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Abstract
In this paper, we present efficient quantum algo-
rithms that are exponentially faster than classi-
cal algorithms for solving the quantum optimal
control problem. This problem involves finding
the control variable that maximizes a physical
quantity at time T , where the system is governed
by a time-dependent Schrödinger equation. This
type of control problem also has an intricate rela-
tion with machine learning. Our algorithms are
based on a time-dependent Hamiltonian simula-
tion method and a fast gradient-estimation algo-
rithm. We also provide a comprehensive error
analysis to quantify the total error from various
steps, such as the finite-dimensional representa-
tion of the control function, the discretization of
the Schrödinger equation, the numerical quadra-
ture, and optimization. Our quantum algorithms
require fault-tolerant quantum computers.

1. Introduction
Optimal control is an important application of machine
learning and optimization.Meanwhile, it has been demon-
strated in recent works that important insights on deep learn-
ing can be obtained by interpreting the process of training a
deep neural network as a discretization of an optimal control
problem (E et al., 2019; He et al., 2016). In recent decades,
following the emergence of quantum computers, the opti-
mal control of quantum systems has attracted considerable
attention. This is because quantum properties are largely
responsible for many of the recent developments in material
science and chemical engineering, and such properties are
best utilized with external controls. (Geppert et al., 2004;
Datta, 2005; McCreery et al., 2013). Quantum optimal
control (QOC) algorithms (Brif et al., 2010; Werschnik &

1Department of Mathematics, Pennsylvania State University,
University Park, USA 2Department of Computer Science and En-
gineering, Pennsylvania State University, University Park, USA.
Correspondence to: Xiantao Li <xiantao.li@psu.edu>, Chunhao
Wang <cwang@psu.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

Gross, 2007), which uses first principle-based computer sim-
ulations to identify the desired control variable, has been an
important route toward this direction. QOC problems have
also emerged in recent quantum computing and quantum in-
formation technology. For example, QOC has recently been
shown to have remarkable connections and applications to
machine learning techniques using quantum circuits, includ-
ing variational quantum algorithms (VQA) (Choquette et al.,
2021; Yang et al., 2017), quantum neural networks (Larocca
et al., 2021), and quantum approximate optimization algo-
rithm (QAOA) (Farhi et al., 2014; Cerezo et al., 2021; Leng
et al., 2022). QOC is treated as a particular machine learn-
ing application in (Banchi & Crooks, 2021). One specific
application of QOC to quantum machine learning is the di-
agnostics of quantum barren plateau (Larocca et al., 2022).
In addition, solving the optimal control problems for quan-
tum systems is a critical step for implementing quantum
computers.

The problem of controlling a quantum system can be for-
mulated based on the time-dependent Schrödinger equation
(TDSE),

i∂t |ψ⟩ =
(
H0 − u(t)µ

)
|ψ⟩ , |ψ(0)⟩ = |ψ0⟩ , (1)

with an external control variable u(t) that enters the Hamil-
tonian through an operator µ. One example comes from
electron transport, where H0 = −∇2

2 + V (x) and µ is the
dipole operator. To keep our discussions focused on the
quantum algorithms, we consider the case with a single
control. The treatment of multiple control variables and
non-unitary dynamics will be presented in separate works.
We assume the copies of the initial state |ψ0⟩ are given for
free, i.e., we have access to the unitary Uψ0

that prepares
|ψ0⟩ as Uψ0

|0⟩ = |ψ0⟩.

The goal of QOC with time duration T is to determine a con-
trol variable u(t) for t ∈ [0, T ], such that a physical quantity,
represented by a Hermitian operatorO, is maximized in that

max
u(t)

J(u), J(u) := ⟨ψ(T )|O|ψ(T )⟩ − α

∫ T

0

|u(t)|2dt.

(2)

Here α > 0 can be regarded as a regularization param-
eter imposing a soft constraint on the magnitude of the
control variable u(t). In the context of optimization, the
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function J(u) is the objective (fitness) function. Aside
from the generalization to multiple control variables, an-
other straightforward extension is to control signals with
explicit parametric forms, e.g., a trigonometric expression
u(t) =

∑
j Ej cos(ωjt)e

−(t−tj)2/σj modulated by a Gaus-
sian envelope, which can be written in an abstract form as
u(t) = F (t,θ) with θ embodying all the parameters. Then
the objective function in Equation (2) can be optimized over
θ and the gradient can be trivially obtained using chain
rule: ∂J/∂θ = (∂J/∂u) ∂F/∂θ. By restricting the control
variable u(t) to square-integrable functions, the objective
function is clearly upper bounded. In addition, it is lower
semicontinuous, which then implies that a maximum exists
(Ciaramella et al., 2015). But in practice, the function is
often nonconvex and possesses multiple maxima.

In addition to the wide range of applications of QOC,
there is a host of mathematical analysis and computa-
tional techniques based on classical algorithms (Castro
et al., 2012; Werschnik & Gross, 2007; Eitan et al., 2011;
Glaser et al., 2015; Ciaramella et al., 2015; Hellgren et al.,
2013; D’Alessandro, 2000; 2008; Albertini & D’Alessandro,
2002). The present paper, however, will be concerned with
computer simulations using quantum algorithms, where the
n-qubit Hamiltonian operator H (resp. µ) is represented as
a 2n-dimensional matrix H ∈ C2n×2n (resp. µ ∈ C2n×2n ).
In this paper, we assume the Hamiltonians H , µ, and the ob-
servable O are d-sparse: there are at most d nonzero entries
in each row/column. In other words, these matrices are effi-
ciently row/column computable. To access these matrices,
we assume we have access to a procedure PA for a matrix
A that can perform the following mapping:

|i⟩ |0⟩ 7→ |i⟩ |ri,k⟩ , (3)

where ri,k is the k-th nonzero entry of the i-th row of A. In
addition, PA can also perform the following mapping:

|i⟩ |j⟩ |0⟩ 7→ |i⟩ |j⟩ |A(i, j)⟩ . (4)

Note that it is easy to adapt our algorithms to other more
general input models, such as the block-encoding (Low &
Chuang, 2019; Chakraborty et al., 2019).

With quantum access to these matrices, we aim to deter-
mine u(t) for all t such that the objective function defined
in Equation (2) is maximized. However, due to the noncon-
vex landscape of the objective function, finding the global
maximum is not realistic. Instead, we consider the notion of
ϵ-second-order convergence condition (see Equation (12))
for the objective function. More specifically, we aim to
solve the following problem.

Problem 1.1. Consider the n-qubit QOC in Equation (2)
for time duration T . Assume1 ∥H0∥, ∥O∥, ∥µ∥ ≤ 1, and

1More generally, if ∥H0∥, ∥µ∥ ≤ Λ, the overall complexity

α ≥ 2/T . Let N be the number of time intervals and
define δ := T/N . Suppose H0, µ and the observable O
are d-sparse, and suppose we are given access to Uψ0 for
preparing |ψ0⟩. Given the sparse access PH0

toH0, Pµ to µ,
and PO toO, determine ũ(tj) (tj = jδ) for all j ∈ [N ] such
that

∣∣ũ(tj) − u(tj)
∣∣ ≤ ϵ, where u(t) is an ϵ-second-order

stationary point of J(u) satisfying Equation (12).

The main challenge in solving Problem 1.1 is due to the
repeated solution of TDSE in Equation (1), which becomes
unfavorable for classical computers because the dimension
grows exponentially. In addition, many optimization al-
gorithms require the computation of the derivatives of the
objective function with respect to the control variable u(t).
A direct calculation of such derivatives of J in Equation (2)
also requires visiting the TDSE. The most well-known clas-
sical method for optimizing Equation (2) is due to Zhu and
Rabitz (Zhu & Rabitz, 1998a). The idea is to regard the
TDSE in Equation (1) as a constraint, which is incorporated
into the objective function using a Lagrange multiplier. For
this optimization problem, algorithms can be constructed by
enforcing the first-order condition. Zhu and Rabitz (Zhu &
Rabitz, 1998a) established the monotone convergence prop-
erty of this algorithm. This approach is later extended to fur-
ther improve the convergence properties (Maday & Turinici,
2003; Eitan et al., 2011; Ciaramella et al., 2015) including
formulations based on the Liouville von Neumann equation.

Nevertheless, the complexity associated with one iteration of
these classical algorithms has the scaling of O

(
poly(2n)T

)
,

where n is the number of system qubits and we did not
include ϵ in the complexity. The exponential dependence
on n comes from the fact that at each time step, the wave
functions have to be computed from previous time steps
using an approximation of the unitary operator. Depending
on the specific methods, this may involve matrix multipli-
cations or solutions of a linear system of equations (Castro
et al., 2004). The exponential scaling significantly limits the
scope of the application, since 2n is usually proportional to
the domain size and the number of electrons.

Main Contributions. In this paper, we present efficient
quantum algorithms for solving the quantum optimal control
problem defined in Equation (2) that scale polynomially in n
— our quantum algorithms have exponential speedups com-
pared with best known classical algorithms. One key contri-
bution is a complexity analysis that takes into account vari-
ous error contributions, including (i) the finite-dimensional
approximation of u(t), (ii) the discretization of the objective
function in Equation (2), (iii) the approximation of the wave
function, and (iv) the optimization error. Such comprehen-
sive overall estimates are extremely valuable to assess the
resources needed for a specific QOC problem. We start

of our algorithm will pick up an extra O(Λ) factor because of
Equation (26) and the fact that ∥A∥max ≤ ∥A∥ for a matrix A.
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with the Hamiltonian simulation method for time-dependent
problems (Berry et al., 2020) to access the objective func-
tion, thus enabling a quantum gradient estimation (Gilyén
et al., 2019a) approach, so that a gradient-based optimiza-
tion method can be applied. Although our approach is for-
mulated for the TDSE, it can be readily generalized to other
control problems where the dynamics is not Hamiltonian,
e.g., ODEs implemented with quantum spectral method
(Childs & Liu, 2019).

The following theorem summarizes our main result, where
the Õ notation has omitted logarithmic factors.

Theorem 1.2 (Summarizing Theorem 3.9 and Theorem 4.1).
Assume that u(t) ∈ C2([0, T ]). There exists a quantum
algorithm that, with probability at least 2/32, solves Prob-

lem 1.1 using Õ
(
dLT 2

ϵ3

)
queries to PH0

and Pµ, and

Õ
(
dnLT 2

ϵ3 + LT 3/2

ϵ5/2

)
additional 1- and 2-qubit gates.

Further, when the control variable u(t) is smooth, the gate

complexity becomes Õ
(
dnLT 2

ϵ3 + LT
ϵ2

)
. The Lipschitz con-

stant L can be bounded by Equation (14)

Although the smooth control variables does not improve the
gate complexity asymptotically, it can reduce the number of
gates in practical implementations. We also use Table 1 for
a clear comparison of different smoothness assumptions on
the control variable u(t).

Smoothness Queries Additional gates

Without smoothness Õ
(
dLT 2

ϵ3

)
Õ
(
dnLT 2

ϵ3 + LT 3/2

ϵ5/2

)
Smooth control Õ(dLT

2

ϵ3 ) Õ
(
dnLT 2

ϵ3 + LT
ϵ2

)
Table 1. The query and gate complexities for solving Problem 1.1.

It is important to note that our algorithms require fault-
tolerant quantum computers, and hence they are not suitable
for near-term quantum devices.

Related work. To the authors’ knowledge, the first attempt
to solve the quantum control problem using quantum algo-
rithms has been proposed by (Li et al., 2017). This approach
requires a classical device to update the control variable u(t)
using a gradient-based method. More recently, Brif et al.
(Brif et al., 2010) considered a specific application, where a
molecular wave function is evolved under a laser pulse. The
algorithm is also hybrid in nature, utilizing a classical device
to update the control variable. The approach outputs the
objective function, rather than the gradient, for the Nelder-
Mead optimization method. None of the above-mentioned
works uses the full power of quantum computation, includ-

2Using standard techniques, the success probability can be
boosted to a constant arbitrarily close to 1 while only introducing
a logarithmic factor in the complexity.

ing the state-of-the-art quantum algorithms for Hamiltonian
simulation algorithms and gradient estimation. More im-
portantly, precise query complexity that takes into account
all levels of approximations is not provided, making it diffi-
cult to assess the applicability of the algorithms to specific
quantum control problems in practice.

The QOC problems show great similarity with variational
quantum algorithms (VQA) in general (Cerezo et al., 2021),
except that in most VQAs, the unitary operations are associ-
ated with parameterized gates, rather than time-dependent
Hamiltonians in QOC, where the smoothness of the control
function also plays a role in the error. Several other algo-
rithms have recently been proposed to help with the com-
putation of the gradient in VQA (Crooks, 2019; Wierichs
et al., 2022; Kyriienko & Elfving, 2021).

Very recently, Leng, Peng, Qiao, Lin, and Wu (Leng et al.,
2022) proposed a differentiable programming framework for
quantum computers to evaluate gradients of time-evolved
states. One of their application is QOC. In their model, the
control function u(t) is fixed while leaving freedoms to the
parameters of u to be tuned. In contrast, we work on a more
general control model and deal with the control function in
real time directly. In addition, our work focuses on quantum
algorithms on fault-tolerant quantum computers, and we use
state-of-the-art techniques to improve the complexity.

Notation. We provide a brief introduction to quantum com-
putation in Section 2.1. Here, we summarize the notations
used in this paper. First of all, we should distinguish quan-
tum states from a vector in the context of classical computa-
tion, although a quantum state is mathematically represented
as a vector. In the context of quantum dynamics, we use the
Dirac notation |·⟩ to represent quantum states. For vectors
in the context of classical computation, e.g., the gradient vec-
tor and the control variable at multiple time steps, we use the
bold font, e.g., u. For a positive integer k, we use [k] to de-
note the set {1, . . . , k}. For a vector u, we use the subscript
with a normal font to denote its entries, i.e., u1, . . . , ud are
the entries of u. For a vector u, we use ∥u∥ to denote its

Euclidean norm, i.e., ∥u∥ =
√∑d

j=1 |uj |2. We use ∥u∥∞
to denote its maximum norm, i.e., ∥u∥∞ = maxj |uj |.

In addition, we denote by C2[0, T ] the class of twice contin-
uously differential functions defined in [0, T ]. For a function
f , we use ∥f∥2, or ∥f(t)∥2 to denote its L2 norm.Namely,
∥f(t)∥2 = ∥f∥2 =

∫ T
0
f(t)2 dt.

2. Preliminaries
To solve Problem 1.1, we need to deal with several levels
of approximations, including a finite-dimensional represen-
tation of the function u(t), the time discretization of the
TDSE in Equation (1), the approximation of the gradient
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of ⟨ψ(T )|O |ψ(T )⟩, and the optimization error. In this sec-
tion, we first give a simplistic yet sufficient introduction to
quantum computation. Then we analyze the error caused
by the discretization of u(t), the discretization of the TDSE,
and optimization in subsequent subsections.

2.1. A brief introduction to quantum computation

The most daunting obstacle for learning quantum computing
is probably its notations. Once one is getting familiar with
the Dirac notation, quantum computing can be understood
as matrix-vector multiplications. For an n-qubit state, we
use a 2n-dimensional complex (column) vector with unit Eu-
clidean norm to mathematically describe it, and this vector is
denoted, in the Dirac notation, by |ψ⟩. We use ⟨ψ| to denote
the conjugate transpose of |ψ⟩, and then the inner product
between two states can be conveniently written as ⟨ψ|ϕ⟩.
When the symbol in the Dirac notation is a natural num-
ber, i.e., |0⟩ , . . . , |2n − 1⟩, we use such states to specifically
denote the set of the standard basis of a 2n-dimensional vec-
tor space, same as the basis vectors e0, . . . , e2n−1 that we
usually see in linear algebra textbooks. With respect to the
standard basis, let α0, . . . , α2n−1 be the entries of |ψ⟩, i.e.,
|ψ⟩ =

[
α0, . . . , α2n−1

]T
. It can be conveniently written as

a superposition, |ψ⟩ = α0 |0⟩+· · ·+α2n−1 |2n − 1⟩. When
|ψ⟩ is measured, with probability |αj |2, it will collapse to
|j⟩. Note that a measurement is an irreversible process: a
state cannot be restored once it collapses to some basis state.

The building blocks of quantum algorithms are 1- and 2-
qubit gates: they are modeled as 2 × 2 (1-qubit), or 4 × 4
(2-qubit) unitary matrices. A network of quantum gates
form a quantum circuit, which, acting on n qubits, is math-
ematically represented as a 2n × 2n unitary matrix. In
essence, a quantum algorithm starts from an n-qubit initial
state |0⟩ that is easy to prepare, and applies a quantum cir-
cuit, represented by U , yielding the state |ψ⟩ = U |0⟩. Then
a measurement is performed on |ψ⟩ to obtain the desired
outcomes. Readers may refer to (Nielsen & Chuang, 2010)
for a thorough introduction to quantum computation.

2.2. Approximation Error of the Objective Function

We first represent the control variable u(t) at finitely many
time steps with the length of a time interval denoted by δ:
Let tj = jδ be discrete time steps, and N = T/dt be the
number of time steps. Then we represent u(t) via piece-wise
linear interpolation, denoted by uI(t), given by,

uI(t) =

N∑
j=0

ujbj(t), (5)

with bj(t) being the nodal basis functions (i.e., the hat func-
tions) centered at time steps tj . The interpolating function
can also be integrated directly, which leads to a quadrature

approximation for the integral in Equation (2). The error
from these approximations follows the standard error bound,
e.g., see (Kincaid et al., 2009).
Theorem 2.1 (Perturbation under C2 assumption.). As-
sume that u(t) ∈ C2([0, T ]), i.e., it is twice continuously
differentiable, then the error from the piecewise-linear in-
terpolation is bounded as follows,

∥u(t)− uI(t)∥2 ≤ C∥u′′(t)∥2δ2. (6)

In addition, the integral of u(t)2 can be approximated by a
composite trapezoid rule, with weights denoted by wj ,∫ T

0

u(t)2 dt = δ

N∑
j=0

wju(tj)
2 +O

(
Tδ2

)
. (7)

The quadrature formula (w0 = wN = 1/2 and w1 = w2 =
· · · = wN−1 = 1) can be derived from the linear interpola-
tion of u(t) in each time interval by integrating the nodal
functions directly. In addition, the error carries a prefac-
tor that is proportional to the second-order derivatives of
the integrand, which is bounded due to the assumption that
u(t) ∈ C2([0, T ]).

With this representation of the control function, the prob-
lem is reduced to a finite-dimensional problem. We will
use u to represent the nodal values of the interpolation:
u =

{
uj
}N
j=1

, with uj being the nodal value of u(t) at tj .
We will then write the corresponding objective function as
J̃(u), a function with N variables. Namely,

J̃(u) = ⟨ψN |O |ψN ⟩ − αδ

N∑
j=0

wju
2
j . (8)

Here we have also included the approximation of |ψ(T )⟩,
denoted by |ψN ⟩.
Corollary 2.2. Assume that the wave function is approxi-
mated by |ψN ⟩, with an error comparable to the quadrature
error in Equation (7), i.e.,

∥|ψN ⟩ − |ψ(T )⟩∥ = O(Tδ2). (9)

Further assume that the maximum of J [u] is achieved at
some u∗(t) ∈ C2([0, T ]), and the maximum is not degener-
ate. Then for sufficiently small ϵ, by choosing,

N = O
(
T 3/2

ϵ1/2

)
, (10)

the approximate objective function J̃(u) has a maximum
u∗, for which the corresponding interpolant satisfies,

∥u(t)− uI(t)∥2 ≤ ϵ.

Proof. This can be proved by using the continuous depen-
dence of the wave function |ψ(t)⟩ on the control variable
u(t), e.g., see Proposition 4 of (Ciaramella et al., 2015).
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2.3. Optimization method

A gradient-base algorithm updates the control variables us-
ing the gradient (Nesterov, 2018) to generate an approxi-
mating sequence {u(k)}k≥0,

u(k+1) = u(k) + η
(
∇J(u(k)) + ζk

)
. (11)

Notice that the QOC in Equation (2) is customarily formu-
lated as a maximization problem. Therefore, the algorithm
updates the control variables along the gradient ascent di-
rection. In addition, we considered the perturbed gradient
method (Jin et al., 2021), which introduced a Gaussian noise
ζk with mean zero and E[ζ2

k ] = r2 for some r > 0 to help
the solution with fulfilling an approximation second-order
condition.

The convergence to the global maximum of a gradient-based
algorithm requires certain convexity assumptions on J , e.g.,
the star-convexity (Zhou et al., 2018), which, however, may
not be easy to verify in practice. Alternatively, one can
seek approximate optimality conditions. Jin et al. (Jin et al.,
2021) introduced ϵ-first and second order conditions,

∥∇J(u)∥ < ϵ, and ∇2J(u) ≤ √
ρϵI. (12)

Here ρ is the Lipschitz constant of the Hessian. The follow-
ing result, adapted from Theorem 4.1 of (Jin et al., 2021)
(with σ = O(ϵ2) ) summarizes the complexity associated
with optimization.

Theorem 2.3 (Adapted from Theorem 4.1 in (Jin et al.,
2021)). Assume that the gradient ∇J is L−Lipschitz and it
can be estimated with an unbiased estimation of variance
σ2 = O(ϵ2) and that the learning rate is η < Θ

(
1
L

)
. With

probability at least 1−δ, the optimization method defined in
Equation (11) will visit an approximate stationary point that
fulfills the first and second order conditions in Equation (12),
at least once within the following number of iterations,

k = Õ
(
log

1

δ
L
J(u∗)− J(u(0))

ϵ2

)
. (13)

For the objective function in Equation (8), the Lipschitz
constant can be estimated using the derivative bounds from
Lemma 3.5,

L ≤ Tδ∥µ∥2 + 2αδ. (14)

Since we do not assume an upper bound on α, we will treat
L as a separate constant.

3. Quantum algorithm and complexity analysis
In order to access the objective function in Equation (2), a
time discretization is needed to approximate the integral and
the wave function ψ(T ) by numerical integrators, as alluded

to in the previous section. To begin with, we write J̃ as two
terms: J̃(u) = J̃1(u) + J̃2(u), where

J̃1(u) := ⟨ψN |O |ψN ⟩ and (15)

J̃2(u) := αδ

N∑
j=1

wju(tj)
2. (16)

Note the J̃2 is easy to compute on a classical computer.
Thus we only focus on J̃1, and use a quantum algorithm to
speed up its calculation.

3.1. Obtaining the final state

To have quantum access to J̃1, we need to efficiently prepare
of |ψN ⟩ via a time-marching procedure, i.e.,

|ψN ⟩ = V (tN , tN−1)V (tN−1, tN−2) · · ·V (t1, t0) |ψ0⟩ .
(17)

Note that tN = T . At each step, the dynamics is evolved via
an operator V (tj , tj−1). For instance, in the Dyson series
approach (Low & Wiebe, 2018; Kieferová et al., 2019), the
operator V can be constructed as follows,

V (tj+1, tj) =

K∑
k=0

(−iδ)k

Mkk!

M−1∑
j1,j2,··· ,jk=0

T H(sjk) · · ·H(sj1).
(18)

Here the symbol T indicates that only those points where
sj1 ≤ sj2 ≤ · · · ≤ sjk are collected. The points are selected
to approximate the integrals in the Dyson series expansion
(Berry et al., 2017). The complexity estimate was presented
in Theorem 9 of (Low & Wiebe, 2018). We use a more
efficient simulation algorithm by Berry, Childs, Su, Wang,
and Wiebe (Berry et al., 2020) where the dependence on
T maxt ∥H(t)∥max has later been relaxed to an averaged
L1 norm in time.

Lemma 3.1 ((Berry et al., 2020)). Assume that n-bit Hamil-
tonian H(t) is d-sparse for all t ∈ [0, T ]. The TDSE in
Equation (1) can be simulation until time T within error ϵ
and failure probability O(ϵ) using

O

(
d

∫ T

0

dτ∥H(τ)∥max

log(dHmaxT/ϵ)

log log(dHmaxT/ϵ)

)
, (19)

queries to the oracle of H(t) and Õ(dn
∫ T
0

dτ∥H(τ)∥max)
additional 1- and 2-qubit gates.

Once |ψN ⟩ from Equation (17) is prepared by Lemma 3.1,
we can use it to estimate the gradient of J̃ defined in Equa-
tion (8). We take advantage of quantum gradient estimation
algorithms to estimate ∇J̃ . These algorithms require certain
quantum access to the function. In particular, we define the
two commonly used oracles, namely, the probability oracle
and the phase oracle as follows.
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Definition 3.2 (Probability oracle). Consider a function
f : Rd → [0, 1]. The probability oracle for f , denoted by
Uf , is a unitary defined as

Uf |x⟩ |0⟩ = (20)

|x⟩
(√

f(x) |1⟩ |ϕ1(x)⟩+
√

1− f(x) |0⟩ |ϕ0(x)⟩
)
,

where |ϕ1(x)⟩ and |ϕ0(x)⟩ are arbitrary states.

Definition 3.3 (Phase oracle). Consider a function f :
Rd → R. The phase oracle for f , denoted by Of , is a
unitary defined as

Of |x⟩ |0⟩ = eif(x) |x⟩ |0⟩ . (21)

The following result from Theorem 14 of (Gilyén et al.,
2019a) shows an efficient conversion from the probability
oracle to the phase oracle.

Lemma 3.4. Consider a function f : Rd → [0, 1].
Let Uf be the probability oracle for f . Then, for any
ϵ ∈ (0, 1/3), we can implement an ϵ-approximate of
the phase oracle Of for f , denoted by Õf , such that∥∥∥Õf |ψ⟩ |x⟩ −Of |ψ⟩ |x⟩

∥∥∥ ≤ ϵ, for all state |ψ⟩. This im-

plementation uses O(log(1/ϵ)) invocations to Uf and U†
f ,

and O(log log(1/ϵ)) additional qubits.

We will show how to construct the required oracle for J̃1
given the circuit that prepares |ψN ⟩ in the proof of Theo-
rem 3.9. Before that, let us focus on higher-order derivatives
of J̃1, which are crucial in quantum algorithms for estimat-
ing the gradient of J̃1.

3.2. High-order derivatives of the objective function

In this subsection, we bound the magnitude of higher-order
derivatives of J̃1. In particular, we show the following
lemma. The proof can be found in Appendix A.

Lemma 3.5. Let α = (α1, . . . , αk) ∈ [N+1]k be an index
sequence3. The derivatives of the control function J̃1 with
respect to the control variables satisfy:∥∥∥∥∥ ∂αJ̃1

∂uα1
uα2

· · ·uαk

∥∥∥∥∥ ≤ (k + 1)! (δ∥µ∥)k . (22)

3.3. Quantum gradient estimation

In this subsection, we show how to efficiently estimate the
gradient of J̃1. In the following, we state a quantum algo-
rithm for estimating gradients due to Gilyén, Arunachalam,
and Wiebe (Gilyén et al., 2019a), which is an extension
Jordan’s gradient estimation algorithm (Jordan, 2005). Note

3for a precise definition of an index sequence, see Definition 4
of (Gilyén et al., 2019a)

Algorithm 1 Quantum algorithm for solving QOC

Given T > 0 and ϵ > 0, set N = T 3/2

ϵ1/2
, and kmax =

O( Lϵ2 ) whereL is bounded by Equation (14); set u(t) = 0
for k = 1 : kmax do

Use Lemmas 3.1 and 3.4 to construct the phase oracle
for J̃1(u)
Use Lemma 3.7 to estimate g(k) ≈ ∇J(u(k))
Update control variable: u(k+1) = u(k)+ηg(k)+ηζk

end for

that there exists a nearly-optimal gradient estimation, i.e.,
Theorem 25 of (Gilyén et al., 2019a); however, this result
does not directly apply to our setting since the derivatives,
as characterized in Lemma 3.5, do not satisfy the bound
ckkk/2. To give a more efficient estimation algorithm than
just relying on the bound on the Hessian, we use the follow-
ing result based on a higher-order finite difference method.

Lemma 3.6 (Rephrased from Theorem 23 of (Gilyén et al.,
2019a)). Suppose the access to f : [−1, 1]N → R is given
via a phase oracle Of . If f is (2m+1)-times differentiable
and for all x ∈ [−1, 1]N it holds that

|∂2m+1
r f(x)| ≤ B for r = x/∥x∥, (23)

then there exists a quantum algorithm that output an ap-
proximate gradient g such that ∥g −∇f(0)∥∞ ≤ ϵ with
probability at least 1− ρ using

Õ
(
N1/2B1/(2m)N1/(4m) log(N/ρ)

ϵ1+1/(2m)

)
(24)

queries to Of , and Õ(N) additional 1- and 2-qubit gates.

Based on Lemma 3.6, we have the following result, where
the proof is postponed in Appendix B.

Lemma 3.7. Let J̃1 be defined as in Equation (15). Suppose
we are given access to the phase oracle OJ̃1 for J̃1. Then,
there exists a quantum algorithm that outputs an approxi-
mate gradient g such that

∥∥∥g −∇J̃1
∥∥∥ ≤ ϵ with probability

at least 1− ρ using Õ (T log(N/ρ)/ϵ) queries to OJ̃1 , and

Õ(N) additional 1- and 2-qubit gates.

3.4. Proof of the main theorem

We outline the combined algorithm in Algorithm 1. The
bound on kmax follows from Equation (13).

Before proving the performance of Algorithm 1, we need
to bound the L1 norm

∫ T
0
dτ∥H(t)∥max, which depends on

the L1 norm of control function. Although in general, no
explicit formula is available for u(t), we can deduce some a
priori bounds on u(t).

6
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Lemma 3.8. Suppose that ∥O∥ ≤ 1, and α > 2
T . Let

u(1), . . . , u(k) be a sequence of control variables obtained
from each iteration of Algorithm 1. Let u(1)(t) = 0 be the
initial guess. Then for all j ∈ [k], the L1 norms of the
control functions satisfy

∫ T
0

∣∣u(1)(t)∣∣dt ≤ T .

Proof. First of all, note that J(u(1)) ≥ −1. For all j =
2, . . . , k, we have J(u(j)) ≥ J(u(1)) ≥ −1. Again using
the fact that ∥O∥ ≤ 1, we find

∫ T
0
|u(j)(t)|2dt ≤ 2/α ≤ T.

Using Cauchy–Schwarz inequality, we have,

∫ T

0

∣∣∣u(j)(t)∣∣∣dt ≤ [∫ T

0

∣∣∣u(j)(t)∣∣∣2dt] 1
2

T
1
2 ≤ T. (25)

The inequality J(u(j)) ≥ J(u(1)) follows from a function
ascent property in Equation (31), which as we will illustrate
in the proof of Theorem 3.9, occurs with high probability.
Because ∥H0∥, ∥µ∥ ≤ 1, Lemma 3.8 implies that∫ T

0

dτ∥H(t)∥max = O(T ). (26)

Now, we are ready to state the main result of this section.

Theorem 3.9. Assume that u(t) ∈ C2([0, T ]). There exists
a quantum algorithm that, with probability at least 2/3,

solves Problem 1.1 using Õ
(
dLT 2

ϵ3

)
queries to PH0

and Pµ,

and Õ
(
dnLT 2

ϵ3 + LT 3/2

ϵ5/2

)
additional 1- and 2-qubit gates4.

The Lipschitz constant L can be bounded by Equation (14).

Proof. Recall that by using Lemma 3.1, we can obtain |ψN ⟩
given |ψ0⟩. Now, we show how to construct the oracle to
estimate the gradient of J̃ . We first construct the probability
oracle UJ̃1 for J̃1 by a Hadamard test circuit. Note that
this oracle is well-defined because we have assumed that
∥O∥ ≤ 1. In addition, we need access to a block-encoding
UO of O, which is a unitary of the form

UO =

[
O ·
· ·

]
. (27)

Hence, ⟨0| ⟨ψN |UO |0⟩ |ψN ⟩ = ⟨ψN |O |ψN ⟩. Let c-UO
denote the controlled UO. The Hadamard test circuit (H ⊗
I)(c-UO)(H ⊗ I) acting on |0⟩ |ψN ⟩ produces,√

f(u) |1⟩ |ϕ1(u⟩+
√

1− f(u) |0⟩ |ϕ0(u⟩ , (28)

4In the gate complexity, the second term is dominated by the
first; however, we keep both to demonstrate how smooth control
can improve the gate complexity non-asymptotically. (See Sec-
tion 4.)

for f(u) := − 1
2 ⟨ψN |O |ψN ⟩ + 1

2 . Note that we actu-
ally constructed the probability oracle for f(u) instead of
⟨ψN |O |ψN ⟩. However, this is fine because the gradient of
the latter is the gradient of the former multiplied by a factor
−1/2. In addition, we note that the block-encoding UO can
be efficiently constructed using the sparse-access oracles
for O (see Lemma 48 of (Gilyén et al., 2019b)). It is impor-
tant to note that the implementation of the time-dependent
Hamiltonian simulation by using Lemma 3.1 uses some
control variable u as part of the input. Such Hamiltonian
simulation circuits can be made coherent, i.e., it can be used
when the register containing the control variable u is in
superposition. In addition, we use Uψ0

to prepare the initial
state |ψ0⟩ from |0⟩ for Hamiltonian simulation. Due to the
bound on the L1 norm in Equation (26), we can implement
the probability oracle UJ̃1 as defined in Definition 3.2 using

Õ(dT ) queries to PH0
and Pµ. We highlight that the oracle

for the time-dependent Hamiltonian can be efficiently imple-
mented. The values of the control function away from the
nodal points can be easily computed by linear interpolation.
Thus, we store O(N) parameters in QRAM to construct
the input oracle. The gate complexity of the addressing
scheme for QRAM is Õ(N), which is polynomial in T and
ϵ due to Equation (10). The circuit depth of the addressing
scheme is O(logN). As a result, considering the gate- and
time-complexities of implementing QRAM, the Hamilto-
nian simulation is still efficient. Further, in special cases of
our control models where the form of u(t) is known, while
the parameters in u(t) need to be determined, we do not
need QRAM because u(t) can be computed by an efficient
subroutine.

Next, we use Lemma 3.4 to construct an ϵ-approximate
phase oracle Õf defined in Definition 3.3 using O(1)

queries to UJ̃1 and hence Õ(dT ) queries to PH0
and Pµ.

Using Lemma 3.7, we can obtain a vector g such that∥∥∥g −∇J̃1/2
∥∥∥ ≤ ϵ with probability at least 1 − ρ using

Õ(T log(N/ρ)/ϵ) queries to OJ̃1 . Hence, the number of
queries to PH0

and Pµ is

Õ
(
dT 2 log(N/ρ)

ϵ

)
. (29)

Now we use Theorem 2.3, and analyze the error caused by
the estimation error in the spectral norm. We consider the
gradient iteration method with the noise ζk = 0,

u(k+1) = u(k) + η
(
gk + ζk

)
. (30)

The main departure from the optimization algorithm in Equa-
tion (11) is that an approximation gk of the gradient of a
loss function ∇J(u(k)) is used. We denote the error by

ek := gk −∇J(u(k)).

7
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The proof of Theorem 2.3 in (Jin et al., 2021) relies on a
descent property: Lemma B.1 in (Jin et al., 2021). Following
this approach, we first show that the following inequality
holds with probability at least 1− ν,

J(u(k)) ≥ J(u(0)) +
η

2

k−1∑
j=0

∥∥∥∇J(u(j))
∥∥∥2 − kηϵ2

4
(31)

where the algorithm in Lemma 3.7 is implemented with
ρ = ν/k. We leave the derivation of this inequality to
Appendix C.

In light of Equation (8), the fact that wj = O(1), and the
derivative bounds in Lemma 3.5, we see that the Lipschitz
constant of ∇J is L = O((1+α)

√
Nδ). Now if we choose

the number of iterations,

k = 4L
J∗ − J(u(0))

ϵ2
, (32)

and suppose that
∥∥∇J(u(j))

∥∥ > ϵ, ∀j ∈ [k]. Namely,
the iterations never reached a critical point. Then the de-
scent property implies that, J(u(k)) − J(u(0)) ≥ kηϵ2

4 ,
with probability 1− ν, which would lead to a contradiction
J(u(k)) − J(u(0)) > J∗ − J(u(0)). Consequently, the it-
erations in Equation (30) will fulfill the first order condition.
The rest of the proof can be completed by following the
proof in (Jin et al., 2021).

We use ν instead of ρ in Equation (29). The complexity
only depends on ν logarithmically. As a result, we have the
claimed overall query complexity. The gate complexity for
each iteration is dominated by the gradient estimation and
time-dependent Hamiltonian simulation , i.e., Õ(dnLT 2/ϵ+

N) = Õ(dnLT 2/ϵ+ T 3/2/ϵ1/2).

4. Quantum dynamics with smooth control
The estimates in the previous sections have been obtained
based on the mild assumption that the control function u(t)
is only C2. Meanwhile, there are various scenarios where
the control function is parameterized using smooth func-
tions (Song et al., 2022; Machnes et al., 2018). For example,
rather than controlling point-wise values of u(t), one can
express u(t) as Fourier series and then the control param-
eters are reduced to Fourier coefficients. One important
implication is that the corresponding solution of the TDSE
is smooth as well, in which case, the algorithms presented
in Section 3 can be greatly improved. In particular, both the
wave function ψ(T ) and the integral of the control function
within a time interval can be approximated with arbitrary

order p. Namely,

|ψ(δ)⟩ − |ψ1⟩ = Õ
(

δp+1

(p+ 1)!

)
,∫ δ

0

u(t)2dt− δ
∑
j

wjuj = Õ
(

δp+1

(p+ 1)!

)
.

(33)

for arbitrary order p. Without loss of generality, we have
expressed the approximations here for the first time step.

For the approximation of the integral, Gaussian quadrature
can be used to obtain maximum accuracy. For the approx-
imation of the wave function, such accuracy has been ob-
tained in the Dyson series approach (Kieferová et al., 2019)
even without this smoothness assumption.

To ensure that the error from the approximation of |ψ(T )⟩
is within precision ϵ, we force the one-step error to be below
ϵ/N . Since p can be chosen arbitrarily, the step size δ =
O(1). In light of Equation (33), this error bound can be
achieved if we choose p as follows,

p = Θ

(
logN/ϵ

log logN/ϵ

)
= Θ

(
log T/ϵ

log log T/ϵ

)
. (34)

Consequently, the number of time steps N = T/δ is im-
proved from Equation (10) to

N = Θ

(
T

log T/ϵ

log logN/ϵ

)
= Õ (T ) . (35)

Overall, the smoothness of the control variable u(t) allows
us to use high-order approximations and it reduces the extra
gates used in Lemma 3.6 by a factor of T 1/2/ϵ1/2. However,
the smoothness does not improve the query complexity and
the overall gate complexity because the number of queries
depend on T = Nδ, no matter how small N is.

To summarize this section, we have the following theorem.

Theorem 4.1. Assume that u(t) is smooth. There exists
a quantum algorithm that, with probability at least 2/3,

solves Problem 1.1 using Õ
(
dLT 2

ϵ3

)
queries to PH0

and

Pµ, and Õ
(
dnLT 2

ϵ3 + LT
ϵ2

)
additional 1- and 2-qubit gates.

The Lipschitz constant L can be bounded by Equation (14).

Proof. The proof is similar to that of Theorem 3.9. We use
the number of steps N as in Equation (35) to obtain this
improved gate complexity.

5. Numerical Example
Here we consider a one-dimensional model similar to (Zhu
& Rabitz, 1998b). The Hamiltonian H0 is a tri-diagonal
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matrix corresponding to a three-point discrete Laplacian
operator. The operator µ and O are diagonal,

µ =
∑
r

re−r/r0 |r⟩⟨r| , O =
∑
r

γ0
π
e−γ

2
0r

2

|r⟩⟨r| .

The step size is set to δ = 0.02.

In the optimization, we choose the learning rate to be 0.04.
Using u(t) = 0 as the initial guess, we apply Equation (11)
for 2000 iterations. Figure 1 shows that the objective func-
tion has reached a plateau. As comparison, we run the
algorithms with exactly computed gradient, and perturb
gradients with noise. We observe that even with noise per-
turbations, the gradient-based algorithm still converges to
the same maximum. In addition, as shown in Figure 2, the
resulting control variable exhibits some statistical fluctua-
tions; however, it still remains close to the optimal control
variable, indicating its resilience to noisy perturbations.

Figure 1. The loss function during 2000 iterations.

Figure 2. The control function after 2000 iterations.
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A. The proof of Lemma 3.5
Proof. To understand how the objective function J depends on the control variables, we first explicitly write the piecewise-
linear interpolating function using shape functions bj(t),

uI(t) =
∑
j

ujbj(t),

where bj(t)’s are standard hat functions. We first examine the derivatives of |ψ(T )⟩ with respect to the control variables.
Following the TDSE in Equation (1), we can write the derivative of ψ(t) with respect to uj , ϕ1(t) := ∂ujψ(t), as follows,

i∂tϕ1 = H(t)ϕ1 − µbj(t)ψ(t). (36)

Known as a variational equation (Deuflhard & Bornemann, 2002), such an equation characterizes the dependence of the
solution on the parameters in an evolution equation. By using variation-of-constant formula, we find

ϕ1(t) = i

∫ t

0

U(t, t′)µψ(t′)bj(t
′) dt′,

where U(t, t′) is the unitary operator generated by H(t). A straightforward bound thus follows,

∥ϕ(t)∥ ≤ ∥µ∥δ, ∀0 ≤ t ≤ T.

Here we used the fact that ∫ T

0

|bj(t)|dt ≤ δ.

We can continue with this calculation by letting ϕ2(t) := ∂uj
ϕ1(t) for a second order derivative:

i∂tϕ2 = H(t)ϕ2 − 2µbj(t)ϕ1(t).

Therefore, ∥ϕ2(t)∥ ≤ 2(δ∥µ∥)2. Mixed derivatives can be treated similarly and they follow a similar bound. By defining
ϕ3(t) := ∂ujϕ2(t), we obtain,

i∂tϕ3 = H0ϕ3 − 3µbj(t)ϕ2(t).

By repeating this argument for higher-order derivatives, we arrive at the inequality.∥∥∥∥ ∂α

∂uα1uα2 · · ·uαk

ψ(T )

∥∥∥∥ ≤ k! (δ∥µ∥)k . (37)

Consequently, the function J̃1 has derivative bounds,∥∥∥∥∥ ∂αJ̃1
∂uα1

uα2
· · ·uαk

∥∥∥∥∥ ≤
k∑
j=0

(
k

j

)
(k − j)!j! (δ∥µ∥)k ≤ (k + 1)! (δ∥µ∥)k . (38)

B. Proof of Lemma 3.7
Proof. First observe that J̃1(u) depends on u smoothly. By Lemma 3.5, we have

B =
∣∣∇2m+1

r J
∣∣ = O((2m+ 1)!δ2m+1). (39)

Therefore, according to Lemma 3.6, the query complexity to achieve the error bound in the spectral norm is

Õ

(
N

ϵ

B
1

2mN
1

4m

ϵ
1

2m

)
. (40)
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We notice that by Stirling’s approximation,

(2m+ 1)! ≈
(
2m+ 1

e

)2m+1

. (41)

Therefore, it suffices to choose

m = O

(
log
(
T 1/2/ϵ3/4

)
log log

(
T 1/2/ϵ3/4

)) , (42)

so that both m and (T 1/2/ϵ3/4)1/(2m) are poly-logarithmic factors. As a result, we have the claimed query complexity.

C. The function ascent property Equation (31)
We start by noticing that,

J(u(k+1)) ≥ J(u(k)) +
(
∇J(u(k)),u(k+1) − u(k)

)
− L

2

∥∥∥u(k+1) − u(k)
∥∥∥2

≥ J(u(k)) + η
∥∥∥∇J(u(k))

∥∥∥2 + η
(
∇J(u(k)), ζk + ek

)
− η

2

∥∥∥∇J(u(k)) + ek + ζk

∥∥∥2
≥ J(u(k)) +

η

2

∥∥∥∇J(u(k))
∥∥∥2 − η∥ζk∥2 − η∥ek∥2.

The first line was obtained from the Lipschitz condition on the gradient. Equation (30) is then used to arrive at the second
line.

By a telescoping sum, we arrive at the desired function ascent property,

J(u(k)) ≥J(u(0)) +
η

2

k−1∑
j=0

∥∥∥∇J(u(j))
∥∥∥2

− η

k−1∑
j=0

∥ζj∥2 − η

k−1∑
j=0

∥ej∥2.

(43)

The noise term
∑k−1
j=0 ∥ζj∥

2 has been treated probabilistically in (Jin et al., 2021) using a concentration inequality (Jin
et al., 2019), which provides a bound of 1

8kϵ
2 with high probability. Meanwhile, we set a failure probability ρ = ν/k in the

gradient estimation such that,
P
(
∥ej∥2 < ϵ2/8

)
≥ (1− ρ),

implying that
P
(
∥ej∥2 < ϵ2/8, ∀1 ≤ j ≤ k

)
≥ (1− ρ)k ≥ 1− ν. (44)
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