ODE scheme, we hereafter refer to these types of models
as ODE-based generative models. If necessary, a genera-
tive ODE can be easily converted to an SDE and vice versa
(Song et al., 2020).

However, drawing samples from ODE-based generative
models requires multiple evaluations of a neural network
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Figure 1. Forward and reverse trajectories of denoising diffusion model (Ho et al., 2020), rectified flow (Liu et al., 2022), and our method
on 2D dataset (left). The intersection between forward trajectories makes reverse trajectories collapse toward the average direction,
resulting in increased curvature and suboptimal sample qualities with a limited number of function evaluations (NFE). In contrast, our
approach successfully unties the crossover between forward trajectories, leading to low-curvature reverse trajectories. This phenomenon
also holds true in high-dimensional spaces, as demonstrated by reverse process visualization on MNIST, CIFAR-10, and CelebAHQ (64 ×
64) datasets (middle). As a result, our method makes less truncation error when the number of function evaluations (NFE) is small (right).

for accurate numerical simulation, leading to slow sampling
speed. While many studies have attempted to develop fast
samplers for pre-trained models (Lu et al., 2022; Zhang &
Chen, 2022), there seems to be a limit to lowering the costs.
We attribute the reason to the high curvature of the learned
generative trajectories. The curvature is intriguing since
it is directly related to the truncation error of a numerical
solver. Intuitively, zero curvature means that generative
ODEs can be accurately solved with only one function eval-
uation. Since a generative process is a time reversal of
the forward process, it is evident that its curvature is also
somehow determined by the forward process, but the exact
mechanism is yet unexplored. We find that the rectified flow
perspective offers an interesting insight into the relationship
between the forward process and the curvature. Based on
our observation, we propose an efficient method of training
the forward process to reduce curvature. Specifically, our
contributions are as follows:

• We investigate the relationship between the forward
process and curvature from a rectified flow perspective.
We find that the degree of intersection between forward
trajectories is positively related to the curvature of
generative processes.

• We propose an efficient method of learning the forward
process to reduce the degree of intersection between
forward trajectories without any ODE/SDE simulation.
We show that our method can be seen as a β-VAE (Hig-
gins et al., 2016) with a time-conditional decoder.

• Experiments show that our method achieves lower cur-
vature than previous models and, therefore, demon-

strates decreased sampling costs while maintaining
competitive performance.

2. Background
ODE/SDE-based generative models effectively model com-
plex distributions by repeatedly composing a neural net-
work, making trade-offs between execution time and sample
quality. In this paper, we focus on ODE-based generative
models since they yield the same marginal distribution as
SDEs while being conceptually simpler and faster to sam-
ple (Song et al., 2020).

Different from continuous normalizing flows (CNF) (Chen
et al., 2018), recent ODE-based models do not require ODE
simulations during training and therefore are more scal-
able. At a high level, they define a forward coupling q(x, z)
between data distribution p(x) and prior distribution p(z)
and subsequently an interpolation xt(x, z) for t ∈ [0, 1]
between a pair (x, z) ∼ q(x, z) such that x0(x, z) = x
and x1(x, z) = z. Training objectives are variants of the
denoising autoencoder objective

min
θ

Et∼U(0,1)Ex,z∼q(x,z)[λ(t)||x− xθ(xt(x, z), t)||22],
(1)

where λ(t) is a weighting function. Here, a neural network
xθ(xt, t) is trained to reconstruct the data x from the cor-
rupted observation xt. In the following, we briefly review
two popular instances of such models: the denoising dif-
fusion model and rectified flow. We refer the readers to
Appendix A for a detailed background.
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Denoising diffusion models Denoising diffusion mod-
els (Ho et al., 2020) employ the prior p(z) = N (0, I),
forward coupling q(x, z) = p(x)p(z), and a nonlinear in-
terpolation

xt(x, z) = α(t)x+
√
1− α(t)2z (2)

with a predefined nonlinear function α(t). λ(t) is often
adjusted to improve the perceptual quality for image syn-
thesis (Ho et al., 2020). Sampling can be done by solving
probability flow ODEs (Song et al., 2020).

Rectified flows However, the choice of Eq. (2) seems un-
natural from a rectified flow perspective as it unnecessarily
increases the curvature of generative trajectories. In rectified
flow (Liu et al., 2022; Liu, 2022), the intermediate sample
xt is rather defined as a linear interpolation

xt(x, z) = (1− t)x+ tz (3)

since it has a constant velocity across t for given x and z.
After training, sampling is done by solving the following
ODE backward:

dzt =
zt − xθ(zt, t)

t
dt, (4)

where dt is an infinitesimal timestep. In the optima, Eq. (4)
maps z1 from p(z) to z0 following p(x). Instead of pre-
dicting x, Liu et al. (2022) directly learns the velocity
vθ(zt, t) =

zt−xθ(zt,t)
t . The effectiveness of this sampler

in reducing the sampling costs has been previously investi-
gated in Karras et al. (2022) under the variance-exploding
context. Also, Eqs. (3) and (4) are a special case of flow
matching (Lipman et al., 2022). See Appendix A.2. We
build our method based on this framework, using the linear
interpolation and the ODE in Eq. (4) for sampling.

3. Curvature Minimization
3.1. Curvature

For a generative process Z = {zt(z)} with the initial value
z1(z) = z , we informally define curvature as the extent to
which the trajectory deviates from a straight path:

C(Z) = Et
∥∥∥∥z1(z)− z0(z)−

∂

∂t
zt(z)

∥∥∥∥2
2

, (5)

which is equal to the straightness used in Liu et al. (2022).
The average curvature Ez∼p(z)[C(Z)] should be the main
concern in designing the ODE-based models since it is di-
rectly related to the truncation error of numerical solvers.
Zero curvature means the path is completely straight. There-
fore, a single step of the Euler solver is sufficient to obtain
an accurate solution.

Since a generative process is a time reversal of the forward
process, its curvature is determined by the forward process.
As an illustrative example, consider a generative ODE that
is trained on Eq. (1). In the optima, xθ(zt, t) is a minimum
mean squared error estimator E[x|xt = zt], and the average
curvature of the generative processes governed by Eq.(4)
becomes

Ez,t
∥∥∥∥z1(z)− z0(z)−

1

t
zt(z) +

1

t
E[x|xt = zt(z)]

∥∥∥∥2
2

,

(6)
which is a function of the posterior q(x|xt). Since we define
xt as an interpolation between x and z, the posterior is de-
termined by the forward coupling q(x, z). In previous work,
q(x, z) is fixed, and so is the curvature of the generative
process in optima. In the following, we further examine the
relationship between forward coupling and curvature and
show that we can improve the curvature by finding better
q(x, z).

3.2. Curvature and the degree of intersection

Specifically, we observe that Eq. (6) is related to the degree
of intersection of the forward trajectories

I(q) = Et,x,z∼q(x,z)[||z−x−E[z−x|xt(x, z)]||22], (7)

which becomes zero when there is no intersection at any
xt. As shown in Fig. 1, the intersection between forward
trajectories makes the reverse vector field collapse toward
the average direction, leading to high curvature. As the
degree of intersection decreases, the reverse paths are grad-
ually straightened. When I(q) = 0, the posterior q(x|xt)
becomes a Dirac delta function, E[x|xt = zt(z)] = z0(z)
for every t, and Eq. (6) becomes zero, i.e., the paths are com-
pletely straight. Therefore, it is natural to seek a forward
coupling q(x, z) that minimizes Eq. (7). We can estimate
Eq. (7) by minimizing the following upper bound with re-
spect to θ.

Proposition 1. Let xt(x, z) be the linear interpolation
defined as Eq. (3). Then, we have

I(q) ≤ Et,x,z∼q(x,z)
[
1

t2
||x− xθ(xt, t)||22

]
. (8)

The bound is tight when xθ(xt, t) = E[x|xt].

Sketch of Proof. Using Eq. (3), we obtain z − x = (xt −
x)/t. Plugging it into Eq. (7), we have

I(q) = Et,x,z∼q(x,z)[||
1

t
(x− E[x|xt])||22], (9)

which is bounded by Eq. (8).
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For the independent coupling q(x, z) = p(x)p(z), the up-
per bound of I(q) coincides with Eq. (1) with λ(t) = 1/t2,
which is the training loss of Liu et al. (2022). In this sense,
Liu et al. (2022) estimates the upper bound of the degree of
intersection of the independent coupling but does not really
minimize it. Intuitively, the degree of intersection can be
measured by the reconstruction error of an optimal decoder
since the decoding is more difficult when multiple inputs are
encoded into a single point. See Fig. 2 for an illustration.

Figure 2. Reconstruction error is (a) high when forward trajectories
intersect (b) and low when they do not.

3.3. Parameterizing q(x, z)

After estimating I(q) by updating θ, we search for q that
minimizes I(q). Although there are many ways to solve
this optimization problem, there are two practical con-
siderations. First, the optimization needs to be efficient.
Moreover, q(z|x) should define a smooth map from x to
z since we have to approximate E[x|xt] using a neural
network with finite capacity in practice. Therefore, we
propose to parameterize the coupling as a neural network
qϕ(x, z) = qϕ(z|x)p(x), where we define qϕ(z|x) as a
Gaussian distribution. With qϕ(z) =

∫
qϕ(x, z)dx and a

weight β, we optimize

min
ϕ

I(qϕ) + βDKL(qϕ(z)||p(z)). (10)

The second KL term ensures qϕ(x, z) is a valid coupling
between p(x) and p(z). See Appendix B for more details.

Joint training In practice, we jointly minimize Eqs. (8)
and (10) with respect to both θ and ϕ. This leads to our loss
function

min
θ,ϕ

Et,x,z∼qϕ(x,z)[
1

t2
||x− xθ(xt(x, z), t)||22

+βDKL(qϕ(z|x)||p(z))], (11)

which resembles the β-VAE objective (Higgins et al., 2016)
in that Eq. (11) reduces to the β-VAE loss if we fix t to
1. Since the decoder xθ is conditioned on time step, ODE-
based models can synthesize higher quality samples than

β-VAEs by iteratively refining the blurry initial predictions.
From this viewpoint, previous methods (Liu et al., 2022;
Ho et al., 2020) can be seen as degenerate cases where the
encoder qϕ(z|x) collapses into the prior by setting β → ∞.
See Fig. 3 for a visual schematic of our method.

Figure 3. A visual schematic of the proposed method.

4. Related Works
Alternative forward processes There have been several
approaches to finding alternative forward processes for dif-
fusion models. It has been demonstrated that other types of
degradation, such as blurring, masking, or pre-trained neural
encoding, can be used for the forward process (Rissanen
et al., 2022; Lee et al., 2022; Hoogeboom & Salimans, 2022;
Daras et al., 2022; Gu et al., 2022; Bansal et al., 2022). How-
ever, they are either purely heuristic or rely on an inductive
bias that is not necessarily well-supported by theory.

Learning forward process A few studies attempted to
learn the forward process. Kingma et al. (2021) proposed
to learn the signal-to-ratio function of the forward process
jointly with generative components. However, the inference
model of Kingma et al. (2021) is linear and thus has lim-
ited expressivity. Zhang & Chen (2021) proposed nonlinear
diffusion models, where the drift function of the forward
SDEs are neural networks. Although they introduce more
flexibility in inference models, training requires the simu-
lation of forward/reverse SDEs, which causes a significant
computational overhead. Our method possesses the advan-
tages of both methods. Our inference model is expressive
since we set q(z|x) as a neural network. Since we define
xt as an interpolation between x and z and qϕ(xt|x) as a
Gaussian distribution, sampling is done with one forward
pass for an arbitrary t, enabling efficient training as in previ-
ous methods (Ho et al., 2020; Liu et al., 2022). Moreover,
even though the nonlinear forward process appeared to im-
prove the sampling efficiency of diffusion models (Zhang
& Chen, 2021), the exact mechanism of the improved sam-
pling speed was vague. In this paper, we convey a clear
motivation for learning the forward process by revealing the
relationship between the forward process and the curvature
of the generative trajectories.
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Fast samplers Accelerating the sampling speed of dif-
fusion models is an active research topic, which is often
tackled by developing fast solvers (Lu et al., 2022; Zhang &
Chen, 2022). Our work is in an orthogonal direction since
they focus on taming the high curvature ODEs while we
aim to minimize the curvature itself. We expect the effect of
these methods to be additive to ours and leave the detailed
investigation for future work.

Straightness of Neural ODEs The importance of the
straightness of neural ODEs in reducing the sampling cost
has been previously discussed. Based on Benamou-Brenier
formulation of the optimal transport problem (Benamou &
Brenier, 2000), Finlay et al. (2020) regularized the norm
of the vector field of the CNFs to encourage the straight-
ness, which is later generalized in Kelly et al. (2020) where
the norm of the K-th order derivative is minimized. Since
CNFs are trained on the maximum likelihood objective, any
vector field that defines the transport map from p(z) to p(x)
is optimal, and it is therefore possible to narrow down the
search space by utilizing the additional constraint without
drastically compromising the performance. In contrast, re-
cent ODE-based generative models (Song & Ermon, 2019;
Ho et al., 2020; Liu et al., 2022) train the neural ODE to
match a pre-defined forward flow using Eq. (1). Thus the
solution is unique, and any additional regularization makes
models deviate from optima.

Optimizing coupling Concurrent with our work, Poola-
dian et al. (2023) proposed to optimize q(x, z) and showed
several desirable properties such as improved sampling effi-
ciency and reduced gradient variance during training. While
we parameterize q(x, z) as a neural network, they construct
a doubly-stochastic matrix for q(x, z) and apply computa-
tional methods to find the optimal coupling between two
empirical distributions. In practice, the optimization is done
either with heuristics or using mini-batch samples every iter-
ation due to the computational burden. They showed that in
an ideal case with infinite batch size, 1) I(q) goes to zero, 2)
C(Z) becomes zero, and 3) the resulting generative model
becomes an optimal transport plan. Although minimizing
transportation costs has impacts beyond the context of gen-
erative modeling, we focus on accelerating the sampling of
ODE-based generative models in this paper, so we design
our method to achieve straight generative paths regardless
of transportation costs.

5. Experiment
5.1. 2D dataset

Fig. 4 demonstrates the visual results and the estimated
upper bounds of the degree of intersection on the 2D toy
dataset. The leftmost column shows the forward trajectories

Figure 4. The relationship between the degree of intersection be-
tween forward trajectories and curvature of reverse trajectories.
The first column shows forward and reverse trajectories induced by
the independent coupling q(x,z) = p(x)p(z). As the degree of
intersection between forward trajectories is decreased by lowering
β, reverse paths are gradually straightened.

induced by the independent coupling q(x, z) = p(x)p(z)
used in previous work. Since a data point can be mapped
to any noise, the forward trajectories largely intersect with
each other, and as a result, the reverse trajectories collapse
toward the average direction where the actual density is low,
and the curvature increases as the reverse trajectories need
to bend toward the modes. As β decreases, qϕ(z|x) tries to
untie the tangled trajectories, leading to low curvature.

Figure 5. Effects of β on curvature. The results on MNIST, CIFAR-
10, and CelebAHQ (64× 64) are indicated by red, green, and gray
colors. Dashed lines indicate the curvatures of the independent
coupling baselines.

5.2. Image generation

We further conduct an experiment on the image dataset to
investigate the relationship between I(q) and E[C(Z)] in
the high-dimensional space. We estimate E[C(Z)] by simu-
lating 10, 000 generative trajectories using the Euler solver
with 128 steps and then divide by the number of pixels. As
shown in Fig. 5, the average curvature is the highest when us-
ing independent forward coupling q(x, z) = p(x)p(z) and
lowered as β decreases. Fig. 6 shows that the generative vec-
tor field induced by independent coupling q(x, z) = p(x, z)
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Figure 6. Visualization of intermediate samples xθ(zt, t) with
varying β. Lower β allows for sharper initial predictions, as indi-
cated by red boxes.

initially predicts the blurry images and then bends toward
the mode, resulting in the high curvature. Lower β yields
more consistent results across the time steps.

(a) Quantitative results (b) Qualitative results

Figure 7. Trade-off between FID10K and the number of function
evaluations (NFE) with varying β. The low curvature generative
process produces more high-quality samples than the baseline with
limited NFEs.

(a) FID gap with respect to β (b) Distribution of ||z||2

Figure 8. The gap between reconstruction FID (rFID) and FID
values (a), and distribution of the norm of z ∼ qϕ(z) (b). rFID is
measured using samples reconstructed from qϕ(z).

Fig. 7 shows that the model trained with the lower β per-
forms better with the limited NFEs and asymptotically ap-
proaches the performance of baseline indicated by a dashed
line. When β is as low as 1, the generative process is almost
straight, but the sample quality is degraded because of high
DKL(qϕ(z)||p(z)) (i.e. the prior hole problem). As shown
in Fig. 8, the gap between reconstruction FID (rFID) and
FID is large when β = 1 and gradually becomes smaller as
β increases. Moreover, the distribution of the norm of latent
vectors gradually approaches p(z) as β increases. From this
observation, we can see that β is an important hyperparame-
ter that determines the trade-off between sample quality and
computational cost. We find that there are little advantages
of setting β to ∞ as in previous work (Liu et al., 2022; Ho
et al., 2020). It is an overkill for reducing the prior hole and
leads to poor sampling efficiency.

In Fig. 9 and Tab. 1, we provide additional qualitative and
quantitative comparisons between our method and rectified
flow baseline on FFHQ 64 × 64, AFHQ 64 × 64, and
CelebAHQ 256 × 256 datasets, which further confirm the
validity of our method.

5.3. Distillation

Even though distillation is an effective way to train the
one-step student models from the teacher diffusion models,
the performance of the student model is suboptimal due to
the distillation error (Liu et al., 2022; Luhman & Luhman,
2021; Salimans & Ho, 2022). Given that the teacher tra-
jectories with higher NFEs are more difficult to distill, our
low-curvature generative ODEs would make less distillation
error since they achieve the same level of sample quality
using relatively lower NFEs. Based on this intuition, we
investigate the effect of our method on reducing the distil-
lation error. As shown in Table 2, the teacher ODE with
β = 10 achieves a similar FID score using half as many
NFEs compared to the baseline model. This resulted in a
smaller distillation error and an improved FID score of the
one-step model while reducing the cost of generating paired
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Setting \ NFEs 4 5 10 20 32 64 128

β = 10 32.58 25.33 13.21 8.85 7.54 6.91 7.01
β = 20 38.23 29.12 14.03 8.78 7.08 5.95 5.72
β = 30 41.16 30.75 14.37 8.76 6.90 5.45 4.93
Independent 55.90 40.96 17.29 9.79 7.55 5.89 5.26

(a) FFHQ 64 × 64

Setting \ NFEs 4 5 10 20 32 64 128

β = 10 21.80 18.04 11.80 9.05 8.22 7.47 7.21
β = 20 25.73 20.11 10.56 6.89 5.74 4.92 4.55
β = 30 30.84 23.08 11.17 6.66 5.37 4.40 3.96
Independent 54.10 42.64 18.53 8.60 6.19 4.85 4.36

(b) AFHQ 64 × 64

Setting \ NFEs 4 5 10 20 32 64 128

β = 10 58.30 51.02 33.53 22.91 19.49 17.57 16.94
β = 40 62.21 52.92 31.70 18.70 14.03 11.39 10.37
Independent 100.39 84.50 48.95 26.42 18.45 12.78 10.38

(c) CelebAHQ 256 × 256

Table 1. FID10K comparison on three image datasets.

Figure 9. Qualitative comparison between our method and baseline on FFHQ 64 × 64 (a), AFHQ 64 × 64 (b), and CelebAHQ 256 × 256
(c) datasets.

data by half. Fig. 10 demonstrates that our method with
β = 10 obtains a superior one-step model than baseline
with independent coupling in terms of sample fidelity.

5.4. Size of encoder

Since we train qϕ(z|x), a natural question is how much
additional computational cost is needed for training our

model. We experiment with two settings of the encoder,
same and small. In same setting, we use the identical
architecture with a generative component except that the
number of output channels is twice for predicting a diagonal
covariance. In small setting, we use roughly 20 times
smaller architecture for the encoder model. See Appendix C
for a detailed configuration. As shown in Table 3, a small
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Table 2. Effects of curvature on distillation performance. The re-
sults of independent coupling and our method with β = 10 are
reported. Distillation error is measured as a mean-squared error on
the test set.

Independent β = 10

FID / Error NFEs FID / Error NFEs

Teacher 3.60 / - 20 3.52 / - 10
Distilled 6.25 / 0.0208 1 4.41 / 0.0157 1

(a) β = 10 (b) Independent

Figure 10. Synthesis results of one-step models.

encoder performs just as well or even better than a larger
encoder, and part of the reason is that we can use a larger
batch size in the small setting. The additional cost of our
method is negligible with the use of a lightweight architec-
ture for qϕ(z|x), so we stick to small setting throughout
our experiments.

Table 3. Performance comparison of same and small encoder
settings on CIFAR-10 dataset, measured by FID10K.

Setting \ NFEs 128 40 20 10 5 4

Same Encoder 5.52 6.23 7.74 11.49 22.90 30.97
Small Encoder 5.39 6.07 7.51 11.19 22.33 30.16

5.5. Comparison with state-of-the-arts

Table 4 shows the unconditional synthesis results of our
approach on the CIFAR-10 dataset. Results of recent meth-
ods are also provided as a reference. We experiment with
two configurations, config A and config B, which we detail
in Appendix C. We try three solvers, Euler solver, Heun’s
2nd order method, and the black-box RK45 method from
Scipy (Virtanen et al., 2020), and find that RK45 works
well when we are able to fully simulate ODEs while Heun’s
2nd order method performs better than other solvers with
small NFEs. As shown in the table, we can see that the
performance gap between our method and the baseline is
huge when the sampling budget is limited. For instance, our
method with β = 10 achieved an FID score of 18.74, which
is significantly better than the baseline’s score of 37.19 when
NFEs is 5. Surprisingly, our method with β = 20 exhibits
superior sample qualities across all NFEs, even in the case

of full sampling using the RK45 solver. See Fig. 11 for vi-
sual comparison. Additional qualitative results are provided
in Appendix D.

Figure 11. Qualitative comparison between our method (β = 10)
and baseline on CIFAR-10.

6. Discussion and Limitations
One limitation of our method is that for our encoding dis-
tribution qϕ(z|x), we use a Gaussian distribution for the-
oretical and practical conveniences: sampling is easily im-
plemented in a differentiable manner, and KL divergence
is tractable. However, our simple Gaussian encoder cannot
eliminate the intersection completely. We believe that it
would be beneficial to use a more flexible encoding distribu-
tion, for instance, using the hierarchical latent variable as in
Child (2020); Vahdat & Kautz (2020).

Additionally, the trade-off between sample quality and com-
putational cost is determined by the value of β, which must
be manually selected by a practitioner. In Sec. 5.2, we ob-
serve that too small β value causes the prior hole problem.
This is problematic as one has to train a model from scratch
for each value of β, which would potentially lead to ex-
cessive energy consumption. However, using a reasonably
high value of β consistently outperforms the baseline regard-
less of the sampling budget, as shown in our experiments.
Therefore, one could reduce the sampling cost without com-
promising performance by conservatively setting β to a high
value in most cases.

7. Conclusion
In this paper, we mainly discussed the curvature of the
ODE-based generative models, which is crucial for sam-
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Table 4. Comparison with state-of-the-arts on CIFAR-10 dataset. * Our reimplementation.

Method NFEs(↓) IS (↑) FID (↓) Recall (↑)

GANs

StyleGAN2 (Karras et al., 2020a) 1 9.18 8.32 0.41
StyleGAN2 + ADA (Karras et al., 2020a) 1 9.40 2.92 0.49
StyleGAN2 + DiffAug (Zhao et al., 2020) 1 9.40 5.79 0.42

ODE/SDE-based models

Denoising Diffusion GAN (T=1) (Xiao et al., 2021) 1 8.93 14.6 0.19
DDPM (Ho et al., 2020) 1000 9.46 3.21 0.57
NCSN++ (VE SDE) (Song et al., 2020) 2000 9.83 2.38 0.59
LSGM (Vahdat et al., 2021) 138 - 2.10 -
DFNO (Zheng et al., 2022) 1 - 5.92 -
Knowledge distillation (Luhman & Luhman, 2021) 1 8.36 9.36 0.51
Progressive distillation (Salimans & Ho, 2022) 1 - 9.12 -
Rectified Flow (RK45) (Liu et al., 2022) 127 9.60 2.58 0.57
2-Rectified Flow (RK45) 110 9.24 3.36 0.54
3-Rectified Flow (RK45) 104 9.01 3.96 0.53
2-Rectified Flow Distillation 1 9.01 4.85 0.50

Our results

Rectified Flow* (config A, RK45) 134 9.18 2.87 -
Rectified Flow* (config B, RK45) 132 9.48 2.66 0.62
Rectified Flow* (config B, Heun’s 2nd order method) 9 8.48 12.92 -
Rectified Flow* (config B, Heun’s 2nd order method) 5 7.04 37.19 -
Ours (β = 20, config B, RK45) 118 9.55 2.45 0.64
Ours (β = 20, config B, Heun’s 2nd order method) 9 8.75 9.96 -
Ours (β = 20, config B, Heun’s 2nd order method) 5 7.83 24.40 -
Ours (β = 10, config A, RK45) 110 9.32 3.37 0.61
Ours (β = 10, config A, Heun’s 2nd order method) 9 8.67 8.66 -
Ours (β = 10, config A, Heun’s 2nd order method) 5 8.09 18.74 -

pling efficiency. We revealed the relationship between the
degree of intersection between forward trajectories and the
curvature and presented an efficient algorithm to reduce the
intersection by training a forward coupling. We demon-
strated that our method successfully reduces the trajectory
curvature, thereby enabling accurate ODE simulation with
significantly less sampling budget. Furthermore, we showed
our method effectively decreases the distillation error, im-
proving the performance of one-step student models. Our
approach is unique and complementary to other acceleration
methods, and we believe it can be used in conjunction with
other techniques to further decrease the sampling cost of
ODE-based generative models.

8. Societal Impacts.
We anticipate this work will have positive effects, as our
method reduces the computational costs required during the
sampling of ODE-based generative models. However, the
same technology can also be used to create malicious con-
tent, and thus, proper regulations need to be put in place to
ensure that this technology is used responsibly and ethically.
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A. Preliminaries
A.1. Rectified flows

Diffusion models have been interpreted as the variational approaches (Sohl-Dickstein et al., 2015; Ho et al., 2020) or
score-based models (Song & Ermon, 2019; Song et al., 2020), and their deterministic samplers are derived post hoc.
However, stochasticity is not a key factor in the success of these models. The state-of-the-art performance can be achieved
without stochasticity (Karras et al., 2022), and the incorporation of stochasticity makes sampling slow and complicates the
theoretical understanding. Rectified flow (Liu et al., 2022) provides a useful viewpoint for explaining the recent iterative
methods (Ho et al., 2020; Song & Ermon, 2019) from a pure ODE perspective. For the purpose of brevity, we only consider
the variance-preserving diffusion models (Song et al., 2020) and 1-Rectified Flow here. Readers are encouraged to refer to
Liu et al. (2022); Liu (2022) for a more comprehensive explanation.

The variance-preserving diffusion models define the following noise distribution

q(xt|x) = N (α(t)x, (1− α(t)2)I), (12)

where α(t) is set to exp(− 1
2

∫ t
0
(as + b) ds) with a = 19.9 and b = 0.1. From a rectified flow (or similarly, stochastic

interpolant (Albergo & Vanden-Eijnden, 2022; Albergo et al., 2023)) perspective, another way to see this is to consider the
nonlinear interpolation between x and z sampled independently from q(x, z) = p(x)p(z):

xt(x, z) = α(t)x+
√
1− α(t)2z (13)

This forward flow represents the dynamics of particles that move from p(x) to p(z). Note that this cannot be used for
generative modeling as it requires x to compute the velocity. To estimate the velocity without having x, a neural network
xθ(xt, t) is trained by optimizing

min
θ

Ex,z,t[λ(t)||x− xθ(xt(x, z), t)||22]. (14)

From this viewpoint, the choice of nonlinear interpolation is unnatural since it unnecessarily increases the curvature of both
forward and reverse (generative) trajectories. For this reason, Liu et al. (2022) defines the following constant-velocity flow
with an initial value x and endpoint z:

dxt(x, z) = (z − x)dt (15)
x0(x, z) = x (16)

Instead of predicting x, they directly train a vector field vθ(xt, t) to match the velocity of forward flow by minimizing the
following loss

LFM =

∫ 1

0

E[||(z − x)− vθ(xt, t)||22] dt, (17)

where vθ(xt, t) = E[z − x|xt] in the optima. Samples are drawn by solving the following ODE backward:

dzt = vθ(zt, t)dt (18)

It is shown that Eq. (18) yields the same marginal distribution as the forward flow at every t (see Theorem 3.3 in Liu et al.
(2022)).

Given xt = (1 − t)x + tz and z − x = (xt − x)/t, we can further find the connection with diffusion models by
reparameterizing vθ(xt, t) = (xt − xθ(xt, t))/t and writing Eq. (17) as∫ 1

0

E[||(z − x)− vθ(xt, t)||22] dt =
∫ 1

0

E[||(xt − x)/t− vθ(xt, t)||22] dt (19)

=

∫ 1

0

E[||(xt − x)/t− (xt − xθ(xt, t))/t||22] dt (20)

=

∫ 1

0

E[
1

t2
||x− xθ(xt, t))||22] dt. (21)

This is equivalent to Eq. (1) with λ(t) = 1/t2, and Eq. (18) is equal to Eq. (4). To our knowledge, the effectiveness of
Eq. (18) in reducing the truncation error is first examined in Karras et al. (2022) under the variance-exploding scheme.
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A.2. Flow matching

Recently, Lipman et al. (2022) proposed the flow matching method to learn CNFs in a simulation-free manner. In this
section, we show the similarity between flow matching and rectified flows. We borrow notations from Lipman et al. (2022)
here. Lipman et al. (2022) define a time-conditional probability distribution pt(x) where p0(x) is a Gaussian distribution
and p1(x) is a data distribution. They further define a conditional distribution

pt(x|x1) = N (x|µt(x1), σt(x1)
2I) (22)

µt(x) = tx1 and σt(x) = 1− t (23)

ut(x|x1) =
x1 − x

1− t
(24)

for their OT-VFs formulation. Note that we set σmin to 0 here. Then, the training loss is

min
θ

Et,p1(x1),pt(x|x1)||vt(x; θ)− ut(x|x1)||2 (25)

= E
∥∥∥∥vt(x; θ)− x1 − x

1− t

∥∥∥∥2 . (26)

To generate samples, they solve the following ODE:

dϕt(x) = vt(ϕt(x); θ)dt (27)
ϕ0(x) = x, x ∼ p0 (28)

Since Lipman et al. (2022) define p1(x) as a data distribution and p0(x) as a standard normal distribution in contrast to our
work, we do the following substitutions for comparison:

t → 1− s (29)
dt → −ds (30)

ϕt(x) → zs(x) (31)
vt(x; θ) → −vθ(x, s) (32)

x1 → x (33)
(34)

As a result, we have

ut(x|x1) =
x1 − x

1− t
=

x− x

s
. (35)

and the following training loss:

min
θ

E
∥∥∥∥vθ(x, s)− x− x

s

∥∥∥∥2 (36)

Replacing x with xs = (1− s)x+ sz for z ∼ N (0, I), the training loss becomes

min
θ

E||vθ(xs, s)− (z − x)||2, (37)

and the generative ODE becomes

dzs(z) = vθ(zs(z), s)ds (38)

which are equivalent to Eqs. (17) and (18).
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B. Derivation of Loss Function
B.1. Estimating DKL(qϕ(z)||p(z))

We factorize DKL(qϕ(z)||p(z)) via following algebraic manipulation:

DKL(qϕ(z)||p(z)) = Ep(x)Eqϕ(z|x)
[
log

qϕ(z)

p(z)

]
(39)

= Ep(x)Eqϕ(z|x)
[
log

qϕ(z)

qϕ(z|x)
+ log

qϕ(z|x)
p(z)

]
(40)

= Ep(x)Eqϕ(z|x)
[
log

qϕ(z)p(x)

qϕ(z|x)p(x)

]
+ Ep(x)[DKL(qϕ(z|x)||p(z))] (41)

= −Iqϕ(x,z)(x, z) + Ep(x)[DKL(qϕ(z|x)||p(z))] (42)

We can derive the variational lower bound of the mutual information as

Iqϕ(x,z)(x, z) = H(x)−H(x|z) (43)

= H(x) + Eqϕ(x,z)[log qϕ(x|z)] (44)

= H(x) + Eqϕ(x,z)
[
log pψ(x|z) + log

qϕ(x|z)
pψ(x|z)

]
(45)

= H(x) + Eqϕ(x,z)[log pψ(x|z)] + Eqϕ(z)[DKL(qϕ(x|z)||pψ(x|z))] (46)

≥ H(x) + Eqϕ(x,z)[log pψ(x|z)], (47)

where the bound is tight when the variational distribution pψ(x|z) is equal to qϕ(x|z). For that, we need to optimize

minψ Eqϕ(z)[− log pψ(x|z)], which becomes the reconstruction loss Ep(x)Eqϕ(z|x)
[
||xψ(z)−x||22

2σ2

]
if we set pψ(x|z) =

N (x;xψ(z), σ
2I). Consequently, we arrive at

DKL(qϕ(z)||p(z)) ≤ inf
ψ

Ep(x)Eqϕ(z|x)
[
||xψ(z)− x||22

2σ2

]
+ Ep(x)[DKL(qϕ(z|x)||p(z))] + const. (48)

B.2. Our loss function

We further set xψ(z) = xθ(z, 1) for parameter sharing. Then, our loss function is

min
θ,ϕ

I(q) + βDKL(qϕ(z)||p(z)) (49)

≤ Et,x,z∼qϕ(x,z)
[
1

t2
||x− xθ(xt(x, z), t)||22 + β

||xθ(z, 1)− x||22
2σ2

+ βDKL(qϕ(z|x)||p(z))
]
+ const (50)

= Et,x,z∼qϕ(x,z)
[
λ̄(t)||x− xθ(xt(x, z), t)||22 + βDKL(qϕ(z|x)||p(z))

]
+ const, (51)

where λ̄(t) is 1/t2 if t ̸= 1 and βδ(0) in t = 1 with Dirac delta function δ(·). Empirically, we observe that setting λ̄(t) to
1/t2 for every t leads to better performance.

C. Implementation Details
Table 5 shows the training and architecture configuration we use in our experiments. In our experiment, we directly
parameterize the vector field vθ(xt, t) following Liu et al. (2022). For MNIST and CIFAR-10 datasets, we employ DDPM++
architecture (Song et al., 2020) in the codebase of Karras et al. (2022)1. We evaluate FID using the code of (Karras et al.,
2022). We fix the random seed to 0 throughout all experiments. We linearly increase the learning rate as in previous
studies (Karras et al., 2022; Song et al., 2020). We use Adam optimizer with β1 = 0.9, β2 = 0.999, and eps = 1e− 8 for
MNIST and CIFAR-10 datasets. Refer to our codebase for detailed configurations.

1https://github.com/NVlabs/edm
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Table 5. Architecture and training configurations. 1We use 200K and 300K iterations for β = 10 and independent coupling, respectively.
2We use 500K and 600K iterations for β = 20 and independent coupling, respectively.

CIFAR-10 (A) CIFAR-10 (B) MNIST

Iterations varies1 varies2 60K
Batch size 128 128 256
Learning rate 3e− 4 2e− 4 3e− 4
LR warm-up steps 78125 5000 8000
EMA decay rate 0.9999 0.9999 0.9999
EMA start steps 300 1 300
Dropout probability 0.13 0.13 0.13
Channel multiplier 128 128 32
Channels per resolution [2, 2, 2] [2, 2, 2] [2, 2, 2]
Xflip augmentation X O X
# of params (generator) 55.73M 55.73M 2.15M
# of params (encoder) 2.2M 2.2M 2.2M
# of ResBlocks 4 4 2
t range [0, 1] [1e− 5, 1] [0, 1]

In small setting for encoder architecture, we use the MNIST generator architecture in Tab. 5, which is more than 20 times
smaller than CIFAR-10 models. For the distillation experiment, we use 500K pairs sampled from teacher ODEs. We find
that student models overfit if the number of pairs is less than 500K.

For unconditional CIFAR-10 generation, we use two solvers – RK45 and Heun’s 2nd order method. We set both atol and
rtol to 1e− 5 for RK45 as in previous work (Song et al., 2020; Liu et al., 2022). We experiment with two configurations,
config A and config B, and find that config A converges faster than config B at the expense of performance. Overall, our
method converges faster than the independent coupling baseline.

D. Additional Results
We further provide additional synthesis results of our method in Figs. 12 and 13.
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Figure 12. Uncurated MNIST samples.
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Figure 13. Uncurated CIFAR-10 samples.
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