
Unsupervised Skill Discovery for Learning
Shared Structures across Changing Environments

Sang-Hyun Lee 1 Seung-Woo Seo 1

Abstract
Learning shared structures across changing en-
vironments enables an agent to efficiently retain
obtained knowledge and transfer it between en-
vironments. A skill is a promising concept to
represent shared structures. Several recent works
proposed unsupervised skill discovery algorithms
that can discover useful skills without a reward
function. However, they focused on discovering
skills in stationary environments or assumed that
a skill being trained is fixed within an episode,
which is insufficient to learn and represent shared
structures. In this paper, we introduce a new unsu-
pervised skill discovery algorithm that discovers
a set of skills that can represent shared structures
across changing environments. Our algorithm
trains incremental skills and encourages a new
skill to expand state coverage obtained with com-
positions of previously learned skills. We also
introduce a skill evaluation process to prevent our
skills from containing redundant skills, a com-
mon issue in previous work. Our experimental
results show that our algorithm acquires skills
that represent shared structures across changing
maze navigation and locomotion environments.
Furthermore, we demonstrate that our skills are
more useful than baselines on downstream tasks.

1. Introduction
Most real-world tasks require an agent to handle contin-
uously changing environments. While humans can han-
dle these environments by leveraging previously obtained
knowledge to quickly adapt to new environments, conven-
tional reinforcement learning (RL) agents must learn from
scratch whenever an environment is changed, requiring far

1Department of Electrical and Computer Engineering, Seoul Na-
tional University, Seoul, South Korea. Correspondence to: Seung-
Woo Seo <sseo@snu.ac.kr>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

more data than humans. The most straightforward way to
retain knowledge obtained from previous environments is
to save a dataset or an independent model for each envi-
ronment. However, these approaches are inappropriate to
transfer knowledge between environments. A promising
alternative approach to transfer knowledge is to learn and
leverage shared structures across environments (Thrun &
O’Sullivan, 1996; Griffiths et al., 2019). The idea of lever-
aging shared structures to transfer knowledge is inspired
by the observation that humans address a complex task by
decomposing it into simpler sub-tasks and then combining
their solutions (Khetarpal et al., 2022).

A skill, also known as a temporally extended action, is an
efficient concept to represent shared structures between en-
vironments (Thrun & Schwartz, 1994; Tessler et al., 2017;
Schaul et al., 2018). Several recent works proposed unsuper-
vised skill discovery algorithms that discover useful skills
without a reward function (Eysenbach et al., 2018; Sharma
et al., 2019; Campos et al., 2020; Liu & Abbeel, 2021b;a;
Shafiullah & Pinto, 2022). They demonstrated that their
skills represent consistent and distinct behaviors and can be
reused to accelerate learning on downstream tasks. How-
ever, their works focused on discovering skills in stationary
environments or kept a skill being trained within an episode,
which is insufficient to learn or represent shared structures.

In this paper, we propose a new unsupervised skill dis-
covery algorithm that discovers skills that can represent
shared structures across changing environments. We repre-
sent shared structures as compositions of skills and hypoth-
esize that in order to obtain such skills, we must learn the
skills that retain previously obtained knowledge and that
their compositions maximize state coverage in changing
environments. To implement this idea, our algorithm learns
incremental skills and encourages a new skill to represent
distinct and consistent behaviors that expand the state cover-
age constructed with the compositions of previously learned
skills. Figure 1 shows the overview of our algorithm.

We also introduce a skill evaluation process to prevent our
skills from containing redundant skills, which is a common
degenerate case in previous work. Our evaluation process
decides whether to retain a new skill based on similarities
between previously acquired skills and how much the new

1

Unsupervised Skill Discovery for Learning Shared Structures across Changing Environments

Figure 1. Overview of our unsupervised skill discovery algorithm. We design our algorithm to discover skills that can represent shared
structures across changing environments. Our algorithm trains skills in an incremental fashion and encourages a new skill to expand the
state coverage constructed with compositions of previously learned skills. The arrows denote learned skills and their colors denote the
environments in which the skills are discovered. The darker-colored arrows denote the skills that maximize state coverage.

skill contributes to expanding state coverage. The similar-
ities between skills are estimated by leveraging Successor
Features (SFs) that encode the behaviors induced by skills
as multidimensional variables (Barreto et al., 2017). In
changing environments where data streams are commonly
much larger than what an agent can retain (Schaul et al.,
2018), our evaluation process can improve the scalability of
unsupervised skill discovery algorithms.

The main contributions of our work are three-fold: 1) we
introduce a novel unsupervised skill discovery algorithm
that learns a set of skills that can represent shared struc-
tures across changing environments, 2) we present a skill
evaluation process to ensure that recursive extensions of
a skill set improve its usefulness with respect to shared
structure representation, and 3) we design new changing
environments and evaluate our algorithm against baselines
including state-of-the-art unsupervised skill discovery al-
gorithms. The experimental results demonstrate that our
skills can represent the shared structures across changing
maze navigation and locomotion environments, retaining
previously obtained knowledge. We also observe that our
skills are useful to accelerate learning on downstream tasks.

2. Related Work
Continual RL (CRL) is a paradigm where an agent continu-
ally learns a sequence of tasks while leveraging previously
acquired knowledge. CRL algorithms can be broadly di-
vided into three categories: explicit knowledge retention,
learning to learn, and leveraging shared structure (Khetarpal
et al., 2022). Explicit knowledge retention algorithms save
an independent model or dataset obtained for each task
(Rusu et al., 2016; Isele & Cosgun, 2018; Rolnick et al.,
2019). It is the most straightforward way to prevent catas-

trophic forgetting in continual settings. However, it causes
inefficient storage utilization and hinders an agent from uti-
lizing knowledge obtained from previous tasks. Learning
to learn algorithms, also called meta-learning algorithms,
seek to improve an agent’s own learning process. These
algorithms generally train a neural network to represent the
learning process itself or optimize the initialization parame-
ters for fast fine-tuning (Duan et al., 2016; Finn et al., 2017;
Nagabandi et al., 2018). Unlike the above two categories
of CRL algorithms, leveraging shared structure algorithms
attempt to learn shared structures across tasks and reuse
them to adapt to new downstream tasks (Devin et al., 2017;
Frans et al., 2017; Tessler et al., 2017). Our work falls into
this category and seeks to represent shared structures across
changing environments with a set of skills learned without
a reward function.

Discovering skills without a reward function has been an
active research area in the context of RL. VIC (Gregor et al.,
2016) discovered skills that allow an agent to have the most
control over an environment by maximizing the mutual in-
formation between final states and skills. Similarly, DIAYN
(Eysenbach et al., 2018) and DADS (Sharma et al., 2019)
maximized the mutual information between individual states
and skills to learn skills that represent diverse and consistent
behaviors. EDL (Campos et al., 2020) presented theoretical
and empirical evidence that skills learned with the above
algorithms offer poor state space coverage due to an in-
sufficient exploration issue. APT (Liu & Abbeel, 2021b)
and APS (Liu & Abbeel, 2021a) demonstrated that particle-
based entropy maximization can be a solution to handle the
limitation. Whereas these previous works focused on dis-
covering skills in stationary environments, our work seeks
to discover skills in non-stationary environments in which
environment dynamics change over time. Most closely re-

2

Unsupervised Skill Discovery for Learning Shared Structures across Changing Environments

lated to our work is DISk (Shafiullah & Pinto, 2022). DISk
learned diverse and distinct incremental skills in changing
environments without forgetting previously learned skills.
However, unlike this work, our algorithm discovers skills
that can represent shared structures across changing environ-
ments. Furthermore, while DISk retains all skills learned in
past environments, we introduce the skill evaluation process
to prevent saving redundant skills.

Barreto et al. (2017) introduced the concept of SFs and
demonstrated that the SFs can be a major breakthrough
for transfer in RL. The Option Keyboard (Barreto et al.,
2019) used SFs to combine known options to create new
options without additional learning. Barreto et al. (2018)
also showed that SFs provide an efficient way to carry out
Generalized Policy Improvement (GPI) and Generalized
Policy Evaluation (GPE). These generalized operators al-
low an agent to decompose complex problems into simpler
multiple subtasks. In addition to transfer in RL, SFs have
been actively studied in a variety of ways. Ramesh et al.
(2019) interpreted the cluster centers as landmark states or
subgoals by clustering the SFs of rollout states. Machado et
al. (2020) proposed the count-based exploration algorithm
that uses the norm of learned SFs as an exploration bonus.
Unlike these works, our method utilizes SFs to estimate
similarities between learned skills.

3. Preliminaries
3.1. Markov Decision Process (MDP)

The MDP is a framework for sequential decision-
making problems, which can be represented as the tuple
(S,A, P,R, ρ0, γ, T). S and A are the set of states s and
actions a, respectively. P : S×A×S → R+ represents the
state transition model. R : S ×A→ R is the reward func-
tion, ρ0 : S → R+ is the initial state distribution, γ is the
discount factor, and T denotes the horizon. An agent takes
an action sampled from a policy π : S → P (A), which
maps states to a probability distribution over actions. The
agent’s goal is to find the optimal policy π∗that maximizes
the expected cumulative rewards.

RL is an approach to achieving this goal when the model of
environments is not known. One of the key elements in RL
is the state-action value function Qπ(s, a). The state-action
value function is the expected return value obtained when
the agent takes the action a in the state s and follows the
policy π. This can be written as follows:

Qπ(s, a) = Eπ

[∑∞
i=tγ

i−tri+1|St = s,At = a
]
.

The state-action value function is utilized in most RL to
find the optimal policy by deriving argmaxat ∈ AQ(st, at),
which selects the action at that maximizes the expected
return from state st.

3.2. Successor Features (SFs)

Suppose that the reward function is a linear combination of
features ϕ(s, a, s′) : S ×A×S → Rd and weight w ∈ Rd,
which can be written as r(s, a, s′) = ϕ(s, a, s′)⊤w. The
weight w is also called a task vector, as it reflects prefer-
ences for each feature component. Now we can rewrite the
state-action value function as follows:

Qπ(s, a) = Eπ

[∑∞
i=tγ

i−tϕ⊤i+1w|St = s,At = a
]

= Eπ

[∑∞
i=tγ

i−tϕi+1|St = s,At = a
]⊤

w

≡ ψπ(s, a)⊤w.

Barreto et al. (2017) called ψπ(s, a) the Successor Features
(SFs) of (s, a) under policy π, as they interpreted the SFs
as a generalization of the Successor Representation (SR).
The SFs ψπ(s, a) represent the expected discounted sum
of features ϕ(s, a, s′) when following policy π in a given
environment. The SFs can then be regarded as a multidimen-
sional value function with rewards ϕ(s, a, s′), which means
that they can be trained using standard RL algorithms. In
this work, we use SFs to estimate the similarities between
the retained skills and the new skill.

4. Proposed Method
We consider an unsupervised RL problem in changing en-
vironments. This problem consists of two phases. In the
first phase, an agent seeks to obtain useful knowledge from
changing environments with reward-free interactions. These
reward-free interactions are assumed to be inexpensive so
that the agent can freely interact with the environments. Dur-
ing the second phase, knowledge obtained from the previous
phase is evaluated based on how much it helps the agent
adapt to downstream tasks. As we discussed in Section
1, shared structures across changing environments are an
efficient form to retain and transfer knowledge.

Similar to previous skill discovery algorithms, we encode
skills as latent variables z ∈ Z and design independent skill
policies πzi(a|s) for each skill. The skill policies take the
state as input and output primitive action at every step. For
brevity of notation, we denote the skill policies as πi(a|s).

4.1. Discovering Skills for Learning Shared Structures
across Changing Environments

The shared structures between changing environments can
be represented in various forms. Our goal is to discover
skills that can represent the shared structures in their com-
positions. We hypothesize that to discover such skills, we
should learn skills that retain previously obtained knowl-
edge and maximize state coverage with their compositions.
Building on this idea, our algorithm learns skills incremen-

3

Unsupervised Skill Discovery for Learning Shared Structures across Changing Environments

tally and defines a master policy π(z|s) that encourages a
new skill to represent behaviors that can expand the state
coverage constructed with previously learned skills. The
master policy selects a skill and the skill is kept for a fixed
number of steps. Unlike the skill policies that should repre-
sent distinct and consistent behaviors to be reusable across
environments, the master policy should be able to adap-
tively combine skills to explore the environment encoun-
tered. Note that the previously learned skill policies are
fixed when we learn a new skill policy.

Here we describe our objective. In our objective, both the
new skill policy and the master policy maximize the entropy
of statesH(S). This term encourages the new skill policy to
represent distinct behaviors from previously learned skills.
At the same time, this term encourages the master policy to
compose skills to maximize state coverage. Since previously
learned skills had been trained to represent behaviors maxi-
mizing coverage of the past environments, the master policy
will choose these skills until new behaviors are required to
expand coverage in the environment encountered.

The master policy is also trained to maximize the entropy of
skills conditioned on statesH(Z|S), which allows an agent
to select diverse skills including the new skill when the
agent has no obvious skills to efficiently expand state cov-
erage. This helps the new skill policy represent behaviors
expanding state coverage as it is trained to represent distinct
behaviors from previously acquired skills. In addition, the
skill policy minimizes the entropy of the next states condi-
tioned on states and the current skill H(S′|S,Z) because
it should represent consistent behaviors to be reusable. As
a result, given the previously learned skill policies π1:m−1,
our objective can then be written as follows:

F(θ) ≜ H(S) +H(Z|S)−H(S′|S,Z = zm) (1)

where zm is a new skill being trained. Appendix A describes
the distinguishing features of our objective.

While the second term in our objective can be optimized
with MaxEnt RL algorithms, the other two terms are in-
tractable to compute, as we have no access to the true distri-
bution of states and the dynamics. We address this issue by
utilizing practical techniques to estimate both terms. First,
we maximize the third term by deriving its variational lower
bound as follows:

−H(S′|S,Z = zm)

=
∑

s,s′p(s
′, s|zm) log p(s′|s, zm)

= Es,s′∼πm [log q(s′|s, zm)] + Es∼πm [DKL(p∥q)]

≥ Es,s′∼πm
[log q(s′|s, zm)], (2)

where we use the non-negativity of KL divergence and in-
troduce q(s′|s, z) as a variational approximation of the true
transition function p(s′|s, z).

Next, we approximate the first termH(S) with the nonpara-
metric particle-based entropy estimator (Singh et al., 2003),
similar to (Liu & Abbeel, 2021b; Shafiullah & Pinto, 2022).
The key concept behind this estimator is to measure the spar-
sity of the distribution based on the distance between each
particle and its k nearest neighbor. To be specific, given N
samples {xi}Ni=1 ∼ p(X) defined on a q-dimensional space
X ∈ Rq , the particle-based approximation for a distribution
p(X) can then be written as follows:

Ĥk,X(p) = − 1

N

N∑
i=1

ln
kΓ(q/2 + 1)

Nπq/2Rq
i,k,X

+ b(k),

where Γ is the gamma function, b(k) is a bias correction
term, and Ri,k,X=∥xi − x(k)i ∥ is the Euclidean distance
between particle xi and its kth nearest neighbor x(k)i . We
can simplify this approximation by ignoring the terms inde-
pendent of xi as follows:

Ĥk,X(p) ∝
N∑
i=1

ln ∥xi − x(k)i ∥. (3)

To make the distance between particles meaningful for rep-
resenting shared structures, we incorporate our inductive
bias that the skill policies should be shared across environ-
ments, and the master policy should be able to combine
skills differently depending on environments. To encode
this bias, we define two independent mapping functions
σS(s) and σM (s) for the skill policies and the master pol-
icy, respectively. The former maps states to agent-specific
representations such as the agent’s velocity and the latter
maps states to environment-specific representations such as
the positions of obstacles.

Based on the above approximations, we can train both the
master policy and the new skill policy in a reinforcement-
learning style. The master policy can be trained to maximize
the first and the second terms in our objective with the
intrinsic rewards rM (s, a, s′) defined as follows:

rM (s, a, s′)=∥σM (s′)− σM (s′)(k)∥ − log π(z|s). (4)

Similarly, the new skill policy can be trained to maximize
the first and third terms in our objective with the intrinsic
rewards rS(s, a, s′) defined as follows:

rS(s, a, s
′)=∥σS(s′)− σS(s′)(k)∥+ log q(s′|s, zm). (5)

4.2. Saving Discovered Skills with Evaluation Process

A common degenerate case in unsupervised skill discovery
algorithms is that skills represent static behaviors or are
distinguished by small state differences. This issue is exac-
erbated when the dynamics of environments is complicated.

4

Unsupervised Skill Discovery for Learning Shared Structures across Changing Environments

Figure 2. Changing environments introduced in our work. The shared structures across both changing environments can be represented
as compositions of skills. Top: maze2d-umaze-continual-v1. The positions of the three purple boxes change over time. Bottom:
HalfCheetah-continual-v3. The obstacles added to the environment change over time.

In our settings, such degenerate skills may retain redundant
knowledge to represent shared structures, and we need to
prevent these degenerate skills from being included in our
skills. To this end, we introduce a skill evaluation process
that determines whether to retain a new skill. Our evaluation
process is designed to ensure that recursive expansions of
a skill set improve its usefulness in terms of representing
shared structures between changing environments.

We evaluate the usefulness of a skill on the following two
criteria. First, the set of skills including the new skill should
provide wider state coverage than that without the new skill.
This can be formulated as whether the state entropy induced
by the compositions of skills increases as the new skill is
added. Second, a new skill should not be similar to the skills
already stored. For this, we use SFs to encode the dynamics
induced by each skill as a multidimensional variable. The
SFs of (s, a) under a skill policy πi are defined as follows:

ψπi(s̄, a) = Eπi
[

K∑
k=t

γk−tϕk+1|St = s̄, At = a],

where K is the number of steps in which a skill is kept and
the input state s̄ of SFs is the state s concatenated with the
ratio between t and K as a skill can be initiated at any state.
This allows us to estimate the similarity between two skills
as the cosine similarity SC between their SFs as follows:

SC(ψ
πi(s̄, a), ψπj (s̄, a)) =

ψπi(s̄, a)⊤ψπj (s̄, a)

∥ψπi(s̄, a)∥∥ψπj (s̄, a)∥
. (6)

Now, we can formalize the second criterion as whether the
maximum similarity between the new skill and previously

learned skills is less than a certain threshold. Note that SFs
of previously learned skills are retrained in the environment
where the new skill is added. This is because behaviors
induced by them can be changed due to changes in envi-
ronments. SFs can be optimized with any RL algorithm as
we discussed in Section 3. To sum up, given the previously
acquired skills z1:m−1, the criteria to save a new skill zm
can be written as follows:

Criterion 1. Ĥ1:m−1(S) ≤ Ĥ1:m(S) (7)

Criterion 2. max
1≤i≤m−1

Eπ1:m
[SC(ψ

πm , ψπi)] ≤ η (8)

where Ĥ1:m(S) is the estimated entropy of states obtained
with π(z|s) and π1:m(a|s), and η is the similarity threshold.
Our evaluation process is repeated whenever a new skill is
added. Once a new skill is saved, it is fixed and then used
to evaluate subsequent skills. Appendix B describes our
algorithm’s overall training procedure in further detail.

5. Experiments
Our experiments aim to answer the following questions: (1)
Can our algorithm discover a set of skills that represent
shared structures across changing environments? (2) Can
our skill evaluation process prevent degenerate skills from
being included in a skill set? (3) Can our skills accelerate the
learning of downstream tasks? To answer these questions,
we introduce new changing maze navigation and locomo-
tion environments called maze2d-umaze-continual-v3 and
HalfCheetah-continual-v3. As described in the top row of
Figure 2, the maze2d-umaze-continual-v1 is an extension

5

Unsupervised Skill Discovery for Learning Shared Structures across Changing Environments

Figure 3. Skills learned for HalfCheetah-continual-v3. The environment that the skills are visualized has a tunnel section from 4.0 and a
hurdle section from 16.0, denoted as dotted lines in the plots. Left: Trajectories of learned skills. The top row shows the X positions of
the agent over time for each skill, and the bottom row shows the X positions of the agent over time for skills composed to maximize state
coverage as in our algorithm. In contrast to baselines, our algorithm learned skills that can handle hurdles. Right: Visualization of our
skills for a tunnel and hurdles. These skills are depicted by green and cyan lines in the rightmost plot of the bottom row.

of maze2d-umaze-v1 from D4RL (Fu et al., 2020). There
are three boxes and their positions change over time. We
learn three skills for each configuration of the boxes. An
agent is spawned at the center of the maze and the area the
agent can explore depends on the positions of the boxes.
The shared structures across the maze environment are con-
nections between passages leading up, down, left, and right,
which cannot be represented with a single skill.

As described in the bottom row of Figure 2, HalfCheetah-
continual-v3 is a variant of HalfCheetah-v3 provided by
OpenAI Gym (Brockman et al., 2016). We add a tunnel
and hurdles as obstacles to the environment, and the added
obstacles change over time. We discover three skills for
each configuration of the added obstacles. The behaviors
required to pass through the two sections are entirely oppo-
site to each other. The agent must jump to cross the hurdles,
while it must crawl with its head down to get through the
tunnel. This prevents the agent from passing through both
sections with a single skill. The shared structures across the
changing environment are connections between run, hurdle,
and tunnel sections. Appendix C provides further details on
our environments and experimental setup.

We would like to emphasize that to represent the shared
structures of changing environments with skills, we must
obtain skills that allow an agent to explore every component
of the shared structures. This poses a significant challenge to
existing unsupervised skill discovery algorithms that suffer
from catastrophic forgetting or assume a skill is fixed within
an episode in the training phase. Note that in the figure of
this section, we encode the order in which skills are saved
in the rainbow color map ranging from red to purple.

Figure 4. Left: maze2d-umaze-topright-v1. Skills are visualized in
this environment that an agent encountered in the past. Right: Tra-
jectories generated by compositions of skills learned for maze2d-
umaze-continual-v1. Skills learned with baselines are combined
to maximize state coverage as in our method. The composition of
our skills represents the structure of this maze.

5.1. Can Our Skills Represent Shared Structures across
Changing Environments?

Here we demonstrate that our algorithm can learn skills
that represent shared structures across changing environ-
ments without a reward function. We evaluate our algorithm
against state-of-the-art unsupervised skill discovery algo-
rithms DIAYN, DADS, and DISk in HalfCheetah-continual-
v3 and maze2d-umaze-continual-v1. To be a fair compari-
son, all baselines were implemented with independent skill
networks as in our algorithm. A Comparison with DIAYN
and DADS shows how important it is to retain knowledge ob-

6

Unsupervised Skill Discovery for Learning Shared Structures across Changing Environments

Figure 5. Analysis of our skill evaluation process in HalfCheetah-
continual-v3. The plots show the X position of the agent over time.
Top: Skills learned with our evaluation process. These skills do
not include redundant skills and their composition achieves state
coverage comparable to that of all skills. Bottom: Skills learned
without our evaluation process.

tained from previous environments for representing shared
structures, while a comparison with DISk shows how impor-
tant it is to learn a new skill that expands the state coverage
constructed with compositions of previously learned skills.
Please refer to Section 2 for further details about baselines.

We visualize the trajectories of the skills learned for
HalfCheetah-continual-v3 in Figure 3. The environment
in which the skills are visualized is the past environment
including a tunnel section from 4.0 to 12.0 and a hurdle
section from 16.0. The top row in Figure 3 shows each
learned skill’s trajectories of an agent within an episode.
Since a skill cannot represent behaviors that can handle both
a tunnel and hurdles, we observe that all the skills represent
behaviors that cannot even go through a tunnel or can go
through a tunnel but not jump over hurdles. The bottom row
of Figure 3 shows the trajectories generated by composing
skills as in our algorithm. While the composition of the
skills learned with baselines still cannot generate behaviors
that can explore the hurdle section, the composition of our
skills generates flexible behaviors that can handle both the
tunnel and the hurdle sections. These results demonstrate
that discovering skills that can expand state coverage is im-
portant to represent shared structures with learned skills.
We visualize our skills that can handle a tunnel or hurdles
on the right side of Figure 3.

Figure 6. Analysis of our skill evaluation process in Ant-v3. Left:
Skills learned without our evaluation process. They consist of
all skills colored from red to purple, including redundant skills
that represent static or similar behaviors. Right: Skills learned
with our evaluation process. Although these skills consist of fewer
skills colored from red to cyan, they represent diverse behaviors
comparable to those represented by all the skills.

Figure 4 shows the trajectories of learned skills on maze2d-
umaze-continual-v3. The trajectories are generated by com-
posing skills to maximize state coverage in the environment
described on the left. An agent had already encountered this
environment for the second time. DIAYN and DADS fail to
learn skills that represent the structure of this environment.
It’s because all of their skills are re-trained in the last maze
environment, described in the rightmost column in Figure 2.
This causes their skills to forget previously obtained knowl-
edge. We empirically observe that their skills are mostly
directed downwards and only a few move upwards at very
low speeds as one box is right above the agent’s starting
position in the last environment. In contrast, our algorithm
successfully represents the structure of this maze without
forgetting previously learned skills. DISk fails to represent
the structure with skills even though it can retain previously
obtained skills. These results indicate that learning the skills
allowing an agent to expand state coverage is important to
obtain skills that can represent shared structures.

5.2. Can Our Skill Evaluation Process Prevent Our
Skills from Containing Degenerate Skills?

We demonstrate that our skill evaluation process can prevent
degenerate skills from being stored without compromising
the usefulness of the skill set. To clarify the impact of our
skill evaluation process, we have an agent discover five
skills each in the first and the second obstacle configuration
of HalfCheetah-continual-v3 described in Figure 2. In these
consecutive environments, a skill that overlaps with previ-
ously learned skills or moves at a lower speed than them is
regarded as a degenerate skill because it is not needed to
expand state coverage.

Figure 5 shows how our skill evaluation process works in
discovering skills. The top row depicts the skills learned
with our skill evaluation process. We observe that the sec-
ond and third skills discovered in the first environment are

7

Unsupervised Skill Discovery for Learning Shared Structures across Changing Environments

Table 1. Average returns computed over 100 episodes on downstream tasks. These results show that our agent significantly outperforms
baselines in both maze and locomotion downstream tasks. This indicates that our skills are more efficient than those learned with baselines
to transfer knowledge.

METHOD MAZE2D-MEDIUM HALFCHEETAH-HURDLE-TUNNEL-SEQUENCE HALFCHEETAH-TUNNEL-HURDLE-SEQUENCE

DISK 127.67 ± 60.51 88.99 ± 21.60 304.47 ± 20.44
OURS 286.15 ± 47.46 608.69 ± 86.85 619.38 ± 47.32

DIAYN 7.96 ± 0.79 69.03 ± 16.82 63.83 ± 5.17
DADS 22.63 ± 1.16 70.53 ± 2.04 237.90 ± 3.29

Figure 7. Downstream tasks used in our work. Left: maze2d-medium-v1. Middle: HalfCheetah-hurdle-tunnel-sequence-v3. Right:
HalfCheetah-tunnel-hurdle-sequence-v3.

abandoned because these skills represent similar or slower
behaviors than an already saved skill colored orange. The
bottom row shows the skills learned without our skill evalu-
ation process. The set of skills consists of all learned skills
including redundant skills. We also notice that the state cov-
erage obtained with the compositions of skills learned with
our evaluation process is comparable to the state coverage
obtained using the composition of all learned skills. These
results indicate that our skill evaluation process can prevent
our skills from including redundant skills without forgetting
useful skills, which is important to improve the scalability of
skill discovery algorithms. We provide additional analysis
of our evaluation process in Appendix E.

Our skill evaluation process can also be utilized when we
learn diverse and consistent skills in stationary environments.
To demonstrate this, we modified our algorithm to sample
skills randomly at the beginning of the episode and then
discover skills with our evaluation process on Ant-v3. In this
environment, an agent is spawned at the origin of an open x-
y plane without obstacles. The trajectories of skills learned
with and without our skill evaluation process are visualized
in the left and right plots of Figure 6. We observe that the
skills learned with our evaluation process represent diverse
behaviors comparable to those represented by all learned
skills, even though they consist of fewer skills. These results
demonstrate that our evaluation process can prevent static
or redundant skills from being saved when learning skills in
stationary environments.

5.3. Can Our Skills Accelerate Learning on
Downstream Tasks?

In this section, we show how our skills are useful on down-
stream tasks. Figure 7 depicts the downstream tasks used:
maze2d-medium-v1, HalfCheetah-hurdle-tunnel-sequence-
v3, and HalfCheetah-tunnel-hurdle-sequence-v3. The
maze2d-medium-v1 provided by D4RL (Fu et al., 2020)
has a more complex and larger layout than maze2d-umaze-
v1 and requires an agent to reach the fixed destination. The
goal of the second and third downstream tasks is to move for-
ward as fast as possible in each environment where hurdles
and tunnels alternate in a different order. An agent in these
tasks can leverage skills learned in HalfCheetah-continual-
v3. We use provided dense rewards to train a hierarchical
agent on all downstream tasks.

Table 1 summarizes the average returns on our downstream
tasks. These numerical results are computed over 100
episodes. In maze2d-medium-v1, DISk achieves relatively
good performance, unlike other baselines. This implies
that retaining previously learned skills is critical to trans-
fer knowledge in changing environments. We observe that
our algorithm significantly outperforms baselines on all the
downstream tasks. This indicates that our skills are more
efficient to retrain and transfer knowledge obtained from
changing environments. Appendix F provides additional
results on our downstream tasks, including learning curves
and skill visualizations.

8

Unsupervised Skill Discovery for Learning Shared Structures across Changing Environments

6. Conclusion
We presented a new unsupervised skill discovery algorithm
that learns a set of skills that can represent shared struc-
tures across changing environments. Our algorithm learns
incremental skills and encourages a new skill to expand
state coverage constructed with compositions of previously
learned skills. We also introduced a skill evaluation pro-
cess to prevent our skill set from including degenerate skills.
Our experimental results demonstrated that our skills re-
tain knowledge from previous environments and represent
shared structures across changing maze navigation and loco-
motion environments. We also showed that our skills allow
an agent to transfer knowledge to accelerate adaptation to
new downstream tasks.

There are several limitations to be addressed in future work.
First, we use the predefined mapping functions to discover
skills with meaningful representations, similar to previous
works (Eysenbach et al., 2018; Sharma et al., 2019; Shafi-
ullah & Pinto, 2022). While learning these functions is
orthogonal and complementary to our work, we expect that
combining our algorithm with state-of-the-art representation
learning algorithms would be a promising research direction
to alleviate this limitation (Laskin et al., 2020; Yarats et al.,
2021; Laskin et al., 2022). Second, we focus on discovering
skills alone without considering where to initiate or termi-
nate them. We plan to leverage demonstrations or offline
data to learn these conditions without domain knowledge
(Lee & Seo, 2020; Jiang et al., 2022). Third, we assume a
passive non-stationary setting where an agent cannot control
the order of environments to be encountered. This setting
can restrict fascinating research opportunities, such as re-
moving previously learned skills to make the set of skills
more compact. We think that discovering skills with active
non-stationary settings where an agent can directly affect the
non-stationary of environments can be another interesting
research direction (Khetarpal et al., 2022).

Acknowledgements
This research was supported by the Challengeable Fu-
ture Defense Technology Research and Development Pro-
gram through the Agency For Defense Development(ADD)
funded by the Defense Acquisition Program Administra-
tion(DAPA) in 2023(No.915027201), the Institute of New
Media and Communications, the Institute of Engineering
Research, and the Automation and Systems at Seoul Na-
tional University.

References
Barreto, A., Dabney, W., Munos, R., Hunt, J. J., Schaul, T.,

van Hasselt, H. P., and Silver, D. Successor features for
transfer in reinforcement learning. Advances in neural
information processing systems, 30, 2017.

Barreto, A., Borsa, D., Quan, J., Schaul, T., Silver, D.,
Hessel, M., Mankowitz, D., Zidek, A., and Munos, R.
Transfer in deep reinforcement learning using successor
features and generalised policy improvement. In Inter-
national Conference on Machine Learning, pp. 501–510.
PMLR, 2018.

Barreto, A., Borsa, D., Hou, S., Comanici, G., Aygün, E.,
Hamel, P., Toyama, D., Mourad, S., Silver, D., Precup,
D., et al. The option keyboard: Combining skills in
reinforcement learning. Advances in Neural Information
Processing Systems, 32, 2019.

Borsa, D., Barreto, A., Quan, J., Mankowitz, D., Munos,
R., Van Hasselt, H., Silver, D., and Schaul, T. Uni-
versal successor features approximators. arXiv preprint
arXiv:1812.07626, 2018.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,
Schulman, J., Tang, J., and Zaremba, W. Openai gym.
arXiv preprint arXiv:1606.01540, 2016.

Campos, V., Trott, A., Xiong, C., Socher, R., Giró-i Nieto,
X., and Torres, J. Explore, discover and learn: Unsu-
pervised discovery of state-covering skills. In Interna-
tional Conference on Machine Learning, pp. 1317–1327.
PMLR, 2020.

Devin, C., Gupta, A., Darrell, T., Abbeel, P., and Levine,
S. Learning modular neural network policies for multi-
task and multi-robot transfer. In 2017 IEEE international
conference on robotics and automation (ICRA), pp. 2169–
2176. IEEE, 2017.

Duan, Y., Schulman, J., Chen, X., Bartlett, P. L., Sutskever,
I., and Abbeel, P. Rl2: Fast reinforcement learn-
ing via slow reinforcement learning. arXiv preprint
arXiv:1611.02779, 2016.

Eysenbach, B., Gupta, A., Ibarz, J., and Levine, S. Diversity
is all you need: Learning skills without a reward function.
arXiv preprint arXiv:1802.06070, 2018.

Finn, C., Abbeel, P., and Levine, S. Model-agnostic meta-
learning for fast adaptation of deep networks. In Interna-
tional conference on machine learning, pp. 1126–1135.
PMLR, 2017.

Frans, K., Ho, J., Chen, X., Abbeel, P., and Schulman,
J. Meta learning shared hierarchies. arXiv preprint
arXiv:1710.09767, 2017.

9

Unsupervised Skill Discovery for Learning Shared Structures across Changing Environments

Fu, J., Kumar, A., Nachum, O., Tucker, G., and Levine,
S. D4rl: Datasets for deep data-driven reinforcement
learning, 2020.

Gregor, K., Rezende, D. J., and Wierstra, D. Variational
intrinsic control. arXiv preprint arXiv:1611.07507, 2016.

Griffiths, T. L., Callaway, F., Chang, M. B., Grant, E.,
Krueger, P. M., and Lieder, F. Doing more with less:
meta-reasoning and meta-learning in humans and ma-
chines. Current Opinion in Behavioral Sciences, 29:
24–30, 2019.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft
actor-critic: Off-policy maximum entropy deep reinforce-
ment learning with a stochastic actor. In International
conference on machine learning, pp. 1861–1870. PMLR,
2018.

Isele, D. and Cosgun, A. Selective experience replay for
lifelong learning. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 32, 2018.

Jiang, Y., Liu, E., Eysenbach, B., Kolter, J. Z., and Finn, C.
Learning options via compression. Advances in Neural
Information Processing Systems, 35:21184–21199, 2022.

Khetarpal, K., Riemer, M., Rish, I., and Precup, D. To-
wards continual reinforcement learning: A review and
perspectives. Journal of Artificial Intelligence Research,
75:1401–1476, 2022.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Laskin, M., Srinivas, A., and Abbeel, P. Curl: Contrastive
unsupervised representations for reinforcement learning.
In International Conference on Machine Learning, pp.
5639–5650. PMLR, 2020.

Laskin, M., Liu, H., Peng, X. B., Yarats, D., Rajeswaran,
A., and Abbeel, P. Unsupervised reinforcement learning
with contrastive intrinsic control. Advances in Neural
Information Processing Systems, 35:34478–34491, 2022.

Lee, S.-H. and Seo, S.-W. Learning compound tasks without
task-specific knowledge via imitation and self-supervised
learning. In International Conference on Machine Learn-
ing, pp. 5747–5756. PMLR, 2020.

Liu, H. and Abbeel, P. Aps: Active pretraining with suc-
cessor features. In International Conference on Machine
Learning, pp. 6736–6747. PMLR, 2021a.

Liu, H. and Abbeel, P. Behavior from the void: Unsuper-
vised active pre-training. Advances in Neural Information
Processing Systems, 34:18459–18473, 2021b.

Machado, M. C., Bellemare, M. G., and Bowling, M. Count-
based exploration with the successor representation. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 34, pp. 5125–5133, 2020.

Nagabandi, A., Clavera, I., Liu, S., Fearing, R. S., Abbeel,
P., Levine, S., and Finn, C. Learning to adapt in dynamic,
real-world environments through meta-reinforcement
learning. arXiv preprint arXiv:1803.11347, 2018.

Ramesh, R., Tomar, M., and Ravindran, B. Successor op-
tions: An option discovery framework for reinforcement
learning. arXiv preprint arXiv:1905.05731, 2019.

Rolnick, D., Ahuja, A., Schwarz, J., Lillicrap, T., and
Wayne, G. Experience replay for continual learning. Ad-
vances in Neural Information Processing Systems, 32,
2019.

Rusu, A. A., Rabinowitz, N. C., Desjardins, G., Soyer, H.,
Kirkpatrick, J., Kavukcuoglu, K., Pascanu, R., and Had-
sell, R. Progressive neural networks. arXiv preprint
arXiv:1606.04671, 2016.

Schaul, T., van Hasselt, H., Modayil, J., White, M., White,
A., Bacon, P.-L., Harb, J., Mourad, S., Bellemare, M.,
and Precup, D. The barbados 2018 list of open issues
in continual learning. arXiv preprint arXiv:1811.07004,
2018.

Shafiullah, N. M. and Pinto, L. One after another: Learning
incremental skills for a changing world. arXiv preprint
arXiv:2203.11176, 2022.

Sharma, A., Gu, S., Levine, S., Kumar, V., and Hausman, K.
Dynamics-aware unsupervised discovery of skills. arXiv
preprint arXiv:1907.01657, 2019.

Singh, H., Misra, N., Hnizdo, V., Fedorowicz, A., and Dem-
chuk, E. Nearest neighbor estimates of entropy. American
journal of mathematical and management sciences, 23
(3-4):301–321, 2003.

Tessler, C., Givony, S., Zahavy, T., Mankowitz, D., and Man-
nor, S. A deep hierarchical approach to lifelong learning
in minecraft. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 31, 2017.

Thrun, S. and O’Sullivan, J. Discovering structure in multi-
ple learning tasks: The tc algorithm. In ICML, volume 96,
pp. 489–497, 1996.

Thrun, S. and Schwartz, A. Finding structure in reinforce-
ment learning. Advances in neural information process-
ing systems, 7, 1994.

Yarats, D., Fergus, R., Lazaric, A., and Pinto, L. Reinforce-
ment learning with prototypical representations. In Inter-
national Conference on Machine Learning, pp. 11920–
11931. PMLR, 2021.

10

Unsupervised Skill Discovery for Learning Shared Structures across Changing Environments

A. Comparison to Prior Unsupervised Skill Discovery Algorithms
We would like to emphasize that our objective, H(S) +H(Z|S)−H(S′|S,Z), has several distinguishing features. The
key feature lies in how we utilize the first term, H(S), to maximize state coverage. In contrast to previous works that
maximize H(S) without composing skills, we maximize it by composing skills with a high-level policy introduced in our
work. Our experimental results demonstrate that this difference relieves individual skills from the burden of expanding
state coverage, allowing them to focus on representing consistent and distinct behaviors. Another key feature is that while
previous works typically minimize the H(Z|S) term to ensure that each skill exhibits a unique behavior, we maximize this
term to encourage the master policy to compose skills in diverse ways.

B. Implementation Details
B.1. Training Procedure

Algorithm 1 describes the overall procedure by which our algorithm learns a new skill policy πm(a|s) in an incremental
fashion. Before learning the new skill policy, we fix the previously learned skills and reinitialize other models. We alternately
update dynamics qϕ(s′|s, z) and both policies π(z|s) and πm(a|s), which both generate learning signals for each other.
While both policies can be optimized with any RL algorithm, we use Soft Actor-Critic (SAC) (Haarnoja et al., 2018) to
update them in our experiments. We determine whether to retain the learned skill policy πm(a|s) by our skill evaluation
process, described in Algorithm 2. We randomly compose skills instead of using our master policy π(z|s) so that SFs can be
trained on a variety of data. SFs are trained to minimize the temporal difference (TD) errors with SGD. Note that we train all
the SFs when an environment is changed. It’s because our evaluation process compares the skills based on their behaviors
induced in the same environment, even if the environments in which they were trained are different. We use Adam optimizer
(Kingma & Ba, 2014) to update the parameters of all models. The other hyper-parameters we used in our experiments are
described in Appendix C.

Algorithm 1 Unsupervised Skill Discovery for Learning Shared Structures across Changing Environments
Given: Skill set Π
Add new skill πm
Fix previously learned skills π1:m−1

Re-initialize π(z|s), q(s′|s, z), and all ψπ1:m(s̄, a)

while not converged do
Collect N trajectories τ with π(z|s), and π1:m(a|s)
Update q(s′|s, z) using SGD to maximize Equation (2)
Compute rM and rS for trajectories τ with Equation (4) and (5)
Update π(z|s) and πm(a|s) with rM and rS respectively using any RL algorithm

end while
Estimate state entropyHm(S) for trajectories τ
Π← Π ∪ SkillEvaluator(π1:m, ψπ1:m ,Hm(S))

Algorithm 2 SkillEvaluator(π1:m, ψπ1:m ,Hm(S))

Given: Hm−1(S)
while Not converged do

Collect N ′ trajectories τ ′ by composing π1:m(a|s) randomly
Update ψπ1:m(s̄, a) using any RL algorithm

end while
if Hm(S) > Hm−1(S) and maxi Eπ1:m

[SC(ψ
πm , ψπi)] < η then

return πm
end if
return {}

11

Unsupervised Skill Discovery for Learning Shared Structures across Changing Environments

B.2. Network Architecture

Our algorithm consists of four main models: the master policy π(z|s), the skill policies πi(a|s), the skill dynamics q(s′|s, z),
and the SFs ψπi(s, a). All models are represented by neural networks. The master policy and the skill policy have two
hidden layers of 256 units with ReLU activations. The skill policy outputs the parameters of Gaussian distribution to handle
continuous action space, and the master policy outputs the parameters of categorical distribution as we encode skills as
discrete latent variables. The skill dynamics have the same network structure described in Sharma et al. (2019). Similar to
both policies, SFs have two hidden layers of 256 units and each layer is followed by ReLU activations. While SFs for each
skill is implemented with an independent network in our experiments, SFs of all skills also can be represented as a single
shared network that takes a skill zi as an additional input (Borsa et al., 2018).

C. Experimental Details
C.1. Environments

Our work introduces two changing environments: maze2d-umaze-continual-v1 and HalfCheetah-continual-v3. The following
paragraphs provide further details about these environments.

C.1.1. MAZE2D-UMAZE-CONTINUAL-V1

We show the introduced changing environment maze2d-umaze-continual-v1 in Figure 2 of the main paper. This environment
is an expansion of maze2d-umaze-v1 from D4RL (Fu et al., 2020) and consists of four sub-environments: maze2d-
umaze-topleft-v1, maze2d-umaze-topright-v1, maze2d-umaze-bottomleft-v1, and maze2d-umaze-bottomright-v1. These
sub-environments are constructed by changing the position of the three boxes over time. The box has a square shape
measuring 0.5 on each side and restricts the agent’s movement. An agent is spawned at the center of this environment [2.8,
2.8]. A state represents the position and velocity of the agent in an XY plane, and an action represents the force pushing the
agent to each axis. Following previous skill discovery algorithms, we exclude the agent’s position from the input of the
skill policy, which makes the skill policy represent behaviors agnostic to the agent’s location. The mapping function σM (s)
restricts the state to the agent’s position, and σS(s) restricts the state to the agent’s velocity.

C.1.2. HALFCHEETAH-CONTINUAL-V3

Figure 2 of the main paper describes the introduced changing environment HalfCheetah-continual-v3. In this environment,
we add a tunnel and hurdles as obstacles to the environment, and the configuration of added obstacles changes over time.
The height and width of the hurdles are 0.3 and 0.1. We positioned the hurdles 4.0 apart. The height of the tunnel is 0.9. To
ensure that an agent could not pass both sections without combining skills, we designed the agent to know the distance to
the nearest forward obstacle but not its type. We empirically confirmed that none of the skills learned with baselines or our
algorithm could pass both sections without being combined with other skills. We encouraged the agent to learn forward

HYPERPARAMETER VALUE

LEARNING RATE 0.0003
DISCOUNT FACTOR 0.99

MINI-BATCH SIZE (MASTER) 128
MINI-BATCH SIZE (OTHERS) 256

ADAM β1 0.9
ADAM β2 0.999

TEMPERATURE 0.1
TOTAL NUMBER OF SKILLS 12

ON-POLICY SAMPLE (MAZE) 1800
ON-POLICY SAMPLE (CHEETAH) 5400

SKILL SPAN (MAZE) 10
SKILL SPAN (CHEETAH) 30
NEAREST NEIGHBOR k 3

SIMILARITY THRESHOLD η 0.85

Table 2. Hyperparameters

12

Unsupervised Skill Discovery for Learning Shared Structures across Changing Environments

movements by restricting it from moving backward from its starting position. Similar to maze2d-umaze-continual-v1, the
agent’s position is excluded from the input of the skill policy. The mapping function σM (s) maps the state to the agent’s
X-axis position and σS(s) restricts the state to the agent’s x-axis velocity.

C.2. Hyperparameters

Table 2 describes the hyperparameters used in our experiments. We used a coarse grid search to tune the hyperparameters
(e.g., policy learning rate over 0.0001, 0.0003, and 0.001, mini-batch size for master policy over 32, 64, 128, and 256, and
mini-batch size for skill policy over 128, 256, 512, and 1024).

Figure 8. Visualizing skills learned for HalfCheetah-Continual-v3

D. Visualizing Learned Skills
Figure 8 shows how the learned skills handle hurdles and a tunnel in the introduced changing environment HalfCheetah-
continual-v3. All algorithms except the baseline DIAYN have learned skills that allow the agent to pass through the tunnel.
These skills commonly represent behaviors that make the agent lower his head or curl his front legs in front of the tunnel.
Baselines cannot learn skills that enable an agent to explore the hurdle section, which is an important element of shared
structures. In contrast, our algorithm learns various skills that can handle hurdles. These skills represent behaviors that make
the agent lift the front and hind legs in turn or jump in front of hurdles.

13

Unsupervised Skill Discovery for Learning Shared Structures across Changing Environments

Figure 9. Visualizing skills learned with our skill evaluation process on the sequence of HalfCheetah-v3 and HalfCheetah-tunnel-v3
environments. Each plot shows the X positions of the agent over time for skills. The saved skills are marked with red text.

E. Additional Analysis of skill evaluation process
Figure 9 describes the overall skill evaluation process summarized in Figure 5 of the main paper. We discover five skills
each in the first and the second obstacle configuration of HalfCheetah-continual-v3. Note that the first skill is saved without
our evaluation process as we do not have skills to compare. For the first environment, our evaluation process decides to save
the second skill as it is faster than the first skill. However, the other skills learned in this environment are all abandoned. It’s
because they represent similar or slower behaviors than the second skill.

As described in the bottom row, the skills learned in the first environment cannot handle a tunnel. In contrast, the sixth skill
represents behaviors that can explore the tunnel section. Since this skill is distinct from previously acquired skills and is
faster than them on the tunnel section, our evaluation process determines to save it. All subsequent skills represent faster
behaviors than those of the sixth skill. However, the skills other than the last skill are not saved, as their similarities to the
sixth skill are greater than the similarity threshold η.

Figure 10. Learning curves for downstream tasks. The darker-colored lines and shaded areas denote the average returns and standard
deviations, respectively, computed over five random seeds. Left: maze2d-medium-v1. Middle: HalfCheetah-tunnel-hurdle-sequence-v3.
Right: HalfCheetah-hurdle-tunnel-sequence-v3.

14

Unsupervised Skill Discovery for Learning Shared Structures across Changing Environments

F. Additional Results on Downstream Learning
Figure 10 describes the learning curves for the downstream tasks used in our experiments. These downstream tasks have
shared structures that exist in corresponding changing environments where skills are learned. We observed that our skills
accelerate learning of downstream tasks, outperforming baselines including state-of-the-art unsupervised skill discovery
algorithms. This indicates that our skills adequately represent the shared structures between changing environments. Figure
11 shows the X position of the agent across time in HalfCheetah-hurdle-tunnel-sequence-v3 and HalfCheetah-tunnel-hurdle-
sequence-v3, respectively.

Figure 11. Trajectories of skills composed in HalfCheetah downstream tasks. Each plot shows the X position of the agent over time for
composed skills. Top: HalfCheetah-tunnel-hurdle-sequence-v3. Bottom: HalfCheetah-hurdle-tunnel-sequence-v3.

15

