
Learning Control by Iterative Inversion

Gal Leibovich∗ 1 Guy Jacob∗ 1 Or Avner∗ 2 Gal Novik 1 Aviv Tamar 2

Abstract
We propose iterative inversion – an algorithm for
learning an inverse function without input-output
pairs, but only with samples from the desired out-
put distribution and access to the forward func-
tion. The key challenge is a distribution shift
between the desired outputs and the outputs of
an initial random guess, and we prove that iter-
ative inversion can steer the learning correctly,
under rather strict conditions on the function. We
apply iterative inversion to learn control. Our
input is a set of demonstrations of desired be-
havior, given as video embeddings of trajecto-
ries (without actions), and our method iteratively
learns to imitate trajectories generated by the
current policy, perturbed by random exploration
noise. Our approach does not require rewards,
and only employs supervised learning, which
can be easily scaled to use state-of-the-art trajec-
tory embedding techniques and policy represen-
tations. Indeed, with a VQ-VAE embedding, and
a transformer-based policy, we demonstrate non-
trivial continuous control on several tasks (videos
available at https://sites.google.com/
view/iter-inver). Further, we report an im-
proved performance on imitating diverse behav-
iors compared to reward based methods.

1. Introduction
The control of dynamical systems is fundamental to various
disciplines, such as robotics and automation. Consider the
following trajectory tracking problem. Given some deter-
ministic but unknown actuated dynamical system,

st+1 = f(st, at), (1)

Equal contribution, author order determined by coin
toss. 1Intel Labs, Haifa, Israel 2Department of Electri-
cal Engineering, Technion, Haifa, Israel. Correspondence
to: Gal Leibovich <gal.leibovich@intel.com>, Guy Jacob
<guy.jacob@intel.com>, Or Avner <or.avner5@gmail.com>, Aviv
Tamar <avivt@technion.ac.il>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

where s is the state, and a is an actuation, and some refer-
ence trajectory, s0, . . . , sT , we seek actions that drive the
system in a similar trajectory to the reference.

For systems that are ‘simple’ enough, e.g., linear, or low di-
mensional, classical control theory (Bertsekas, 1995) offers
principled and well-established system identification and
control solutions. However, for several decades, this prob-
lem has captured the interest of the machine learning com-
munity, where the prospect is scaling up to high-dimensional
systems with complex dynamics by exploiting patterns in
the system (Mnih et al., 2015; Lillicrap et al., 2015).

In reinforcement learning (RL), learning is driven by a man-
ually specified reward signal r(s, a). While this paradigm
has recently yielded impressive results, defining a reward
signal can be difficult for certain tasks, especially when
high-dimensional observations such as images are involved.
An alternative to RL is inverse RL (IRL), where a reward
is not manually specified. Instead, IRL algorithms learn
an implicit reward function that, when plugged into an RL
algorithm in an inner loop, yields a trajectory similar to the
reference. The signal driving IRL algorithms is a similarity
metric between trajectories, which can be manually defined,
or learned (Ho & Ermon, 2016).

We propose a different approach to learning control, which
does not require explicit nor implicit reward functions, and
also does not require access to a similarity metric between
trajectories. Our main idea is that Equation (1) prescribes a
mapping F from an action sequence to a state sequence,

s0, . . . , sT = F(a0, . . . , aT−1). (2)

The control learning problem can therefore be framed as
finding the inverse function, F−1, without knowing F , but
with the possibility of evaluating F on particular action
sequences (a.k.a. roll-outs).

Learning the inverse function F−1 using regression can
be easy if one has samples of action sequences and cor-
responding state sequences, and a distance measure over
actions. However, in our setting, we do not know the action
sequences that correspond to the desired reference trajec-
tories – a problem that we term inversion distribution shift.
Interestingly, for some mappings F , an iterative regression
technique can be used to find F−1. In this scheme, which
we term Iterative Inversion (IT-IN), we start from arbitrary

1

https://sites.google.com/view/iter-inver
https://sites.google.com/view/iter-inver

Learning Control by Iterative Inversion

action sequences, collect their corresponding state trajec-
tories, and regress to learn an inverse. We then apply this
inverse on the reference trajectories to obtain new action
sequences, and repeat. We show that with linear regres-
sion, iterative inversion will converge under quite restrictive
criteria on F , such as being strictly monotone and with a
bounded ratio of derivatives, by establishing a connection
between iterative inversion and Newton’s method. Neverthe-
less, our result shows that for some systems, a controller can
be found without a reward function, nor access to a distance
measure on states (only actions), and that iterative inversion
effectively steers the learning to overcome distribution shift.

We then apply iterative inversion to several continuous con-
trol problems. In our setting, the desired behavior is ex-
pressed through a video embedding of a desired trajectory
(without actions), using a VQ-VAE (Van Den Oord et al.,
2017), and a deep network policy maps this embedding
and a state history to the next action. The agent generates
trajectories from the system using its current policy, given
the desired embeddings as input, and subsequently learns to
imitate its own trajectories, conditioned on their own embed-
dings. We find that when iterating this procedure, the input
of the desired trajectories’ embeddings steers the learning
towards the desired behavior, as in iterative inversion.

Given the strict conditions for convergence of iterative in-
version, there is no a-priori reason to expect that our method
will work for complex non-linear systems and expressive
policies. Curiously, however, we report convergence on
all the scenarios we tested, and furthermore, the resulting
policy generalized well to imitating trajectories that were
not seen in its ‘steering’ training set. This surprising obser-
vation suggests that IT-IN may offer a simple supervised
learning-based alternative to methods such as RL and IRL,
with several potential benefits such as a reward-less for-
mulation, and the simplicity and stability of the (iterated)
supervised learning loss function. Furthermore, on experi-
ments where the desired behaviors are abundant and diverse,
we report that IT-IN outperforms reward-based methods,
even with an accurate state-based reward.

2. Iterative Inversion
We describe a general problem of learning an inverse func-
tion under a distribution shift, and present the iterative inver-
sion algorithm. We then analyse the convergence of iterative
inversion in several simplified settings. In the proceeding,
we will apply iterative inversion to learning control.

Let F : X → Y be a bijective function. We are given a set
of M desired outputs y1, . . . , yM ∈ Y , and an arbitrary set
of M initial inputs x1, . . . , xM ∈ X . We assume that F
is not known, but we are allowed to observe F(x) for any
x ∈ X that we choose during our calculations. Our goal

Figure 1: Learning an inverse function under a distribution
shift. We wish to learn the inverse function over outputs
y1, . . . , yM , using linear least squares, having matching
inputs-outputs for x1, . . . , xM .

is to find a function G : Y → X such that for any desired
output yi, we have G(yi) = F−1(yi).

More specifically, we will adopt a parametric setting, and
search for a parametric function Gθ, where θ ∈ Θ is a
parameter vector, that minimizes the average loss:

min
θ∈Θ

1

M

M∑
i=1

L(Gθ(yi),F−1(yi)). (3)

For example, Gθ could represent the space of linear func-
tions Gθ(y) = θT y + θbias, and L could be the squared
error between inputs, L(x, x′) = (x− x′)2. This example,
which is depicted in Figure 1 for the 1-dimensional case
X = Y = R, corresponds to a linear least squares fit of the
inverse function. As can be seen, the challenge arises from
the inversion distribution shift – the mismatch between the
distributions of the desired outputs and initial inputs,

Definition 1 (Inversion Distribution Shift). The dif-
ference between outputs of the initial distribution
F(x1), . . . ,F(xM) and the desired outputs y1, . . . , yn.

The iterative inversion algorithm, proposed in Algorithm
1, seeks to solve problem (3) iteratively. In the algorithm,
and in the proceeding analysis, we define the initial inputs
x1, . . . , xM implicitly, as the inverse using an initial param-
eter θ0, i.e., xi = Gθ0(yi).

We next investigate when, and why, should iterative inver-
sion produce an effective solution for (3). For our analysis,
we restrict ourselves to the following setting:

Assumption 1. The function class Gθ is linear, and the loss
L is the squared error.

We analyze convergence for different classes of functions F .
Denote Xn ≡ (xn

1 , . . . , x
n
M)T ∈ RM×dim(X), F(Xn) ≡

2

Learning Control by Iterative Inversion

Algorithm 1 Iterative Inversion

Require: Desired outputs y1, . . . , yM ∈ Y , loss function
L : X × X → R, initial parameter θ0.

1: for n = 0, 1, 2, . . . do
2: Calculate current inputs:

xn
1 , . . . , x

n
M = Gθn(y1), . . . ,Gθn(yn)

3: Calculate current outputs:
yn1 , . . . , y

n
M = F(xn

1), . . . ,F(xn
M)

4: Regression:
θn+1 = argminθ∈Θ

1
M

∑M
i=1 L(Gθ(y

n
i), x

n
i)

5: end for

(F(xn
1), . . . ,F(xn

M))T ∈ RM×dim(Y) as the input and
output matrices, Xn ≡

∑M
i=1 x

n
i /M ∈ Rdim(X) and

Y ≡
∑M

i=1 yi/M , F(Xn) ≡
∑M

i=1 F(xn
i)/M ∈ Rdim(Y)

as the current inputs, desired outputs, and current outputs
means, (·)† the Moore-Penrose pseudoinverse operator, and
F−1 the ground-truth inverse function.

We start with the simple case of a linear F . As is clear
from Figure 1, inverse distribution shift is not a problem in
this case, as the inverse function is the same for any x, and
iterative inversion converges in a single iteration.

Theorem 1. If Assumption 1 holds, F is a linear function
and rank(F(X0)−F(X0)) = dim(Y) then Algorithm 1
converges in one iteration, i.e., y11 , . . . , y

1
M = y1, . . . , yM .

We next analyse a non-linear F . Our insight is that itera-
tive inversion can be interpreted as a variant of the classic
Newton’s method (Ortega & Rheinboldt, 2000), where we
replace the unknown Jacobian J of F with a linear ap-
proximation using the current input-output pairs, and the
evaluation of F with the mean of the current outputs. Re-
call that Newton’s method seeks to find the root x∗ of a
function r(x) = F(x) − y using the iterative update rule
xn+1 = xn + (y −F(xn))[J(xn)]−1, where [J(xn)]−1 is
the Jacobian inverse of F at xn. Iterative inversion, sim-
ilarly, applies the following updating rule, as proved in
Appendix A.1,

Xn+1 = Xn +
(
Y −F(Xn)

)
J̃−1
n , (4)

where J̃−1
n ≡ (F(Xn) − F(Xn))†(Xn − Xn) is the

Jacobian of Gθn+1 , the linear regressor plane from F(x)
to x at xn

1 , . . . , x
n
M , which can be considered to be an

approximation of [J(Xn)]−1. When the approximations
J̃−1
n ≈ [J(Xn)]−1 and F(Xn) ≈ F(Xn) are accurate,

iterative inversion coincides with Newton’s method, and
enjoys similar convergence properties, as we establish next.

Assumption 2. F : RK → RK is bijective1, and F and
F−1 are both continuously differentiable.

1The bijection assumption is required for our theoretical anal-
ysis, to properly define the inverse function. In our experiments,

Denote J(x) the Jacobian matrix of F at x ∈ X , and
J−1(x) ≡ [J(x)]−1 the inverse matrix of J(x) and the
Jacobian of F−1 at F(x) ∈ Y , under Assumption 2. Also
denote ∥·∥ to be any induced norm (Horn & Johnson, 2012).
We assume that the derivatives of F and F−1 are bounded.

Assumption 3. ∥J(x1) − J(x2)∥ ≤ γ, ∥J(x)∥ ≤ ζ and
∥J−1(x)∥ ≤ β ∀x1, x2, x ∈ RK .1

Further assume that at every iteration n, the approximations
J̃−1
n and F(Xn) are accurate enough.

Assumption 4. ∀n: ∥F(Xn)−F(Xn)∥ ≤ λ and J̃−1
n =

J−1(Xn)(I +∆n), ∥∆n∥ ≤ δ < 1/ζβ.

Assumption 4 may hold, for example, when the inputs
xn
1 , . . . , x

n
M are distributed densely, relative to the curvature

of F , and evenly, such that the regression problem in Algo-
rithm 1 is well-conditioned. The requirement δ < 1/ζβ is
set to ensure that J̃−1

n is non-singular.

Theorem 2. Suppose Assumptions 1, 2, 3 and 4 hold. Let
µ ≡ ζ2βδ

1−ζβδ and assume β(1 + δ)(γ + µ) < 1. Let ρ ≡
2λβ(1+δ)(µ+ζ)
1−β(1+δ)(µ+γ) . Then for every ϵ > 0 there exists k < ∞
such that ∥F(Xk)− Y ∥ ≤ ρ+ ϵ.

Theorem 2 shows that under sufficient conditions, the iter-
ative inversion method is able to steer learning across any
distribution shift, bringing the average output F(Xk) close
to the average desired output Y , regardless of the initial
X0. The term ρ can be interpreted as the radius of the ball
centered at Y that the sequence convergences to. The proof
for Theorem 2 builds on the analysis of Newton’s method
to show that IT-IN is an iterated contraction, and is reported
in Section A.3 of the supplementary material. To get some
intuition about Theorem 2, consider the following example.

Example 1. Consider the 1-dimensional case F : R → R
(cf. Fig. 1), where the second approximation in Assumption
4 are perfect, i.e., δ = µ = 0. Then, the condition for con-
vergence is β(1+ δ)(γ+µ) = βγ < 1, which is equivalent
to max |F ′(x)|

min |F ′(x)| < 2, i.e., an F that is ‘close to linear’.

The conditions in Theorem 2 can therefore be intuitively
interpreted as F being ‘close to linear’ globally, and the
linear approximation being accurate locally.

In Appendix A.4, we provide additional convergence results
that use a different analysis technique for the simple case
presented in Example 1, where F : R → R. These results
do not require Assumption 4, but still require a condition
similar to max |F ′(x)|

min |F ′(x)| < 2, and show a linear convergence
rate. We further remark that a quadratic convergence rate is

however, we consider intent and action spaces of different di-
mensions, which are not bijective. In addition, we experiment
with environments with non-smooth dynamics, where the bounded
derivative assumption does not hold.

3

Learning Control by Iterative Inversion

known for Newton’s method when the initial iterate is close
to optimal; we believe that similar results can be shown for
IT-IN as well. Here, however, we focused on the case of an
arbitrary initial iterate, similarly to the experiments we shall
describe in the sequel.

3. Iterative Inversion for Learning Control
In this section, we apply iterative inversion for learning
control. We first present our problem formulation, and then
propose an IT-IN algorithm.

We follow a standard RL formulation. Let S denote the state
space, A denote the action space, and consider the dynami-
cal system in Equation 1. We assume, for simplicity, that the
initial state s0 is fixed, and that the time horizon is T .2 Given
a state-action trajectory τ = s0, a0, . . . , sT−1, aT−1, sT ∈
Ω, where Ω denotes the T -step trajectory space, we denote
by τs ∈ Ωs its state component and by τa ∈ Ωa its action
component, i.e., τs = s0, . . . , sT , τa = a0, . . . , aT−1, and
Ω = Ωs × Ωa. We will henceforth refer to τs as a state
trajectory and to τa as an action trajectory. Let F denote
the mapping from an action trajectory to the resulting state
trajectory, as given by Equation (2).

For presenting our control learning problem, we will assume
that F is bijective, and therefore F−1 is well defined. We
emphasize, however, that our algorithm makes no explicit
use of F−1, and our empirical results are demonstrated on
problems where this assumption does not hold.

We represent a state trajectory using an embedding function
z = Z(τs) ∈ Z, and we term z the intent. Note that z, by
definition, can contain partial information about τs, such as
the goal state (Ghosh et al., 2019). In all the experiments
reported in the sequel, we generated intents by feeding
a rendered video of the state trajectory into a VQ-VAE
encoder, which we found to be simple and well performing.

Consider a state-action trajectory τ , with a corresponding
intent Z(τs). We would like to learn a policy that recon-
structs the intent into its corresponding action trajectory τa,
and can be used to control the system to produce a similar
τ . Let Ht denote the space of t-length state-action histories,
and a policy πt : Z × Ht → A. With a slight abuse of
notation, we denote by π(z) ∈ Ωa the action trajectory that
is obtained when applying πt sequentially for T time steps
(i.e., a rollout). Similarly to the problem in Section 2, our
goal is to learn a policy such that π(Z(τs)) = F−1(τs).
More specifically, let L : Ωa × Ωa → R be a loss function
between action trajectories, and let P (τs) denote a distri-
bution over desired state trajectories, we seek a policy πθ

parameterized by θ ∈ Θ that minimizes the average loss:

min
θ∈Θ

Eτs∼P

[
L
(
πθ(Z(τs)),F−1(τs)

)]
. (5)

2A varying horizon can be handled as an additional input to F .

In our approach we assume that P (τs) is not known, but
we are given a set Dsteer of M intents, z1, . . . , zM , where
zi = Z(τ is), and τ is are drawn i.i.d. from P (τs). Henceforth,
we will refer to Dsteer as the steering dataset, as it should
act to steer the learning of the inverse mapping towards the
desired trajectory distribution P (τs).

It is worth relating the problem above to the general inverse
problem in Section 2, and the distribution shift in Definition
1. Initially, the policy is not expected to be able to produce
state-action trajectories that match the state trajectories in
Dsteer, but only trajectories that are output by the initial
(typically random) policy. While these initial trajectories
could be used as data for imitation learning, yielding an
intent-conditioned policy, there is no reason to expect that
this policy will be any good for intents in Dsteer, which are
out-of-distribution with respect to this training data.

We now propose a method for solving Problem (5) based on
iterative inversion, as detailed in Algorithm 2. There are four
notable differences from the iterative inversion method in
Algorithm 1. First, we operate on batches of size N instead
of on the whole steering data (of size M), for computational
efficiency. Second, we sample a batch of intents from a
mixture of the steering dataset and the intents calculated for
rollouts in the previous iteration. We found that this helps
stabilize the algorithm. Third, we add random exploration
noise to the policy when performing the rollouts, which we
found to be necessary (see Sec. 5). Fourth, we used a replay
buffer for the supervised learning part of the algorithm, also
for improved stability. For L, we used the MSE between
action trajectories, and for the optimization in line 7, we
perform several epochs of gradient-based optimization using
Adam (Kingma & Ba, 2014), keeping the state history input
to πθ(ẑ) fixed as τs when computing the gradient. The size
of the replay buffer was set to K ×N .

Algorithm 2 Iterative Inversion for Learning Control

Require: Steering data Dsteer, exploration noise parameter
η, steering ratio α ∈ [0, 1], batch size N

1: Initialize Dprev = Dsteer, θ0 arbitrary
2: for n = 0, 1, 2, . . . do
3: Sample αN intents from Dsteer and (1−α)N intents

from Dprev, yielding z1, . . . , zN

4: Perform N rollouts τ1, . . . , τN using policy πθn with
input intents z1, . . . , zN , adding exploration noise η

5: Compute intents for the rollouts ẑi = Z(τ is), i ∈
1, . . . , N

6: Add intents, trajectories {ẑi, τ i} to Replay Buffer
7: Train πθn+1

by supervised learning: θn+1 =
argminθ∈Θ

∑
{ẑ,τ}∈Replay Buffer [L (πθ(ẑ), τa)]

8: Set Dprev =
{
ẑi
}N
i=1

9: end for

4

Learning Control by Iterative Inversion

The astute reader may notice that while the desired intents
Dsteer are used as input to the data collection policy, they are
actually detached from the training loss throughout learning,
by the relabelling in line 5. What, then, drives the learning
closer to Dsteer? Our analysis in Section 2 explains how,
under suitable conditions of F , the policy can in fact be
steered appropriately by such an algorithm.
Remark 1. Note that a small loss over the actions, per
Eq. (5), does not necessarily imply a similar trajectory to
the reference. This is since (1) errors accumulate over
time (generally, the error in the states can grow linearly
with T ; cf. Assumption 3), and (2) a possible distribution
shift, which grows with T , between the states used to train
the policy (Line 7) and states that would be encountered
during a rollout from the trained policy when given the same
intent, and can lead to state errors that grow quadratically
with T (Ross et al., 2011). This is a different distribution
shift from our Definition 1, which concerns the difference
between the rollouts of the initial policy and the desired
outcomes and holds also for T = 1. While steering is not
expected to fix error accumulation, in practice, we found
that Algorithm 2 did lead to accurate trajectories, even
for systems where a small mistake can be dramatic. We
attribute this to the training of a policy to imitate many
noisy trajectories, which stabilizes the learned control.

Note the simplicity of the IT-IN algorithm – it only involves
exploration and supervised learning; there are no rewards,
and the loss function is routine. In Section 5, we provide
empirical evidence that, perhaps surprisingly – given the
strict conditions for convergence of iterative inversion – IT-
IN yields well-performing policies on nontrivial tasks.

4. Related Work
Iterative inversion is similar to the breeder algorithm (Nair
et al., 2008) for inverting black-box functions, but with one
crucial difference – breeder starts from an in distribution
input-output pair, termed a prototype code vector, and grows
input-output pairs around it, to avoid distribution shift. Our
method does not require any in distribution samples, and we
show how distribution shift can be overcome by steering.

Goal conditioned supervised learning (GCSL, Ghosh et al.
2019) is essentially a special case of iterative inversion
where intents are chosen to be goal observations. Our con-
tribution, however, is investigating the steering component
of the method – an idea that originated in the algorithm
of Ghosh et al. (2019), but was not investigated at all to
our knowledge. Ghosh et al. (2019)’s theory assumes no
distribution shift (coverage of all goals in the data), and the
idea that steering can overcome distribution shift is, to the
best of our knowledge, novel. In addition, we show that our
approach can learn to track trajectories accurately, which is
important for tasks where the whole trajectory is important,

and not just the goal.

Learning inverse dynamics models is popular in
robotics (Nguyen-Tuong & Peters, 2010; Calandra
et al., 2015; Meier et al., 2016; Christiano et al., 2016), and
typically requires the full state trajectory for predicting
corresponding actions, and training data from the desired
state-action distribution; our approach requires an embed-
ding of the desired trajectory, and our focus is on the setting
of inversion distribution shift. The only study we are aware
of in this direction is Hong et al. (2020), where an RL
agent is trained to steer data collection to areas where the
inverse model errs. However, Hong et al. (2020) require
the full state trajectory as policy input, require RL training
as part of their method, and report difficulty in scaling to
high dimensional action spaces, where their curiosity-based
exploration is not effective enough to steer learning towards
desired behavior. Recently, Baker et al. (2022) used a
transformer to learn an inverse model conditioned on
video, but they collected human-labelled data to train their
model on desired behavior trajectories. Our approach is
self-supervised.

In learning from demonstrations (Argall et al., 2009), data
typically contains both states and actions, enabling direct
supervised learning, either by behavioral cloning (Pomer-
leau, 1988) or interactive methods such as DAgger (Ross
et al., 2011). Inverse RL (IRL) can learn from demonstra-
tions without actions, and methods such as apprenticeship
learning (Abbeel & Ng, 2004) or generative adversarial
imitation learning (Ho & Ermon, 2016; Peng et al., 2022)
simultaneously train a critic that discriminates between data
trajectories and policy rollouts (a classification problem),
and a policy that confuses the critic as best as possible (an
RL problem). Our emphasis is on learning a policy that can
reconstruct diverse behaviors, conditioned on an intent – dif-
ferent from most IRL studies that consider a single task (Ho
& Ermon, 2016; Edwards et al., 2019), or unconditional gen-
eration (Peng et al., 2022). While Fu et al. (2019); Ding
et al. (2019) considered a goal-conditioned IRL setting, we
are not aware of IRL methods that can be conditioned on a
more expressive description than a target goal state, such as
a complete trajectory embedding, as we explore here. Our
approach also avoids the need for training a critic or an RL
agent in an inner loop.

In self-supervised RL, the agent does not receive a reward
and uses its own experience to explore the environment
by training a goal-conditioned policy and proposing novel
goals (Pathak et al., 2018; Ecoffet et al., 2019; Hazan et al.,
2019; Sekar et al., 2020; Mendonca et al., 2021). The space
of all trajectories is much larger than the space of all states,
and we are not aware of methods that demonstrably explore
such a space. For this reason, in our approach we steer the
exploration towards a set of desired trajectories.

5

Learning Control by Iterative Inversion

5. Experiments
In this section, we evaluate IT-IN on several domains. Our
investigation is aimed at studying the unique features of
IT-IN and especially, the steering behavior that we expect
to observe. We start by describing our evaluation domains,
and implementation details that are common to all our ex-
periments. We then present a series of experiments aimed
at answering specific questions about IT-IN. To appreciate
the learned behavior, we encourage the reader to view our
supporting video results at the project website 3.

Common Settings:

VQ-VAE Intents: For all our experiments, we generate
intents using a VQ-VAE embedding of a rendered video of
the trajectory. Rendering settings are provided next for each
environment. We use VideoGPT’s VQ-VAE implementa-
tion (Yan et al., 2021). An input video of size 64× 64× T
(w, h, t) is encoded into a 16× 16× T/4 integer intent zi

given a codebook of size 50. Each integer represents a float
vector of length 4. The training of the VQ-VAE is not the
focus of this work, and we detail the training data for each
VQ-VAE separately for each domain in the supplementary
material. We remark that by visually inspecting the recon-
struction quality, we found that our VQ-VAEs generalized
well to the trajectories seen during learning.

GPT-based policies and exploration noise The policy ar-
chitecture is adapted from VideoGPT (Yan et al., 2021),
and consists of 8 layers, 4 heads and a hidden dimension of
size 64. The model is conditioned on the intent via cross-
attention. In the supplementary material, we report similar
results with a GRU-based policy. Our exploration noise
adds a Gaussian noise of scale η to the action output.

Evaluation Protocol: While our algorithm only uses a loss
on actions, a loss on the resulting trajectories is often easier
to interpret for measuring performance. We measure the
sum of Euclidean distances between agent state variables,
accumulated over time, as a proxy for trajectory similarity;
in our results, this measure is denoted as MSE. Except
when explicitly noted otherwise, all our results are evaluated
on test trajectories (and corresponding intents) that were
not in the steering data, but were generated from the same
trajectory distribution. None of the trajectories we plot or
our video results are cherry picked.

Domains

2D Particle: A particle robot is moved on a friction-less
2D plane, by applying a force F = [FX , FY] for a duration
of ∆t. The observation space includes particle positions
and velocities S = [X,Y, VX , VY], and motion videos are

3https://sites.google.com/view/iter-inver

rendered using Matplotlib Animation (Hunter, 2007).

While relatively simple for control, this environment allows
for distinct and diverse behaviors that are easy to visualize.
We experiment with 2 behavior classes, for which we pro-
cedurally created training trajectories: (1) Spline motion,
and (2) Deceleration motion. Both require highly co-
ordinated actions, and are very different from the motion
that a randomly initialized policy induces. Full details about
the datasets are described in Appendix B.1.1.

Reacher: A 2-DoF robotic arm from OpenAI Gym’s
Mujoco Reacher-v2 environment (Brockman et al., 2016).
While usually in Reacher-v2 the agent is rewarded for reach-
ing a randomly generated target, the goal in our setting is for
the policy to reconstruct the whole arm motion, as given by
the intent. The intent is encoded from a video of the motion
rendered using Mujoco (Todorov et al., 2012). We hand-
crafted a trajectory dataset, termed FixedJoint, which
is fully described in Appendix B.2.1.

Hopper: From OpenAI Gym’s Mujoco Hopper-v2 environ-
ment (Brockman et al., 2016). The dataset is from D4RL’s
hopper-medium-v2 (Fu et al., 2020), and consists of
mostly forward hopping behaviors (see Appendix B.3.1).
There are several challenges in this domain: (1) the dynam-
ics are non-linear, and include a non-smooth contact with
the ground; (2) the desired behavior (hopping) is very differ-
ent from the behavior of an untrained policy (falling), and
requires applying a very specific force exactly when making
contact with the ground (a ‘bottleneck’ in state space); and
(3) the camera is fixed on the agent, and forward movement
can only be inferred from the movement of the background.

Steering Evaluation

The first question we investigate is whether IT-IN indeed
steers learning towards the desired behavior. To answer this,
we consider domains where the desired behavior is very
different from the behavior of the initial random policy – the
Spline and Deceleration motions for the particle,
and the hopping behavior for Hopper-v2. As we show
in Figure 2 (for particle), and Figure 3 (for Hopper-v2),
IT-IN produces a policy that can track the desired behavior
with high accuracy. Videos of rollouts in the Hopper-v2
environment3 demonstrate that the policy is able to accu-
rately reconstruct different hopping motions, based only on
their encoded intents. To the best of our knowledge, such
accurate motion control, with only an action-less video en-
coding as input, on a non-trivial dynamical system has not
been demonstrated before. We further show, in Figure 8 and
Figure 9 in the supplementary material, that IT-IN works
well for different trajectory lengths T .

Another question is whether IT-IN really steers the pol-
icy towards the desired trajectories, or improves general

6

https://sites.google.com/view/iter-inver

Learning Control by Iterative Inversion

Figure 2: Particle results on Splines (top) and Deceleration (bottom). Here T = 64 and |Dsteer| = 500. All
trajectories start at (0,0), marked by a blue circle. In Deceleration, the particle quickly decelerates to a stop at t = 32
– note the small overshoot at the end of each reconstructed trajectory, due to imperfect reconstruction of stopping in place.

Figure 3: Trajectory reconstructions in Hopper-v2, with T = 128 and |Dsteer| = 500. Additional rollouts are presented
in Appendix C.6 and in the supporting video results.

properties of the policy, allowing a generally better recon-
struction. We explore this question by a cross-evaluation –
evaluating the performance of a policy trained with steering
intents from Particle:Splines on test intents from
Particle:Deceleration, which we will refer to as
out-of-distribution intents, and vice versa. Interestingly, as
Table 1 shows, performance on out-of-distribution intents is
significantly worse than the performance that would have
been obtained by training the policy with these intents as the
steering dataset, and is even worse or comparable to training
with no steering at all (cf. Table 2). Example rollouts from
this experiment are shown in C.8.

Evaluation of Exploration Noise

We also evaluated the importance of the exploration noise.
We tested Splines with T = 64 and Hopper-v2 with
T = 128 with and without exploration noise, and a large
Dsteer (1740 for Hopper-v2, 500 for Particle). As the results
in Table 8 in the supplementary material show, exploration
noise η is crucial for the training procedure to converge
towards the desired behavior. We believe that exploration
improves the conditioning of the supervised learning prob-
lem, and helps produce a policy that stabilizes control along
the desired trajectory.

Steering Dataset Size and Generalization

We next evaluate the generalization performance of IT-IN
to intents that were not seen in the data, but correspond to

Table 1: Steering cross-evaluation. See Appendix C.8
for corresponding trajectory visualizations. In all cases
|Dsteer| = 500.

Test Dataset Steering Dataset MSE

Splines
Splines 69.2

Deceleration 210.9

Deceleration
Splines 28.1

Deceleration 18.5

state trajectories drawn from P (τs). To investigate this, we
consider a domain where the desired behavior is very di-
verse – the Spline motions for the particle. We also report
results on domains where the behavior is less diverse, such
as Hopper-v2 and Deceleration motions for particle.
Naturally, we expect generalization to correlate with M , the
size of Dsteer. As our results in Table 2 show, additional
steering data indeed improves generalization to unseen tra-
jectories, albeit with diminishing returns as the amount of
steering data is increased. As expected, in the more diverse
distribution there was more gain to reap from additional data
(significant improvement up to |Dsteer| = 50), compared
with the less diverse domain (most of the improvement is
achieved already with |Dsteer| = 10). Trajectory visualiza-
tions for Splines with different sizes of Dsteer are shown
in Appendix C.3.

7

Learning Control by Iterative Inversion

Table 2: Steering Dataset Size and Generalization. Here T = 64, and we show MSE averaged over 3 random seeds. Note
that |Dsteer| = 0 represents the case where no steering is used at all. In this case, we use trajectories sampled from a random
policy to initialize |Dprev| (see Algorithm 2). (*) For Hopper-v2, the maximal |Dsteer| is 1740 due to a limited amount
of data in D4RL.

|Dsteer| = 0 |Dsteer| = 10 |Dsteer| = 50 |Dsteer| = 100 |Dsteer| = 500 |Dsteer| = 2000 ∗

Particle:Splines 199.7 105.4 75.8 72.7 69.2 66.9
Particle:Deceleration 30.0 20.5 21.1 20.2 17.9 18.6
Hopper-v2 173.3 68.2 67.2 64.9 67.0 63.0

Comparison with RL and IRL Baselines

In essence, IT-IN performs imitation learning from obser-
vations. Thus, a natural comparison is with methods such
as GAIL from observations (Torabi et al., 2018). Previous
IRL literature focused on learning only a single task, and
measured accuracy as the task success (e.g., the success of
hopper hopping). However, the setting where IT-IN shines,
and which we focus our evaluation on, is where the pol-
icy must be able to reconstruct a diverse set of behaviors
(from their corresponding intents). Thus, our evaluation is
not whether a single task succeeds, but how accurately any
desired trajectory is tracked (e.g., hopping in a very spe-
cific motion). The multi-task setting, where the agent needs
to perform many different behaviors specified by different
intents, has not been studied to the best of our knowledge.

We compare IT-IN with GAIL from observations (Torabi
et al., 2018) in the Particle:Splines environment.
As we consider the multi-task setting, we also add compar-
ison with RL baselines where we manually set a relevant
reward function. These RL baselines serve to show that
any advantage of IT-IN over IRL is not due to some im-
plementation detail (both use the same model architecture),
but due to the difficulty of its RL component to learn in
this multi-intent setting. We consider two reward func-
tions tailored to the Particle:Splines environment:
(1) STATE-MSE: MSE between desired position and cur-
rent position, and (2) INTENT-MSE: a sparse reward that
is the MSE between the intents of the desired trajectory
and the executed trajectory, given at the end of the episode.
STATE-MSE is privileged compared to IT-IN and is ar-
guably stronger than any IRL method in this task, as the
reward is dense, and exactly captures the desired behavior.
Any IRL method will run RL in an inner loop, with a re-
ward that is less precise. INTENT-MSE is motivated by the
fact that IT-IN effectively learns some similarity measure in
intent space, and this reward captures this idea explicitly.

We used exactly the same policy architecture for all compar-
isons. We found that both RL and IRL methods did not train
well with the GPT-based policy architecture4, therefore we

4Difficulty of RL with transformers was discussed in (Parisotto
et al., 2020; Hausknecht & Wagener, 2022).

Figure 4: Comparison of IT-IN with PPO and GAIL base-
lines, in the Particle:Splines environment with T =
16. All results are MSE (lower is better), each represented
with a mean and standard deviation of 3 random seeds. Note
that IT-IN outperforms baselines on test trajectories (graph
on the right) for all Dsteer sizes. For GAIL, Dsteer is also
used as the expert data for the discriminator. Additional
results are shown in Figure 6.

report results for the GRU policy (also for IT-IN), which is
described in detail in Appendix B.5. We used PPO (Schul-
man et al., 2017) for RL training, based on the implementa-
tion of Kostrikov (2018). Our GAIL implementation is also
based on Kostrikov (2018), with modifications to follow
the setup of Torabi et al. (2018) and to add the intent as
a context input. Additional details are in Appendices B.6
and B.7.

In Figure 4, we report results both on a held-out test set of
trajectories, and on the training trajectories. As expected,
for a small Dsteer, STATE-MSE obtains near perfect re-
construction of training trajectories, yet high error on test
trajectories, as the precise reward makes it easy for PPO to
overfit. Interestingly, however, when increasing the size of
Dsteer, it becomes more difficult to overfit with PPO, even
with the STATE-MSE reward. This highlights a difficulty of
RL in the multi-task setting: note that for |Dsteer| = 2000,
the performance of STATE-MSE on training is worse than
the performance of IT-IN on test! Our results suggest that
vanilla PPO is not well suited to training policies condi-
tioned on very diverse contexts (Our context here is a vector
of length 4096). We mention that the recent related work of
Peng et al. (2022) trained context embeddings together with

8

Learning Control by Iterative Inversion

RL, which may explain their success in learning diverse
skills. Importantly, on test data, IT-IN significantly outper-
forms both RL methods for all Dsteer sizes, even though
IT-IN does not use the privileged information in the reward.
We attribute this finding to the combination of stable super-
vised learning updates, and not relying on a reward. Our
results for INTENT-MSE do not come close to IT-IN, which
we attribute to the more difficult learning from sparse re-
ward (see Appendix C.1). Finally, GAIL was outperformed
by both STATE-MSE RL and IT-IN (except for the single
demonstration case – the standard "single task" GAIL setup).
As expected, GAIL was not able to find a better reward than
STATE-MSE here. Additional baseline-comparison results
are presented in Appendix C.1.

6. Discussion
We presented a new formulation for learning control, based
on an inverse problem approach, and demonstrated its ap-
plication to learning deep neural network policies that can
reconstruct diverse behaviors, given an embedding of the
desired trajectory. We developed the fundamental theory
underlying iterative inversion, and demonstrated promising
results on several simple tasks. We also found that for very
diverse behaviors, our formulation learns and generalizes
more effectively than RL or IRL approaches, which we
attribute to the stable supervised-learning method at its core.

We only considered a particular trajectory embedding based
on an off-the-shelf VQ-VAE, which we found to be general
and practical. Important questions for future work include
characterizing the effect of the embedding on performance,
and training an embedding jointly with the policy. Addition-
ally, the exploration noise, which we found to be important,
can potentially be replaced with more advanced exploration
strategies from the RL literature.

Another question is how to generate intents from a partial de-
scription of a trajectory, such as a natural language descrip-
tion. Diffusion models, which have recently gained popular-
ity for learning distributions over latent variables (Rombach
et al., 2021), are one potential approach for this.

Remaining open questions include the gap between the strict
conditions for convergence under a linear approximation
in our theory and the stable performance we observed in
practice with expressive policies and non-linear dynamics,
and whether iterative inversion can be extended to non-
deterministic systems. Our work provides the fundamentals
for further investigating these important questions.

Acknowledgements
This work received funding from the European Union (ERC,
Bayes-RL, Project Number 101041250). Views and opin-

ions expressed are however those of the author(s) only and
do not necessarily reflect those of the European Union or
the European Research Council Executive Agency. Neither
the European Union nor the granting authority can be held
responsible for them.

References
Abbeel, P. and Ng, A. Y. Apprenticeship learning via inverse

reinforcement learning. In Proceedings of the twenty-first
international conference on Machine learning, pp. 1,
2004.

Argall, B. D., Chernova, S., Veloso, M., and Browning, B.
A survey of robot learning from demonstration. Robotics
and autonomous systems, 57(5):469–483, 2009.

Baker, B., Akkaya, I., Zhokhov, P., Huizinga, J., Tang, J.,
Ecoffet, A., Houghton, B., Sampedro, R., and Clune, J.
Video pretraining (vpt): Learning to act by watching un-
labeled online videos. arXiv preprint arXiv:2206.11795,
2022.

Bertsekas, D. P. Dynamic programming and optimal control,
volume 1. Athena Scientific, 1995.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,
Schulman, J., Tang, J., and Zaremba, W. Openai gym,
2016.

Calandra, R., Ivaldi, S., Deisenroth, M. P., Rueckert, E.,
and Peters, J. Learning inverse dynamics models with
contacts. In 2015 IEEE International Conference on
Robotics and Automation (ICRA), pp. 3186–3191. IEEE,
2015.

Christiano, P., Shah, Z., Mordatch, I., Schneider, J., Black-
well, T., Tobin, J., Abbeel, P., and Zaremba, W. Transfer
from simulation to real world through learning deep in-
verse dynamics model. arXiv preprint arXiv:1610.03518,
2016.

Ding, Y., Florensa, C., Abbeel, P., and Phielipp, M. Goal-
conditioned imitation learning. Advances in neural infor-
mation processing systems, 32, 2019.

Ecoffet, A., Huizinga, J., Lehman, J., Stanley, K. O.,
and Clune, J. Go-explore: a new approach for hard-
exploration problems. arXiv preprint arXiv:1901.10995,
2019.

Edwards, A., Sahni, H., Schroecker, Y., and Isbell, C. Imi-
tating latent policies from observation. In International
conference on machine learning, pp. 1755–1763. PMLR,
2019.

9

Learning Control by Iterative Inversion

Fu, J., Korattikara, A., Levine, S., and Guadarrama, S.
From language to goals: Inverse reinforcement learn-
ing for vision-based instruction following. arXiv preprint
arXiv:1902.07742, 2019.

Fu, J., Kumar, A., Nachum, O., Tucker, G., and Levine,
S. D4rl: Datasets for deep data-driven reinforcement
learning, 2020.

Ghosh, D., Gupta, A., Reddy, A., Fu, J., Devin, C.,
Eysenbach, B., and Levine, S. Learning to reach
goals via iterated supervised learning. arXiv preprint
arXiv:1912.06088, 2019.

Hausknecht, M. and Wagener, N. Consistent dropout for
policy gradient reinforcement learning. arXiv preprint
arXiv:2202.11818, 2022.

Hazan, E., Kakade, S., Singh, K., and Van Soest, A. Prov-
ably efficient maximum entropy exploration. In Interna-
tional Conference on Machine Learning, pp. 2681–2691.
PMLR, 2019.

Ho, J. and Ermon, S. Generative adversarial imitation learn-
ing. Advances in neural information processing systems,
29, 2016.

Hong, Z.-W., Fu, T.-J., Shann, T.-Y., and Lee, C.-Y. Ad-
versarial active exploration for inverse dynamics model
learning. In Conference on Robot Learning, pp. 552–565.
PMLR, 2020.

Horn, R. A. and Johnson, C. R. Matrix analysis. Cambridge
university press, 2012.

Hunter, J. D. Matplotlib: A 2d graphics environment. Com-
puting in Science & Engineering, 9(3):90–95, 2007. doi:
10.1109/MCSE.2007.55.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Kostrikov, I. Pytorch implementations
of reinforcement learning algorithms.
https://github.com/ikostrikov/
pytorch-a2c-ppo-acktr-gail, 2018.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez,
T., Tassa, Y., Silver, D., and Wierstra, D. Continuous
control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971, 2015.

Meier, F., Kappler, D., Ratliff, N., and Schaal, S. Towards ro-
bust online inverse dynamics learning. In 2016 IEEE/RSJ
International Conference on Intelligent Robots and Sys-
tems (IROS), pp. 4034–4039. IEEE, 2016.

Mendonca, R., Rybkin, O., Daniilidis, K., Hafner, D., and
Pathak, D. Discovering and achieving goals via world
models. arXiv preprint arXiv:2110.09514, 2021.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidje-
land, A. K., Ostrovski, G., et al. Human-level control
through deep reinforcement learning. Nature, 518(7540):
529–533, 2015.

Nair, V., Susskind, J., and Hinton, G. E. Analysis-by-
synthesis by learning to invert generative black boxes.
In International conference on artificial neural networks,
pp. 971–981. Springer, 2008.

Nguyen-Tuong, D. and Peters, J. Using model knowledge
for learning inverse dynamics. In 2010 IEEE interna-
tional conference on robotics and automation, pp. 2677–
2682. IEEE, 2010.

Ortega, J. M. and Rheinboldt, W. C. Iterative Solution of
Nonlinear Equations in Several Variables. Society for
Industrial and Applied Mathematics, 2000. doi: 10.1137/
1.9780898719468.

Parisotto, E., Song, F., Rae, J., Pascanu, R., Gulcehre, C.,
Jayakumar, S., Jaderberg, M., Kaufman, R. L., Clark, A.,
Noury, S., et al. Stabilizing transformers for reinforce-
ment learning. In International conference on machine
learning, pp. 7487–7498. PMLR, 2020.

Pathak, D., Mahmoudieh, P., Luo, G., Agrawal, P., Chen,
D., Shentu, Y., Shelhamer, E., Malik, J., Efros, A. A., and
Darrell, T. Zero-shot visual imitation. In Proceedings
of the IEEE conference on computer vision and pattern
recognition workshops, pp. 2050–2053, 2018.

Peng, X. B., Guo, Y., Halper, L., Levine, S., and Fidler, S.
Ase: Large-scale reusable adversarial skill embeddings
for physically simulated characters. ACM Trans. Graph.,
41(4), July 2022.

Pomerleau, D. A. Alvinn: An autonomous land vehicle
in a neural network. Advances in neural information
processing systems, 1, 1988.

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and
Ommer, B. High-resolution image synthesis with latent
diffusion models, 2021.

Ross, S., Gordon, G., and Bagnell, D. A reduction of imita-
tion learning and structured prediction to no-regret online
learning. In Proceedings of the fourteenth international
conference on artificial intelligence and statistics, pp.
627–635. JMLR Workshop and Conference Proceedings,
2011.

10

https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail
https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail

Learning Control by Iterative Inversion

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Seber, G. A. F. G. A. F. Linear regression analysis George
A.F. Seber, Alan J. Lee. Wiley series in probability and
statistics. Wiley-Interscience, Hoboken, N.J, 2nd ed. edi-
tion, 2003. ISBN 1-280-58916-7.

Sekar, R., Rybkin, O., Daniilidis, K., Abbeel, P., Hafner, D.,
and Pathak, D. Planning to explore via self-supervised
world models. In International Conference on Machine
Learning, pp. 8583–8592. PMLR, 2020.

Todorov, E., Erez, T., and Tassa, Y. Mujoco: A physics
engine for model-based control. In 2012 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems,
pp. 5026–5033. IEEE, 2012.

Torabi, F., Warnell, G., and Stone, P. Generative ad-
versarial imitation from observation. arXiv preprint
arXiv:1807.06158, 2018.

Van Den Oord, A., Vinyals, O., et al. Neural discrete rep-
resentation learning. Advances in neural information
processing systems, 30, 2017.

Yan, W., Zhang, Y., Abbeel, P., and Srinivas, A. Videogpt:
Video generation using vq-vae and transformers, 2021.

11

Learning Control by Iterative Inversion

A. Proofs
A.1. Proof of Equation 4

Throughout this and the rest of the theoretical proofs, with a slight abuse of notation, when a vector u ∈ RN is added to a
matrix A ∈ RM×N , the addition is row-wise: A+ u ≡ A+ 1u where 1u = (u, . . . , u)T ∈ RM×N .

We remind the reader of the notations defined in Section 2. Denote Xn ≡ (xn
1 , . . . , x

n
M)T ∈ RM×dim(X), F(Xn) ≡

(F(xn
1), . . . ,F(xn

M))T ∈ RM×dim(Y) as the input and output matrices, Xn ≡
∑M

i=1 x
n
i /M ∈ Rdim(X) and Y ≡∑M

i=1 yi/M , F(Xn) ≡
∑M

i=1 F(xn
i)/M ∈ Rdim(Y) as the current inputs, desired outputs, and current outputs means, and

(·)† the Moore-Penrose pseudoinverse operator. We also define Y = (y1, . . . , yM)T ∈ RM×dim(Y). The approximated
linear function is GΘ,b(Y) = YΘ+ b where Θ ∈ Rdim(Y)×dim(X) and b ∈ R1×dim(X) (note that we explicitly add the bias
parameter b). At iteration n:

Θn+1, bn+1 = argmin
Θ,b

∥F(Xn)Θ + b−Xn∥2.

This is an ordinary linear least squares problem with the solution (Seber, 2003, Section 3.11.1):

Θn+1 = (F(Xn)−F(Xn))†(Xn −Xn), bn+1 = Xn −F(Xn)Θn+1. (6)

Then,
Xn+1 = GΘn+1,bn+1

(Y) = YΘn+1 + bn+1 = Xn + (Y −F(Xn))Θn+1,

and averaging over the points yields the result:

Xn+1 = Xn + (Y −F(Xn))Θn+1.

A.2. Proof of Theorem 1

Using the notation defined in Appendix A.1.
Assuming F(X) = XF + h is a linear function with F ∈ Rdim(X)×dim(Y) and h ∈ R1×dim(Y).
Assuming rank(F(X0)−F(X0)) = dim(Y) then (F(X0)−F(X0))T (F(X0)−F(X0)) is invertible and Θ1 defined
on Equation 6 is well defined.
Then using the fact that F(Xn)−F(Xn) = (Xn −Xn)F :

Θ1 = (F(X0)−F(X0))†(X0 −X0) =
(
(X0 −X0)F

)†
(X0 −X0),

and satisfies

Θ1F = I,

where I is the identity matrix. The bias term, according to Equation 6, is

b1 = X0 −F(Xn)Θ1 = X0 − (X0F + h)Θ1.

At the end of iteration 1, X1 = YΘ1 + b1 and its matching outputs equal to the desired outputs:

F(X1) = X1F + h

= YΘ1F + b1F + h

= Y + (X0 − (X0F + h)Θ1)F + h

= Y + (X0F −X0F − h) + h

= Y.

12

Learning Control by Iterative Inversion

A.3. Proof of Theorem 2

For clarity in our presentation, we will use the following notation: J−1
n ≡ J−1(Xn), Jn ≡ J(Xn), F̃n ≡ F(Xn) and

Fn ≡ F(Xn). We also define Hn ≡ Fn − Y and H̃n ≡ F̃n − Y

First we show that J̃−1
n is non-singular. Since δ < 1

ζβ then ρ(Jn∆nJ
−1
n) ≤ ∥Jn∆nJ

−1
n ∥ ≤ δζβ < 1 where ρ(A) denotes

the spectral radius of A. The first inequality is proven in Horn & Johnson (2012, Thm. 5.6.9) and the second inequality is a
result of the sub-multiplicative property of the induced norm, ∥Jn∆nJ

−1
n ∥ ≤ ∥Jn∥∥∆n∥∥J−1

n ∥. Therefore (I+Jn∆nJ
−1
n)

is non-singular, and J̃−1
n = J−1

n (I + Jn∆nJ
−1
n) is non-singular as a multiplication of non-singular matrices.

We denote by J̃n ≡
(
J̃−1
n

)−1

its matrix inverse, and obtain the following bounds:

∥Hn − H̃n∥ = ∥Fn − F̃n∥ ≤ λ (7)

∥J̃−1
n ∥ = ∥(I +∆n)J

−1
n ∥

(∗)
≤ ∥J−1

n ∥(1 + ∥∆n∥) ≤ β(1 + δ) (8)

∥J̃n − Jn∥
(∗∗)
≤ ∥Jn∥2∥∆nJ

−1
n ∥

1− ∥Jn∆nJ
−1
n ∥

≤ ∥Jn∥2∥∆n∥∥J−1
n ∥

1− ∥Jn∥∥∆n∥∥J−1
n ∥

≤ ζ2δβ

1− ζδβ
≡ µ (9)

∥J̃n∥ ≤ ∥J̃n − Jn∥+ ∥Jn∥ ≤ µ+ ζ (10)

∥F̃n − Y ∥ = ∥H̃n∥ = ∥(Xn+1 −Xn)J̃n∥ ≤ ∥J̃n∥∥Xn+1 −Xn∥ ≤ (µ+ ζ)∥Xn+1 −Xn∥ (11)

Inequality (∗) is due to the sub-multiplicative and sub-additive properties of the induced norm, ∥(I + ∆n)J
−1
n ∥ ≤

∥J−1
n ∥(∥I∥ + ∥∆n∥) with ∥I∥ = 1. Inequality (∗∗) is developed in Horn & Johnson (2012, p. 381), in the context of

bounding the error in the inverse of an error-perturbed matrix. Also note that the rest of the inequalities in (9) are well
defined since δ < 1/ζβ.

The proof now continues similarly to the proof of Ortega & Rheinboldt (2000, 12.3.3). We set Gn = Xn−H̃nJ̃
−1
n = Xn+1,

and show that Gn is an Iterated Contraction:

∥Xn+2 −Xn+1∥ = ∥Xn+1 − H̃n+1J̃
−1
n+1 −Xn+1∥ = ∥H̃n+1J̃

−1
n+1∥

(1)

≤ β(1 + δ)∥H̃n+1∥
≤ β(1 + δ)∥H̃n+1 − H̃n − (Xn+1 −Xn)J̃n∥
(2)

≤ β(1 + δ)∥H̃n+1 − H̃n − (Xn+1 −Xn)Jn∥+ β(1 + δ)∥J̃n − Jn∥∥Xn+1 −Xn∥
(3)

≤ β(1 + δ)
(
2λ+ ∥Hn+1 −Hn − (Xn+1 −Xn)Jn∥

)
+ β(1 + δ)µ∥Xn+1 −Xn∥

= β(1 + δ)
(
2λ+ ∥F(Xn+1)−F(Xn)− (Xn+1 −Xn)J(Xn)∥+ µ∥Xn+1 −Xn∥

)
(4)

≤ β(1 + δ)
(
2λ+ γ∥Xn+1 −Xn∥+ µ∥Xn+1 −Xn∥

)
≤ β(1 + δ)

(
2λ

∥Xn+1 −Xn∥
+ γ + µ

)
∥Xn+1 −Xn∥

(5)

≤ β(1 + δ)

(
2λ(µ+ ζ)

∥F̃n − Y ∥
+ γ + µ

)
∥Xn+1 −Xn∥

where inequality (1) holds because of Bound 8, (2) is the triangle inequality, (3) is due to the Bounds 7 and 9 and
the triangle inequality. Inequality (4) is proven in Ortega & Rheinboldt (2000, 3.2.12), using the assumption ∀x1, x2 :
∥J(x1)− J(x2)∥ ≤ γ, and inequality (5) is from Bound 11.

Denote the function g : R → R, g(x) ≡ β(1 + δ) (2λ(µ+ ζ)/x+ γ + µ). Then

∥Xn+2 −Xn+1∥ ≤ g(∥F̃n − Y ∥)∥Xn+1 −Xn∥

13

Learning Control by Iterative Inversion

Assuming β(1 + δ)(γ + µ) < 1:

g(∥F̃n − Y ∥) = 1 ⇐⇒ ∥F̃n − Y ∥ =
2λβ(1 + δ)(µ+ ζ)

1− β(1 + δ)(µ+ γ)
≡ ρ

g is strictly-decreasing function, thus if ∥F̃n − Y ∥ ≥ ρ + ϵ for some ϵ > 0 then g(∥F̃n − Y ∥) ≤ α < 1, where α is
independent of ∥F̃n − Y ∥. Then, as long as ∥F̃n−1 − Y ∥ ≥ ρ+ ϵ:

∥F̃n − Y ∥ ≤ (µ+ ζ)∥Xn+1 −Xn∥ ≤ · · · ≤ (µ+ ζ)αn∥X1 −X0∥

where the first inequality holds due to 11. Then, for every ϵ > 0 there exists k < ∞ such that one of the following holds:

1. There exists n < k where ∥F̃n − Y ∥ < ρ+ ϵ and the proof is done.

2. For all n < k: ∥F̃n − Y ∥ ≥ ρ+ ϵ and αk ≤ ρ+ϵ

(µ+ζ)∥X1−X0∥
. Then ∥F̃k − Y ∥ ≤ (µ+ ζ)αk∥X1 −X0∥ ≤ ρ+ ϵ and

the proof is done.

A.4. Convergence Results for 1-Dimensional F

We restrict ourselves to the 1-dimensional case, where X = Y = R, and assume the function F is strictly monotone and its
maximum and minimum slopes are not too different, thus the function is "close to" linear. We then show convergence at a
linear rate.

Let SF (x1, x2) ≡ (F(x1) − F(x2))/(x1 − x2) denote the slope of F between x1 and x2, and max |SF | ≡
maxx1,x2∈X |SF (x1, x2)| denote the maximum absolute slope of F and similarly min |SF | ≡ minx1,x2∈X |SF (x1, x2)|
the minimum absolute slope.

Assumption 5. F is continuous and strictly monotone, and max |SF |
min |SF | ≤ 2− ϵ for some 0 < ϵ ≤ 1.

Theorem 3. Assume X = Y = R, that Assumption 5 holds, and that there are only two desired outputs M = 2. Then for
any i ∈ {1, 2} and any iteration n: |F(xn+1

i)− yi| ≤ (1− ϵ)|F(xn
i)− yi|.

When the number of desired outputs is greater than 2, then convergence for each output is generally not guaranteed.

Theorem 4. Assume X = Y = R, that Assumption 5 holds and that at iteration n, ∀i xn
i < F−1(Y) or ∀i xn

i > F−1(Y) .

Then
∣∣∣Xn+1 −F−1(Y)

∣∣∣ ≤ (1− ϵ)
∣∣Xn −F−1(Y)

∣∣.
Theorem 4 guarantees that after a finite number of iterations, the output segment intersects with the desired output segment.
Note that Theorems 3 and 4 do not require any kind of approximations as in Assumption 4, nor for F to be differentiable.

A.4.1. PROOF OF THEOREM 3

Denote SF
max ≡ maxx1,x2

SF (x1, x2) and similarly SF
min ≡ minx1,x2

SF (x1, x2).

Assuming X = Y = R. Then the approximated linear function is Gθ,b(y) = yθ + b where θ, b ∈ R are scalars.
At iteration n+ 1 and for i ∈ [1,M]:

xn+1
i = Gθn+1,bn+1

(yi) = yiθn+1 + bn+1, (12)

θn+1, bn+1 = argmin
θ,b

M∑
i=1

(θF(xn
i) + b− xn

i)
2
.

Lemma 5. if X = Y = R then ∀n: 1
SF
max

≤ θn+1 ≤ 1
SF
min

if F is strictly increasing and 1
SF
min

≤ θn+1 ≤ 1
SF
max

if F is
strictly decreasing.

14

Learning Control by Iterative Inversion

Proof. We will prove for strictly increasing F . The proof for strictly decreasing F is symmetrical.
Without loss of generality, we assume that Xn is sorted: ∀i: xn

i ≤ xn
i+1. Let k > i then:

F(xn
i) + SF

min(x
n
k − xn

i) ≤ F(xn
k) ≤ F(xn

i) + SF
max(x

n
k − xn

i),

1

SF
max

(F(xn
k)−F(xn

i)) ≤ xn
k − xn

i ≤ 1

SF
min

(F(xn
k)−F(xn

i)),

θn+1 =

1
M

∑M
i=1(x

n
i −Xn)

(
F(xn

i)−F(Xn)
)

1
M

∑M
i=1

(
F(xn

i)−F(Xn)
)2 =

=
1

M2

∑M−1
i=1

∑M
k=i+1(x

n
k − xn

i) (F(xn
k)−F(xn

i))

1
M2

∑M−1
i=1

∑M
k=i+1 (F(xn

k)−F(xn
i))

2

≤
1

M2

∑M−1
i=1

∑M
k=i+1

1
SF
min

(F(xn
k)−F(xn

i))
2

1
M2

∑M−1
i=1

∑M
k=i+1 (F(xn

k)−F(xn
i))

2
=

1

SF
min

,

and

θn+1 ≥
1

M2

∑M−1
i=1

∑M
k=i+1

1
SF
max

(F(xn
k)−F(xn

i))
2

1
M2

∑M−1
i=1

∑M
k=i+1 (F(xn

k)−F(xn
i))

2
=

1

SF
max

.

When M = 2, the regression line passes exactly at the points (F(xn
1), x

n
1) and (F(xn

2), x
n
2), and bn+1 also takes the

following forms:

bn+1 = xn
1 − θn+1F(xn

1) = xn
2 − θn+1F(xn

2).

Then, plugging bn+1 in Equation 12 we get for every i ∈ [1, 2]:

xn+1
i = xn

i + θn+1(yi −F(xn
i)).

Denote the slope of F between xn+1
i and xn

i : SF (xn+1
i , xn

i) ≡ F(xn+1
i)−F(xn

i)

xn+1
i −xn

i

=
F(xn+1

i)−F(xn
i)

θn+1(yi−F(xn
i))

. Then the following
equations hold:

F(xn+1
i) = F(xn

i) + θn+1SF (xn+1
i , xn

i)(yi − f(xn
i)),

yi −F(xn+1
i) =

(
1− θn+1SF (xn+1

i , xn
i)
)
(yi −F(xn

i)). (13)

Using Lemma 5, and since F is always increasing or always decreasing, then θn+1SF (xn+1
i , xn

i)) > 0 and

1

2− ϵ
≤ min |SF |

max |SF |
≤ θn+1SF (xn+1

i , xn
i)) ≤

max |SF |
min |SF |

≤ 2− ϵ,

∣∣1− θn+1SF (xn+1
i , xn

i))
∣∣ ≤ max

{
|1− 1

2− ϵ
|, |1− ϵ|

}
= 1− ϵ. (14)

Then, plugging into Equation 13,∣∣yi −F(xn+1
i)

∣∣ = ∣∣1− θn+1SF (xn+1
i , xn

i)
∣∣ |yi −F(xn

i)| ≤ (1− ϵ) |yi −F(xn
i)| .

Note the convergence in one iteration for the linear case when ϵ = 1.

15

Learning Control by Iterative Inversion

A.4.2. PROOF OF THEOREM 4

Denote Ln:

Ln ≡ Y −F(Xn)

F−1(Y)−Xn
=

1
M

∑N
i=1 Y − f(xn

i)
1
M

∑N
k=1 F−1(Y)− xn

k

=

M∑
i=1

(
F−1(Y)− xn

i∑M
k=1 F−1(Y)− xn

k

)
Y − f(xn

i)

F−1(Y)− xn
i

=

M∑
i=1

wn,i
Y − f(xn

i)

F−1(Y)− xn
i

=

M∑
i=1

wn,i SF (F−1(Y), xn
i).

Where wn,i =
F−1(Y)−xn

i∑M
k=1 F−1(Y)−xn

k

,
∑M

i=1 wn,i = 1 and, since we assumed ∀i xn
i < F−1(Y) or that ∀i xn

i > F−1(Y), then

∀i wn,i > 0. Therefore Ln is a weighted-mean of the slopes and SF
min ≤ Ln ≤ SF

max.
From Equation 4 the following holds:

Xn+1 −Xn = θn+1(Y −F(Xn)) = θn+1Lj(F−1(Y)−Xn),

F−1(Y)−Xn+1 = (1− θn+1Lj)(F−1(Y)−Xn). (15)

Using Lemma 5 and the inequalities SF
min ≤ Ln ≤ SF

max, Inequality (14) from Appendix A.4.1 also applies for Ln, and we
obtain:

|1− θn+1Ln| ≤ 1− ϵ,

∣∣∣F−1(Y)−Xn+1
∣∣∣ ≤ (1− ϵ)

∣∣F−1(Y)−Xn
∣∣ .

A.5. Tightness of the Derivative Ratio Bound for 1-Dimensional F

We consider the case where F is a 1-dimensional function and provide a simple negative example to demonstrate the
tightness of the derivative ratio bound, max |SF |

min |SF | < 2. As described in Example 1, in this case, the second approximation in
Assumption 4 is perfect, and using the bounds in Assumption 3, the condition for convergence in Theorem 2 is equivalent to
max |SF |
min |SF | < 2. We assume this condition is not satisfied, i.e., that the maximum slope is more than twice the minimum slope,
and show that convergence does not occur, and that the first initial input guess is closer to the desired inputs than all the
following iterations.

Example 2. Let ϵ, a, b, δ,∆ > 0 and define the continuous 1-dimensional, increasing and piece-wise linear function F with
5 linear segments:

F(x) =

x x ≤ a

a+ (2 + ϵ)(x− a) a < x ≤ a+∆

(1 + ϵ)∆ + x a+∆ < x ≤ a+∆+ b

a+ b+ (2 + ϵ)(x− a− b) a+ b+∆ < x ≤ a+ b+ 2∆

2(1 + ϵ)∆ + x a+ b+ 2∆ < x

Notice that the minimum slope of F is 1 and the maximum is (2 + ϵ). We set ∆ ≡ b/2+3δ
ϵ .

Let there be two desired inputs x∗
1 = a + ∆ + b/2 − δ, x∗

2 = a + ∆ + b/2 + δ, and their outputs y∗1 = F(x∗
1) =

a + b/2 − δ + (2 + ϵ)∆ = a + b + 2∆ + 2δ, y∗2 = F(x∗
2) = a + b + 2∆ + 4δ. They are both placed in the 3rd linear

segment of the function.
We set the initial inputs x0

1 = a− δ, x0
2 = a (placed in the 1st linear segment), their corresponding outputs will be the same:

y01 = x0
1, y

0
2 = x0

2, and Gθ1(y) = y.
At iteration n = 1, the inputs will be x1

1 = Gθ1(y
∗
1) = y∗1 , x

1
2 = Gθ1(y

∗
2) = y∗2 (in the 5th linear segment) and Gθ2(y) =

y − 2(1 + ϵ)∆.
At iteration n = 2, the inputs will be x2

1 = Gθ2(y
∗
1) = y∗1 − 2(1 + ϵ)∆ = a− 4δ, x3

2 = Gθ1(y
∗
2) = a− 2δ (in the 1st linear

16

Learning Control by Iterative Inversion

Figure 5: Visual illustration of the 1-dimensional function F , described in Example 2, for which convergence is not achieved.

segment), and Gθ3(y) = y again.
Similarly, at every even iteration, x2n

1 = x2
1, x

2n
2 = x2

2 the current input-output pairs will be equal and in the 1st segment,
and at every odd iteration x2n+1

1 = x1
1, x

2n+1
2 = x1

2 the current input-output pairs will be equal and in the 5th segment. Also,
starting from the 2nd iteration, the distance from the current input-outputs to the desired inputs-outputs will stay constant,
which is larger than the distance from the initial input-output pairs: ∀n > 1: ∥x∗

1 − xn
1 | = ∥x∗

2 − xn
2∥ = ∆+ b/2 + 3δ >

∆+ b/2 = ∥x∗
1 − x0

1∥ = ∥x∗
2 − x0

2∥.

17

Learning Control by Iterative Inversion

B. Experimental Details
Table 3 contains a list of common hyperparameter values that we have used for all the experiments. Table 4 contains
Particle and Reacher-v2 specific hyperparameters, while Table 5 is listing Hopper-v2 specific hyperparameters.
We note that the minor difference in hyperparameter values between the domains evaluated is purposed only at achieving
slightly better MSE results per domain. We observed that the steering behavior was relatively robust to hyperparameter
values.

Table 3: Common hyperparameters for all experiments

Hyperparameter Value
Learning rate 5e-4
Sampled rollouts per epoch (N) 200 x Minibatch size
Training iterations 2,000
Training buffer size [rollouts] (K x N) 40 x N
Steering buffer Dsteer size [rollouts] 500
Ratio of steering intents in minibatch (α) 0.3
Gradient norm clipping 0.5
GPT: # layers 8
GPT: # heads 4
GPT: hidden layer size 64
GPT: dropout 0.2
GPT: attention dropout 0.3

Table 4: Particle & Reacher-v2 hyperparameters

Hyperparameter Value
Minibatch size (rollouts) 8
Noise scale (η) 4.0
Total epochs (n) 160

Table 5: Mujoco Hopper-v2 hyperparameters

Hyperparameter Value
Minibatch size (rollouts) 6
Noise scale (η) 1.0
Total epochs (n) 130

B.1. Particle Robot

The 2D plane in which the robot is allowed to move is a finite square, with the maximum coordinates (denoted Cmax)
increasing for longer horizons. When rendering the videos we include the entire 2D plane, up to the maximum coordinates.
When evaluating policies, a validation set of 2,000 trajectories was used, which were unseen during training of the policies.

B.1.1. DATASETS

Splines Trajectories follow the function of a B-spline curve5. The curves are of degree 2 with 5 control points, which
are uniformly sampled between [0, Cmax] in a 2-dimensional space.

Deceleration Random Fx and Fy forces for the first tacc trajectory steps, and then T − tacc steps of deceleration,

where T is the time horizon. Deceleration at step j > tacc is done by setting F j
x = − 1

2
V j−1
x

∆t , F j
y = − 1

2

V j−1
y

∆t (assuming the
mass of the particle is 1). V and ∆t are defined in Section 5. We use ∆t = 0.1.

B.2. Reacher-v2

B.2.1. DATASETS

FixedJoint Trajectories were collected to represent a scenario where one of the two robot arm joints is malfunctioning
and is force fixed in place. The policy can only control the other robotic arm joint. When evaluating policies, a validation set
of 2,000 trajectories was used, which were unseen during training of the policies.

5https://en.wikipedia.org/wiki/B-spline

18

https://en.wikipedia.org/wiki/B-spline

Learning Control by Iterative Inversion

B.3. Hopper-v2

B.3.1. DATASETS

Hopping The datasets of size 2180 trajectories used for sequence-lengths 64 and 128 were extracted from D4RL’s
hopper-medium-v2, and consist of mostly forward hopping behaviors. When evaluating policies, a validation set of
436 trajectories was used, which were unseen during training of the policies. Unlike in the other evaluated domains, where
trajectories sampled from a random policy were used to train the VQ-VAE, in Hopper-v2 we have used input videos from
D4RL’s Hopper-medium-v2 - the reason is that using the initial random policy, the trajectories terminated (hopper fell
down) before reaching the desired T . For IT-IN training, we have modified Hopper-v2 slightly so that the episode will
not terminate when the Hopper falls, thus allowing it to reach T steps.

B.4. GPT-Based Architecture

The model is conditioned on the intent via cross-attention. The actor network is comprised of 2 hidden Linear layers of size
64, with a tanh activation.

The GPT model size hyper-parameters had an effect on the results, but these did not strictly improve with a bigger model.
We experimented with several settings for number of heads (1, 2, 4) and number of layers (2, 4, 8) in the GPT model, and
with these parameters, indeed the highest value gave better results. However, for the hidden dimension of the model, we
tried 2 values (64, 128) and found the lower one gave better results. As for the context size, we only tried setting it to the
entire trajectory length.

B.5. GRU-Based Architecture

The single-layer GRU’s hidden state size is set to match the flattened intent size of 4096. As with the GPT-based architecture,
the actor network is comprised of 2 hidden layers of size 64 with tanh activations.

B.6. RL Baseline

For the RL baseline, both actor and critic networks are 2-layer MLPs (of size 64) with tanh activations. Table 6 summarizes
the hyperparameters used for training RL policies with PPO (Schulman et al., 2017) and a GRU policy.

B.6.1. MLP-BASED ARCHITECTURE FOR RL BASELINE

For the RL baseline only, we also experimented with an MLP-based architecture. In this case, both the the intent and
observation go through a single Linear layer followed by Layer Normalization and a ReLU activation. The output sizes of
the Linear layers we used were 256 and 64 for the intents and observations, respectively. All other hyperparameters are
identical to those shown in Table 6.

B.7. GAIL Baseline

Our GAIL from observations (Torabi et al., 2018) implementation is based on Kostrikov (2018), and uses PPO as the RL
algorithm. We note that Kostrikov (2018) implements "vanilla" GAIL (Ho & Ermon, 2016), which uses state + action pairs
as input to the discriminator. Therefore, to match the setup of Torabi et al. (2018), we modified the implementation so that

Table 6: RL hyperparameters

Hyperparameter Value
PPO Clip Ratio 0.2
GAE λ 0.95
Discount rate γ 0.99
Learning rate 1e-4
Value loss coefficient 0.5
epochs 4
rollouts sampled per policy update 128
Total iterations 5000

Table 7: GAIL hyperparameters

Hyperparameter Value
Discriminator batch size 128
Discriminator learning rate 1e-3
Gradient penalty λ 10

19

Learning Control by Iterative Inversion

the discriminator is fed state + next-state pairs. To add the intent as context to GAIL, it is concatenated to the state transition
pair. Due to the large discrepancy in size between the intent (size 4096) and the state transition pair (size 8 in the case
of Particle:Splines), before concatenating the intent to the state we downscale it to size 256 using a Linear layer.
In addition to the downscaled intent, we also concatenate the timestep of the transition (normalized between [−1, 1]) to
the discriminator input. We found this improved GAIL performance in our experiments on Particle:Splines. The
discriminator itself is a 3-layer MLP with a hidden dimension of 100 and tanh activations. GAIL specific hyperparameters
are provided in Table 7. PPO hyperparameters used in GAIL experiments are the same as in Table 6.

We experimented with two reward modes involving GAIL: (1) GAIL: The standard formulation of GAIL, where the reward
to the RL algorithm is the log of the discriminator output, and (2) GAIL+STATE-MSE, where we combined (by simple
addition) the standard GAIL reward and the STATE-MSE reward defined in Section 5, in an attempt to see if a combination
of the 2 reward signals (from the environment and from the discriminator) will result in an improved overall signal. As can
be seen in Figure 6, while (2) indeed improved over (1), neither was able to outperform PPO with STATE-MSE nor IT-IN.

20

Learning Control by Iterative Inversion

C. Additional Experimental Results
C.1. RL and IRL Baselines

In Figure 6 we present additional results comparing IT-IN to RL and IRL baselines.

As described in Section 5, INTENT-MSE is a sparse RL reward, calculated as the MSE between intents of the desired
trajectory and the executed trajectory, given at the end of the episode. In our experiments, INTENT-MSE doesn’t come
close to IT-IN, which we attribute to the more difficult learning from sparse reward.
We found the MLP-based RL policy (see Appendix B.6.1) underperformed the GRU-based RL policy (though not too
significantly). This can be attributed to the task being that of tracking a trajectory (specified by the intent), which can be
easier with access to the trajectory performed by the agent so far.
Finally, Figure 6 shows the results for GAIL+STATE-MSE, the additional reward mode involving GAIL, as discussed
in Appendix B.7. This reward mode improves upon the standard GAIL reward, but does not perform better than neither
STATE-MSE or IT-IN.

In Figure 7 we present example training curves comparing IT-IN and PPO with STATE-MSE reward.

Figure 6: Comparison of IT-IN with PPO and GAIL baselines. This figure includes the results shown in Figure 4 and
additional results discussed in Appendix C.1. All experiments are on the Particle:Splines environment with T = 16.
All results are MSE (lower is better), each represented with a mean and standard deviation of 3 random seeds. Note that
IT-IN outperforms baselines on test trajectories (graph on the right) for all Dsteer sizes. For GAIL, Dsteer is also used as the
expert data for the discriminator.

Figure 7: Comparison of test MSE convergence of IT-IN vs. PPO with STATE-MSE reward. All runs are in the
Particle:Splines environment, with |Dsteer| = 500 and horizon T = 16. The MSE is calculated on a held out set of
500 trajectories.

21

Learning Control by Iterative Inversion

Table 8: Evaluation of policies trained with and without exploration. We show average MSE for 3 policies; due to different
domains, MSEs are comparable only within each row.

Exploration Noise η No Exploration

Particle:Splines, T = 64, |Dsteer| = 500 69.2 454.7
Hopper-v2, T = 128, |Dsteer| = 1740 483.3 920.6

Table 9: Evaluation of IT-IN with a GRU policy on variable Steering Dataset size. T = 16. Note that |Dsteer| = 0 represents
the case where no steering is used at all. In this case, we use trajectories sampled from a random policy to initialize |Dprev|
(see Algorithm 2). Note: Since we do not normalize the MSE w.r.t. T , these results have a different scale than Table 2.

|Dsteer| = 0 |Dsteer| = 10 |Dsteer| = 50 |Dsteer| = 100 |Dsteer| = 500 |Dsteer| = 5000

Particle:Splines 5.48 5.18 3.86 3.61 3.02 2.89
Particle:Deceleration 0.85 0.89 0.75 0.73 0.67 0.71
Reacher-v2:FixedJoint 2.49 2.05 1.68 1.64 1.58 1.61

C.2. Particle:Splines - Effect of Trajectory Length

We tested IT-IN on multiple horizons T in the Splines domain, and found it to work well across horizons of 32, 64 and
128. We present sample visualizations with different T values in Figure 8 (showing the final reconstructed trajectories) and
in Figure 9 (showing trajectory progression during an epsiode).

C.3. Particle:Splines - Effect of Steering Dataset Size

In Figure 10 we present trajectory visualizations showcasing the effect of the size of the steering buffer Dsteer (cf. Table 2).

C.4. Particle:Deceleration - Effect of Steering Dataset Size

Similarly to Section C.3, in Figure 11, we showcase the effect of the size of the steering buffer Dsteer (cf. Table 2) in the
Particle:Deceleration domain.

C.5. Reacher-v2

We present sample reconstruction visualizations for random-action trajectories from Reacher-v2 on 16-step sequences
in Figure 12. Sample videos for 64-step FixedJoint sequences (trained with a GPT-based policy) can be found in the
project’s website: https://sites.google.com/view/iter-inver.

C.6. Hopper-v2

We show additional examples of rollouts for the Hopper-v2 domain on 128-step sequences in Figure 13.

C.7. Exploration

Table 8 is showcasing Splines and Hopper-v2 reconstruction MSEs when trained with and without exploration noise η.

C.8. Steering Cross-Evaluation

In Figure 14 we show example rollouts from the experiments on steering cross-evaluation (cf. Table 1).

C.9. GRU-Based Policy Experiments

We report similar results with a GRU-based policy to the the results shown in Table 2 (analyzing the effect of steering dataset
size) in Table 9, and similar results to Table 1 (steering cross-evaluation) in Table 10.

22

https://sites.google.com/view/iter-inver

Learning Control by Iterative Inversion

Table 10: Steering cross-evaluation for a GRU-policy. Horizon T = 16. In all cases |Dsteer| = 500.

Test Dataset Steering Dataset MSE

Splines
Splines 2.79

Deceleration 5.4

Deceleration
Splines 1.46

Deceleration 0.72

C.10. Non-Deterministic Dynamics

In this section we discuss the effect of non-deterministic dynamics on the performance of our method. We consider two
sources of non-determinism: non-deterministic starting states and non-deterministic transitions.

For non-deterministic starting states, we can look at our results in the Hopper-v2 environment as an example (see Table 2
and Figures 3 and 13). In this environment the initial state is randomized, albeit from a rather limited distribution (uniform
noise of scale 5e-3 is added to initial position and velocity), and this doesn’t pose a problem for our method. That said, for
an initial state distribution that is very diverse, it is not clear how the policy could recover the trajectory specified by an
intent with a very different starting state. This limitation is therefore inherent to the way we defined the problem (trajectory
tracking).

As for non-deterministic transitions, we evaluated a variant of the Particle:Splines environment with noisy transitions:
zero-mean Gaussian noise with standard deviation σ is added to the action (see Figure 15a for examples of trajectories
with different noise scales added). Figure 15b shows that for moderate σ our method still works well, while for σ > 5
performance starts to deteriorate considerably.

Thus, we find empirically that our method can handle some stochasticity in the transitions and in the starting state. We defer
a more complete characterization, including the non-trivial theoretical analysis, to future work.

23

Learning Control by Iterative Inversion

Figure 8: Example results on the Splines dataset, for different sequence lengths. In all cases shown here |Dsteer| = 500.
To the left of each row we state the average MSE on an evaluation set of 3 policies trained with different seeds. Note the
increasing scale of the plots as the sequence length increases. Also note that all trajectories start at (0,0), marked by the
blue circle in each plot.

Figure 9: Visualization of trajectories progression in the Splines domain for different horizons T . Note the increasing
scale of the plots as the sequence length increases. |Dsteer| = 500.

24

Learning Control by Iterative Inversion

Figure 10: Example results on the Particle:Splines dataset for policies trained with different sizes of Dsteer. Each
row corresponds to a different size. Each column corresponds to a specific reference trajectory from the dataset, the intent of
which was used as input to the policies. T = 64 was used in all experiments.

25

Learning Control by Iterative Inversion

Figure 11: Example results on the Particle:Deceleration dataset for policies trained with different sizes of Dsteer.
T = 64 was used in all experiments. Figure structure same as in Figure 10.

Figure 12: Examples of trajectory reconstructions in the Reacher-v2 domain. In each plot, the red row is the reference
trajectory and the blue row is the policy reconstruction. These are based on a GRU policy. For ease of viewing, we modified
the dark colors of the original rendered images.

26

Learning Control by Iterative Inversion

Figure 13: Examples of trajectory reconstructions in the Hopper-v2 domain, with T = 128 and |Dsteer| = 500.

27

Learning Control by Iterative Inversion

(a) Testing on trajectories from Particle:Splines

(b) Testing on trajectories from Particle:Deceleration

Figure 14: Examples comparing how policies trained with steering intents from either Particle:Splines or
Particle:Deceleration perform when tested on trajectories from either datasets. We can see that when a pol-
icy is trained with steering intents from one dataset, it performs well on that dataset and performs poorly on the other. In
each column the reference trajectory is the same.

(a) The Particle environment (T = 32) dynamics are
altered to include a zero-mean Gaussian noise with standard
deviation σ added to action. This figure shows how a fixed
acceleration trajectory [action = (1, 1), for 32 consecutive
steps] is affected by different noise scales.

(b) Test MSE on a test set of 500 trajectories not included in the
steering dataset, in the Particle:Splines environment
with noise added to the actions. For all runs T = 32 and
|Dsteer| = 500. X-axis is number of training iterations. Each
σ value was evaluated on 3 seeds. For moderate noise scales
(σ = 1 and σ = 2.5) our method still works well (MSE
= 18.5 and 20.7 respectively vs. MSE = 18.0 for no noise
added - see top row in Figure 8), while for larger noise scales
(σ = 5.0 and σ = 10.0) the performance starts to deteriorate
considerably.

Figure 15: Analysis of non-deterministic dynamics (see Appendix C.10)

28

