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Abstract
Recently, unsupervised representation learning
(URL) has improved the sample efficiency of Re-
inforcement Learning (RL) by pretraining a model
from a large unlabeled dataset. The underlying
principle of these methods is to learn temporally
predictive representations by predicting future
states in the latent space. However, an important
challenge of this approach is the representational
collapse, where the subspace of the latent repre-
sentations collapses into a low-dimensional man-
ifold. To address this issue, we propose a novel
URL framework that causally predicts future
states while increasing the dimension of the latent
manifold by decorrelating the features in the latent
space. Through extensive empirical studies, we
demonstrate that our framework effectively learns
predictive representations without collapse, which
significantly improves the sample efficiency of
state-of-the-art URL methods on the Atari 100k
benchmark. The code is available at https:
//github.com/dojeon-ai/SimTPR.

1. Introduction
Deep Reinforcement Learning (RL) has made a significant
advance in solving various sequential decision-making prob-
lems (Mnih et al., 2015; Silver et al., 2016; Gu et al., 2017;
Raghu et al., 2017; Vinyals et al., 2019; Nie et al., 2021).
The learning process of RL is inherently online, involving
an iterative loop of data collection and policy optimization.
However, in many real-world problems, the availability of
online data collection is often limited as it can be expensive
(e.g., robotics, and educational agents) or even dangerous
(e.g., autonomous driving, and healthcare) (Levine et al.,
2020; LeCun, 2022). To alleviate the burden of online
data collection, researchers have explored the use of offline
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Figure 1. SimTPR framework. At pretraining, the encoder is
trained to predict future states while decorrelating the encoded
features in the latent space. Then, the pretrained encoder is used
as a prior to optimize the policy at the finetuning stage.

datasets by adopting the pretrain then finetune paradigm in
RL (Oord et al., 2018; Stooke et al., 2021; Schwarzer et al.,
2021; Zhang et al., 2022).

In this paradigm, the agent trains an encoder from the offline
dataset during the pretraining phase. Subsequently, during
the finetuning phase, the agent leverages this encoder to
efficiently optimize the policy for a downstream task with a
limited number of online interactions. When the action or
reward labels are present in the offline dataset, pretraining
is typically performed in a supervised manner, with the
goal of predicting the labels for each state (Christiano et al.,
2016; Kumar et al., 2020; Fujimoto et al., 2019; Chen et al.,
2021). Despite their simplicity, the acquisition of the labels
is often limited, as it requires additional effort from human
annotators. As a result, recent studies have focused on
developing unsupervised representation learning methods
from the datasets that only consist of states, which are easily
accessible, large, and do not require any additional labeling
process (Hafner et al., 2019c; Stooke et al., 2021; Seo et al.,
2022; Baker et al., 2022).

RL has a rich history of research on unsupervised represen-
tation learning from states, with seminal studies dating back
to the 1990s and early 2000s (Dayan, 1993; Tesauro et al.,
1995; Littman & Sutton, 2001; Singh et al., 2003). A com-
mon principle across these studies is learning temporally
predictive representations, which are obtained by training a
model to predict future states using an autoregressive tran-
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sition model. However, when states are high-dimensional
data, such as images, predicting the raw, high-dimensional
state may require an overly complex model to reconstruct
fine-grained details of the states. Therefore, recent studies
have focused on predicting future states in the latent space.
They utilized a Siamese model to encode future states into
latent representations and trained the model to maximize the
similarity between the predicted future latents and ground
truth future latents (Oord et al., 2018; Schwarzer et al., 2020;
Stooke et al., 2021; Schwarzer et al., 2021).

When maximizing the latent representations’ similarity with
a Siamese model, there exists a potential pitfall known as
representational collapse, wherein the subspace of the latent
representations collapses into a low-dimensional manifold
(i.e., low feature rank) (Chen & He, 2021; Hua et al., 2021).
Having a sufficiently high feature rank is an important factor
for the pretrained model to learn downstream tasks, as the
feature rank decides the representation power of the model
to adapt to new tasks (Lyle et al., 2022; Garrido et al., 2022).
In the extreme case where the feature rank is 0, the encoder
will output the same vector for all input states, making it
infeasible to learn the policy for downstream tasks.

To prevent representational collapse, contrastive learning
(Anand et al., 2019; Laskin et al., 2020; Stooke et al., 2021;
Oord et al., 2018) or batch-normalization with stop-gradient
operation (Schwarzer et al., 2020; 2021) are commonly em-
ployed in unsupervised representation learning. They learn
temporally predictive representations without representa-
tional collapse by repulsing the representation of different
states within the same mini-batch while maximizing the
similarity between predictions and future states. However,
this repulsion is known to negatively impact representation
quality when there exist relevant states in the mini-batch
(Grill et al., 2020; Chen & He, 2021; Khosla et al., 2020).
This problem can be amplified in the unsupervised state rep-
resentation for RL since each mini-batch generally consists
of a batch of consecutive, relevant states.

In response, we introduce a simple temporally predictive
representation learning framework for RL (SimTPR), which
prevents representational collapse without repulsing the rep-
resentations of different states in the mini-batch. Instead,
motivated from (Cogswell et al., 2016; Hua et al., 2021;
Zbontar et al., 2021), we directly maximize the feature rank
of the latent manifold by standardizing the cross-correlation
matrix between the predictions and the targets in the la-
tent space. By enforcing the off-diagonal entries of the
cross-correlation matrix to 0, this objective makes features
to be independent and increases the feature rank of the la-
tent representation’s manifold. An overview of SimTPR is
illustrated in Figure 1.

Through extensive experiments, we show that SimTPR
achieved state-of-the-art performance in unsupervised rep-

resentation learning on the Atari benchmark. Following the
evaluation protocol from (Schwarzer et al., 2021; Zhang
et al., 2022), we finetuned an MLP-based policy layer for
100k steps on top of the frozen encoder. When pretrained
from a state dataset, SimTPR achieved a human-normalized
IQM score of 0.451, representing a 10% improvement over
the previous best, unsupervised state representation learning
method, ATC (Stooke et al., 2021). Furthermore, through
empirical studies, we discovered that feature rank is an im-
portant factor that affects the performance of downstream
tasks. Also, we found that increasing the feature rank with
the repulsive methods can harm the representation quality
as it pushes away the relevant states in the mini-batch.

2. Related Work
2.1. Unsupervised Representation Learning for

Reinforcement Learning.

Unsupervised state representation learning has a long history
of research in RL, where a common underlying principle
is to learn temporally predictive representations (Dayan,
1993; Tesauro et al., 1995; Littman & Sutton, 2001; Singh
et al., 2003). To learn temporally predictive representations,
models are generally trained to predict future states using
an autoregressive transition model. When the state consists
of high-dimensional data, such as images, high-capacity
models are introduced to precisely predict future state in-
formation (Doerr et al., 2018; Buesing et al., 2018; Hafner
et al., 2019b). However, predicting the full-state informa-
tion may result in representations that contain information
that is irrelevant to finding an optimal policy. For example,
consider a task of maze navigation, where a TV is placed
in the maze displaying random images. Although the TV
content is irrelevant to the task, the model aims to learn
representations to predict the screen of TV. To mitigate this
issue, recent works have focused on predicting the latent
information of future states, in which a Siamese model is
adopted to encode the future states into latent representa-
tions. Then, the model is trained to maximize the similarity
between the predictions and the future states in the latent
space (Oord et al., 2018; Hafner et al., 2019a; Stooke et al.,
2021; Schwarzer et al., 2020; 2021).

However, solely maximizing similarity can result in a repre-
sentational collapse, in which the subspace of the latent rep-
resentations collapses into a low-dimensional manifold or
even to a constant. To prevent representational collapse, re-
cent studies have employed the contrastive learning (Anand
et al., 2019; Laskin et al., 2020; Oord et al., 2018; Stooke
et al., 2021) or architectural designs including the use of
batch-normalization and stop-gradient operation (Schwarzer
et al., 2020; 2021). They prevent representational collapse
by repulsing the representations within the same mini-batch.
While effective in preventing representational collapse, this
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repulsion has been noted to have a risk of pushing away
semantically relevant states (Grill et al., 2020; Chen & He,
2021; Khosla et al., 2020). This problem can be further
amplified in state representation learning, where each mini-
batch generally consists of a batch of consecutive states
(Schwarzer et al., 2020).

In light of these limitations, we propose an alternative ob-
jective, referred to as the feature decorrelation loss. The
feature decorrelation loss aims to mitigate representational
collapse by directly maximizing the dimensions of the la-
tent space’s manifold, without pushing away representations
within a given mini-batch.

2.2. Unsupervised Visual Representation Learning.

Unsupervised visual representation learning aims to learn
rich representations from high-dimensional, unlabeled im-
ages. Among these approaches, invariance learning is the
state-of-the-art representation learning method (Chen et al.,
2020; He et al., 2020; Grill et al., 2020; Chen & He, 2021;
Caron et al., 2020). Invariance learning involves maximiz-
ing the similarity between representations of two differently
augmented views of the same image in the latent space.
However, solely maximizing the similarity may result in a
representational collapse (Hua et al., 2021; Wang & Liu,
2021; Jing et al., 2022).

To avoid representational collapse, contrastive learning
(Chen et al., 2020; He et al., 2020) or architectural variants
with batch normalization and stop-gradient operation (Grill
et al., 2020; Richemond et al., 2020; Chen & He, 2021)
have been proposed. They prevent the collapse by repulsing
the representations of different images in the mini-batch.
Recently, another line of research has explored the use of
feature decorrelation objectives in unsupervised visual repre-
sentation learning (Huang et al., 2020; Zbontar et al., 2021;
Hua et al., 2021; Bardes et al., 2021). This approach aims
to maximize the dimensionality of the latent manifold by
standardizing the covariance matrix of the representations in
the mini-batch (Huang et al., 2018; Kessy et al., 2018). This
alternative approach has achieved competitive performance,
compared to state-of-the-art methods.

3. Method
As illustrated in Figure 2, SimTPR aims to learn temporally
predictive representations by causally predicting the future
states within the latent space. To achieve this, SimTPR
utilizes an autoregressive transition model to predict future
states and maximizes the similarity between the predictions
and the future states in the latent space. Then, SimTPR
integrates a feature decorrelation loss that prevents repre-
sentational collapse by standardizing the cross-correlation
matrix of the representations in the latent space.
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Figure 2. SimTPR architecture. Two augmented views of a se-
quence of states are processed with the same encoder f and the
same projection MLP g. Then a transition model h and prediction
MLP p are applied on one side to predict the future states in latent
space. While the model maximizes the similarity, it simultaneously
standardizes the cross-correlation matrix to prevent collapse.

Pretraining from State. Given a dataset of states, S, we
uniformly sample a sequence of T states s1:T ∼ S. Then,
we sample two different augmentation functions, u and u′,
from augmentation distribution U . By applying augmenta-
tions, u and u′, to each sequence of states, s1:T , we generate
two different views, x1:T ≜ u(s1:T ) and x′

1:T ≜ u′(s1:T ).

Two augmented views, x1:T and x′
1:T , are then processed

by four different model components as follows:

• A encoder, f , which encodes representation vectors
from augmented states. Our framework allows various
choices of the network without any constraints. Follow-
ing previous work (Schwarzer et al., 2021), we use a
36-layer convolutional network as an encoder, which is
the modified version of EfficientNet (Tan & Le, 2019).

• A projector, g, which maps encoded representations
to the d-dimensional latent space. Following (Chen
et al., 2020; Schwarzer et al., 2021), we use a simple
one-hidden layer MLP with ReLU activation. For each
augmented view, we obtain z1:T = g(f(x1:T )) and
z′1:T = g(f(x′

1:T )) where z1:T , z
′
1:T ∈ RT×d.

• A transition model, h, which maps states’ latent rep-
resentations to future time step latent representations.
We use a causal transformer (Radford et al., 2018) to
model the transition dynamics.

• A predictor, p, that predicts the representations of the
future states in the d-dimensional latent space. We
use a one-hidden layer MLP with ReLU activation. By
applying the transition model followed by the predictor,
we obtain q1:T = p(h(z1:T )) where q1:T ∈ RT×d.
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Now, we define our loss function, which composes the simi-
larity and feature decorrelation loss.

In training, the inputs are processed in batches of N se-
quences. We denote the batch of projected representa-
tions as Z = [z1,1:T , ..., zN,1:T ], Z ′ = [z′1,1:T , ..., z

′
N,1:T ],

the predicted representations of Z and Z ′ as Q =
[q1,1:T , ..., qN,1:T ], and Q′ = [q′1,1:T , ..., q

′
N,1:T ] respec-

tively, where Z,Z ′, Q,Q′ ∈ RN×T×d. We then ℓ2-
normalize each state representation from Z,Z ′, Q,Q′ to
Z̄, Z̄ ′, Q̄, Q̄′, where z̄i,j=zi,j/∥zi,j∥2, z̄′i,j=z′i,j/∥z′i,j∥2,
q̄i,j=qi,j/∥qi,j∥2 and q̄′i,j=q′i,j/∥q′i,j∥2.

First, following (Grill et al., 2020; Chen & He, 2021), we
maximize the similarity between the predictions and the
targets by minimizing their mean squared error as:

D(Q̄, Z̄ ′)=− 1

N(T−k)

N∑
n=1

T−k∑
t=1

∥q̄n,t − z̄′n,t+k∥22, (1)

where k denotes the number of future steps to associate the
predictions. For the sake of simplicity, we set k = 1.

This similarity loss can be also interpreted as maximizing
the cosine-similarity between the un-normalized representa-
tions: Q and Z (Chen & He, 2021; Grill et al., 2020).

Then, we symmetrized a loss function as (Grill et al., 2020):

Lsim=
1

2
D(Q̄, sg(Z̄ ′)) +

1

2
D(Q̄′, sg(Z̄)), (2)

where sg(·) is stop-gradient operation.

Second, we define a feature decorrelation loss, Ldecorr, which
maximizes the dimensions of the latent representation’s
manifold by standardizing the cross-correlation matrix.

The cross-correlation matrix, C, between Z̄ and Z̄ ′ is:

C(Z̄, Z̄ ′)i,j=

N∑
n=1

T∑
t=1

z̄n,t,i · z̄′n,t,j√
N∑

n=1

T∑
t=1

(z̄n,t,i)2

√
N∑

n=1

T∑
t=1

(z̄′n,t,j)
2

(3)

where i and j indicate the dimension of the vectors.

Then, following (Zbontar et al., 2021), we standardize the
cross-correlation matrix as:

Ldecorr =
∑
i

(1− Cii)2 + λo

∑
i

∑
j ̸=i

C2
ij (4)

where λo controls the importance between two terms.

Intuitively, the first term in equation 4 generates low-
variance features by enforcing the on-diagonal terms to
be 1. The second term in equation 4 generates features that
are independent of each other by enforcing the off-diagonal

terms to be 0. While the second term is a crucial component
to prevent the representational collapse, the first term is also
important to induce the encoded representations to be not
dependent on a few, high-variance features.

The overall loss function, Lstate, is a weighted average of
the Lsim and Ldecorr, as:

L = Lsim + λdLdecorr, (5)

where λd controls the importance between two terms. The
pseudo-code is described in Algorithm 1.

Pretraining from Demonstration. In the case where our
dataset contains action labels, we can simply extend our
framework to further predict the action labels on top of the
future state prediction task. Here, we slightly modify the
transition model’s input to incorporate the action informa-
tion and initialize another predictor model to predict the
action labels. We refer to this action predictor as r and use
a one-hidden layer MLP with ReLU activation that outputs
the number of actions, na. The rest of the components
remain identical to the state pretraining setup.

Given a dataset of states, S, and actions, A, we sample
a sequence of states s1:T ∼ S, with their corresponding
actions a1:T ∼ A . The actions are then linearly embedded
into d-dimensional vectors, represented as y1:T ∈ RT×d.

Then, we construct the trajectory representation as τ =
[z1, y1, ..., zT , yT ] ∈ R2T×d. By applying the transition
model h, we obtain the context representations, c = h(τ).
This context representation is then decomposed into state
and action representations which are processed by the state
predictor p, and the action predictor r respectively as,
q1:T = p({ci}i=2,4,...,2T ) and l1:T = r({ci}i=1,3,...,2T−1).

In training, the inputs are processed in batches of N se-
quences. We denote the batch of action prediction logits
as L = [l1,1:T , ..., lN,1:T ] and the action labels as A =
[a1,1:T , ..., aN,1:T ], where L ∈ RN×T×na and A ∈ RN×T .

Then, we define the action prediction loss as:

Lact = − 1

NT

N∑
n=1

T∑
t=1

log(
exp(ln,t,an,t

)∑na

i=1 exp(ln,t,i)
) (6)

which minimizes the negative log-likelihood of the action
for each state.

The overall loss function, L, is a weighted average of the
Lsim, Ldecorr, and Lact, as:

L = Lsim + λdLdecorr + λaLact, (7)

where λa controls the importance of the action prediction
loss. The pseudo-code is described in Algorithm 2.
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4. Experiments
4.1. Experimental Setup

Here, we present the experimental setups. A detailed expla-
nation for each setup is described in Appendix A.

In this study, we evaluate our method using the Atari100k
benchmark (Bellemare et al., 2013). This benchmark is
widely used to measure the sample efficiency of Rein-
forcement Learning (RL) algorithms (Yarats et al., 2020;
Schwarzer et al., 2020; Laskin et al., 2020). Following
(Schwarzer et al., 2021; Zhang et al., 2022), we pretrain the
models on 26 different games in the Atari environment and
finetune each model for 100k steps of online interactions.

Pre-training. We follow the pretraining protocol from
(Schwarzer et al., 2021; Zhang et al., 2022), where we use
the publicly-available DQN replay dataset (Agarwal et al.,
2020). It contains the training logs of a DQN agent for 50
million steps. We select 1.5 million frames from the 3.5 to
5 million steps of the replay dataset as Zhang et al. (2022).
This selection corresponds to the training logs of a weak,
partially trained agent, which reflects the nature of publicly
available datasets in internet platforms that generally contain
sub-optimal trajectories (Baker et al., 2022).

As our default configuration, we use two simple image aug-
mentations used in (Schwarzer et al., 2020; 2021; Zhang
et al., 2022; Stooke et al., 2021) which are random shift
followed by an intensity jittering. For the encoder, we use
a 30-layer convolutional network from (Schwarzer et al.,
2021) and a 2-layer MLP as a projector, which projects to a
512-dimensional latent space. For the transition model, we
use two layers of causal transformer block (Radford et al.,
2018) with 512 hidden dimensions. The predictor network
is also a 2-layer MLP which maps to a 512-dimensional
latent space. To balance the weights between the loss func-
tions, we set λo = 0.005, λd = 0.01, and λa = 1.0. For
each training step, a training batch consists of 640 samples
with N = 64 and T = 10. We use an AdamW optimizer
(Loshchilov & Hutter, 2017) with a learning rate of 3×10−4

and a weight decay of 10−6 and train for 100 epochs.

To identify representational collapse, we measure the fea-
ture rank (Feat.Rank) of the latent representations during
the training process. In training, we randomly sample n
states and feed them into the model to obtain the projection
matrix, Z ∈ Rn×d. Then, we perform the singular value
decomposition to the projection matrix, Z, and count the
number of singular values of its diagonal matrix that are
larger than a constant, ϵ. This estimation measures the di-
mension of the subspace spanned by the features in Z, after
removing the highly correlated features (Golub et al., 1976;
Lyle et al., 2022). We use n = 1000 and ϵ = 0.01.

Linear Probing. To evaluate the learned representations,

we follow the linear evaluation protocol from (Zhang et al.,
2022). After pretraining, we train a linear classifier on top
of the frozen encoder and predict the reward or action of the
expert. For the expert dataset, we use the last 100k frames
from the DQN replay dataset with a 4:1 train/eval split.

For reward prediction, we simplify the problem to a binary
classification task and predict whether a reward has occurred
or not in a given state. We report the mean F1 score across
environments (Rew F1). For action prediction, we train a
multiclass classifier and report the multiclass F1 score across
environments (Act F1). These scores serve as a proxy to
measure whether the agent can effectively learn the policy
and the value function of the experts.

Finetuning. For each environment, we finetune the pre-
trained model for 100k steps. We follow the protocol from
(Schwarzer et al., 2021; Zhang et al., 2022), where we train
an MLP-based Q-learning policy on top of the frozen en-
coder using the Rainbow algorithm (Hessel et al., 2018).
We do not use any other auxiliary loss during finetuning.

For each game, we compute the average score of 50 trajecto-
ries, evaluated at the end of the training. Then, this score is
normalized as HNS= agent score - random score

human score - random score , which measures
the relative performance to humans. To reduce the variance
of each run, this score is averaged over 5 random seeds for
our empirical studies and 10 random seeds for our main
results, including all baselines. Following the guidelines of
(Agarwal et al., 2021), we report a bootstrapped interval for
the mean, median, interquartile mean (IQM), and optimality
gap (OG) of HNS over 26 games. OG estimates the gap of
the average probability to satisfy the HNS by 1.0.

4.2. Empirical Study

In this section, we conduct empirical studies to investigate
the importance of the feature rank and the potential pitfalls
of the repulsive methods in maximizing the feature rank.
We focus on unsupervised representation learning where the
encoder is pretrained from the state dataset.

Effect of Feature Decorrelation. First, we analyze the
effect of the decorrelation loss by varying the decorrelation
strength λd for SimTPR. We fix the remaining hyperparam-
eters to its optimal configuration.

𝜆! 𝜆!

𝜆! 𝜆! 𝜆!

Figure 3. Effect of decorrelation strength (λd). There exists a
trade-off between the similarity loss and the decorrelation loss
where SimTPR achieved the highest IQM when λd = 0.01.

5



On the Importance of Feature Decorrelation in RL

Figure 3 illustrates the effect of the decorrelation strength
on the representation similarity (i.e., the cosine similarity
between the predicted states and future states), feature rank,
and finetuning performance of SimTPR. In Figure 3, we
observed that stronger decorrelation leads to an increase
in the feature rank while it leads to a decrease in the pre-
dictive similarity. Among the variants, the SimTPR with
a moderate decorrelation strength (λd = 0.01) shows the
highest finetuning performance, with an IQM score of 0.451.
These empirical findings reveal that there exists a trade-off
between learning temporally predictive representations and
feature decorrelation. Thus, it is important to balance these
two terms to achieve good finetuning performance.
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Figure 4. Relationship between feature rank and finetuning
performance. The figure presents the human-normalized score of
each game, plotted against the corresponding feature rank of the
pretrained model. While the feature rank is not the sole determinant
of agent performance, there exists a positive correlation between
feature rank and human-normalized score.

In Figure 4, we illustrate the human-normalized score for
each individual Atari game along with their respective fea-
ture rank of the pretrained encoders. Here, we use SimTPR
with decorrelation strength of λd = 0.01, The scatterplot in
the figure illustrates that there exists a clear correlation be-
tween feature rank and human-normalized scores, as quan-
tified by Spearman’s correlation coefficient of r = 0.54.
While there exist several games with low fine-tuning per-
formance with high feature rank, all the games with low
feature rank (≤ 300) show low fine-tuning performance.

In summary, our findings indicate that although there are nu-
merous factors (e.g., credit assignments, learning algorithm,
optimizer) that affect the learning process of the RL agent,
having a sufficiently high feature rank is an important factor
to attain good finetuning performance.

Feature Decorrelation vs Repulsion. In this section, we
compare the feature decorrelation loss to repulsion-based
methods. Specifically, we consider two repulsion-based
methods: contrastive learning and batch normalization (BN).
These methods prevent collapse by repulsing the represen-
tations of different states in a mini-batch. For contrastive
learning, we replace the similarity loss Lsim with the con-
trastive loss Lcont as in (Chen et al., 2020) and vary the
repulsion temperature from {0.05, 0.1, 0.2} to select the

best trade-off between similarity maximization and repul-
sion. We use the temperature of 0.1 which yields the highest
finetuning performance. For BN, we apply the BN layer to
the output of the first layer of the projector.

Table 1. Comparison of collapse prevention methods. The latent
dimension is 512. The grey row indicates our default setup.

Lcont batch-norm Ldecorr Feat.Rank IQM ↑

(a) - - - 156 0.189
(b) ✓ - - 443 0.331
(c) - ✓ - 305 0.068
(d) - - ✓ 421 0.451
(e) ✓ - ✓ 472 0.342
(f) - ✓ ✓ 500 0.264

Table 1 reports the finetuning performance for different
configurations of collapse prevention methods. By com-
paring Table 1.(a) and (b), we observed that using the
contrastive loss effectively alleviates representational col-
lapse (Feat.Rank=443), resulting in an improved IQM score
of 0.331. In Table 1.(c), we found that although batch-
normalization alleviates the collapse (Feat.Rank=305), it
results in a significant drop in finetuning performance, with
0.068 IQM. We speculate that applying batch-normalization
brings extra difficulties in training the transition model, as
it makes the input, z1:T , and the target, z′1:T , of the transi-
tion model to fluctuate depending on the distribution of the
mini-batch. Among the variants, SimTPR with the decor-
relation loss shows the best finetuning performance with
0.451 IQM (Table 1.(d)). From Table 1.(e),(f) we observed
that further using contrastive loss or batch normalization
leads to a higher feature rank but decreases the finetuning
performance with an IQM of 0.342 and 0.260 respectively.

Although both contrastive and feature decorrelation loss has
shown to effectively prevent representation collapse (i.e.,
high feature rank), we observed a large gap of IQM scores
between these methods (Table 1.(b),(d)). We hypothesize
that this discrepancy stems from the repulsive force of the
contrastive loss which may even separate the relevant states
in the mini-batch. To validate our hypothesis, we conduct
an in-depth comparison of the pretrained representations of
the contrastive loss to feature decorrelation loss.

(a) contrastive (b) feature decorrelation

Figure 5. Cosine Similarity between state representations. The
figure presents the average cosine similarity across 26 Atari games.
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Table 2. Finetuning on Atari-100k benchmark. In pre-training, all methods are trained for 100 epochs with DQN replay dataset. Then,
we finetuned a 2-layer Q-learning policy on top of the frozen encoder for 10 random seeds. We report 95% Confidence Intervals (CI) of
IQM, Median, Mean, and Optimality Gap scores where CIs are estimated using the percentile bootstrap with stratified sampling. All
competitors except SGI (Schwarzer et al., 2021) and BarlowBalance (Zhang et al., 2022) based on our reproduction.

Method Act F1 ↑ Rew F1 ↑ IQM ↑ Median ↑ Mean ↑ Optimality Gap ↓

No Pretraining
DrQ (Yarats et al., 2020) - - 0.161 (0.149, 0.174) 0.157 (0.129, 0.184) 0.308 (0.285, 0.332) 0.724 (0.710, 0.737)

Pretrained from State
VAE (Kingma & Welling, 2014) 22.1 56.8 0.266 (0.236, 0.301) 0.266 (0.198, 0.293) 0.556 (0.498, 0.620) 0.623 (0.600, 0.645)

BarlowTwins (Zbontar et al., 2021) 21.3 58.0 0.224 (0.203, 0.247) 0.249 (0.204, 0.289) 0.448 (0.410, 0.488) 0.662 (0.644, 0.680)

CURL (Laskin et al., 2020) 15.5 52.5 0.247 (0.222, 0.273) 0.208 (0.185, 0.264) 0.426 (0.400, 0.452) 0.654 (0.636, 0.673)

RSSM (Hafner et al., 2019b) 23.6 61.1 0.302 (0.255, 0.348) 0.235 (0.199, 0.288) 0.707 (0.611, 0.811) 0.595 (0.571, 0.620)

ATC (Stooke et al., 2021) 25.8 65.6 0.353 (0.325, 0.384) 0.376 (0.262, 0.409) 0.647 (0.585, 0.714) 0.570 (0.553, 0.586)

SimTPR (ours) 25.9 67.7 0.451 (0.410, 0.494) 0.434 (0.317, 0.507) 0.773 (0.707, 0.837) 0.522 (0.503, 0.541)

Pretrained from Demonstration
BC 27.1 66.2 0.413 (0.376, 0.450) 0.344 (0.289, 0.402) 0.705 (0.660, 0.751) 0.536 (0.517, 0.555)

IDM 26.5 64.7 0.343 (0.308, 0.380) 0.279 (0.237, 0.337) 0.564 (0.520, 0.614) 0.579 (0.556, 0.601)

SGI (Schwarzer et al., 2021) 26.8 64.0 0.380 (0.329, 0.436) 0.490 (0.355, 0.573) 0.751 (0.678, 0.828) 0.557 (0.530, 0.587)

BarlowBalance (Zhang et al., 2022) 22.7 61.3 0.338 (0.296, 0.382) 0.201 (0.131, 0.316) 1.089 (0.983, 1.203) 0.588 (0.569, 0.607)

SimTPR (ours) 26.9 71.2 0.500 (0.464, 0.537) 0.515 (0.381, 0.572) 0.757 (0.715, 0.800) 0.493 (0.476, 0.511)

First, we investigate the cosine similarity between the latent
representation, zt, and the k-step distant latent representa-
tions, zt+k, of the pretrained encoder. In Figure 5, we plot
the average similarity of the latent representations w.r.t k.
As the distance k increases, we observed a drastic decre-
ment of similarity for contrastive loss whereas the feature
decorrelation loss was able to maintain a relatively higher
level of similarity.

(a) contrastive (b) feature decorrelation

Figure 6. t-SNE visualization. We visualize the t-SNE plot of the
latent representations on the Pong environment pretrained with
(a) contrastive loss and (b) feature decorrelation loss. We use 4
distinct trajectories, each with a length of T = 1000.

In Figure 6, we further visualize the t-SNE plot of the latent
representations. We use the Pong environment and visualize
the four distinct trajectories with 1000 steps for each trajec-
tory. While the latent representations of the contrastive loss
were relatively spread out regardless of the trajectories, the
latent representations of the feature decorrelation loss were
clustered based on the trajectories.

In summary, we found that although repulsive methods can
effectively prevent representational collapse, they push away

the representations of the consecutive, relevant states. We
believe that this repulsion between the consecutive states is
a key factor that brings the decrement of the performance
for the contrastive loss to the decorrelation loss.

4.3. Main Result

In Table 4.2, we compare SimTPR with state-of-the-art un-
supervised representation learning methods in RL. To ensure
a fair comparison, we fix the encoder, latent dimension, aug-
mentation, pretraining data, and the number of pretraining
steps across all methods. The results for SGI and BarlowBal-
ance were obtained by running their official code, whereas
the results for the remaining baselines are based on our re-
produced results. When reproducing baselines, we strictly
followed the training recipes outlined in the original papers.
Further details are described in Appendix B.

When pretrained from state datasets, we observed that pre-
training consistently led to improved performance compared
to learning from scratch. In addition, we discover that meth-
ods that learn temporally predictive representations (i.e.,
RSSM, ATC, SimTPR) achieved superior performance com-
pared to methods that do not learn any temporal dynamics
(i.e., VAE, BarlowTwins, CURL). Among these methods,
SimTPR achieved the highest scores in all metrics, with an
improvement of 10% in IQM (0.451) over the previous best
method, ATC (0.353).

Training with demonstration datasets generally leads to en-
hanced finetuning performance compared to the methods
with pretraining from states, since the action labels pro-
vide additional information to learn good representations.
By leveraging action labels, the finetuning performance of
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SimTPR increases to an IQM score of 0.500, which is the
best result among the demonstration pretraining methods.
Although BarlowBalance achieved the highest mean score,
this is due to a few games with exceptionally high human
normalized scores (HNS of 6.7 in the game Up’n Down).

5. Discussion
Here, we present ablations and discussions for SimTPR to
give an intuition of its behavior and performance. In this
section, we focus on pretraining SimTPR from states.

5.1. Robustness to Batch Size and Latent Dimension

First, we investigate the robustness of SimTPR w.r.t different
batch sizes and latent dimensions. We maintained the other
hyperparameters identical to their optimal configurations.

160 320 640
batch size

0.30

0.35

0.40

0.45

IQ
M

256 512 1024
latent dimension

0.30

0.35

0.40

0.45

IQ
M

Figure 7. Effect of batch size and latent dimension. SimTPR
was robust to the changes of batch size and showed a positive
correlation between the latent dimension and IQM.

Figure 7 displays SimTPR’s performance with varying batch
sizes and latent dimensions. Our observations indicate that
SimTPR’s performance remains consistent across different
batch sizes, underscoring its robustness. Moreover, we ob-
served a positive correlation between the size of the latent
dimension and the fine-tuning performance, as quantified
by the IQM. This correlation implies that increasing the
latent dimension could potentially improve the model’s per-
formance by facilitating more expressive representations.

Interestingly, these observations align with the results from
(Zbontar et al., 2021), who utilized a feature decorrelation
loss in vision tasks. They report that the feature decorre-
lation loss remains robust to changes in batch size while
performance improves as the latent dimension increases.

5.2. Transition Model: Causal vs Non-Causal

Here, we discuss the training strategy and architecture of
the transition model. For the training strategy, we com-
pare the performance of causal (Radford et al., 2018) and
non-causal (Devlin et al., 2019) transition models, using the
transformer’s encoder and decoder respectively. In training
the non-causal model, we randomly masked input repre-
sentations and reconstruct the masked representations. For

the model architecture, we compare the performance of the
transformer to the simple recurrent transition model which
consists of the 2-layers of GRU block (Cho et al., 2014).

Table 3. Comparison of the transition model. A non-causal and
causal transformer uses the encoder and decoder of transformer
architecture, respectively. The grey row indicates the default setup.

strategy architecture mask ratio Feat.Rank IQM ↑

(a)
non-causal transformer

0.3 435 0.270
(b) 0.5 478 0.385
(c) 0.7 452 0.367

(d) causal transformer - 421 0.451
(e) causal gru - 438 0.387

In Table 3.(a), we observed that the non-causal variant with
a 30% mask ratio shows the lowest IQM of 0.270. We spec-
ulate that with a low masking ratio, the model may easily
reconstruct the masked representation by interpolating the
representations of the past and future. Although the variants
with higher mask ratios showing the improved performance
(Table 3.(b) and (c)), they still performed worse than the
causal model in Table 3.(d). Comparing Table 3.(e) to (d),
we found that a simple recurrent model can learn temporally
predictive representations with an IQM score of 0.384, but
using a powerful transition model brings further benefits.

5.3. Finetuning matters

Throughout this paper, we have focused on evaluating mod-
els that were pretrained, followed by finetuning a policy
on top of the frozen encoder. However, in this section, we
broaden our scope to consider other finetuning strategies
that can potentially enhance the finetuning performance.

One crucial finding from recent studies is that the loss of
plasticity significantly contributes to the sample inefficiency
of RL (Nikishin et al., 2022; Cetin et al., 2022; Lyle et al.,
2023). The term loss of plasticity describes the phenomenon
where an agent overfits to initial interactions and subse-
quently struggles to adapt to new data. We find this issue
to be especially pronounced in the pretrain-then-finetune
paradigm. This is because pretrained models, with their
inherent capability to rapidly adapt, are more susceptible to
overfitting to earlier interactions.

Table 4. Comparison of finetuning strategy. For the reset, we
periodically reset the policy layer for every 40,000 update steps.

pretrain encoder reset policy IQM ↑

(a) - Frozen - 0.161

(b)
✓

Frozen - 0.451
(c) Finetuned - 0.366
(d) ✓ 0.601
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To mitigate this issue, we implement reset techniques as
suggested in (Nikishin et al., 2022; Igl et al., 2021). These
techniques involve periodically reinitializing the policy pa-
rameters to reintroduce plasticity into the model. Following
(Nikishin et al., 2022), we reset the policy parameters for
every 40,000 updates.

Table 4 presents the finetuning performance for differ-
ent strategies employed in the case of SimTPR. As in
(Schwarzer et al., 2021), simply finetuning the encoder re-
sulted in a relatively low IQM score of 0.366 (Table 4.(c)).
This score was improved upon when we froze the encoder,
leading to an IQM score of 0.451 (Table 4.(b)). However,
the most significant enhancement was achieved by using
the reset strategy with pretrained models. Here, SimTPR
achieved an IQM score of 0.601 (Table 4.(d)), outperform-
ing the other strategies by a large margin.

In summary, despite the propensity of pretrained represen-
tations to overfit to earlier interactions, our results illus-
trate that pretraining consistently outperforms training from
scratch. Importantly, the introduction of a periodic reset was
able to significantly enhance the fine-tuning performance of
these pretrained models.

6. Conclusion, Limitations, and Future Work
In this paper, we introduce SimTPR, a novel unsupervised
representation learning framework for reinforcement learn-
ing. By using a feature decorrelation loss to prevent repre-
sentational collapse, SimTPR efficiently learns temporally
predictive representations. Our experimental findings reveal
that SimTPR enhances sample efficiency notably on the
Atari100k benchmark and attains superior performance in
both state and demonstration representation learning. Fur-
thermore, through a systematic analysis of our framework,
we find that the feature rank of the pretrained representations
is an important factor affecting the fine-tuning performance.

Despite promising results, our study has a few limitations.
First, our evaluations are confined to Atari environments.
Future research could explore its applicability in diverse
environments such as Deepmind Control Suite (Tassa et al.,
2018) or Procedural Generation (Cobbe et al., 2020).

Second, we explored a simple variant for fine-tuning, the
reset mechanism (Nikishin et al., 2022). Despite its sim-
plicity, the reset significantly improves the performance of
a naive fine-tuning strategy. Future work should broaden
this exploration to include other fine-tuning techniques (e.g.,
self-supervised objectives, knowledge distillation), to effec-
tively leverage the pretrained representations at fine-tuning.

Last, our observation on the importance of feature rank lacks
theoretical validation. Recent research emphasizes the need
for maintaining model plasticity for sample-efficient RL,

which refers to its adaptability to new targets (Lyle et al.,
2023). They discovered that the factors such as the number
of active units (Abbas et al., 2023), the smoothness of the
loss landscape (Lyle et al., 2023), and the feature rank (Lyle
et al., 2022) are potential contributors to model plasticity.
Further investigating these factors can guide the design of
better pretraining objectives that generate generalizable and
plastic representations.
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F., Brock, A., Smith, S., De, S., Pascanu, R., Piot, B.,
et al. Byol works even without batch statistics. arXiv
preprint arXiv:2010.10241, 2020.

Schwarzer, M., Anand, A., Goel, R., Hjelm, R. D., Courville,
A., and Bachman, P. Data-efficient reinforcement learn-
ing with self-predictive representations. In Proc. the
International Conference on Learning Representations
(ICLR), 2020.

Schwarzer, M., Rajkumar, N., Noukhovitch, M., Anand, A.,
Charlin, L., Hjelm, R. D., Bachman, P., and Courville,
A. C. Pretraining representations for data-efficient rein-
forcement learning. Proc. the Advances in Neural Infor-
mation Processing Systems (NeurIPS), 2021.

Seo, Y., Lee, K., James, S. L., and Abbeel, P. Reinforcement
learning with action-free pre-training from videos. In
Proc. the International Conference on Machine Learning
(ICML), pp. 19561–19579. PMLR, 2022.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L.,
Van Den Driessche, G., Schrittwieser, J., Antonoglou, I.,
Panneershelvam, V., Lanctot, M., et al. Mastering the
game of go with deep neural networks and tree search.
Nature, 2016.

Singh, S. P., Littman, M. L., Jong, N. K., Pardoe, D., and
Stone, P. Learning predictive state representations. In
Proc. the International Conference on Machine Learning
(ICML), pp. 712–719, 2003.

Stooke, A., Lee, K., Abbeel, P., and Laskin, M. Decoupling
representation learning from reinforcement learning. In
Proc. the International Conference on Machine Learning
(ICML), 2021.

Tan, M. and Le, Q. Efficientnet: Rethinking model scaling
for convolutional neural networks. In Proc. the Inter-
national Conference on Machine Learning (ICML), pp.
6105–6114. PMLR, 2019.

Tassa, Y., Doron, Y., Muldal, A., Erez, T., Li, Y., Casas, D.
d. L., Budden, D., Abdolmaleki, A., Merel, J., Lefrancq,
A., et al. Deepmind control suite. arXiv preprint
arXiv:1801.00690, 2018.

Tesauro, G. et al. Temporal difference learning and td-
gammon. Communications of the ACM, 38(3):58–68,
1995.

Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M.,
Dudzik, A., Chung, J., Choi, D. H., Powell, R., Ewalds,
T., Georgiev, P., et al. Grandmaster level in starcraft ii
using multi-agent reinforcement learning. Nature, 2019.

Wang, F. and Liu, H. Understanding the behaviour of con-
trastive loss. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 2495–
2504, 2021.

Yarats, D., Kostrikov, I., and Fergus, R. Image augmentation
is all you need: Regularizing deep reinforcement learning
from pixels. In Proc. the International Conference on
Machine Learning (ICML), 2020.

Zbontar, J., Jing, L., Misra, I., LeCun, Y., and Deny, S.
Barlow twins: Self-supervised learning via redundancy
reduction. In Proc. the International Conference on Ma-
chine Learning (ICML), pp. 12310–12320. PMLR, 2021.

Zhang, W., GX-Chen, A., Sobal, V., LeCun, Y., and Car-
ion, N. Light-weight probing of unsupervised repre-
sentations for reinforcement learning. arXiv preprint
arXiv:2208.12345, 2022.

12



On the Importance of Feature Decorrelation in RL

A. Implementation Details
A.1. Pretraining

In this section, we describe the pretraining details of SimTPR. First, we explain the architectural details of four major
components of our model: convolutional encoder, projector, transition model, and predictor.

Convolutional encoder: f . A convolutional encoder is used to encode the augmented states into latent representations. The
encoder is composed of a 30-layer convolutional network, based on the design from (Schwarzer et al., 2021). The encoder is
largely divided into three blocks, where each block comprises of one downsample residual block and two residual blocks.
Each residual block follows the design from EfficientNet (Tan & Le, 2019), which is three convolutional layers with an
inverted bottleneck structure. The three layers are composed of a convolutional layer with 1x1 filters, a group convolutional
layer with 3x3 filters that increases the number of channels by double the input channel, and a convolutional layer with 1x1
filters with output channels. Batch normalization and ReLU activation are applied between these convolutional layers. The
spatial resolution of the encoder’s output is (7, 7, 3136).

Projector: g. Projector maps the encoded representations to the d-dimensional latent space (d = 512). We compose the
projector as an MLP layer with 512 hidden dimensions where ReLU activation is in-between.

Transition model: h. Transition model maps the output of the projector into latent representations of future states. We
utilized a casual transformer, based on the design from (Radford et al., 2018). The casual transformer is composed of 2
casual transformer blocks, each with 512 input dimensions, 8 heads, and 2048 hidden dimensions.

Predictor: q. Predictor maps the output of the transition model to the d-dimensional latent space (d = 512). The predictor
is composed of an MLP layer with 512 hidden dimensions where ReLU activation and batch normalization are in-between.

In pretraining, we use the same hyperparameter of the state and demonstration pretraining where the only difference is the
use of action prediction weight in the demonstration dataset. For simplicity, we use the action prediction weight as λa = 1.0.
Detailed hyperparameters are described in Table 5. On a single A100 GPU, the pretraining takes 1 to 2 days for each run.

Table 5. Hyperparameters of SimTPR for pretraining on DQN replay dataset.

Hyperparameter Value

State size (84, 84, 4)
Grey scaling True
Data Augmentation Random Shifts and Intensity Jittering
Random Shifts ± 4 pixels
Intensity Jiterring scale 0.05

Channels for each block (16, 64, 64)
Strides for each block (3, 2, 2)
Number of future steps to associate (k) 1
Off-diagonal weight (λo) 0.005
Decorrelation weight (λd) 0.01
Action prediction weight (λa) 1

Epochs 100
Batch size 640
Number of Sequences (N) 64
Sequence length (T) 10
Optimizer (β1, β2, ϵ) AdamW (0.9, 0.999, 0.000015)
Learning rate 0.0003
Weight decay 0.00001
Max gradient norm 0.5
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A.2. Linear Probing

Following the evaluation protocol from (Zhang et al., 2022), a linear classifier was trained on top of the frozen encoder and
predicted the reward and action for each state. To evaluate the effectiveness of the pretrained representations in capturing the
policy and value function of experts, we utilized the last 100,000 frames from the 50 million frame DQN replay dataset
(Agarwal et al., 2020) with a 4:1 train/eval split.

To simplify the reward probing task, we formulated it as a binary classification problem where the objective is to predict
the occurrence of a reward for a given state. We trained a logistic regression model using the majorization-minimization
optimization (MISO) algorithm (Mairal, 2015) for a total of 300 iterations.

For the action probing task, we train a multi-class classifier with a softmax focal loss (Lin et al., 2017) to address the class
imbalance of the action labels. The model was trained for 50 epochs using the SGD optimizer with a learning rate of 0.2,
batch size of 256, and a weight decay of 10−6. For each epoch, the learning rate was decayed by a step-wise scheduler with
a step size of 10 and gamma of 0.1.

Both tasks were performed on an A100 GPU and completed within 5 minutes.

A.3. Finetuning

Following the evaluation protocol from (Zhang et al., 2022; Schwarzer et al., 2021), we focus on the Atari 100k benchmark
(Kaiser et al., 2019), where only 100k steps of interactions are allowed at the finetuning phase. We train a Q-learning
head on top of the frozen encoder using the Rainbow algorithm (Hessel et al., 2018). Here we do not apply any auxiliary
self-supervised loss and rely on noisy layers for exploration. A detailed hyperparameter for the finetuning setup is described
in Table 6. On an A100 GPU, each run takes from 2 to 3 hours.

Table 6. Hyperparameters for finetuning on the Atari100k benchmark.

Hyperparameter Value

State downsample size (84, 84)
Grey scaling True
Data augmentation Random Shifts and Intensity Jittering
Random Shifts ± 4 pixels
Intensity Jiterring scale 0.05
Frame skip 4
Stacked frames 4
Action repeat 4

Training steps 100k
Update Distributional Q
Dueling True
Support of Q-distribution 51
Discount factor γ 0.99
Batch size 32
Optimizer (β1, β2, ϵ) Adam (0.9, 0.999, 0.000015)
Learning rate 0.00003
Max gradient norm 10
Priority exponent 0.5
Priority correction 0.4 → 1
Exploration Noisy nets
Noisy nets parameter 0.5
Replay buffer size 100k
Min buffer size for sampling 2000
Replay per training step 1
Updates per replay step 2
Multi-step return length 10
Q-head hidden units 512
Q-head non-linearity ReLU
Evaluation trajectories 50
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B. Baseline Implementations
Our comparison in Table 4.2 is based on our reproduction of the related methods with the exception of SGI and BarlowBal-
ance. We have implemented the competitors as faithfully as possible following each individual paper. In order to ensure
fairness in comparison, we have employed the same convolutional encoder, latent dimension, data augmentation, pretraining
data, number of pretraining epochs, and the optimizer (AdamW) across all methods. For each method, we have varied the
learning rate from {0.001, 0.0003, 0.0001} during pretraining and selected the model with the highest linear probing score
for each method. Then, we finetuned the selected models for 10 random seeds and report the finetuning performance. A
detailed description of the training setup for each method is provided in the following section.

B.1. VAE

For the variational autoencoder (VAE), data augmentation was applied to each state, followed by the convolutional encoder
to obtain the latent representations. Subsequently, the mean (µ) and log variance (log σ2) of the variational posterior of VAE
were obtained by the MLP layer with 256 hidden dimensions, respectively. Then, the random variable z was sampled from
the variational posterior N(z;µ, σ2I) and used to reconstruct the original states through the convolutional decoder. The
architecture of the convolutional decoder is symmetric to the convolutional encoder as (Long et al., 2015). We trained VAE
by jointly minimizing the KL divergence between the variational posterior and the prior N(0, I), and the Mean Squared
Error (MSE) between the reconstructed states and the original states. To balance the loss between two terms, we weighted
the KL divergence loss by a factor of λKL = 0.02. To ensure compatibility with a batch size of 640, we set a number of
sequences of N = 640, with a sequence length of T = 1.

B.2. BarlowTwins

BarlowTwins learns the representations by decorrelating the features of the augmented states. BarlowTwins uses siamese
architecture where two differently augmented states are processed by an encoder followed by a projector. Then, the projected
representations, Z, and Z ′ are obtained through this siamese architecture. Note that the convolutional encoder and projector
are identical to our configuration. The model is trained to standardize the cross-correlation matrix between projected
representations Z and Z ′ to the identity matrix. To balance the on-diagonal and off-diagonal terms, λBarlow = 0.05 is
applied to weight the off-diagonal terms of the cross-correlation matrix. To ensure compatibility with a batch size of 640,
we utilize a number of sequences, N = 640, with a sequence length of T = 1.

B.3. CURL

Contrastive Unsupervised Representations for Reinforcement Learning (CURL) employs a siamese model, where the
convolutional encoder and a projection layer are identical to our setup. The siamese model is coupled with the Momentum
Encoder, with a momentum coefficient of τ = 0.99. Two different data augmentations are applied to each state, followed by
the siamese model to obtain Z and Z ′. A prediction layer, consisting of a residual MLP layer with 512 hidden dimensions,
is applied to Z to obtain the prediction Q. Then, CURL is trained to minimize the contrastive loss between Q and Z ′, with a
temperature of 0.1. For a fair comparison, the contrastive loss is also computed symmetrically between Q′ and Z. To ensure
compatibility with a batch size of 640, we utilized a number of sequences as N = 640, with a sequence length of T = 1.

B.4. RSSM

Recurrent State-Space Model (RSSM) learns temporally predictive representations by predicting future states in a latent
space and reconstructing them in the original state space. To begin with, data augmentation was applied to each state,
followed by the convolutional encoder to obtain the latent representations. Let st be the latent representation of the state at
time step t, We explain the architectural details of four major components of RSSM: the recurrent model, the transition
model, the representation model, and the image decoder, as follows:

Recurrent model: ht+1 = fθ(ht, zt),

Transition model: ẑt+1 = pϕ(ẑt+1 | ht+1),

Representation model: zt+1 = qϕ(zt+1 | ht+1, st+1),

Image Decoder: ŝt+1 = fϕ(ŝt+1 | ht+1, zt+1).

(8)
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Recurrent model. Recurrent model predicts the latent of the next states and consists of an MLP layer with 512 hidden
dimensions, ReLU activation, and a gated recurrent unit (GRU) cell with 512 hidden dimensions.

Transition model. Transition model serves as a prior and consists of a Linear layer with hidden dimensions of 512, ReLU
activation, an output Linear layer with 256 output dimensions, and a Softplus activation to obtain mean µ and standard
deviation σ with 128 hidden dimensions, respectively.

Representation model. Representation model serves as a posterior and is identical to the structure of the transition model.

Image decoder. Image decoder reconstructs the target state through the convolutional decoder. The architecture of the
convolutional decoder is symmetric to the convolutional encoder (Long et al., 2015), which is identical to the architecture
used in VAE.

RSSM was trained to minimize the KL divergence between the representation model and the transition model, as well as the
Mean Squared Error (MSE) between the reconstructed states and the target states. In order to balance the loss between the
KL divergence and MSE error, we weigh the KL divergence loss by a factor of λKL = 0.025. To ensure compatibility with
a batch size of 640, we used a total of N = 64 sequences, each with a sequence length of T = 10.

B.5. ATC

Augmented Temporal Contrast (ATC) learns temporally predictive representations by maximizing the similarity between
the representations of current states and states with a short time difference. ATC employs a siamese model, where the
convolutional encoder and a projection layer are identical to our setup. The siamese model is coupled with the Momentum
Encoder, utilizing a momentum coefficient of τ = 0.99. In training, two different data augmentations are applied to each
state, followed by the siamese model to obtain Z and Z ′. A prediction layer, which is also identical to our configuration
is applied to Z to obtain the prediction Q. Then, a contrastive loss is applied, which maximizes the similarity between
predictions from future states with k-steps distances (i.e., the similarity between Qt and Z ′

t+k at time step t). Following
(Stooke et al., 2021; Schwarzer et al., 2021), we set k = 3. For a fair comparison, we symmetrize the loss function and set a
number of sequences of N = 64, with a sequence length of T = 10.

B.6. BC

For behavioral cloning, we applied data augmentation to each state and trained a prediction model to predict the action for
each state. The action prediction layer is applied to the output of the convolutional encoder which is implemented as a
two-layer MLP with 512 hidden dimensions, where a ReLU activation is applied in between. To ensure compatibility with
the batch size of 640, we utilized a number of sequences of N = 640 and a sequence length of T = 1. Through empirical
analysis, we found that behavioral cloning serves as a strong baseline among the demonstration pretraining methods.

B.7. IDM

Inverse Dynamics Modeling (IDM) is trained to predict the action between two consecutive states. Similar to behavioral
cloning, the action prediction layer is implemented as a two-layer multi-layer perceptron (MLP) with 512 hidden dimensions
and ReLU activation is applied in between. In the training process, we first applied data augmentation to two consecutive
states and used a convolutional encoder to obtain the latent representations for each state. The resulting representations were
concatenated and processed by the action predictor to predict the action between the states. In order to ensure compatibility
with the batch size of 640, we utilized a number of sequences of N = 320 and a sequence length of T = 2.
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C. PseudoCode
C.1. State Pretraining

Algorithm 1 PyTorch-like Pseudocode of SimTPR for State Pretraining
# f: encoder
# g: projector
# h: transition model
# p: predictor

# n: batch size
# t: sequence length
# d: dimension of the latent representations
# k: future steps to associate with

for s in loader: # load a batch of (n,t) samples
# compute embeddings
x1, x2 = aug(s), aug(s)
z1, z2 = g(f(x1)), g(f(x2)) # projections, (n,t,d)
q1, q2 = p(h(z1), p(h(z2)) # predictions, (n,t,d)

# l2-normalize
z1, z2 = normalize(z1, dim=2), normalize(z2, dim=2)
q1, q2 = normalize(q1, dim=2), normalize(q2, dim=2)

# compute loss
L sim = distance(q1, z2.detach())/2 + distance(q2, z1.detach())/2)
L decorr = standardize(z1, z2)
L = L sim + lambda d.mul(L decorr)

# optimize
L.backward()
optimizer.step()

def distance(q, z):
z1, z2 = z1[:, k:], z2[:, k:] # (n,t-k,d)
q1, q2 = q1[:, :-k], q2[:, :-k] # (n,t-k,d)

return (q1 - z2).pow(2).sum(dim=2).mean()

def standardize(z1, z2):
# reshape
z1, z2 = z1.reshape(n*t,d), z2.reshape(n*t,d)
q1, q2 = q1.reshape(n*t,d), q2.reshape(n*t,d)

# compute cross-correlation matrix (d,d)
z1 norm = (z1 - z1.mean(0)) / z 1.std(0)
z2 norm = (z2 - z2.mean(0)) / z 2.std(0)
c = mm(z1 norm.T, z2 norm)/n

# loss
c on =on diagonal(c) # (d)
c off =off diagonal(c) # (d(d-1))
return (c on - ones(d)).sum() + lambda o.mul(c off.sum())
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C.2. Demonstration Pretraining

Algorithm 2 PyTorch-like Pseudocode of SimTPR for Demonstration Pretraining
# f: encoder
# g: projector
# h: transition model
# p: predictor
# r: action predictor

# n: batch size
# t: sequence length
# d: dimension of the latent representations
# k: future steps to associate with
# n a: a number of action in the environment

# distance(q, z): a distance function defined in algorithm 1
# standardize(z1, z2): a standardization function defined in algorithm 1
# cross entropy(y, a): a standard cross-entropy loss where y is the un-normalized logits

for s, a in loader: # load a batch of (n,t) samples
# compute embeddings
x1, x2 = aug(s), aug(s)
z1, z2 = g(f(x1)), g(f(x2)) # projections, (n,t,d)
y = embed(a) # linearly embed actions, (n,t,d)
tau1 = alternate concat(z1, y) # tau1 = (z1 1,a 1,...,z1 t,a t), (n,2*t,d)
tau2 = alternate concat(z2, y) # tau2 = (z2 1,a 1,...,z2 t,a t), (n,2*t,d)
c1, c2 = h(tau1), h(tau2)) # transition, (n,2*t,d)
q1, q2 = p(c1[:,1,3,...,2t-1]), p(c2[:,1,3,...,2t-1])) # latent prediction, (n,t,d)
l1, l2 = r(c1[:,0,2,...,2t-2]), r(c2[:,0,2,...,2t-2])) # action prediction, (n,t,n a)

# l2-normalize
z1, z2 = normalize(z1, dim=2), normalize(z2, dim=2)
q1, q2 = normalize(q1, dim=2), normalize(q2, dim=2)

# compute loss
L sim = distance(q1, z2.detach())/2 + distance(q2, z1.detach())/2)
L decorr = standardize(z1, z2)
L act = cross entropy(l1, a)/2 + cross entropy(l2, a)/2
L = L sim + lambda d.mul(L decorr) + lambda a.mul(L act)

# optimize
L.backward()
optimizer.step()
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D. Uncertainty-Aware Comparison
D.1. State Representation Learning
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Figure 8. Uncertainty-aware comparison for State Representation Learning. Top. 95% Confidence Intervals for IQM, Median, Mean
and Optimality Gap scores for each state representation learning method in Table 4.2. Bottom. Average score distributions for each
method where shaded regions represent a pointwise 95% confidence interval. The confidence intervals are estimated using the percentile
bootstrap with stratified sampling as (Agarwal et al., 2021).

D.2. Demonstration Representation Learning
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Figure 9. Uncertainty-aware comparison for Demonstration Representation Learning. Top. 95% Confidence Intervals for IQM,
Median, Mean and Optimality Gap scores for each demonstration representation learning method in Table 4.2. Bottom. Average score
distributions for each method where shaded regions represent a pointwise 95% confidence interval. The confidence intervals are estimated
using the percentile bootstrap with stratified sampling as (Agarwal et al., 2021).
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E. Does Higher Linear Probing Score indicates a better finetuning Performance?

Figure 10. Correlation between the Linear Probing Score and the finetuning Performance. Left. Correlation between the Act F1
score and IQM of the HNS. Right. Correlation between the Rew F1 score and IQM of the HNS.

In order to assess the representation quality of a pretrained model, a commonly employed protocol is to train reinforcement
learning (RL) algorithms on top of the pretrained model. However, this approach can be computationally intensive and
may result in high-variance outcomes. To address this problem, a recent study by (Zhang et al., 2022) has proposed the use
of two linear probing tasks as an alternative method for evaluating representation quality. These tasks, action prediction,
and reward prediction are designed to predict the actions and rewards of experts and are computationally efficient with low
variance. Empirically, a study by (Zhang et al., 2022) has shown that these probing scores have a high correlation to the RL
agent’s finetuning score.

In this study, we aim to investigate the relationship between linear probing scores and finetuning performance for reinforce-
ment learning (RL) agents. We present an analysis of the correlation between the linear probing scores (Act F1 and Rew F1)
and the finetuning performance (IQM of human-normalized score) for the RL agent in Figure 10. Each data point in the
figure represents a different pretraining method, including ablation studies of SimTPR and various baselines. To evaluate
the correlation, we applied Spearman’s rank correlation test to the data. The results of this analysis indicate a moderate
correlation between Action F1 and IQM, with a Spearman’s correlation coefficient of 0.73, and a correlation coefficient
between the Rew F1 and IQM of 0.56. Thus, based on the moderate correlation, it may not be sufficient to conclude that a
higher linear probing score guarantees a better finetuning performance for the RL agent.
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F. Full Results on Atari100k
F.1. State Representation Learning

Table 7. Mean episodic scores of state representation learning. We report the mean episodic scores on the 26 Atari games for state
representation learning methods. The results are recorded at the end of training and averaged over 10 random seeds. SimTPR outperforms
the other methods on all aggregate metrics.

Game Random Human DrQ VAE BarlowTwins CURL RSSM ATC SimTPR

Alien 227.8 7127.7 798.52 1013.74 853.5 823.56 1013.23 845.84 784.12
Amidar 5.8 1719.5 123.91 250.49 157.44 128.49 191.57 124.87 158.35
Assault 222.4 742.0 534.88 783.52 635.76 616.87 860.19 716.34 853.58
Asterix 210.0 8503.3 605.5 560.86 528.6 538.6 537.5 574.7 521.4
BankHeist 14.2 753.1 124.72 56.57 57.18 91.96 35.37 395.7 402.14
BattleZone 2360.0 37187.5 10714.0 3274.29 5032.0 6718.0 6746.67 9168.0 6796.0
Boxing 0.1 12.1 3.61 32.71 25.23 10.01 41.66 32.76 42.13
Breakout 1.7 30.5 11.17 4.07 14.53 10.83 3.29 21.45 55.67
ChopperCommand 811.0 7387.8 914.4 736.57 873.8 1012.8 829.67 836.4 851.6
CrazyClimber 10780.5 35829.4 11203.6 32358.86 20787.6 26213.0 49406.67 69789.0 56273.2
DemonAttack 152.1 1971.0 384.7 471.57 704.84 785.67 801.92 925.24 1484.47
Freeway 0.0 29.6 26.94 15.22 22.29 16.49 25.79 0.0 6.68
Frostbite 65.2 4334.7 607.3 2587.0 1264.02 874.96 2222.07 252.0 268.48
Gopher 257.6 2412.5 344.88 800.06 453.84 628.44 657.67 761.56 1022.44
Hero 1027.0 30826.4 6967.47 7102.73 8206.1 7123.86 5870.07 10773.08 10804.96
Jamesbond 29.0 302.8 225.7 395.0 348.8 312.5 465.17 417.9 298.5
Kangaroo 52.0 3035.0 2907.0 1214.0 819.4 854.6 618.0 1520.0 3227.8
Krull 1598.0 2665.5 3178.16 4532.11 3911.5 4277.88 5332.93 3722.96 4678.62
KungFuMaster 258.5 22736.3 3085.4 17444.29 7982.6 13353.2 10321.67 16078.6 14197.6
MsPacman 307.3 6951.6 843.0 1636.57 1079.96 1180.2 1633.0 1268.54 1249.58
Pong −20.7 14.6 −14.88 −10.04 −13.33 −4.59 −4.03 0.51 −2.57
PrivateEye 24.9 69571.3 80.0 85.71 90.0 122.33 −43.53 124.84 90.0
Qbert 163.9 13455.0 2337.6 3893.64 2709.65 2971.9 3747.08 3299.7 3091.7
RoadRunner 11.5 7845.0 6439.6 4411.43 8172.2 9915.2 8997.0 9837.2 9780.6
Seaquest 68.4 42054.7 407.16 703.66 352.24 465.88 753.8 517.12 424.96
UpNDown 533.4 11693.2 3198.66 11897.83 4900.44 2404.42 20043.8 15108.64 16623.82

IQM 0.0 1.0 0.161 0.266 0.224 0.247 0.302 0.353 0.451
Median 0.0 1.0 0.157 0.266 0.249 0.208 0.235 0.376 0.434
Mean 0.0 1.0 0.308 0.556 0.448 0.426 0.707 0.647 0.773
OG 0.0 1.0 0.724 0.623 0.662 0.654 0.595 0.570 0.522
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F.2. Demonstration Representation Learning

Table 8. Mean episodic scores of demonstration representation learning. We report the mean episodic scores on the 26 Atari games
for demonstration representation learning methods. The results are recorded at the end of training and averaged over 10 random seeds.
SimTPR outperforms the other methods on all aggregate metrics except Mean.

Game Random Human BC IDM SGI BarlowBalance SimTPR

Alien 227.8 7127.7 837.24 1007.2 1091.38 981.44 1006.1
Amidar 5.8 1719.5 143.47 134.97 233.47 170.37 127.74
Assault 222.4 742.0 735.42 535.04 569.69 903.22 1053.48
Asterix 210.0 8503.3 709.0 587.57 398.75 436.0 643.8
BankHeist 14.2 753.1 363.18 557.83 397.33 205.38 449.04
BattleZone 2360.0 37187.5 7838.0 7937.14 2920.0 3812.0 9014.0
Boxing 0.1 12.1 41.93 22.52 44.41 62.13 13.01
Breakout 1.7 30.5 34.61 24.47 13.74 1.11 40.56
ChopperCommand 811.0 7387.8 1124.6 931.14 815.0 658.4 829.6
CrazyClimber 10780.5 35829.4 62124.0 45292.86 43783.5 94975.4 47558.8
DemonAttack 152.1 1971.0 1587.94 748.46 182.7 343.5 2571.99
Freeway 0.0 29.6 21.4 16.75 18.53 19.27 25.65
Frostbite 65.2 4334.7 385.94 540.91 1207.2 638.76 245.38
Gopher 257.6 2412.5 994.8 751.89 1253.85 1149.36 1241.48
Hero 1027.0 30826.4 8232.99 7398.11 4336.45 5302.16 9986.87
Jamesbond 29.0 302.8 241.4 318.29 307.38 414.0 419.5
Kangaroo 52.0 3035.0 832.2 630.86 2195.0 2213.0 664.8
Krull 1598.0 2665.5 4809.3 4825.6 6313.55 5551.18 6307.36
KungFuMaster 258.5 22736.3 12934.0 12198.57 14343.25 14359.6 13142.0
MsPacman 307.3 6951.6 1313.14 1356.29 1600.2 415.06 1849.7
Pong −20.7 14.6 11.35 7.41 3.26 3.51 9.29
PrivateEye 24.9 69571.3 90.0 71.67 61.5 60.2 100.2
Qbert 163.9 13455.0 2754.0 2998.21 714.06 185.5 4576.75
RoadRunner 11.5 7845.0 10749.4 7755.14 7995.25 21362.6 10694.2
Seaquest 68.4 42054.7 487.88 559.77 561.75 579.92 584.2
UpNDown 533.4 11693.2 4414.98 5744.23 18800.9 74548.54 9086.26

IQM 0.0 1.0 0.413 0.343 0.380 0.338 0.500
Median 0.0 1.0 0.345 0.279 0.490 0.201 0.515
Mean 0.0 1.0 0.705 0.564 0.751 1.089 0.757
OG 0.0 1.0 0.536 0.579 0.558 0.588 0.493
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