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Abstract
Offline reinforcement learning typically intro-
duces a hierarchical structure to solve the long-
horizon problem so as to address its thorny issue
of variance accumulation. Problems of deadly
triad, limited data and reward sparsity, however,
still remain, rendering the design of effective,
hierarchical offline RL algorithms for general-
purpose policy learning a formidable challenge.
In this paper, we first formulate the problem of
offline long-horizon decision-MakIng from the
perspective of conditional generative modeling by
incorporating goals into the control-as-inference
graphic models. A Hierarchical trajectory-level
Diffusion probabilistic model is then proposed
with classifier-free guidance. HDMI employs
a cascade framework that utilizes the reward-
conditional goal diffuser for the subgoal discov-
ery and the goal-conditional trajectory diffuser
for generating the corresponding action sequence
of subgoals. Planning-based subgoal extraction
and transformer-based diffusion are employed
to deal with the sub-optimal data pollution and
long-range subgoal dependencies in the goal dif-
fusion. Numerical experiments verify the advan-
tages of HDMI on long-horizon decision-making
compared to SOTA offline RL methods and con-
ditional generative models.

1. Introduction
The fundamentally online learning paradigm of reinforce-
ment learning (RL) hinders its widespread adoption in
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healthcare, education, finance, and robotics (Charpentier
et al., 2021; Sinha et al., 2022; De Lima & Krohling, 2021;
Villaflor et al., 2022; Tang et al., 2022) due to the cost and
potential harm of online sample collection. Conversely, a
large number of samples already logged by operational sys-
tems give rise to the problem of offline RL, namely, how
to recover high-performing policies without further explor-
ing the environment (Wu et al., 2019; Kumar et al., 2020;
Kostrikov et al., 2021; 2022; Ghosh et al., 2022).

Nevertheless, this lack of real-time interactions makes of-
fline RL, in general, notoriously challenging, as value esti-
mators can suffer from potential exponentially increasing
variance in terms of the temporal horizon (Li et al., 2015;
Ren et al., 2021). Existing work to overcome the “curse of
horizon” is either based on less realistic assumptions (Liu
et al., 2018; Xie et al., 2019; Ren et al., 2021) or introducing
new mechanisms that inherit the high complexity depen-
dency on the horizon (Nachum et al., 2019; Uehara et al.,
2020; Yang et al., 2020). The above findings also clearly
suggest that it is still an open problem to design an offline
RL method that is less affected by the horizon and solves
the long-horizon problem effectively.

To deal with long temporal extension, an alternative RL
solution is to decompose a long-horizon task into a hier-
archy of subproblems, i.e., by hierarchical reinforcement
learning (HRL) (Parr & Russell, 1997; Sutton et al., 1999;
Kulkarni et al., 2016; Vezhnevets et al., 2017; Nachum et al.,
2018), which also sees its utilization in offline decision-
making (Ajay et al., 2021; Pertsch et al., 2021b; Villecroze
et al., 2022; Rosete-Beas et al., 2022; Rao et al., 2022; Yang
et al., 2023). Unfortunately, the instabilities of these meth-
ods due to the deadly triad (Sutton & Barto, 2018; Van Has-
selt et al., 2018), limited data access (Fujimoto et al., 2019;
Kumar et al., 2020), and reward sparsity (Andrychowicz
et al., 2017; Ma et al., 2022) still remain largely unresolved.

The success of RL methods leveraging conditional genera-
tive models (Chen et al., 2021; Janner et al., 2021; Furuta
et al., 2022; Reed et al., 2022; Janner et al., 2022; Ajay
et al., 2022; Carvalho et al., 2022) on standardized bench-
marks (Fu et al., 2020; Gulcehre et al., 2020) motivates us to
consider the following question: Can the above challenges
be mitigated or even avoided using a conditional generation
model that introduces a hierarchical structure?

1



Hierarchical Diffusion for Offline Decision Making

S

T

S

T

S

T

S

T

G
oa

l D
iff

us
er

Tr
aj

ec
to

ry
 D

iff
us

er

Return-conditioned Denoising

Subgoal-conditioned Denoising

R
eceding H

orizon C
ontrol

Figure 1: Illustrative example of hierarchical diffusion. We first sample the subgoals based on the return and then samples
the actions corresponding to the subgoal. We use receding horizon control to avoid the error accumulation due to stochastics.

This paper provides an affirmative answer algorithmically
and empirically. Our core idea follows offline goal-based
methods (Ma et al., 2021; Liu & Sun, 2022; Ma et al., 2022;
Li et al., 2022) based on constructing a set of subprob-
lems by discovering subgoals and further learning one (uni-
fied) policy to reach these subgoals (Pateria et al., 2021;
Uehara et al., 2020). We first formulate the offline long-
horizon decision-making as the goal-based, conditional gen-
erative modeling by introducing the goal into the control-
as-inference framework (Levine, 2018) and estimating the
goal-action joint conditional distribution with the hierarchi-
cal diffusion. The generative learning operates in a different
spirit from temporal difference learning; thus, there are
fewer influences by the deadly triad and limited dataset.

Concretely, the proposed Hierarchical Diffusion for Of-
fline Decision MakIng framework (Figure 1), HDMI, em-
ploys a cascade framework similar to independent subtask
discovery (Pateria et al., 2021, §3.3) in HRL, where the
goal diffuser learns a reward-conditional model for sub-
goal discovery, and the trajectory diffuser learns a goal-
conditional model for action generation. The goal diffuser
learns from high-quality subgoals, and we adopt a planning-
based method (Eysenbach et al., 2019) to avoid the pollution
caused by sub-optimal data. Furthermore, previous work
has shown that the correlations between elements (e.g., im-
age pixels (Song et al., 2021) or trajectory states (Janner
et al., 2022)) are critical to the success of diffusion mod-
els. Therefore, the weakness of dependencies between local
subgoals and long-range dependencies between global sub-
goals motivate us to utilize the transformer-based diffusion
model (Vaswani et al., 2017; Peebles & Xie, 2022) instead
of commonly used U-Net-like (Ronneberger et al., 2015)
structure. Moreover, goal-conditional policy learning is
translated into an inpainting problem (Sohl-Dickstein et al.,

2015; Janner et al., 2022) by replacing the sampled states
with conditioning subgoals for cascade trajectory diffuser.

Using a diffusion probability model has several significant
advantages for solving long-horizon problems over existing
generative models families: The polylogarithmic depen-
dency on the horizon (or dimensionality Lee et al. (2022a))
and GAN-level sample quality without adversarial training
enables efficient long-horizon modeling; the flexible model
architecture enables transformer-based sparse subgoal de-
pendencies capturing; inverse problem-solving without re-
training models enables practical subgoal discovery and
action generation. Moreover, the diffusion model blurs the
line between modeling and planning, allowing the model to
improve the prediction while improving the planning ability
during training, thus better solving the credit assignment
planning problem due to sparse rewards (Janner et al., 2022).

Our main contributions include: 1) introducing goals into
the control-as-inference framework and formulating offline
long-horizon decision-making as a conditional generative
modeling; 2) employing a hierarchical framework, HDMI,
in which the goal diffuser learns a reward-conditional diffu-
sion for the subgoal discovering, and the trajectory diffuser
learns a goal-conditional diffusion for the action genera-
tion; 3) utilizing a planning-based subgoal extractor and
transformer-based diffusion to deal with the sub-optimal
data pollution and long-range subgoal dependency issues.

2. Problem Formulation
To take advantage of the generative model, we need to trans-
form the offline long-horizon decision-making, i.e., obtain-
ing the most probable subgoal and action distributions that
maximize the expected return, into a goal-based, conditional
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generative modeling problem by maximizing:

Eτ0∼D
[
log pθ

(
τ0 | y(τ0)

)]
, (1)

where τ0 = {gi, {s(i−1)∗M+j , a(i−1)∗M+j}Mj=1}
N−1
i=1 rep-

resents a trajectory with a hierarchical structure in the
dataset. Note that we have gi ≡ si∗M , i ∈ [0, N − 1],
and each trajectory must reach all subgoals exactly. In
other words, each trajectory is generated under the subgoal
constraints. {gi}N−1

i=0 represents the subgoal sequence of
length N , and {s(i−1)∗M+j , a(i−1)∗M+j}Mj=1} represents
the trajectory of length M corresponding to subgoal gi, the
horizon is T := N ×M . Then the goal of offline long-
horizon decision-making is to estimate the conditional data
distribution with pθ so we can generate a target trajectory
τ0 from the information y(τ0).

(a) (b) (c)

Figure 2: Graphic models for decision-making: (a) The
states and actions form the backbone of the graphic model;
(b) Augmenting goals to embed a long-horizon problem into
this graphic model; (c) By summarizing the goal-augmented
optimality variables, the new goal-oriented graphic model
more naturally models the probability distribution of sub-
goals and highlights the hierarchical structure. Similar
with (Levine, 2018), we condition the optimality variables
as being true and then infer the most probable higher-level
subgoal and lower-level action sequence or distributions.

The goal of long-horizon offline decision making is to ex-
tract knowledge from a fixed offline dataset to obtain a pol-
icy that can maximize cumulative rewards1. And the goal-
based mechanism we follow is to achieve the above goals by
continuously achieving sub-goals through constraint poli-
cies. However, the current log-likelihood in Equation 1 has
not yet been linked to rewards and sub-goals. To this end, we
first introduce the control-as-inference framework (Levine,
2018), and its corresponding probabilistic graphical model
is shown in Figure 2a (refer to Appendix B.3).

Although the control-as-inference framework can incorpo-
rate reward into the goal-based condition generation prob-
lem, it does not leave a place for subgoal. To do further
analysis and conversion, we introduce subgoal sequences

1Achieving a desired goal can also be modeled as a reward
maximization task, except that the agent is rewarded only after
reaching the goal state.

into the basic graphical model of control, as shown in Fig-
ure 2b. Adding the subgoal variables gi results in a new
graphical model, which can be conditioned on some new
optimality variables Pt that can represent either the same
subgoal or a different subgoal. This new optimality vari-
able is a binary random variable, where Pt = 1 denotes
that the state-action pair conditioned on the subgoal gi is
optimal, otherwise Pt = 0. We can then naturally define
the information y(τ0) as the optimality variables P0:T−1 of
the trajectory τ0 being true.

This “goal-augmented” graphical model in Figure 2b has a
semantically identical interpretation as the original graphical
model in Figure 2a, where the combination of the transition
model and the goal conditional serves as a new (and likely
more manageable) dynamical system. In other words, the
lower-level trajectory shapes the underlying dynamics of
the system, ideally making it more easily controllable by a
higher-level subgoal sequence.

A specific data distribution for the higher-level subgoals
and lower-level trajectory can be learned by conditioning
on new optimality variables hierarchically. Before that, we
transform the graphical model in Figure 2b into a more
compact one to naturally model the probability distribution
of subgoals and highlight the hierarchical structure of the
long-horizon problem. Specifically, the compact graphic
model, as shown in Figure 2c, conditions on the new goal-
based optimality variable Υi by summarizing P , which is
also a binary random variable. Υi = 1 denotes that the
generated trajectory of subgoal gi is optimal, otherwise
Υi = 0. Then the information y(τ0) is correspondingly
transformed to the goal-based optimality variables Υ0:N−1

of the trajectory τ0 being true, where g0:N−1 ∈ τ0.

Further, without loss of generality, we introduce the fol-
lowing definition to formalize the posterior distribution of
goal-based optimality variables similar with (Levine, 2018):

Definition 2.1 (Posterior distribution of
goal-based optimality variable). Given a
subgoal gi and its corresponding trajectory
{s(i−1)∗M+j , a(i−1)∗M+j}Mj=1, the posterior
distribution of the goal-oriented optimality variable
Υi can be modeled as an energy-based model as
follows:

p
(
Υi = 1 | gi, {s(i−1)∗M+j , a(i−1)∗M+j}Mj=1

)
∝ exp

(∑M
j=1 r

(
s(i−1)∗M+j , a(i−1)∗M+j

))
.

At this point, we can link Equation 1 with the optimization
objective of offline long-horizon decision-making. Con-
cretely, we can expand the conditional probability in Equa-
tion (1) into the following hierarchical form:
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Proposition 2.2. Given a subgoal sequence τg :=
g0:N−1 and the corresponding trajectory τsa :=
{s0:T−1, a0:T−1}, T = N ∗ M , the conditional
probability in Equation (1) can be transformed into
following form based on the graphic model shown
in Figure 2c:

p (τ0 | y(τ0)) ∝ p(τg)y(τg)
∏N

i=1 p(τ
i
sa)y(τ

i
sa),

(2)
where τ isa := {s(i−1)∗M+j , a(i−1)∗M+j}Mj=1)
corresponding to the subgoal gi, y(τg) :=

exp
(∑T−1

t=0 r(st, at)
)

and y(τ isa) is a Dirac delta
for the subgoal constraints.

With Proposition 2.2, we transform offline long-horizon
decision-making into the goal-based, conditional genera-
tive modeling with a unique hierarchical form. Given a
decision-making task, to sample an optimal trajectory, we
first conditionally sample the optimal subgoal sequence τg
based on the information y(τg); and then conditionally sam-
ples the optimal trajectory τ isa corresponding to the subgoal
gi based on the information y(τ isa). We will further intro-
duce how to construct the training dataset, parameterize and
train the model based on a fixed offline dataset, and finally
sample our interested subgoal and action sequences from it.

It is noteworthy that the formalism of goal-conditioned con-
trol of inference has garnered prior attention (Rudner et al.,
2021). However, we depart from the previous literature
regarding the problem’s objective, modeling approach, and
solution. Rudner’s formulation represents the problem of
goal-conditioned, online RL as a novel policy inference
task aimed at achieving a desired outcome, while our ap-
proach casts the long-horizon offline decision-making issue
as a policy inference matter that focuses on maximizing
rewards. The introduction of goals serves only to establish
a hierarchical structure for more efficient problem-solving.

These differences also yield distinct strategies for addressing
the problem. Rudner’s approach necessitates the acquisition
of a goal-related reward function to implement an online
RL framework, given that rewards are not included in the
modeled problem. In contrast, our proposed method en-
tails transforming policy inference into a reward- and goal-
conditioning generation problem and resolving it through
maximum likelihood estimation based on an offline dataset.
Please refer to Appendix G for more analysis.

3. The Proposed Method
This section discusses how we may use a hierarchical diffu-
sion model for above conditional sampling. First, we discuss
how to extract high-quality subgoal from datasets with vari-
able sample quality in Section 3.1. Next, we discuss the

modeling choices for hierarchical diffusion in Section 3.2.
We then discuss how we may train our models in Section 3.3
and utilize a hierarchical classifier-free structure to capture
the best aspects of subgoals and actions in Section 3.4.

3.1. Planning-based Subgoal Extraction

Proposition 2.2 shows that the lower-level action generation
depends only on the subgoal sequences generated in the
upper level, independent of the reward function. The reward
function only affects the generation of subgoal sequences.
Therefore, the selection of the subgoal prior distribution
p(τg) in (2) is critical to generate high-quality action se-
quences. Unfortunately, in the offline dataset, no subgoals
correspond to each trajectory in advance. This requires us
to preprocess the dataset and extract high-quality subgoal
sequences. The critical challenge is that suboptimal trajec-
tories pollute the dataset. For example, in a goal-reaching
task, the two trajectories to the goal may differ significantly
in length. Thus extracting the corresponding subgoals from
each trajectory independently will not guarantee optimality.

To this end, we borrow a planning-based online RL method,
SoRB (Eysenbach et al., 2019), which can automatically
find subgoals by learning graphic abstractions of the envi-
ronment (Figure 3). This graph is constructed via an extra
RL task, where a goal-conditioned value function provides
edge weights, and nodes are taken to be observations. Using
graph search to find the shortest path, we can automatically
generate subgoals, even in high-dimensional environments.

Specifically, we define an additional goal-conditioned
reward function that returns −1 at each step, i.e.,
r(st, at, st+1) = −1. This leads to a close connection
between the goal-conditioned value function and short-
est paths. That is, the value of state s1 with respect to
any other state s2 is simply the negative shortest path dis-
tance (Eysenbach et al., 2019): V (s1, s2) = dsp(s1, s2),
where dsp(·, ·) is the short path distance between two states.
We choose the off-policy RL algorithm with goal relabelling
to learn the goal-conditioned value function and introduce
distributional RL (Morimura et al., 2010; 2012; Bellemare
et al., 2017) to improve the accuracy of distance estima-
tion. The IQN (Dabney et al., 2018) for discrete actions
and the D4PG (Barth-Maron et al., 2018) for continuous
actions are employed, while both operate over transitions
sampled from the offline dataset D. Further, we employ
the learned goal-conditioned value function to construct a
weighted, directed graph: G ≜ (V, E ,W), where V = D,
E = D ×D = {es1→s2 | s1, s2 ∈ D}, and

W (es1→s2) =

{
V (s1, s2) if V (s1, s2) < ∆g;

∞ otherwise,
(3)

where ∆g denotes a hyperparameter controlling the length
of the subgoal sequence. However, due to the online charac-
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(a) Initialization. (b) Clustering. (c) Graph Construction. (d) Planning.

Figure 3: Planning-based subgoal extraction. For the original dataset D, we first cluster all trajectories using the mini-batch
k-means++ algorithm to aggregate trajectories with the same initial and the terminal state into a sub-dataset Dc; next, we
transform Dc based on the distributional off-policy RL to a weighted directed graph Gc, where the nodes represent the states
and the weights represent the predicted shortest distance; finally, we use the proposed offline version of (Eysenbach et al.,
2019) to search for the shortest path from the initial to the terminal state on Gc and obtain the subgoal sequence.

teristics of SoRB, directly migrating it to an offline setting
will make the problem intractable. There are two reasons:
1) in SoRB, subgoals are generated online. SoRB will re-
search for the next subgoal every time the agent interacts
with the environment and transits to the next state; 2) SoRB
needs to use the Floyd-Warshall algorithm (Floyd, 1962;
Roy, 1959; Warshall, 1962) to calculate the shortest path
between every two states in the dataset in advance with best-
case performance O

(
|D|3

)
. This makes it challenging to

scale to offline datasets with millions of states.

To address the two challenges, we try to reduce the dataset
size by clustering. Considering the manifold of samples in
the offline datasets used in this paper, we use the mini-batch
version (Sculley, 2010) of k-means++ (Arthur & Vassilvit-
skii, 2007) for clustering. Trajectories whose initial and
final state belong to the same centroid will be collected as
Dc and used to construct the sub-graph Gc.

Algorithm 1 Next Subgoal Searching on the Sub-graph.

Input: the current goal sg , the terminate state sT , dataset
Dc, the learned goal-conditioned value function V .
Mπb

← −V (Dc,Dc); ▷ cached
MDc→Dc

← FloydWarshall (Mπb
) ; ▷ cached

Msg→Dc
← −V (sg,Dc); MDc→sT ← −V (Dc, sT );

Msg→sT ←Msg→Dc
+MDc→Dc

+ (MDc→sT )
T;

u, v ← argminu,v∈Dc Msg→sT ;
Output: the next subgoal sg′ := u.

An offline version of (Eysenbach et al., 2019) is further uti-
lized to obtain a shared subgoal sequence for each centroid
(Algorithm 1). Mπb

,MDc,Msg→sT
→Dc ∈ R|Dc|×|Dc| are

matrices, Msg→Dc
,Msg→sT ∈ R|Dc| are vectors. Ignoring

the pre-cached Mπb
,MDc

, Algorithm 1 only needs to call
the learned value function O (|Dc|) times. Then, for each
trajectory in Dc, we find the state closest to each subgoal
and replace it with that subgoal. This makes each subgoal

sequence correspond to a set of diverse trajectories, which
will facilitate the model training and sampling diversity.

3.2. Transformer-based Hierarchical Diffusion

After preprocessing the dataset, we get the dataset D :=
{τ0} contains the sample with hierarchical structure τ0 =
{gi, {s(i−1)∗M+j , a(i−1)∗M+j}Mj=1}

N−1
i=1 and subgoal con-

straints gi ≡ si∗M , i ∈ [0, N − 1]. We can then parameter-
ize Equation 2 by using a hierarchical diffusion probability
model. Nevertheless, before that, we need to choose a suit-
able skeleton of the diffusion model.

Existing work has shown that the capture of correlations
between elements (e.g., image pixels (Song et al., 2021) or
trajectory states (Janner et al., 2022)) is critical to the suc-
cess of diffusion models. Different from related works that
use the diffusion model to denoise the entire state trajectory
or state-action trajectory, we denoise the sparser subgoal
trajectory in the goal diffusion. The long-range dependence
between subgoals makes the U-Net-like (Ronneberger et al.,
2015; Janner et al., 2022; Ajay et al., 2022) structure based
on local convolution no longer the optimal choice. This
motivates us to use the transformer (Vaswani et al., 2017;
Peebles & Xie, 2022) as the skeleton of the diffusion model.

Specifically, we use a transformer-based neural network
as shown in Figure 4 to parameterize ϵθ (τk, y(τ ), k) (see
§B.2) for both goal diffusion and trajectory diffusion2. In
the denoising process of step k + 1, we first linearly encode
each subgoal or state in the noised trajectory obtained in the
previous step k, then concatenate the standard ViT (Doso-
vitskiy et al., 2020) frequency-based sine-cosine positional
embeddings. In addition to noised trajectory inputs, our
hierarchical diffusion model needs to process conditioning
information, i.e., timesteps k and information y(τk). Sim-

2(Peebles & Xie, 2022) has shown that the transformer is com-
parable to U-Net. Therefore, we uniformly use the transformer-
based diffusion to reduce the complexity.
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Figure 4: Transformer-based hierarchical diffusion model.
Each elements in the noised trajectory is first linearly embed-
ded and then concatenated with frequency-based sine-cosine
positional embedding. Information y(τk) and timestep k
are also linearly embedded first and then regarded as two
additional tokens that are appended to the noised trajectory
embedding. The augmented input tokens are then processed
by a sequence of diffusion transformer blocks (Peebles &
Xie, 2022). To fully utilize conditional information, the em-
bedding of information y(τk) and timestep k will undergo
a linear embedding to generate adaptive dimension-wise
scaling and shift parameters γ, β, α, with adaptive layer
norm and linearly decoding into an noise prediction and an
diagonal covariance prediction.

ilar to cls tokens in ViTs, k and y(τk) are also linearly
embedded first and then regarded as two additional tokens
are appended to the trajectory embedding. For the goal dif-
fuser, y represents the normalized return (y ∈ [0, 1]) of the
subgoal sequence. y represents the subgoal constraints in
the trajectory diffuser, and we will discuss it soon.

The input tokens are then processed by multiple diffusion
transformer (DiT) blocks (Peebles & Xie, 2022). The DiT
block replaces standard layer norm layers with adaptive
layer norm. Rather than directly learn dimension-wise scale
and shift parameters γ and β, DiT regresses them from the
sum of the embedding vectors of k and y(τk) to make full
use of conditional information. The DiT block also regresses
dimension-wise scaling parameters α applied immediately
before any residual connections within the DiT block.

3.3. Model Training with Classifier-free Guidance

Recall that we want to approximate p (τ0 | y(τ0)) by using a
hierarchical diffusion model from D := {τ i}. After param-
eterizing ϵθ (τk, y(τ ), k), we can then train the model and
sample from it. In the goal diffuser, for each sampled trajec-

tory τg,0, we first sample noise ϵ ∼ N (0, I) and a timestep
k ∼ U{1, . . . ,K}, and construct a noised subgoal sequence
τg,k :=

√
αkτg,0 + (1− αk)ϵ. The unconditional noise is

represented as the conditional noise ϵθg (τg,k,∅, k) where
a dummy value ∅ takes the place of y(τg,k). We then pre-
dict the noise as ϵ̂θg := ϵθg (τg,k, (1− β)y(τg,k) + β∅, k),
with probability pu we ignore the conditioning information.
The corresponding training loss is:

LG(k, τg,0, pu) = Ek,τg,0∈D,β∼Bern(pu)

[∥∥ϵ− ϵ̂θg
∥∥2] ,

where the condition y(τg,k) is the maximum value of the
normalized return in the trajectories corresponding to τg,0.

The trajectory diffuser is trained similarly with a
few trade-offs. Firstly, trajectory diffuser can model
p(τ i

sa,0|y(τ i
sa,0)), where τ i

sa,0 represents the sub-trajectory
{s(i−1)∗M+j , a(i−1)∗M+j}Mj=1 corresponding to a certain
subgoal gi. We can naturally choose to corrupt and denoise
directly to τ i

sa,0 just like (Janner et al., 2022). However,
sequences over actions tend to be more high-frequency and
less smooth, thus making it harder for the diffusion model
to predict (Kingma et al., 2021; Tedrake, 2022).

Therefore, we only use the trajectory diffuser to es-
timate the posterior distribution of state trajectories
τ i
s,0 := {s(i−1)∗M+j}Mj=1, and use inverse dynamics

model (Agrawal et al., 2015; Pathak et al., 2017) similarly
to (Ajay et al., 2022) in order to generate action trajectories
based on state trajectories. Training this inverse dynamics
model amounts to learning function F defined as:

â(i−1)∗M+j = F
(
s(i−1)∗M+j , s(i−1)∗M+j+1; θI

)
,

where â(i−1)∗M+j is the predicted estimate of action
a(i−1)∗M+j and the parameters of inverse dynamics
model θI are trained to optimize LI (ât, at; θI). In case
a(i−1)∗M+j is discrete, F ’s output is a softmax distribution
and minimizing LI amounts to maximum likelihood estima-
tion of θI under a multinomial distribution; Otherwise, LI

is instantiated as the mean squared error.

Furthermore, the conditioning information y(τ i
sa,0) is a

Dirac delta for the subgoal constraints as mentioned in
Proposition 2.2. How constraints are fed into a diffu-
sion model is not trivial. Fortunately, this setting can be
reformulated into an inpainting problem, in which state
and action constraints act analogously to observed pix-
els in an image (Janner et al., 2022). This can be practi-
cally implemented by sampling from the denoising process
τ i
s,k−1 ∼ pθs

(
τ i
s,k−1|τ i

s,k

)
and replacing the last state of

the sampled trajectory with conditioning subgoal gi after
each reverse timesteps k. Interestingly, this means that
when training the trajectory diffuser, we do not need to in-
put the conditioning information y(τ i

sa,0) but only need to
use the above trick when generating trajectories during the
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test phase. Similar to the goal diffuser, the training loss is:

LT (k, τ
i
s,0) = Ek,τ i

s,0∈D

[
∥ϵ− ϵ̂θs∥

2
]
, (4)

where ϵ̂θs := ϵθs(τ
i
s,k,∅, k). The training procedure of the

goal and trajectory diffuser is shown in Algorithm 2. In the
algorithm, τ· is the collective name of τg,· and τs,·, and θ is
the collective name of θg and θs.

Types of problems that HDMI can solve. The model train-
ing so far is mainly aimed at the reward-maximizing. That
is, the conditional information of the goal diffuser trajec-
tory is related to the reward. However, HDMI is equally
applicable to solving the goal-reaching problem (i.e., the
final state is constrained by the goal), simply by applying
the training method of the trajectory diffuser to the goal
diffuser, as shown in Algorithm 4.

3.4. Decison-Making with Hierarchical Diffusion

After the model is trained, sampling from HDMI is equiva-
lent to complete the planning in RL. Reward-maximizing
decision-making with the hierarchical diffusion is shown in
Algorithm 3, and for the goal-reaching task, only a simple
modification is required, as shown in Algorithm 5. It is
worth noting that the generation of action does not depend
on the reward. And in the subgoal extraction, the same sub-
goal may correspond to multiple action sequences of varying
quality. This makes the trajectory diffuser, while capable of
sampling diversity, to potentially generate low-quality data.
For this reason we borrowed the low-temperature sampling
in (Ajay et al., 2022) to avoid this problem.

There are two additional points need to be explained: the
classifier-free guidance and the receding horizon control
(RHC). For the former we use a discrete-time version of (Ho
& Salimans, 2022). And for the latter, due to the aleatoric
uncertainty of the environment and the epistemic uncer-
tainty of the model, sampling the whole subgoal and action
sequence in the test phase will lead to errors that are expo-
nentially proportional to the planning horizon.

A standard solution in the optimal control, as well as in RL,
is to use model predictive control (MPC). However, existing
work generally uses fixed horizon optimization. This means
we first generate a sequence of length N or M using the
goal or trajectory diffuser and only use the first element of
the sequence as the sampling result. Then, the model starts
from this element and repeats the above operation until the
length of the sampled sequence meets the requirement.

However, this method ignores the sequence that has been
sampled and only relies on the result of the previous sam-
pling step for subsequent sampling. This prevents the ad-
vantages of transformer-based diffusion models in model-
ing long-range dependencies from being fully exploited.
Thus, we adopt a RHC method subordinate to MPC similar

to (Ajay et al., 2022). RHC does not perform fixed horizon
optimization like MPC. The horizon at each sampling step is
one less than the previous step, but it relies on one more step
information than the previous step, as shown in Algorithm 3.
To utilize the already sampled information, we employ a
similar inpainting trick to that used in the trajectory diffuser.

4. Experiments
This section aims to verify the effectiveness of HDMI in
long-horizon goal-reaching, reward-maximizing, and realis-
tic tasks. We emphasize in bold scores within 5 percent of
the maximum per task (Kostrikov et al., 2022).

4.1. Long-Horizon Goal-Reaching

To visually verify the advantage of HDMI on long-horizon
decision-making tasks, we use the Maze2D and AntMaze
dataset (Fu et al., 2020). In these tasks, the agent only
receives a +1 reward when it gets close to the goal location.

Baselines: MPPI (Williams et al., 2016) is a sampling-
based MPC algorithm using ground-truth dynamics; Com-
pILE (Kipf et al., 2019) is a hierarchical imitation learn-
ing method based on joint unsupervised learning of task
segmentation and encoding; CQL (Kumar et al., 2020),
IQL (Kostrikov et al., 2022) and Diffusion-QL (Wang
et al., 2023) are state-of-the-art offline RL methods, where
Diffusion-QL uses the diffusion model as an expressive pol-
icy class. OPAL (Ajay et al., 2021), IRIS (Mandlekar et al.,
2020), HiGoC (Li et al., 2022) and GoFAR (Ma et al., 2022)
introduce a hierarchical structure in the offline goal-based
RL to deal with the long horizon task; Diffuser (Janner et al.,
2022) and DD (Ajay et al., 2022) are the same families of
diffusion-based conditional generative models.

To increase the horizon, we splice trajectories in Maze2D
and AntMaze randomly. Baselines are compared under
single- and multi-task, as shown in Table 1 for the Maze2D
dataset. The poor performance of MPPI shows the chal-
lenges of long-horizon tasks. The offline RL methods that
introduce the hierarchical structure is better than flat al-
gorithms, which verifies the rationality of our motivation.
Diffusion-based conditional generative models exhibit the
best performance, while HDMI shows a clear advantage
in long-horizon goal-reaching tasks due to its hierarchical
structure. In addition, the goal-based method still maintains
performance in the multi-task setting without the noticeable
performance drop exhibited by the flat methods.

In the AntMaze, the simplistic 2D ball from Maze2D
is supplanted by the intricate 8-degrees-of-freedom “Ant”
quadruped robot. The purpose of this numerical experiment
is to rigorously assess the stitching challenge employing
a morphologically sophisticated robot, closely emulating
realistic navigation tasks in robotic systems. Table 2 shows
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Table 1: The performance in Maze2D, a typical long-horizon task with reward sparsity. Multi2D is a multi-task variant with
episodic, resampled goal locations. Results correspond to the mean and standard error over 5 planning seeds. The suffix
number of the environment name indicates that the test map is stitched together from multiple original maps.

Environment MPPI CQL IQL OPAL IRIS HiGoC Diffuser DD HDMI
Maze2D U-Maze-3 14.4 3.6 23.2 - 63.8±2.5 61.2±3.3 82.6±1.6 83.9±3.1 103.6±1.7
Maze2D Medium-2 5.7 2.3 19.8 - 59.5±4.7 59.8±4.1 87.8±3.1 85.8±3.3 102.1±2.5
Maze2D Large-2 3.9 7.7 31.1 - 38.2±1.2 45.4±2.5 87.9±3.8 87.3±1.2 104.7±2.1
Single-task Average 8.0 6.8 24.7 - 53.8 55.5 86.1 85.7 103.5

Multi2D U-Maze-3 17.8 - 16.5 - 61.7±3.6 67.9±1.5 85.4±1.8 86.9±3.5 105.4±2.4
Multi2D Medium-2 8.1 - 8.9 62.3±2.8 41.4±1.9 52.4±3.7 85.6±3.4 88.2±1.3 104.7±2.3
Multi2D Large-2 4.5 - 10.3 55.4±3.7 28.1±3.8 42.1±3.3 89.3±5.8 91.7±2.8 105.8±1.9

Multi-task Average 10.1 - 11.9 - 43.7 54.1 86.8 88.9 105.3

Table 2: The performance in AntMaze. MultiAnt-Diverse is a multi-task variant of AntMaze-Diverse with episodic,
resampled goal locations. Results correspond to the mean and standard error over 5 planning seeds. The suffix number of
the environment name indicates that the test map is stitched together from multiple original maps.

Environment CompILE GoFAR DD Diffusion-QL HDMI
AntMaze-Play U-Maze-3 41.2± 3.6 38.5± 2.2 73.1± 2.5 52.9± 4.1 86.1± 2.4
AntMaze-Diverse U-Maze-3 23.5± 1.8 25.1± 3.1 49.2± 3.1 32.5± 5.9 73.7±1.1
AntMaze-Diverse Large-2 - - 46.8± 4.4 31.5± 4.5 71.5±3.5

Single-task Average 32.4 31.8 56.4 39.0 77.1
MultiAnt-Diverse Large-2 - - 45.2± 4.9 25.6± 5.8 73.6 ± 3.8

Multi-task Average - - 45.2 25.6 73.6

Table 3: The performance in D4RL, a standardize reward-maximizing environment, in terms of normalized average returns.
Results for DD and HDMI correspond to the mean and standard error over 5 planning seeds.

Dataset Environment BC CQL IQL DT TT MoReL Diffuser DD Diffusion-QL HDMI
Med-Expert HalfCheetah 55.2 91.6 86.7 86.8 95 53.3 79.8 90.6±1.3 96.8±0.3 92.1±1.4
Med-Expert Hopper 52.5 105.4 91.5 107.6 110.0 108.7 107.2 111.8±1.8 111.1±1.3 113.5±0.9
Med-Expert Walker2d 107.5 108.8 109.6 108.1 101.9 95.6 108.4 108.8±1.7 110.1±0.3 107.9±1.2
Medium HalfCheetah 42.6 44.0 47.4 42.6 46.9 42.1 44.2 49.1±1.0 51.1±0.5 48.0±0.9
Medium Hopper 52.9 58.5 66.3 67.6 61.1 95.4 58.5 79.3±3.6 90.5±4.6 76.4±2.6
Medium Walker2d 75.3 72.5 78.3 74.0 79 77.8 79.7 82.5±1.4 87.0±0.9 79.9±1.8
Med-Replay HalfCheetah 36.6 45.5 44.2 36.6 41.9 40.2 42.2 39.3±4.1 47.8±0.3 44.9±2.0
Med-Replay Hopper 18.1 95 94.7 82.7 91.5 93.6 96.8 100±0.7 101.3±0.6 99.6±1.5
Med-Replay Walker2d 26.0 77.2 73.9 66.6 82.6 49.8 61.2 75±4.3 95.5±1.5 80.7±2.1

Average 51.9 77.6 77 74.7 78.9 72.9 75.3 81.8 88.0 82.6

Table 4: The performance of HDMI and baselines in FinRL,
a realistic long-horizon reward-maximizing environment.
Results are measured same as (Qin et al., 2022).

Dataset Det. BC CQL MB-PPO DD HDMI
FinRL-L-99 150 136 487 328 372 415
FinRL-L-999 150 137 416 656 721 733
FinRL-M-99 300 355 700 1213 830 1007
FinRL-M-999 300 504 621 698 712 754
FinRL-H-99 441 252 671 484 609 658
FinRL-H-999 441 270 444 787 782 801

the performance of different algorithms on the AntMaze
dataset, and HDMI also shows a clear advantage.

4.2. Reward-Maximizing with Suboptimal Data

To verify the performance of HDMI on the reward-
maximizing task and the ability to avoid suboptimal data
pollution simultaneously, we selected the standardize bench-
mark, D4RL (Fu et al., 2020), for experiments. Base-
lines: In addition to some methods in §4.1, we also add
baselines that perform well on the D4RL, including behav-
ior cloning (BC); transformer-based conditional generative
models DT (Chen et al., 2021) and TT (Janner et al., 2021);
model-based RL method MoReL (Kidambi et al., 2020).

It can be seen from Table 3 that HDMI can outperform
the specially designed offline RL algorithms on most tasks.
While Diffusion-QL demonstrates superior performance
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Figure 5: Visualization of partial subgoals and states sam-
pled by HDMI in D4RL. Small circles indicate states, while
large circles indicate subgoals. For the sake of clear presen-
tation, we downsample the sequence and only visualized the
state sequence sampled in the Hopper environment. The
action sequences are not directly shown.

across all tasks on average, it falls short of HDMI on long-
horizon tasks. It is important to acknowledge that despite the
introduction of the conditional diffusion model, Diffusion-
QL remains an offline RL method that substitutes the policy
class with a more expressive, generative model. The per-
formance gap between the diffusion- and transformer-based
autoregressive models also verifies the superiority of the
implicit planning effect brought about by synchronously
generating the entire trajectory. Furthermore, the stability
of HDMI also shows that planning-based subgoal extraction
can effectively alleviate the pollution caused by subopti-
mal data. We visualized the subgoal and action sequence
sampled by HDMI for different tasks, as shown in Figure 5.
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Figure 6: Subgoal sampled by baselines in Large-2.

4.3. Real-World Offline Decision-Making

Finally, considering the gap between D4RL and practical
tasks in data distribution and evaluation indicators, we ver-
ified the practicability of HDMI on financial data in an
industry benchmark, NeoRL (Qin et al., 2022). Baselines:
In addition to some methods already introduced, we also

introduce the MB-PPO (Qin et al., 2022) that performed
well in NeoRL, where Det. means a deterministic working
policy in the running system.

It can be seen from Table 4 that HDMI can stably match
or even exceed the performance of the SOTA baselines.
Another critical phenomenon is that DD and HDMI perform
better on larger datasets, indicating that the diffusion model
is prone to overfitting on small datasets.

4.4. Ablation Studies

This section verifies the advantages of the diffusion model
synchronously generating the entire trajectory relative to
the autoregressive model and transformer-based diffusion in
modeling subgoal sequences (see §I.1 for more details).
Baselines. The recently proposed hierarchical decision
transformer, HDT (Correia & Alexandre, 2022); an ablation
algorithm that replaces the target diffuser with U-Net (Jan-
ner et al., 2022), denoted as HDMI-UG.

We visualize the sampled subgoal in Figure 6. The subgoal
sequence sampled by HDT tends to go around the long way,
or even spins in a dead end. This may be because the au-
toregressive generation lacks the ability of implicit planning.
HDMI-UG also shows a similar phenomenon. This may be
due to the U-Net-based diffusion is more inclined to ensure
local consistency and ignore the global constraints.

5. Closing Remarks
We propose a hierarchical diffusion probabilistic model with
classifier-free guidance, HDMI, to solve the long-horizon
offline decision-making problem. The upper-level return-
based goal diffuser and the lower-level goal-based trajectory
diffuser generate the optimal actions in a cascaded man-
ner. Furthermore, HDMI adopts a planning-based subgoal
extractor and the transformer-based diffusion to alleviate
the suboptimal data pollution and the long-range subgoal
dependence challenge. Numerical experiments validate the
advantages of HDMI over SOTA offline RL and conditional
generation models in handling long-horizon tasks, subopti-
mal data pollution, and realistic decision-making.
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Supplementary Material
A. Related Work
A.1. Hierarchical Framework in Offline RL

Many RL works focus on introducing a hierarchical framework for long-horizon offline decision-making by decomposing
the task into a hierarchy of subproblems. This section will summarize the broader offline RL methods with a hierarchical
framework rather than just migrating the HRL method to the offline setting. From the perspective of algorithm specificity,
existing methods can be roughly divided into goal-based and skill-based (Pateria et al., 2021).

Goal-based methods mainly focus on solving a single task. Subproblems can be constructed by discovering their subgoals
and then learning one subproblem policy to reach one subgoal or a set of related subgoals. A subgoal belongs to the
environmental state space. The most crucial part of such methods lies in the selection or generation of subgoals. Once the
upper-level subgoal is determined, the lower-level policy is generally learned using off-the-shelf offline RL methods based
on the subgoal-augmented/conditioned policy or the universal value function (Schaul et al., 2015) or a combination of both.
In existing methods, the subgoal is either predefined (Zhou et al., 2019; Xie et al., 2021; Ma et al., 2021); or selected based
on heuristics, such as the frequency of states being visited by successful trajectories (Pateria et al., 2020), the manifold
characteristics of adjacent states (Guo & Zhai, 2016), or the degree of restriction of associated actions (Ding et al., 2014); or
generated by another offline RL supplemented with task-oriented intrinsic rewards (Liu et al., 2020; Liu & Sun, 2022).

Additionally, some methods are offline (i.e., learn from experience or expert trajectories) only during the subgoal selection
or generation. (Eysenbach et al., 2019) build a graph on the replay buffer, taking the states as nodes and the distance from
the start state to the goal state as the edge weights. Then use the graph search method to find the shortest path and take the
nodes that make up the path as the subgoals. (Paul et al., 2019) uses the order of sub-goal indices along the expert trajectory
as the evidence of difficulty and learns to generate the subgoals in the equipartitions from the expert trajectory conditioned
on the given state. (Lai et al., 2020) selects subgoals uniformly in time or space from the expert trajectories.

Skill-based methods represent subgoals as low-dimensional latent vectors, i.e., “skills”, which are not restricted to a subset
of the state space. A skill refers to the policy of a subtask in the sense that it semantically represents the ability to do
something well (Pateria et al., 2021). Therefore, skill-based methods can generally be used to solve multi-task problems.
While these methods obtain a more powerful representation for subgoals, it also reduces the training efficiency due to
the coupling of representation learning and reinforcement learning (Stooke et al., 2021; Seo et al., 2022). Naturally, it
should be noted that not all methodologies oriented towards skill acquisition are necessarily grounded in the reinforcement
learning framework. In the work presented by Kipf et al. (2019), denoted as CompILE, an alternative framework for learning
hierarchically-structured behavior from offline datasets is proposed. Specifically, CompILE introduces an imitation learning
approach that enables the acquisition of reusable, variable-length segments of skill. CompILE employs a novel unsupervised
module for sequence segmentation that is fully differentiable, thereby allowing the extraction of latent encodings of
sequential data. These encodings can subsequently be re-composed and executed in order to perform novel tasks.

More specifically, few works use predefined skills (Nasiriany et al., 2022; Fatemi et al., 2022). Lynch et al. (2020); Pertsch
et al. (2021a); Ajay et al. (2021); Rosete-Beas et al. (2022); Lee et al. (2022b) learn skills with an auto-encoding loss
function and incorporating a KL constraint to encourage better generalization. In addition to model-free methods, (Salter
et al., 2022) builds on (Wulfmeier et al., 2021) with a model-based approach to generate skills from experience using
dynamic programming. Unlike the above methods that can only discover a fixed number of skills, (Villecroze et al., 2022)
dynamically adjusts the number of skills by introducing a Bayesian non-parametric method.

In addition, some works in offline goal-conditioned reinforcement learning (GCRL) also introduce hierarchical structures.
Offline GCRL trains an agent to achieve multi-tasks under particular scenarios in the offline setting. They (Liu et al., 2022,
Figure 1) either only focus on learning to master multiple goals simultaneously (Chebotar et al., 2021; Yang et al., 2022; Yu
et al., 2021; Dorfman et al., 2021; Mezghani et al., 2022), or additionally decompose the long-horizon task into sub-goals
(similar as goal-based methods) while learning to reach them with a unified policy (Li et al., 2022; Ma et al., 2022). This
paper is interested in the latter. (Li et al., 2022) selects intermediate sub-goals by planning over future sub-goal sequences
based on the learned value function of the low-level RL policy. (Ma et al., 2022) formulates the goal-reaching task as a state
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occupancy matching problem between a dynamics-abiding imitator agent and an expert agent that directly teleports.

The proposed HDMI models the offline long-horizon decision-making as a conditional generation modeling problem based
on the goal-based method, which allows HDMI to not only inherit the advantages of the goal-based method in terms of high
training efficiency and interpretability but also apply to solving multi-task problems like the skill-based method.

A.2. Conditional Generative Models for Offline DM

Using TD-learning naively in offline decision-making will cause the state visitation distribution to move away from the
dataset distribution. Offline RL resolves this distribution shift by imposing a constraint on the above distributions, but it
also demands additional hyperparameter tuning and implementation heuristics (Kumar et al., 2022). Recent advancements
in RL have sought to address the constraints of extant methodologies by employing conditional generative models as
policy classes, which boast enhanced representational capacity. Wang et al. (2023) advocate for the implementation of a
diffusion model as the policy representation, which is an emerging category of highly-expressive deep generative models. In
this vein, the authors develop Diffusion-QL, a novel technique that employs a conditional diffusion model as the policy’s
representation. Diffusion-QL involves the acquisition of an action-value function and the incorporation of a term that
maximizes action-values into the training loss of the conditional diffusion model. This integration results in a loss function
that strives to identify optimal actions in close proximity to the behavior policy.

Instead of training an RL policy, recent works train conditional generation models using a sequence modeling objective.
They do not face the risk of distribution shift as generative models are trained with maximum-likelihood estimation. (Chen
et al., 2021) and (Janner et al., 2021) concurrently cast offline decision-making to return-conditioned generative modeling,
and use transformers (Vaswani et al., 2017) to generate trajectories autoregressively. (Janner et al., 2022) introduces planning
into the above-mentioned model-free style method and uses the diffusion model (Sohl-Dickstein et al., 2015; Ho et al., 2020;
Song et al., 2021) to generate the optimal trajectory in a model predictive control (Camacho & Alba, 2013) (MPC) manner.

Unlike the above methods, which can only solve single tasks, follow-up work solves multi-task problems by extending the
return-conditioned to the X-conditioned. For example, (Janner et al., 2021), (Shin & Wang, 2022), (Correia & Alexandre,
2022) and (Ajay et al., 2022) instantiate X as the goal or (predefined) skill; (Ajay et al., 2022) also instantiates X as the
constraint to solve the multi-constraint problem. The proposed HDMI first formulates the problem of offline long-horizon
decision-making from the perspective of conditional generative modeling. HDMI employs a hierarchical diffusion framework
where the goal diffuser learns a reward-conditional diffusion model for the subgoal discovery, and the trajectory diffuser
learns a goal-conditional diffusion model of the corresponding trajectory of subgoals.

B. Preliminaries
B.1. Offline Reinforcement Learning

We consider learning in a Markov decision process (MDP) described by the tuple (S,A, P,R). The MDP tuple consists
of states s ∈ S, actions a ∈ A, transition dynamics P (s′|s, a), and a reward function r = R(s, a). We use st, at, and
rt = R (st, at) to denote the state, action, and reward at timestep t, respectively. The return at timestep t, Rt =

∑T
t′=t rt′ ,

is the sum of future rewards from that timestep. The goal in (online) RL is to learn a policy that maximizes the expected
return E

[∑T
t=1 rt

]
in an MDP by interacting with the natural environment or the simulator.

In the offline RL, we are given a static dataset of transitions D = {(st, at, st+1, rt)i}, where i indexes a transition in the
dataset, the actions come from the behavior policy at ∼ πβ (·|st), the states come from a distribution induced by the
behavior policy st ∼ dπβ (·), the next state is determined by the transition dynamics st+1 ∼ P (·|st, at), and the reward
is still a function of state and action rt = E (st, at). The objective is the same as in the online case: to find a policy that
maximizes the expected return. This setting is more problematic as it removes the ability to explore the environment.

B.2. Diffusion Models

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020) are a likelihood-based generative model that learn the data
distribution q(τ ) from a fixed dataset D :=

{
τ i
}

, where i indexes a sample in the dataset (Song, 2021). The critical
idea of diffusion models is to model the (Stein) score function (Liu et al., 2016), which is not required to have a tractable
normalizing constant. The discrete-time generating procedure is modeled with a hand-crafted forward noising process
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q (τk+1|τk) := N
(
τk+1;

√
αkτk, (1− αk) I

)
and a learnable reverse process pθ (τk−1|τk) := N (τk−1|µθ (τk, k) ,Σk),

where N (µ,Σ) denotes a Gaussian distribution with mean µ and variance Σ, αk ∈ R determines the variance schedule,
τ0 := τ is a sample, τ1, τ2, . . . , τK−1 are the latents, and τK ∼ N (0, I) for carefully chosen αk and long enough K.

Starting with Gaussian noise, samples are then iteratively generated through a series of denoising steps. A tractable
variational lower-bound on log pθ can be optimized to train the denosing process, (Ho et al., 2020) proposes a simplified
surrogate loss:

Ldenoise (θ) := Ek∼[1,K],τ0∼q,ϵ∼N (0,I)

[
∥ϵ− ϵθ (τk, k)∥2

]
.

The predicted noise ϵθ (τk, k), parameterized with a deep neural network (e.g., U-Net (Ronneberger et al., 2015) or
Transformers (Peebles & Xie, 2022)), approximates the noise ϵ ∼ N (0, I) added to the dataset sample τ0 to produce noisy
τk in noising process.

Interestingly, the conditional distribution q(τ |y(τ )) makes it possible to generate samples with the condition y(τ ). The
equivalence between diffusion models and score-matching (Song et al., 2021), which shows ϵθ (τk, k) ∝ ∇τk

log p (τk),
leads to two kinds of theoretically equivalent methods: classifier-guided (Nichol & Dhariwal, 2021), and classifier-free (Ho
& Salimans, 2022) we are used. The later modifies the original training setup to learn both a conditional ϵθ (τk, y(τ ), k) and
an unconditional ϵθ (τk, k) model for the noise. The unconditional noise is represented as the conditional noise ϵθ (τk,∅, k)
where a dummy value ∅ takes the place of y(τ ). The perturbed noise ϵθ (τk, k) + ω (ϵθ (τk, y(τ ), k)− ϵθ (τk, k)) is used
to later generate samples.

B.3. Probabilistic Graphic Model for Control-as-Inference Framework

Based on the probabilistic graphical model depicted in Figure 2a and Haarnoja et al. (2018), our derivation in Section 2 is
formulated. This model comprises factors for dynamics p (st+1 | st,at) and an action prior p (at), typically considered to
be a uniform distribution. We introduce a binary random variable Ot, referred to as the optimality variable, to each state and
action because our interest lies in inferring the optimal trajectory distribution given a reward function.

To solve the optimal control problem, we can infer the posterior action distribution π∗ (at | st) = p (at | st,Ot:T = true).
It implies that an optimal action is one where the optimality variable is active for the current state and all subsequent states.
To maintain brevity in our derivation, we will refrain from explicitly writing Ot = true but instead denote Ot to represent
the state-action tuple corresponding to the time at which it was optimal.

To incorporate the reward function into this framework, we can select p (Ot | st,at) = exp (r (st,at)), which assumes,
without loss of generality, that r (st,at) < 0. We can express the distribution over optimal trajectories as

p (τ | O0:T ) ∝ p (s0)

T∏
t=0

p (at) p (st+1 | st,at) exp (r (st,at))

This distribution can be utilized to make various queries, such as p (at | st,Ot:T ).

C. Missing Proofs
C.1. Proof of Proposition 2.2

Proof.

p (τ0 | y(τ0)) = p (τ0 | Υ0:N−1 = 1) ∝ p (τ0)p (Υ0:N−1 = 1 | τ0)

= p(s0)

N−1∏
i=1

p(gi)p(Υi | gi, {s(i−1)∗M+j , a(i−1)∗M+j}Mj=1)

M∏
j=1

p(a(i−1)∗M+j | s(i−1)∗M+j , gi)p(s(i−1)∗M+j+1 | s(i−1)∗M+j , a(i−1)∗M+j)
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∝ p(s0)

N−1∏
i=1

p(gi)exp

 M∑
j=1

r
(
s(i−1)∗M+j , a(i−1)∗M+j

)
M∏
j=1

p(a(i−1)∗M+j | s(i−1)∗M+j , gi)p(s(i−1)∗M+j+1 | s(i−1)∗M+j , a(i−1)∗M+j)

=

y(τg)︷ ︸︸ ︷
exp

N−1∑
i=1

M∑
j=1

r
(
s(i−1)∗M+j , a(i−1)∗M+j

)
p(τg)︷ ︸︸ ︷

p(s0)

N−1∏
i=1

p(gi)

M∏
j=1

p(a(i−1)∗M+j | s(i−1)∗M+j , gi)p(s(i−1)∗M+j+1 | s(i−1)∗M+j , a(i−1)∗M+j)︸ ︷︷ ︸
p(τ i

sa)y(τ
i
sa)

= p(τg)y(τg)

N∏
i=1

p(τ isa)y(τ
i
sa),

where s0 ≡ g0, τg denotes subgoal sequence g0:N−1, τ isa represents the trajectory {s(i−1)∗M+j , a(i−1)∗M+j}Mj=1)

corresponding to the subgoal gi, and y(τ isa) is a Dirac delta for observed values and constant elsewhere. Concretely,
if subgoal gi is state constraint at timestep i ∗M , then

y(τ isa) = δgi
(
s(i−1)∗M+1, a(i−1)∗M+1, . . . , si∗M , ai∗M

)
=

{
+∞, if gi = si∗M ,

0, otherwise .
(5)

D. Reward-Maximizing Decision-Making
Algorithm 2 and Algorithm 3 are the model training and the optimal action sequence sampling pseudocode (for the testing
phase) of HDMI3, respectively, in the reward-maximizing decison-making task. It is worth noting that Algorithm 2 does not
distinguish between the goal and trajectory diffuser, and the subgoal sequence τ and the state sequence τsa are represented
using the uniform symbol τ .

D.1. Model Training

Algorithm 2 Reward-Maximizing Diffusion Model Training with Classifier-free Guidance.

Input: the offline dataset D, the probability of unconditional training pu (fixed pu = 1 for the trajectory diffuser).
repeat
(τ0, y(τ0)) ∼ D ▷ Sample subgoal/state trajectory with conditioning from the dataset
y(τ0)← ∅ with probability pu ▷ Randomly discard conditioning to train unconditionally
ϵ ∼ N (0, I), k ∼ U{1, . . . ,K}
τg,k :=

√
αkτg,0 + (1− αk)ϵ ▷ Corrupt data to the sampled value

Take gradient step on ∇θ ∥ϵ− ϵ̂θ∥2 where ϵ̂θ := ϵθ (τk, y(τk), k) ▷ Optimization of denoising model
until converged
Output: the parameter θ of the diffusion model.

During the training phase, for each sampled subgoal trajectory τg,0, we first sample noise ϵ ∼ N (0, I) and a timestep
k ∼ U{1, . . . ,K}. Then, we construct a noised subgoal sequence τg,k :=

√
αkτg,0 + (1− αk)ϵ. Finally, we predict the

3The code is available at https://anonymous.4open.science/r/HDMI/.
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noise as ϵ̂θg := ϵθg (τg,k, (1− β)y(τg,k) + β∅, k), with probability pu we ignore the conditioning information.

The trajectory diffuser is trained similarly to the goal diffuser, but we need to make a few more trade-offs. Firstly, we
only use the trajectory diffuser to estimate the posterior distribution of state trajectories τ i

s,0 := {s(i−1)∗M+j}Mj=1, and
use inverse dynamics model (Agrawal et al., 2015; Pathak et al., 2017) similarly to (Ajay et al., 2022) to generate action
trajectories based on state trajectories.

Secondly, the conditioning information y(τ i
sa,0)) of the trajectory diffuser is a Dirac delta for the subgoal constraints

as mentioned in Proposition 2.2. We fed these constrains into the trajectory diffuser by sampling from the denoising
process τ i

s,k−1 ∼ pθs

(
τ i
s,k−1|τ i

s,k

)
and replacing the last state of the sampled trajectory with conditioning subgoal gi after

each reverse timesteps k. This means that when training the trajectory diffuser, we do not need to input the conditioning
information y(τ i

sa,0)) but only need to use the above trick when generating trajectories during the test phase.

D.2. Model Sampling

Algorithm 3 Reward-Maximizing Decision-Making with the Hierarchical Diffusion.

Input: goal diffuser ϵθg , trajectory diffuser ϵθs , inverse dynamics model FθI , classifier-free guidance scale w, starting
subgoal g0 ← s0, fixed conditioning information y(τg)← 1, initializing subgoal history hg.insert(g0).
while not done do ▷ Goal diffusion

initialize τg ∼ N (0, αI) ▷ Sample noise subgoal trajectory
for k = Kg, . . . , 1 do ▷ Receding horizon control loop
τg,k[: length(hg)]← hg ▷ Constrain newly generated subgoals are consistent with already generated subgoals
ϵ̂← ϵθg (τg,k,∅, k) + ω

(
ϵθg (τg,k, y(τg), k)− ϵθg (τg,k,∅, k)

)
▷ Classifier-free guidance

(µk−1,Σk−1)← Denoise (τg,k, ϵ̂)
τg,k−1 ∼ N (µk−1, αΣk−1)

end for
observe next subgoal g; hg.insert(g)
initialize state history hs, t← 0
while not done do ▷ Trajectory diffusion

observe state s; hs.insert(s); initialize τs ∼ N (0, αI) ▷ Sample noise state trajectory
for k = Kg, . . . , 1 do ▷ Receding horizon control loop

τs,k[: length(hs)]← hs ▷ Constrain newly generated states are consistent with already generated states
ϵ̂← ϵθs (τs,k,∅, k) ▷ Unconditional diffusion
(µk−1,Σk−1)← Denoise (τs,k, ϵ̂)
τs,k−1 ∼ N (µk−1, αΣk−1)
τs,k−1[−1]← g ▷ Reformulating the conditional generation to the inpainting problem

end for
Extract (st, st+1) from τs,0
Execute at = F (st, st+1; θI) ; t← t+ 1

end while
end while
Output: the optimal action sequence {at}T−1

t=0 of the decision-making problem.

After the model is trained, sampling from the goal and the trajectory diffuser is equivalent to complete the planning in
RL to solve the decision-making task. Concretely, given a decision-making task, to sample an optimal trajectory, we first
conditionally sample the optimal subgoal sequence τg based on the information y(τg); and then conditionally samples the
optimal trajectory τ isa corresponding to the subgoal gi based on the information y(τ isa). The details are clearly shown in
Algorithm 3.

There are two points need to be explained: the classifier-free guidance and the receding horizon control (RHC). For the
former we use a discrete-time version of (Ho & Salimans, 2022). And for the latter, due to the aleatoric uncertainty of
the environment and the epistemic uncertainty of the model, directly generating the subgoal and the corresponding action
sequence in the test phase will lead to errors that are exponentially proportional to the planning horizon.

Thus, we adopt a RHC method subordinate to MPC similar to (Ajay et al., 2022). RHC does not perform fixed horizon
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optimization like MPC. The horizon at each sampling step is one less than the previous step, but it relies on one more
step information than the previous step, as shown in Algorithm 3. The RHC method is able to take full advantage of the
transformer-based diffusion model in modeling long-range dependencies. It is worth noting that to utilize the already
sampled trajectory information, we employ a similar inpainting trick to that used in the trajectory diffuser.

E. Goal-Reaching Decision-Making
The model training and sampling so far is mainly aimed at the reward-maximizing task. That is, the conditional information
based on the generation of the goal trajectory is related to the return. However, HDMI is equally applicable to solving the
goal-reaching problem (i.e., the agent is only rewarded when it approaches the goal state), simply by applying the training
and sampling method of the trajectory diffuser to the goal diffuser.

Algorithm 4 Goal-Reaching Diffusion Model Training with Classifier-free Guidance.

Input: the offline dataset D
repeat
τ0 ∼ D ▷ Sample subgoal/state trajectory from the dataset
ϵ ∼ N (0, I), k ∼ U{1, . . . ,K}
τg,k :=

√
αkτg,0 + (1− αk)ϵ ▷ Corrupt data to the sampled value

Take gradient step on ∇θ ∥ϵ− ϵ̂θ∥2 where ϵ̂θ := ϵθ (τk,∅, k) ▷ Optimization of denoising model
until converged
Output: the parameter θ of the diffusion model.

Specifically, in the training phase, as shown in Algorithm 4, the target diffuser is also no longer based on conditional
information, but is trained as an unconditional generative model.

And in the testing phase, in order to sample the optimal action trajectory that satisfies the goal constraints, we only need to
first use the unconditional goal or trajectory diffuser to sample the sequence of subgoals or states before using the inpainting
trick to replace the last subgoal or state with the goals corresponding to the constraints, as shown in Algorithm 5.

F. Missing Results and Graphs

Table 5: The performance of HDMI and baselines in Maze2D, a typical long-horizon task with reward sparsity. The Multi2D
setting refers to a multi-task variant with episodic, resampled goal locations. Results correspond to the mean and standard
error over 5 planning seeds. We emphasize in bold scores within 5 percent of the maximum per task (Kostrikov et al., 2022).

Environment MPPI CQL IQL OPAL IRIS HiGoC Diffuser DD HDMI
Maze2D U-Maze 33.2 5.7 47.4 - 82.6±4.7 85.3±2.1 113.9±3.1 116.2±2.7 120.1±2.5
Maze2D Medium 10.2 5.0 34.9 - 73.1±4.5 81.4±2.4 121.5±2.7 122.3±2.1 121.8±1.6
Maze2D Large 5.1 12.5 58.6 - 57.9±3.6 69.1±2.3 123.0±6.4 125.9±1.6 128.6±2.9
Single-task Average 16.2 7.7 47.0 - 71.2 78.6 119.5 121.5 123.5
Multi2D U-Maze 41.2 - 24.8 - 89.4±2.4 91.2±1.9 128.9±1.8 128.2±2.1 131.3±1.8
Multi2D Medium 15.4 - 12.1 81.1±3.1 64.8±2.6 79.3±2.5 127.2±3.4 129.7±2.7 131.6±1.9
Multi2D Large 8.0 - 13.9 70.3±2.9 43.7±1.3 67.3±3.1 132.1±5.8 130.5±4.2 135.4±2.5
Multi-task Average 21.5 - 16.9 - 66.0 79.3 129.4 129.5 132.8

In the main part to verify the advantages of HDMI over baselines under long-horizon tasks, we stitch the original Maze2D
dataset. Figure 7 shows visually how the stitching of the trajectory is done. In order to smooth the trajectory, we sometimes
need to flip the map. For the endpoints of different trajectories, we will connect them by a dash. In this section we post the
performance of HDMI on the original Maze2D dataset, as shown in Table 5. The algorithms exhibit similar characteristics
to those analyzed in the experimental section of the main text. A point worth noting here is that the performance of Diffuser
as well as DD is closer to that of HDMI in Table 5, but there is a large difference in Table 1. This again verifies the
reasonableness and effectiveness of the hierarchical structure introduced by HDMI.

We also visualized the subgoal and action sequence sampled by HDMI for different tasks , as shown in Figure 8 and 9.
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Algorithm 5 Goal-Reaching Decision-Making with the Hierarchical Diffusion.

Input: goal diffuser ϵθg , trajectory diffuser ϵθs , inverse dynamics model FθI , classifier-free guidance scale w, starting
subgoal g0 ← s0, goal state sT , initializing subgoal history hg.insert(g0).
while not done do ▷ Goal diffusion

initialize τg ∼ N (0, αI) ▷ Sample noise subgoal trajectory
for k = Kg, . . . , 1 do ▷ Receding horizon control loop
τg,k[: length(hg)]← hg ▷ Constrain newly generated subgoals are consistent with already generated subgoals
ϵ̂← ϵθg (τg,k,∅, k) ▷ Unconditional diffusion
(µk−1,Σk−1)← Denoise (τg,k, ϵ̂)
τg,k−1 ∼ N (µk−1, αΣk−1)
τg,k−1[−1]← sT ▷ Reformulating the conditional generation to the inpainting problem

end for
observe next subgoal g; hg.insert(g)
initialize state history hs, t← 0
while not done do ▷ Trajectory diffusion

observe state s; hs.insert(s); initialize τs ∼ N (0, αI) ▷ Sample noise state trajectory
for k = Kg, . . . , 1 do ▷ Receding horizon control loop

τs,k[: length(hs)]← hs ▷ Constrain newly generated states are consistent with already generated states
ϵ̂← ϵθs (τs,k,∅, k) ▷ Unconditional diffusion
(µk−1,Σk−1)← Denoise (τs,k, ϵ̂)
τs,k−1 ∼ N (µk−1, αΣk−1)
τs,k−1[−1]← g ▷ Reformulating the conditional generation to the inpainting problem

end for
Extract (st, st+1) from τs,0
Execute at = F (st, st+1; θI) ; t← t+ 1

end while
end while
Output: the optimal action sequence {at}T−1

t=0 of the decision-making problem.

Figure 7: Construction of U-Maze-3 test scenarios and stitching of trajectories in the training set. Dark gray circles indicate
starting or ending points. Red and green circles denote subgoals and states, respectively. The purple circles represent the
state of replenishment. For the sake of clear presentation, we downsample the sequence.

In order to further substantiate the efficacy of the HDMI approach in addressing more intricate sub-goal-based reward-
maximizing problems, we have incorporated the FrankaKitchen dataset from the D4RL in our analysis. The FrankaKitchen
entails the manipulation of a 9-DoF Franka robotic system within a kitchen setting that features a variety of commonplace
household objects, including a microwave, kettle, overhead light, cabinets, and an oven. The primary objective of each task
is to engage with these items to achieve a specified goal configuration. More specifically, we have opted for the ”mixed”
datasets, which comprise undirected data wherein the robotic system carries out subtasks that do not necessarily correlate
with the target configuration. Notably, this dataset lacks any trajectories that entirely resolve the task; thus, the RL agent
must acquire the ability to amalgamate the pertinent sub-trajectories. Our examination of Table 6 leads us to corroborate the
conclusions drawn from the aforementioned analysis.
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U-Maze-3

Medium-2

Large-2

Figure 8: Visualization of subgoal and action sequence sampled by HDMI in long-horizon goal-reaching decision-making.
Dark gray circles indicate starting or ending points. Red and green circles denote subgoals and states, respectively. The
action sequences are not directly shown in the figure. For the sake of clear presentation, we downsample the sequence.

Table 6: The performance in Kitchen, a standardize goal-based reward-maximizing environment, in terms of normalized
average returns. “Mixed” datasets contain no trajectories which solve the task completely, and the RL agent must learn to
assemble the relevant sub-trajectories. Results correspond to the mean and standard error over 5 planning seeds.

Environment CompILE GoFAR DD Diffusion-QL HDMI
Mixed Kitchen 52.3± 1.9 44.5± 2.3 65.0 ± 2.8 62.6 ± 5.1 69.2 ± 1.8

G. Missing Discussions
#Q1: Whether HDMI does better on long-horizon tasks due to its improved architecture design? It is challenging to
compare HDMI with other baselines directly on network architecture due to fundamental differences in multiple dimensions,
such as whether the algorithms belong to RL or generative models, whether the generative models are based on autoregressive
models or diffusion models, etc. Therefore, the following analysis will be presented in three parts: 1) a comparison among
offline RL algorithms; 2) a comparison among generative methods, and 3) a comparison between offline RL and generative
methods. These comparisons lead to three main conclusions.

In offline reinforcement learning, diffusion models have significant advantages when the network structure is similar.
Diffusion-QL belongs to the offline RL algorithm, and its network structure is similar to other RL baselines, mainly based
on MLP or CNN. However, the performance comparison between diffusion models and other RL baselines indicates
that diffusion models have stronger representation capabilities than ordinary policy classes, which leads to a significant
performance advantage for Diffusion-QL.

Among generative methods, diffusion models also have significant advantages. HDMI is more proficient in handling
long-horizon tasks by combining hierarchical architectures and transformers. The generative baselines selected in this
paper are mainly divided into two categories: one is based on autoregressive models, such as DT, TT, mainly based on
the transformer network structure; the other is based on diffusion models, such as Diffuser, DD, mainly based on the
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Figure 9: Visualization of partial subgoal and state sequence sampled by HDMI in long-horizon reward-maximizing
decision-making. Small circles of different colors indicate state sequences, while large circles indicate subgoals. For the
sake of clear presentation, we downsample the sequence and only visualized the state sequence sampled in the Hopper
environment. The action sequences are not directly shown in the figure.

U-Net network structure. From the experimental results, it can be observed that diffusion models based on U-Net are
more advantageous. To handle long-horizon tasks, we made improvements to the architecture of the diffusion model by
introducing a hierarchical architecture and replacing U-Net with transformers. Performance comparisons and ablation
experiments show that the hierarchical architecture and the diffusion model based on transformers are more advantageous in
handling long-horizon tasks.

In handling long-horizon tasks, hierarchical architectures are more advantageous, and generative methods outperform
RL methods. Lastly, we compared the RL algorithms with generative methods. In the reward-maximizing D4RL with
suboptimal data contamination, there is little difference in the optimal performance between the two types of methods,
with the RL method based on diffusion models slightly superior. In the long-horizon goal-reaching task, algorithms with
hierarchical architectures in both categories outperform others, and generative methods are more advantageous than RL.

#Q2: What is the connection between Rudner et al. (2021) and HDMI? For convenience of analysis, we first paste the
necessary formulas below, starting with the Equation 2:

p (τ0 | y(τ0)) ∝ p(τg)y(τg)
∏N

i=1 p(τ
i
sa)y(τ

i
sa),

and the Equation (5) Rudner et al. (2021):

pT̃0:T ,ST⋆ ,T |S0
(τ̃0:t,g, t | s0) = pT (t)pd (g | st,at) p (at | st)

t−1∏
t′=0

pd (st′+1 | st′ ,at′) p (at′ | st′) .

Although there are significant differences in their forms, we find that the probability model of each sequence corresponding
to the sub-goal in the first formula, i.e., p(τ isa)y(τ

i
sa), has the same physical meaning as the probability model of the

sequence in the second formula. Specifically, y(τ isa) represents that the final state of the sequence τ isa reaches the goal state
gi. The second formula also represents that the final state of the sequence reaches a specified goal state g. However, since
this paper does not use variational inference to learn the goal-conditioned policy, y(τ isa) is not expanded into the form of
pT (t)pd (g | st,at) in the second formula.

In other words, to solve the long-horizon decision-making problem, Section 2 introduces the goal in the control-as-inference
framework, forming a hierarchical structure. In this hierarchical structure, the upper layer, which is the probability model of
the goal sequence, is equivalent to the original control-as-inference framework. The lower layer, which is the probability
model of several sub-sequences corresponding to the subgoal, is equivalent to the outcome-driven reinforcement learning
framework proposed by Rudner et al. (2021).

In general, the hierarchical framework proposed in Section 2 integrates the control-as-inference framework and the outcome-
driven reinforcement learning framework proposed by Rudner et al. (2021). After converting the hierarchical architecture
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into a hierarchical conditional generation problem and combining it with the hierarchical diffusion model, the HDMI
algorithm can effectively handle offline long-horizon decision-making problems, which cannot be achieved by either the
control-as-inference framework or the outcome-driven reinforcement learning framework alone. Meanwhile, Rudner et al.
(2021) mainly designed for goal-reaching tasks and thus are not proficient in solving reward-maximizing tasks. However,
due to the upper layer control-as-inference framework, HDMI has good versatility and can handle both goal-reaching and
reward-maximizing tasks.

H. Hyperparameter and Training Details
This section will give details of the hyperparameter settings and training details in numerical experiments of the baselines
as well as the proposed HDMI. For performances of baselines previously evaluated on standardized tasks, we provide the
source of the listed performances. We use the same settings as (Janner et al., 2022) and (Li et al., 2022) for some baselines.

H.1. Baseline Details

H.1.1. GOAL-REACHING (SINGLE-TASK)

• The performance of CQL (Kumar et al., 2020) and IQL (Kostrikov et al., 2022) in Table 5 is reported in the D4RL (Fu
et al., 2020, Table 2);

• The performance of OPAL (Ajay et al., 2021), IRIS (Mandlekar et al., 2020) and HiGoC (Li et al., 2022) in Table 5 is
reported in the HiGoC (Li et al., 2022, Table III);

• The performance of Diffuser (Janner et al., 2022) in Table 5 is reported in the (Janner et al., 2022, Table 1).

We run DD using the offical repository4 from the original paper with default hyperparameters.

H.1.2. GOAL-REACHING (MULTI-TASK)

For offline RL baselines, we only evaluated IQL on the multi-task setting because it is the strongest baseline in the single-task
goal-reaching by a sizeable margin. The performance of all baselines in Table 5 are from the same source as the single-task
setting.

H.1.3. LONG-HORIZON GOAL-REACHING (SINGLE-TASK)

• We run CQL using the offical repository5 from the original paper, and tune over the two hyparameters, Q-function
learning rate ∈ [1e− 4, 3e− 4] and Lagrange threshold ∈ [2.0, 10.0];

• We run IQL using the offical repository6 from the original paper, and tune over the two hyparameters, temperature ∈
[3, 10] and expectile ∈ [0.65, 0.95], same as (Janner et al., 2022);

For other baselines that require trajectories as input, we did not modify the slice lengths in these methods, thus eliminating
the need for model resizing.

• We re-implement IRIS based on BCQ7 and cVAE8 with default hyperparameters.

• We re-implement HiGoC based on CQL and cVAE, and tune over the two hyparameters, learning rate ∈ [3e−4, 1e−3]
and the contribution of KL regularization ∈ [0.05, 0.2].

• We run Diffuser using the offical repository9 from the original paper with default hyperparameters.

• We run DD using the offical repository from the original paper with default hyperparameters.
4https://github.com/anuragajay/decision-diffuser/tree/main/code.
5https://github.com/aviralkumar2907/CQL.
6https://github.com/ikostrikov/implicit_q_learning.
7https://github.com/sfujim/BCQ
8https://github.com/timbmg/VAE-CVAE-MNIST
9https://github.com/jannerm/diffuser.

23

https://github.com/anuragajay/decision-diffuser/tree/main/code
https://github.com/aviralkumar2907/CQL
https://github.com/ikostrikov/implicit_q_learning
https://github.com/sfujim/BCQ
https://github.com/timbmg/VAE-CVAE-MNIST
https://github.com/jannerm/diffuser


Hierarchical Diffusion for Offline Decision Making

H.1.4. LONG-HORIZON GOAL-REACHING (MULTI-TASK)

For offline RL baselines, we also only evaluated IQL on the multi-task setting. To adapt IQL to the multi-task setting, we
borrow the modification from (Janner et al., 2022). Concretely, we modified the Q functions, value function, and policy to
be goal-conditioned, that is, the inputs to the model are expanded. For a training sample (st,at, st+1), we sample goals
according to a geometric distribution over the future states

∆ ∼ Geom(1− γ) g = st+∆,

recalculated rewards based on the sampled goal similar with hindsight experience replay, and conditioned all goal-conditioned
functions on the goal during updating. During testing, we conditioned the policy on the ground-truth goal. We tuned over
the same IQL parameters as in the single-task setting.

We implement OPAL based on CQL, and tune over the two hyparameters, learning rate ∈ [3e−4, 1e−3] and the contribution
of KL regularization ∈ [0.05, 0.2]. The other baselines implementation details and hyperparameter settings are the same as
for single-task setting.

H.1.5. REWARD-MAXIMIZING WITH SUBOPTIMAL DATA.

• The performance of BC, CQL and IQL in Table 3 is reported in (Kostrikov et al., 2022, Table 1);

• The performance of DT in Table 3 is reported in (Chen et al., 2021, Table 2);

• The performance of TT in Table 3 is reported in (Janner et al., 2021, Table 1);

• The performance of MoReL in Table 3 is reported in (Kidambi et al., 2020, Table 2);

• The performance of Diffuser in Table 3 is reported in the (Janner et al., 2022, Table 2);

• The performance of DD in Table 3 is reported in the (Ajay et al., 2022, Table 1).

H.1.6. REAL-WORLD OFFLINE DECISION-MAKING.

The performance of all baselines in Table 4 is reported in (Qin et al., 2022, Table 1).

H.2. Implementation Details

H.2.1. PLANNING-BASED SUBGOAL EXTRACTION

In the subgoal extraction, the mini-batch k-means++ algorithm uses the clustering method10 in scikit-learn (Pedregosa et al.,
2011) codebase. To ensure the efficient operation of the SoRB algorithm, we limit the number of trajectories in each cluster
to about 1, 000 and set the number of cluster centers in conjunction with the size of the dataset. The max iter is set to 200
and batch size is set to 1024. All other hyperparameters follow the default settings.

Regarding the implementation of the SoRB algorithm, we borrowed the official repository11 given in the original paper, and
the hyperparameter settings and tuning range are shown in Table 7.

H.2.2. TRANSFORMER-BASED DIFFUSION MODEL

For the implementation of the tranformer-based diffusion model, we borrowed from the official DiT (Peebles & Xie, 2022)
repository12. However, since the data processed by HDMI are not images, we use the hyperparameter settings for the
transformser in DT13 to reduce the training cost.

10https://scikit-learn.org/stable/modules/generated/sklearn.cluster.MiniBatchKMeans.html#
sklearn.cluster.MiniBatchKMeans.

11https://colab.research.google.com/github/google-research/google-research/blob/master/
sorb/SoRB.ipynb.

12https://github.com/facebookresearch/DiT
13https://github.com/kzl/decision-transformer
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Table 7: Hyperparameter settings and tuning ranges for the proposed offline SoRB.

Phase Hyperparameter Value Tuning Range

Distance Learning
IQN (discrete action)

samples for policy 32 -
nonlinearity ReLU -
learning rate 3e-4 [1e-4, 1e-3]

D4PG (continuous action) learning rate (actor) 5e-5 [1e-5, 1e-4]
learning rate (critic) 1e-4 [1e-5, 1e-4]

Search on Graph

MaxDist 5 [3, 7]
search buffer size 1000 -
discount 1 -
target update rate 0.95 -
hidden layer size 1024 [64, 256, 1024]
number of layers 3 -

H.2.3. GOAL AND TRAJECTORY DIFFUSER

In the goal diffuser, we choose the probability p of removing the conditioning information to be 0.25. In the trajectory diffuser,
we parameterize the inverse dynamics model FθI with a 2-layered MLP with 512 hidden units and ReLU nonlinearity. We
train the goal diffuser ϵθg , trajectory diffuser ϵθs and inverse dynamics model FθI using the Adam optimizer with a learning
rate of 2e− 4 and batch size of 32 for 2e6 training steps. We use K = 100 diffusion steps for all diffusers. For different
offline decision-making tasks, we use a planning horizon H of 20 in all the D4RL locomotion tasks, 20 in Maze2D and 50
in long-horizon Maze2D, which is much smaller than Diffuser (Janner et al., 2022) and DD (Ajay et al., 2022). We use a
guidance scale s ∈ {1.2, 1.4, 1.6, 1.8} but the exact choice varies by task, and we choose context length C = 20, which is
same as DD (Ajay et al., 2022).

I. Ablation Studies
This section will ablate the design concepts and key modules involved in the HDMI algorithm.

I.1. Independence between subgoals and states

In the graphic model constructed in this paper (shown in Figure 2), the goals are generated independently of the states, which
is different from the existing offline RL methods that introduce hierarchical structures in which the goals are generated
autoregressively based on the current state(s) (Ajay et al., 2021; Mandlekar et al., 2020; Li et al., 2022).

There is a comparison between autoregressive and simultaneous generation of optimal action sequences which has been
discussed in detail in (Janner et al., 2022, §3.1). However, the nature of the problem has changed considerably with the
introduction of the hierarchical structure in this paper, so we feel it necessary to elaborate on it here and perform an
appropriate ablation analysis.

It is a very natural assumption that goal generation satisfies causality, i.e., the next subgoal is determined based on the
past and current state(s). However, decision-making or optimal control can be anti-causal, i.e., the next subgoal can be
determined by future information. The above distinction between causality and anticausality can also be considered as the
difference between autoregressive and simultaneous generation.

In general reinforcement learning contexts, conditioning on the future emerges from the assumption of future optimality for
the purpose of writing a dynamic programming recursion. Concretely, this appears as the future optimality variables Ot:T

in the action distribution log p (at | st,Ot:T ) (Levine, 2018). Since the graphic model proposed in this paper is extended
on (Levine, 2018), it naturally inherits its conclusions as well.

To more directly compare the performance impact caused by the two generation methods, we compare the performance of
HDMI with the recently proposed hierarchical decision transformer, HDT (Correia & Alexandre, 2022) on the long-horizon
goal-reaching task, as shown in Table 8. HDT is a hierarchical algorithm for learning a sequence model from demonstrations
based on DT (Chen et al., 2021). The high-level mechanism guides the low-level controller through the task by selecting
sub-goals for the latter to reach, as shown in Figure 10a. To ensure the fairness of the comparison, we replace the method
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High-Level Decision Transformer

Low-Level Decision Transformer

(a)

High-Level Decision Transformer

Low-Level Decision Transformer

(b)

Figure 10: (a) Hierarchical decision transformer (HDT) framework (Correia & Alexandre, 2022). HDT employs two
decision transformers (DT) in the form of the high-level DT and low-level DT. The high-level DT guides the low-level DT
by selecting the next subgoal, based on the history of subgoals and states, for the low-level DT to try to reach. The low-level
DT is conditioned on the history of past states, subgoals and actions to select the next optimal action. (b) Modified HDT
framework for goal-reaching taks solving.

of sub-target extraction in HDT with the method adopted in HDMI. In addition, in order to enable HDT to solve the
goal-reaching task, we borrowed the idea of TT (Janner et al., 2021) and added the goal state as conditional information to
the input of the transformer, as shown in Figure 10b.

Table 8: The performance of HDMI and baselines in Maze2D, a typical long-horizon task with reward sparsity. The Multi2D
setting refers to a multi-task variant with episodic, resampled goal locations. Results correspond to the mean and standard
error over 5 planning seeds. The suffix number of the environment name indicates that the test map is stitched together from
multiple original maps. We emphasize in bold scores within 5 percent of the maximum per task (Kostrikov et al., 2022).

Environment MPPI CQL IQL OPAL IRIS HiGoC Diffuser DD HDT+SoRB HDMI
Maze2D U-Maze-3 14.4 3.6 23.2 - 63.8±2.5 61.2±3.3 82.6±1.6 83.9±3.1 82.3±2.4 103.6±1.7
Maze2D Medium-2 5.7 2.3 19.8 - 59.5±4.7 59.8±4.1 87.8±3.1 85.8±3.3 85.2±1.6 102.1±2.5
Maze2D Large-2 3.9 7.7 31.1 - 38.2±1.2 45.4±2.5 87.9±3.8 87.3±1.2 88.5±2.6 104.7±2.1
Single-task Average 8.0 6.8 24.7 - 53.8 55.5 86.1 85.7 85.3 103.5

Multi2D U-Maze-3 17.8 - 16.5 - 61.7±3.6 67.9±1.5 85.4±1.8 86.9±3.5 85.6±2.7 105.4±2.4
Multi2D Medium-2 8.1 - 8.9 62.3±2.8 41.4±1.9 52.4±3.7 85.6±3.4 88.2±1.3 85.8±1.5 104.7±2.3
Multi2D Large-2 4.5 - 10.3 55.4±3.7 28.1±3.8 42.1±3.3 89.3±5.8 91.7±2.8 93.6±3.3 105.8±1.9

Multi-task Average 10.1 - 11.9 - 43.7 54.1 86.8 88.9 88.3 105.3

As can be seen from the table, thanks to the hierarchical structure, HDT shows a similar performance to Diffuser and DD in
long-horizon tasks, but there is still a significant gap with HDMI. To further analyze the reasons for this, we visualize the
subgoal sequence sampled by HDT and HDMI, as shown in Figure 11. As can be seen from the figure, the subgoal sequence
sampled by HDT tends to go around the long way, or even spins in a dead end. This may be because the autoregressive
generation lacks the ability of implicit planning, which leads to the tendency to generate suboptimal solutions.

I.2. Importance of Planning-based Subgoal Extraction

The critical challenge of the subgoal extraction is that suboptimal trajectories pollute the dataset, and extracting the
corresponding subgoal sequence from each trajectory independently will not guarantee subgoal optimality. To this end, we
borrow a planning-based online reinforcement learning method, SoRB (Eysenbach et al., 2019), which can automatically
find subgoals by providing graphic abstractions of the environment.

To further validate the effectiveness of the modified SoRB in mitigating suboptimal data contamination, we also employed
several different subgoal extraction methods, including:

• Time-sample (Lai et al., 2020) (TS). Consider the horizon of one trajectory is T , we pick the waypoints on the
trajectory with interval of T

k timestep.
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Figure 11: Subgoal sequences sampled by different algorithms in Large-2 task. Dark gray circles indicate starting or
ending points.

• Route-sample (Lai et al., 2020) (RS). We denote the distance moved credited to each action at as δt. Hence, the route
length is Γ =

∑T−1
t=0 δt. Then, pick the waypoints with interval of Γ

k route length.

• Value-sample (Correia & Alexandre, 2022) (VS). A subgoal state sg,t for the current state st should has high value
for the success of the trajectory. Thus we can calculate the returns of all subsequent states st′ in the trajectory starting
from the current state st, i.e., W (st′) =

∑t′

k=t+1
rk
t′−t . After finding the first subgoal, we then iterate over it as the

current state to obtain a sequence of subgoals.

It can be seen from Table 9 that different subgoal extraction methods will indeed have a greater impact on the performance
of the algorithm. Since TS, RS, and VS are all designed for a single trajectory, pollution caused by suboptimal data cannot
be avoided. In the case of a small proportion of suboptimal data, the TS and RS algorithms are closer to the performance of
HDMI. However, as the pollution situation continues to increase, the performance of both has also declined significantly.
Compared with TS and RS, the VS algorithm is much inferior. We speculate that the reason is that there is greater uncertainty
in the reward signal, combined with suboptimal data pollution, making it more difficult to model sub-goal sequences
extracted from VS.

In addition to utilizing the SoRB for generating training data, it is possible to apply SoRB directly during the testing phase
to produce subgoals without any additional training of the goal diffuser. This ablation algorithm is denoted as HDMI-S. It
must be noted that since SoRB is an online RL technique that requires maintaining a search replay buffer before generating
subgoals, it cannot be utilized for solving offline tasks directly. In the online setting, the agent collects the buffer data during
the exploration stage. However, only the offline dataset can be relied upon under the offline setting.
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Table 9: The performance of HDMI and baselines in D4RL, a standardize long-horizon reward-maximizing environment, in
terms of normalized average returns. Results for DD and HDMI correspond to the mean and standard error over 5 planning
seeds. We emphasize in bold scores within 5 percent of the maximum per task (Kostrikov et al., 2022).

Dataset Environment BC CQL IQL DT TT MoReL
Med-Expert HalfCheetah 55.2 91.6 86.7 86.8 95 53.3
Med-Expert Hopper 52.5 105.4 91.5 107.6 110.0 108.7
Med-Expert Walker2d 107.5 108.8 109.6 108.1 101.9 95.6
Medium HalfCheetah 42.6 44.0 47.4 42.6 46.9 42.1
Medium Hopper 52.9 58.5 66.3 67.6 61.1 95.4
Medium Walker2d 75.3 72.5 78.3 74.0 79 77.8
Med-Replay HalfCheetah 36.6 45.5 44.2 36.6 41.9 40.2
Med-Replay Hopper 18.1 95 94.7 82.7 91.5 93.6
Med-Replay Walker2d 26.0 77.2 73.9 66.6 82.6 49.8

Average 51.9 77.6 77 74.7 78.9 72.9
Dataset Environment Diffuser DD HDMI-TS HDMI-RS HDMI-VS HDMI

Med-Expert HalfCheetah 79.8 90.6±1.3 86.7±1.5 86.3±1.1 87.5±1.8 92.1±1.4
Med-Expert Hopper 107.2 111.8±1.8 108.9±0.7 107.2±1.2 106.7±2.2 113.5±0.9
Med-Expert Walker2d 108.4 108.8±1.7 105.1±1.3 105.8±0.8 103.2±0.9 107.9±1.2
Medium HalfCheetah 44.2 49.1±1.0 42.2±0.8 41.3±0.7 40.4±2.1 48.0±0.9
Medium Hopper 58.5 79.3±3.6 61.6±1.8 62.4±1.5 60.5±1.5 76.4±2.6
Medium Walker2d 79.7 82.5±1.4 74.5±1.2 74.8±0.8 73.0±1.9 79.9±1.8
Med-Replay HalfCheetah 42.2 39.3±4.1 38.0±0.6 37.6±0.6 36.8±0.5 44.9±2.0
Med-Replay Hopper 96.8 100±0.7 84.9±0.7 82.8±1.3 82.7±1.3 99.6±1.5
Med-Replay Walker2d 61.2 75±4.3 65.2±2.4 66.8±1.3 62.6±1.7 80.7±2.1

Average 75.3 81.8 74.1 73.9 72.6 82.6

It has been previously highlighted in the primary text that searching using the entire offline dataset is excessively time-
consuming. Thus, we have also implemented the clustering method to extract trajectories with start states and goal states
similar to the test task from the offline dataset and utilize these trajectories to construct the search replay buffer. The
AntMaze dataset is used to validate the performance of HDMI-S vs. HDMI, as depicted in Table 10.

Table 10: The performance in AntMaze, a typical long-horizon task with reward sparsity. MultiAnt-Diverse is a multi-task
variant of AntMaze-Diverse with episodic, resampled goal locations. Results correspond to the mean and standard error
over 5 planning seeds. The suffix number of the environment name indicates that the test map is stitched together from
multiple original maps. HDMI-S indicates that the SoRB algorithm is directly used to generate subgoals during the test
phase, and the numbers in parentheses represent the multiples of time consumed when inferring relative to the HDMI.

Environment HDMI HDMI-S
AntMaze-Play U-Maze-3 86.1 ± 2.4 (1x) 82.5 ± 1.6 (2.2x)
AntMaze-Diverse U-Maze-3 73.7 ± 1.1 (1x) 66.2 ± 2.1 (2.2x)
AntMaze-Diverse Large-2 71.5 ± 3.5 (1x) 60.5 ± 1.9 (3.6x)

Single-task Average 77.1 (1x) 70.7 (2.7x)
MultiAnt-Diverse Large-2 73.6 ± 3.8 (1x) 60.9 ± 2.3 (3.4x)

Multi-task Average 73.6 (1x) 60.9 (3.4x)

The table reveals that HDMI-S takes longer to execute and exhibits inferior performance compared to HDMI. We attribute
this disparity to the susceptibility of the search replay buffer to the clustering quality.

Furthermore, in the test phase, substituting the goal diffuser with SoRB renders the HDMI-S unable to tackle the reward-
maximizing task, as SoRB necessitates prior knowledge of the goal state at runtime. In contrast, the HDMI can employ more
generalized conditional information (not restricted to the goal state) for subgoal generation due to ”algorithm distillation”
from SoRB during the training phase utilizing the conditional generation model. For example, the expected cumulative
reward serves as conditional information in the reward-maximizing task. In summary, it is an intriguing research avenue to
enhance the integration of planning methods with conditional generative models. We intend to delve deeper into this area in
our future work.
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I.3. Importance of Transformer-based Diffusion

Existing work has shown that the capture of correlations between elements is critical to the success of diffusion models.
Different from related works that use the diffusion model to denoise the entire state trajectory or state-action trajectory (Janner
et al., 2022; Ajay et al., 2022), in the goal diffusion procedure of the upper level, we denoise the sparser subgoal trajectory.
The long-range dependence between subgoals makes the U-Net-like structure based on local convolution no longer the
optimal choice. This motivates us to use the transformer as the skeleton of the diffusion model instead of the commonly
used U-Net-like structure.

In order to bolster the efficacy of the transformer-based diffusion model in capturing sub-goal sequences, we have conducted
an experiment in which we substituted the skeletal components of both the goal diffuser and the trajectory diffuser with
U-Net structures. We have also devised two distinct ablation techniques, HDMI-UG (i.e., Goal diffuser with U-Net) and
HDMI-UT ((i.e., Trajectory diffuser with U-Net), to evaluate the performance of the modified model. Our findings shed light
on the superiority of the transformer-based approach in this context, as demonstrated through the results of our experiments.

Concretely, we represent the noise model ϵθ with a temporal U-Net and borrow the code from (Janner et al., 2022)14.
The temporal U-Net consists of a U-Net structure with 6 repeated residual blocks. Each block consists of two temporal
convolutions, each followed by group norm (Wu & He, 2018). The Mish nonlinearity (Misra, 2020) is added before the
final output. Timestep and condition embeddings are 128-dimensional vectors which are produced by separate 2-layered
MLP. Each layer consists of 256 hidden units and Mish nonlinearity. The timestep and condition embeddings are then
concatenated together before getting added to the activations of the first temporal convolution within each block.

Table 11: The performance of HDMI and baselines in Maze2D, a typical long-horizon task with reward sparsity. The
Multi2D setting refers to a multi-task variant with episodic, resampled goal locations. Results correspond to the mean and
standard error over 5 planning seeds. The suffix number of the environment name indicates that the test map is stitched
together from multiple original maps. We emphasize in bold scores within 5 percent of the maximum per task (Kostrikov
et al., 2022).

Environment MPPI CQL IQL OPAL IRIS HiGoC Diffuser DD HDMI-UG HDMI-UT HDMI
Maze2D U-Maze-3 14.4 3.6 23.2 - 63.8±2.5 61.2±3.3 82.6±1.6 83.9±3.1 82.6±2.1 103.1±1.5 103.6±1.7
Maze2D Medium-2 5.7 2.3 19.8 - 59.5±4.7 59.8±4.1 87.8±3.1 85.8±3.3 88.9±1.9 101.8±1.7 102.1±2.5
Maze2D Large-2 3.9 7.7 31.1 - 38.2±1.2 45.4±2.5 87.9±3.8 87.3±1.2 94.3±1.3 104.9±1.7 104.7±2.1
Single-task Average 8.0 6.8 24.7 - 53.8 55.5 86.1 85.7 88.6 103.3 103.5

Multi2D U-Maze-3 17.8 - 16.5 - 61.7±3.6 67.9±1.5 85.4±1.8 86.9±3.5 83.8±1.7 105.8±2.2 105.4±2.4
Multi2D Medium-2 8.1 - 8.9 62.3±2.8 41.4±1.9 52.4±3.7 85.6±3.4 88.2±1.3 90.5±1.1 103.5±2.8 104.7±2.3
Multi2D Large-2 4.5 - 10.3 55.4±3.7 28.1±3.8 42.1±3.3 89.3±5.8 91.7±2.8 95.6±2.1 105.2±1.2 105.8±1.9

Multi-task Average 10.1 - 11.9 - 43.7 54.1 86.8 88.9 90.0 104.8 105.3

Table 11 presents two main observations. Firstly, the utilization of either U-Net (HDMI-UT) or transformer (HDMI) for
lower-level trajectory diffusers has a negligible effect on performance, with the transformer exhibiting slightly superior
performance than U-Net. Secondly, the transformer model (HDMI) considerably outperforms U-Net (HDMI-UG) in
modeling subgoal trajectories, particularly when dealing with sparser subgoals (i.e., smaller maps), thus resulting in a wider
performance discrepancy between the two models. We also present a visual depiction of the subgoal sequence produced by
transformer-(HDMI) and U-Net-based (HDMI-UG) goal diffusers, as illustrated in Figure 11. The figure indicates that the
subgoal trajectory generated by HDMI-UG tends to take longer routes, possibly due to U-Net-based diffusion emphasizing
local coherence while overlooking global constraints, hence making it more prone to suboptimal solutions.

J. Limitations
This section summarizes the limitations and future works of HDMI for model training as well as solvable problems.

J.1. Joint training of goal and trajectory diffusers

In the cascade trajectory diffusion process, the goal-conditional policy learning is translated into an inpainting problem by
replacing the sampled states with conditioning subgoals. However, the goal diffuser uses more information (i.e., extrinsic
rewards) than the trajectory diffuser, making the discovered subgoals potentially infeasible. In other words, the training

14https://github.com/jannerm/diffuser.
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process of the goal diffuser is separated from the trajectory diffuser.

One possible solution is to borrow the adaptive guiding from guided policy search (GPS) (Levine & Koltun, 2013), and
introduce an extra conditional information for the goal diffuser to encourage the subgoals distribution to be consistent with
the trajectory distribution. Specifically, we can redefine the conditional information of the goal diffuser as

ȳ(τg) := exp
( T−1∑

t=0

r(st, at) +

N∑
i=1

log p(τ isa; y(τ
i
sa))

)
where log p(τ isa; y(τ

i
sa)) represents the log-likelihood of the sub-trajectory generated by the trajectory diffuser conditioned

on the subgoal gi.

The equivalence between diffusion models and score-matching (Song et al., 2021) enables exact log-likelihood computation
for diffusion models. Specifically, we can leverage the instantaneous change-of-variable formula (Chen et al. (2018, Theorem
1) and Grathwohl et al. (2019, Equation (4))) to compute the unknown data density p0 from the known prior density pT with
numerical ODE solvers (Song, 2021). Therefore, we can directly use the trick in GPS. We plan to leave it for follow-up
work to explore in depth.

J.2. Translating goals into skills

The subgoal extraction approach HDMI used are unsuited to find subtasks without definite subgoals associated with them.
Consider an example of a subtask “drive through traffic,” which is a part of a longer horizon task of reaching a destination in
the autonomous driving scenario. This subtask requires an agent to maneuver a vehicle around traffic smoothly without any
particular subgoal in the state space. Therefore, a general subgoal extraction approach is desired that can directly discover
a set of diverse skills15, instead of learning them through subgoals. In existing works, the skill is generally obtained by
encoding the trajectory data and is represented as a low-dimensional latent vector (Lynch et al., 2020; Pertsch et al., 2021a;
Ajay et al., 2021; Rosete-Beas et al., 2022; Lee et al., 2022b).

In addition, the subgoal extraction and the subsequent training of diffusion models are also independent of each other
in this paper. An ideal way is that the trajectory diffuser can automatically generate optimal skills during training and
generate optimal action sequences based on the skills. Fortunately, recent works studying diffusion models begin to focus on
performing the diffusion in latent space, rather than observation space, as done in (Vahdat et al., 2021; Rombach et al., 2022;
Zhou et al., 2022). This makes it possible to generate action sequences end-to-end based on the dataset alone, which we
also plan to leave for further exploration in subsequent work. Incidentally, performing the diffusion in the latent space also
enables HDMI to be extended to image-based offline decision-making.

15A skill refers to “the policy of a subtask in the sense that it semantically represents the ability to do something well” (Pateria et al.,
2021).
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