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Abstract
Masked image modeling, an emerging self-
supervised pre-training method, has shown im-
pressive success across numerous downstream
vision tasks with Vision transformers. Its under-
lying idea is simple: a portion of the input im-
age is masked out and then reconstructed via a
pre-text task. However, the working principle
behind MIM is not well explained, and previ-
ous studies insist that MIM primarily works for
the Transformer family but is incompatible with
CNNs. In this work, we observe that MIM es-
sentially teaches the model to learn better middle-
order interactions among patches for more gen-
eralized feature extraction. We then propose an
Architecture-Agnostic Masked Image Modeling
framework (A2MIM), which is compatible with
both Transformers and CNNs in a unified way.
Extensive experiments on popular benchmarks
show that A2MIM learns better representations
without explicit design and endows the backbone
model with the stronger capability to transfer to
various downstream tasks.

1. Introduction
Supervised deep learning with large-scale annotated data
has witnessed an explosion of success in computer vision
(CV) (Krizhevsky et al., 2012a; He et al., 2016) and natural
language processing (NLP) (Vaswani et al., 2017). However,
a large number of high-quality annotations are not always
available in real-world applications. Learning representa-
tions without supervision by leveraging pre-text tasks has
become increasingly popular.

In CV, early self-supervised learning approaches (Zhang
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et al., 2016; Doersch et al., 2015; Gidaris et al., 2018) aim
to capture invariant features through predicting transforma-
tions applied to the same image. However, these methods
rely on vision ad-hoc heuristics, and the learned represen-
tations are less generic. Recently, contrastive learning ap-
proaches (Tian et al., 2020; Chen et al., 2020b; He et al.,
2020) have witnessed significant progress, even outperform-
ing supervised methods on several downstream tasks (Chen
et al., 2020c; Grill et al., 2020; Zbontar et al., 2021). More
recently, inspired by masked autoencoding methods (Devlin
et al., 2018; Radford et al., 2018) in NLP, Masked Image
Modeling (MIM) methods (Bao et al., 2022; He et al., 2022;
Wei et al., 2021; Xie et al., 2021b) have brought about
new advances for self-supervised pre-training on CV tasks.
The transition from human language understanding to NLP
masked autoencoding is quite natural because the filling
of missing words in a sentence requires comprehensive se-
mantic understanding. In analogy, humans can understand
and imagine masked content by visually filling the missing
structures in an image containing occluded parts.

Different from contrastive learning, which yields a cluster-
ing effect by pulling similar samples and pushing away dis-
similar samples, MIM pre-training methods have not been
extensively explored in the context of the expected knowl-
edge learned. Existing works mainly focus on improving
downstream tasks performance via explicit design such as
trying different prediction targets (Wei et al., 2021), adopt-
ing pre-trained tokenizer (Zhou et al., 2021), utilizing com-
plex Transformer decoder (He et al., 2022) or combining
with contrastive learning (El-Nouby et al., 2021). Moreover,
the success of existing MIM methods is largely confined
to Vision Transformer (ViT) structures (Dosovitskiy et al.,
2021) since it leads to under-performing performance to di-
rectly apply mask token (Devlin et al., 2018) and positional
embedding to CNNs.

In this work, we carry out systematic experiments and show
that MIM as a pre-training task essentially teaches the model
to learn better middle-order interactions between patches
for more generalized feature extraction regardless of the
underlying network structure. Compared to the local texture
features learned by low-order interactions between patches,
more complex features such as shape and edge could be
extracted via middle-order interactions among patches. The
interaction of patches could be considered as information
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fusion via both the convolution operation of a CNN and
the self-attention mechanism of a Transformer. That is to
say, CNN and Transformer should both benefit from better
middle-order interactions with MIM as the pre-text task.

To bridge the gap of MIM in terms of network architectures
based on our extensive experimental analysis, we propose an
Architecture-Agnostic Masked Image Modeling framework
(A2MIM) that focuses on enhancing the middle-order inter-
action capabilities of the network. Specifically, we mask
the input image with the mean RGB value and place the
mask token at intermediate feature maps of the network. In
addition, we propose a loss in the Fourier domain to fur-
ther enhance the middle-order interaction capability of the
network. Our contributions are summarized as follows:

• We conducted systematic experiments and showed the
essence of MIM is to better learn middle-order inter-
actions between patches but not reconstruction quality.

• We proposed a novel MIM-based framework dubbed
A2MIM that bridges the gap between CNNs and Trans-
formers. We are also the first to perform MIM on
CNNs without adopting designs native to ViTs that
outperform contrastive learning counterparts.

• Extensive experiments with both Transformers and
CNNs on ImageNet-1K and public benchmarks for var-
ious downstream tasks show that our method improves
performances on pre-trained representations.

2. Related Work
Contrastive Learning. Contrastive learning (CL) learns
instance-level discriminative representations by extracting
invariant features over distorted views of the same data.
MoCo (He et al., 2020) and SimCLR (Chen et al., 2020b)
adopted different mechanisms to introduce numerous neg-
ative samples for contrast with the positive. BYOL (Grill
et al., 2020) and its variants (Chen & He, 2020; Ge et al.,
2021) further eliminate the requirement of negative sam-
ples to avoid representation collapse. Besides pairwise con-
trasting, SwAV (Caron et al., 2020) clusters the data while
enforcing consistency between multi-augmented views of
the same image. Barlow Twins (Zbontar et al., 2021) and
its variants (Ermolov et al., 2021; Bardes et al., 2022) pro-
posed to measure the cross-correlation matrix of distorted
views of the same image to avoid representation collaps-
ing. Meanwhile, some efforts have been made on top of
contrastive methods to improve pre-training quality for spe-
cific downstream tasks (Xie et al., 2021a; Xiao et al., 2021;
Selvaraju et al., 2021). MoCo.V3 (Chen et al., 2021) and
DINO (Caron et al., 2021) adopted ViT (Dosovitskiy et al.,
2021) in CL pre-training to replace CNN backbones.

Autoregressive Modeling. Autoencoders (AE) is a typical
type of architecture that allows representation learning with

no annotation requirement (Hinton & Zemel, 1993). By
forcing denoising property onto the learned representations,
denoising autoencoders (Vincent et al., 2008; 2010) are a
family of AEs that reconstruct the uncorrected input signal
with a corrupted version of the signal as input. Generalizing
the notion of denoising autoregressive modeling, masked
predictions attracted the attention of both the NLP and CV
communities. BERT (Devlin et al., 2018) performs masked
language modeling (MLM) where the task is to classify the
randomly masked input tokens. Representations learned
by BERT as pre-training generalize well to various down-
stream tasks. For CV, inpainting tasks (Pathak et al., 2016)
to predict large missing regions using CNN encoders and
colorization tasks (Zhang et al., 2016) to reconstruct the
original color of images with removed color channels are
proposed to learn representation without supervision. With
the introduction of Vision Transformers (ViTs) (Dosovitskiy
et al., 2021; Liu et al., 2021), iGPT (Chen et al., 2020a) pre-
dicts succeeding pixels given a sequence of pixels as input.
MAE (He et al., 2022) and BEiT (Bao et al., 2022) randomly
mask out input image patches and reconstruct the missing
patches with ViTs. Compared to MAE, MaskFeat (Wei et al.,
2021) and SimMIM (Xie et al., 2021b) adopt linear layers
as the decoder instead of another Transformer as in MAE.
MaskFeat applied HOG as the prediction target instead of
the RGB value. Other research endeavors (El-Nouby et al.,
2021; Zhou et al., 2021; Assran et al., 2022; Akbari et al.,
2021; Sameni et al., 2022) combine the idea of CL with
MIM. Moreover, Data2Vec (Baevski et al., 2022) proposed
a framework that applies the masked prediction idea for
either speech, NLP, or CV. However, most MIM works are
confined to ViTs, recently proposed CIM (Fang et al., 2022)
uses the output of a pre-trained tokenizer as the target and
takes the output of a frozen BEiT as the encoder’s input as
a workaround to enable MIM on CNNs, and the concurrent
work SparK (Tian et al., 2023) employs the sparse convolu-
tion operators to tackle the irregular masked input for CNNs.

3. Midst of Masked Image Modeling
3.1. Is MIM Better Image Augmentation?

Compared to CNN, Transformers gain tremendous perfor-
mance improvement with carefully designed image aug-
mentation techniques(Cubuk et al., 2020; Yun et al., 2019;
Zhong et al., 2020). For instance, Random erasing and Cut-
mix randomly remove part of the image and replace the
corresponding region with either Gaussian noise or a patch
from another image. Similarly, as in most MIM pre-training
tasks, some image patches are masked out and replaced
with a learnable mask token. Noticing the resemblance
of the masking operations, we hypothesize that MIM as a
pre-training task and masking-based data augmentations en-
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Figure 1. (a)(b): Robustness against different occlusion ratios of images is studied for both ViT-S and ResNet-50 under different
experimental settings (see Section 3.1). (c)(d): Distributions of the interaction strength J(m) are explored for both ViT-S and ResNet-50
under different experimental settings. The label indicates the pre-training method + fine-tuning augmentation used, random stands for
random weight initialization. Appendix B provides more results and implement details.

hance the network’s robustness towards occlusion, enabling
the network with a more generalized feature extraction abil-
ity. To verify our hypothesis, we design an occlusion robust-
ness test. Let x ∈ R3×H×W be an input image and y ∈ RC

be its corresponding label, where C is the class number.
Considering a classification task y = f(x) where f denotes
a neural network, the network is considered robust if the
network outputs the correct label given an occluded version
of the image x′, namely y = f(x′). For occlusion, we con-
sider the patch-based random masking as adopted in most
MIM works (He et al., 2022; Xie et al., 2021b; Wei et al.,
2021). In particular, we split the image of size 224 × 224
into patch size 16 × 16 and randomly mask M patches
out of the total number of N patches. The occlusion ratio
could then be defined as M

N . We conduct experiments on
ImageNet-100 (IN-100) (Krizhevsky et al., 2012b) for both
Transformer and CNN with different settings. We choose
ViT-S (Dosovitskiy et al., 2021) and ResNet-50(He et al.,
2016) as the network architecture. Robustness is compared
under the following settings: (i) random weight initialization
with no image augmentation applied; (ii) random weight
initialization with different image augmentations applied;
(iii) MIM pre-training as weight initialization with and with-
out image augmentations applied. In Fig. 1, we report the
average top-1 accuracy across five runs trained with differ-
ent settings under various occlusion ratios. Fig. 1(a) and
1(b) show that both MIM and patch-removing alike augmen-
tations significantly improve model occlusion robustness
for both ViT-S and ResNet-50. Nevertheless, MIM yields
more robust feature extraction than adopting augmentations.
Although MIM and patch-removing alike augmentations
share similar masking mechanisms, MIM explicitly forces
the model to learn the interactions between patches in order
to reconstruct missing patches enabling more robust feature
extraction. Comparing Fig. 1(a) and 1(b), the convex trend
of accuracy from ViT-S indicates better robustness than the
concave trend from ResNet-50. This can be attributed to the
higher degrees of freedom of the self-attention mechanism
compared to convolution priors. We claim that the success
of MIM on ViTs can be seen as resonance in terms of better

patch interactions imposed by MIM while supported by the
self-attention mechanism of ViTs.

3.2. Middle-order Interactions for Generalized Feature
Extraction

Next, we show that MIM essentially enables better middle-
order interactions between patches. Note that existing MIM
works adopt a medium or high masking ratio (Xie et al.,
2021b; He et al., 2022) (e.g., 60% or 70%, see Fig. 2) dur-
ing pre-training, and in these settings, the pairwise inter-
actions between patches are under a middle-size context
measured by the order m. Early inpainting work based on
CNN (Pathak et al., 2016) resembles MIM but attracts little
attention due to limited performance. The inpainting task
adopts the masking strategy as illustrated in Fig. 1(c), which
masks a full large region instead of random small patches.
Such masking mechanisms ignore patch interaction and fo-
cus only on reconstruction leading to poor representation
quality. To investigate whether MIM makes the model more
sensitive to patch interactions of some particular orders,
we resort to the tool of multi-order interactions introduced
by (Deng et al., 2022; Zhang et al., 2020). Intuitively, mth-
order interactions of patches refer to inference patterns (deep
features) induced from m number of patches of the original
image in the input space. With a small value of m (low-order
interactions), the model simply learns local features such
as texture. Formally, the multi-order interaction I(m)(i, j)
is to measure the order of interactions between patches i
and j. We define I(m)(i, j) to be the average interaction
utility between patches i and j on all contexts consisting of
m patches, where m denotes the order of contextual com-
plexity of the interaction. Mathematically, given an input
image x with a set of n patches N = {1, . . . , n} (e.g., n
pixels), the multi-order interaction I(m)(i, j) is defined as:

I(m)(i, j) = ES⊆N\{i,j},|S|=m[∆f(i, j, S)], (1)

where ∆f(i, j, S) = f(S ∪ {i, j})− f(S ∪ {i})− f(S ∪
{j})+f(S). f(S) indicates the score of output with patches
in N \ S kept unchanged but replaced with the baseline
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(b) 30% Masked(a) Original Image (e) Inpainting Mask(c) 50% Masked (d) 70% Masked
Figure 2. (a) Four patches (i, j, k, l) interact with each other and forms a contour or edge pattern of the fox for image categorization. (b)
Image with 30% masking ratio. Masked patches i and k interact with neighboring patches j and l to predict the missing patches. (c)
Image with 50% masking ratio. Masked patches force the model to extract information from unmasked patches and learn middle-order
interactions for the MIM task. (d) Image with 70% masking ratio. Masked Patch i interacts with longer-range patches j and k, forming an
edge pattern. (e) A typical masking pattern for existing inpainting tasks.

value (Ancona et al., 2019), where the context S ⊆ N .
See Appendix B.2 for details. To measure the interaction
complexity of the neural network, we measured the rela-
tive interaction strength J (m) of the encoded m-th order
interaction as:

J (m) =
Ex∈ΩEi,j |I(m)(i, j|x)|

Em′Ex∈ΩEi,j |I(m
′ )(i, j|x)|

, (2)

where Ω is the set of all samples and 0 ≤ m ≥ n− 2. J (m)

is the average value over all possible pairs of patches of
input samples. J (m) is normalized by the average value
of all interaction strengths. J (m) then indicates the distri-
bution (area under curve sums up to one) of the order of
interactions of the network. We use J (m) as the metric to
evaluate and analyze interaction orders of the network with
MIM pre-training. We conduct experiments on IN-100 with
image size 224 × 224 and use ViT-S (Dosovitskiy et al.,
2021) and ResNet-50 (He et al., 2016) as the network ar-
chitecture. We consider a patch of size 16 × 16 as input.
For the computation of J (m), we adopt the sampling solu-
tion following previous works (Deng et al., 2022; Zhang
et al., 2020). As can be seen from Fig. 1(c), ViT-S with
random weight initialization tends to learn simple interac-
tions with few patches (e.g., less than 0.05n patches) while
MIM pre-trained models show a stronger interaction for
relative middle-order (from 0.05n to 0.5n). Similarly, as
observed from 1(d), MIM pre-trained ResNet-50 enhances
the middle-order interactions from 0.1n to 0.55n compared
to random initialized models. Stronger middle-order inter-
actions form more complex features such as shape and edge
compared to local texture features learned from low-order
interactions (Naseer et al., 2021).

4. Approach
We propose a generic MIM framework following two de-
sign rules: (a) Better middle-order interactions between
patches for more generalized feature extraction. (b) No
complex or non-generic designs are adopted to ensure
compatibility with all network architectures. Figure 3
highlights the difference between A2MIM and existing MIM

frameworks in terms of three key components: masking
strategy, encoder/decoder network architecture design and
prediction targets.

4.1. Architecture Agnostic Framework

Mask Where Middle-order Interactions Occur. Exist-
ing works (El-Nouby et al., 2021; He et al., 2022; Wei
et al., 2021) adopt the masking strategy where the input
image is divided into non-overlapping patches, and a ran-
dom subset of patches is masked. MAE utilizes a Trans-
former as a decoder and takes only the visible patches into
the encoder. Masked tokens are appended to the decoder
to reconstruct the masked patches. SimMIM and Mask-
Feat (Wei et al., 2021) utilize a fully connected layer as the
decoder and feed the mask token into the encoder together
with the visible patches. The mask token (Devlin et al.,
2018) is a token-shared learnable parameter that indicates
the presence of missing patches to be predicted. Despite
different choices of decoder structures, the mask token is
either placed at the input to the encoder or the decoder.
Mathematically, the masking process of MIM is defined as
xmask = x⊙ (1−M) + T ⊙M , where M is the random
occlusion mask, and T represents the learnable mask to-
ken. Such masking at the patch embedding layer aligns with
the attention mechanism of Transformers, which is robust
against occlusion. However, masking at the stem layer un-
dermines the context extraction capability of CNN, which
relies on local inductive biases. Moreover, masking at input
stages of the network leads to low-order interactions. Thus,
we propose to mask intermediate features where the output
feature contains both semantic and spatial information, and
the mask token can encode interactions with a medium num-
ber of tokens (e.g., the last embedded stage). Concretely, our
masking operation is defined as zlmask = zl + T ⊙D(M),
where zl is the intermediate feature map at stage-l in CNN
encoders (or layer-l in Transformers) and D(·) is the corre-
sponding down-sampling function of the occlusion mask.

Filling Masked Tokens with RGB Mean. Existing works
directly replace the occluded patches with the mask token
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Figure 3. An illustration comparison between the existing MIM framework and our proposed framework. For the existing MIM framework,
the input image is patchfied into a sequence of patches without overlapping with masked patches that are replaced with learnable mask
tokens. The sequence is then input to the Transformer encoder. The Lspa is applied between the ground truth patches and the reconstructed
patches from the decoder in the spatiotemporal domain. Our proposed framework uses the mean RGB value of the image instead of the
mask token in the input space. We then add a learnable mask token onto the intermediate feature map of layer-l of stage-s of the encoder
instead of replacement in the input space. The encoder could either be of the Transformer or the CNN family. In addition to the Lspa, we
adopt a Lfreq in the Fourier domain to enhance the encoder to learn more middle-order interactions. Specifically, we apply DFT on both
the ground truth image and the predicted image and then use Mean square error (MSE) to measure the difference.

in the input space or after the patch embedding (Bao et al.,
2022; Xie et al., 2021b). In contrast, we use the average
RGB value to fill the occluded patches as the input to the en-
coder and add the mask token onto the intermediate feature
maps of the encoder. The masking mechanism originates
from NLP where languages are of high-level semantics and
do not require low-level feature extraction as image pro-
cessing. Masking at the early stages of the network where
low-level feature extraction happens is harmful in terms of
feature extraction. The RGB mean is the DC component of
images. Filling with RGB mean alleviates local statistics
distortion caused by the masking operation and forces the
network to model more informative medium frequencies in-
stead of filling the masked patches with blurry color blocks
(low frequencies). The proposed masking strategy is generic
to both convolution and self-attention in that it accommo-
dates low-level to semantic-level feature extraction.

4.2. Middle-order Interactions from Fourier Perspective

Current works (El-Nouby et al., 2021; He et al., 2022; Xie
et al., 2021b) adopt raw RGB values as the prediction tar-
get. However, raw pixels in the spatial domain are heavily
redundant and often contain low-order statistics (Bao et al.,
2022; Wei et al., 2021; Zhou et al., 2021). MaskFeat (Wei
et al., 2021) adopts the Histogram of Oriented Gradients
(HOG) as the prediction target outperforming MAE and
SimMIM. HOG is a discrete descriptor of medium or high-
frequency features that captures shape patterns based on
middle-order interactions. ViTs and CNNs have low-pass

and high-pass filtering properties, respectively (Park & Kim,
2022; 2021). ViTs and CNNs have certain frequency bands
that they each cannot model well, and both cannot model
middle-order interactions well (detailed in Appendix B.3).
The observation of the medium frequency descriptor HOG
improves middle-order interactions and leads to the hypoth-
esis that learning medium frequencies would help the model
learn more middle-order interactions. Given a RGB image
x ∈ R3×H×W , the discrete Fourier transform (DFT) of
each channel is defined as:

F(u,v) =

h=H∑
h=1

w=W∑
w=1

x(h,w)e−2πj(uh
H + vw

W ). (3)

In addition to the common MIM loss in the spatial domain
Lspa, we propose Lfreq in Fourier domain:

Lfreq =

c=3∑
c=1

u=H∑
u=1

w=W∑
w=1

ω(u, v)
∥∥DFT(xpred

c ⊙M+

de(xpred
c )⊙ (1−M))−DFT(xc)

∥∥, (4)

where xpred is the predicted image, de(·) is detach gradi-
ent operation, and ω(u, v) is a dynamic frequency weighting
matrix. Inspired by Focal Frequency loss (Jiang et al., 2021),
we define adaptive ω(u, v) as follows:

ω(u, v) =
∥∥DFT

(
xpred
c ⊙M+

det(xpred
c )⊙ (1−M)

)
−DFT(xc)

∥∥, (5)

ω(u, v) enables both ViTs and CNNs to model features of
medium frequencies rather than local textures and noise cor-
responding to high frequencies. Since filling masked tokens
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with RGB mean is filling with DC components, combining
our proposed masking strategy with the weighting effect of
the Lfreq leads to the better modeling of medium frequency
features (middle-order interactions). Fig. B.3 verifies that
Eq. (5) allows the model to learn previously ignored frequen-
cies (mostly the medium frequencies). Note that Lfreq intro-
duces negligible overhead by using Fast Fourier Transform
(FFT) algorithms with O(n log n) complexity to achieve
DFT. The overall loss of A2MIM is defined as:

L = Lspa + λLfreq, (6)

where Lspa =
∥∥xpred − x

∥∥⊙M and λ is a loss weighting
hyper-parameter. We set λ to 0.1 by default.

5. Experiments
5.1. Pre-training Setup

We adopt Vision Transformer (Dosovitskiy et al., 2021)
(ViT/16), ResNet (He et al., 2016), and ConvNeXt (Liu
et al., 2022b) as the backbone encoder. Models are
pre-trained on ImageNet-1K (IN-1K) training set with
AdamW (Loshchilov & Hutter, 2019) optimizer, a batch
size of 2048, and a basic learning rate of 1.2 × 10−3 ad-
justed by a cosine learning rate scheduler. The input image
size is 224× 224 with a masked patch size of 32× 32, and
the random masking ratio is 60%. By default, the learnable
mask tokens are placed at stage-3 and layer-0 in ResNet/-
ConvNeXt and ViT architectures, respectively. We adopt
a linear prediction head as the MIM decoder (Xie et al.,
2021b). A2MIM+ indicates adopting HOG as the MIM
target and using the MLP decoder with depth-wise (DW)
convolutions. Our experiments are implemented on Open-
Mixup (Li et al., 2022) by Pytorch and conducted on work-
stations with NVIDIA A100 GPUs. Bold and underline
indicate the best and the second-best performance, and gray
denotes the uncomparable results (e.g., not in the same tech-
nical scope). See Appendix A for pre-training details.

5.2. Image Classification on ImageNet-1K

Evaluation Protocols. We evaluate the learned represen-
tation by end-to-end fine-tuning (FT) and linear probing
(Lin.) protocols on IN-1K. For FT evaluations of ViTs, we
employ the fine-tuning as MAE (He et al., 2022), which
applies DeiT (Touvron et al., 2021) augmentations, AdamW
optimizer with a batch size of 1024 for 200 epochs, and
adopt a layer-wise learning rate decay of 0.65 as BEiT (Bao
et al., 2022). For FT evaluations of CNNs, ResNet variants
are fine-tuned with RSB A2/A3 (Wightman et al., 2021)
training settings, which employ LAMB (You et al., 2020)
optimizer with a batch size 2048 for 300/100 epochs, and
ConvNeXt models are fine-tuned 300-epoch with its origi-
nal supervised learning settings. For the linear evaluations,
ResNet-50 settings follow MoCo (He et al., 2020), which

Table 1. ImageNet-1K fine-tuning (FT) top-1 accuracy (%) of ViT-
S and ViT-B models. ‡ denotes our finetuned results.

Method Date Target PT ViT-S ViT-B ViT-L
Epochs FT FT FT

Rand init. - Label 300 79.9 81.8 82.6
SimCLR ICML’2020 CL 300 80.2 82.3 -
BYOL NIPS’2020 CL 300 80.9 82.8 -
MoCoV3 ICCV’2021 CL 300 81.4 83.2 84.1
DINO ICCV’2021 CL 300 81.5 83.6 -
BEiT ICLR’2022 DALLE 800 81.3 83.2 85.2
SplitMask arXiv’2022 DALLE 300 81.5 83.6 -
iBOT ICLR’2022 EMA 800 82.3 84.0 85.2
MAE CVPR’2022 RGB 1600 81.6 83.6 85.9
MaskFeat CVPR’2022 HOG 800 - 84.0 85.7
Data2Vec ICML’2022 EMA 800 - 84.2 86.2
SimMIM CVPR’2022 RGB 800 81.7 83.8 85.6
CAE arXiv’2022 DALLE 1600 81.8 83.6 86.3
mc-BEiT ECCV’2022 VQGAN 800 - 84.1 85.6
BootMAE ECCV’2022 EMA 800 - 84.2 85.9
PeCo AAAI’2023 VQVAE 800 - 84.5 86.5
CIM ICLR’2023 BEiT 300 81.6 83.3 -
MC-MAE ICLR’2023 EMA 1600 82.0 83.6 86.1
MAGE-C CVPR’2023 VQGAN 1600 - 82.9 84.3
LocalMIM CVPR’2023 HOG 1600 - 84.0 85.8
A2MIM Ours RGB 800 82.1 84.2 86.1
A2MIM+ Ours HOG 800 82.3 84.4 86.3

Table 2. ImageNet-1K linear probing (Lin.) and fine-tuning (FT)
top-1 accuracy (%) of ResNet-50.
†Multi-crop augmentation. ‡Our modified MIM methods for CNN.

Method Fast Pre-training Longer Pre-training
Epochs Lin. FT (A3) Epochs FT (A3) FT (A2)

Rand init. - 4.4 78.1 - 78.1 79.8
PyTorch (Sup.) 90 76.2 78.8 300 78.9 79.9
Inpainting 70 40.1 78.4 300 78.0 -
Relative-Loc 70 38.8 77.8 300 77.9 -
Rotation 70 48.1 77.7 300 78.2 -
SimCLR 100 64.4 78.5 800 78.8 79.9
MoCoV2 100 66.8 78.5 800 78.8 79.8
BYOL 100 68.4 78.7 400 78.9 80.1
SwAV† 100 71.9 78.9 400 79.0 80.2
Barlow Twins 100 67.2 78.5 300 78.8 79.9
MoCoV3 100 68.9 78.7 300 79.0 80.1
BEiT‡ 100 47.1 78.1 - - -
Data2Vec‡ 100 43.2 78.0 - - -
MAE‡ 100 37.8 77.1 300 77.2 79.0
SimMIM‡ 100 47.5 78.2 300 78.3 79.9
CIM - - - 300 78.6 80.4
A2MIM 100 48.1 78.8 300 78.9 80.4
A2MIM+ 100 50.3 78.9 300 79.0 80.5

trains a linear classifier by SGD with a batch size of 256,
and ViTs follow MAE, which tunes the linear layer with BN
by AdamW. See Appendix A for detailed configurations.

ViTs. We first evaluate A2MIM variants with ViT-S/B/L
on IN-1K. We list the supervision target used by vari-
ous pre-training algorithms in the third column of Tab. 1.
VQVAE/DALL-E (Ramesh et al., 2021) and VQGAN (Esser
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Table 3. ImageNet-1K fine-tuning (FT) top-1 accuracy (%) with
ResNet and ConvNeXt of various model scales. We adopt the
300-epoch fine-tuning protocols for both architectures. ‡ denotes
our reproduced results.
Methods #Para. Sup. MoCoV3‡ SimMIM‡ SparK A2MIM
Target (M) Label CL RGB RGB RGB
ResNet-50 25.6 79.8 80.1 79.9 80.6 80.4
ResNet-101 44.5 81.3 81.6 81.3 82.2 81.9
ResNet-152 60.2 81.8 82.0 81.9 82.7 82.5
ResNet-200 64.7 82.1 82.5 82.2 83.1 83.0
ConvNeXt-T 28.6 82.1 82.3 82.1 82.7 82.5
ConvNeXt-S 50.2 83.1 83.3 83.2 84.1 83.7
ConvNeXt-B 88.6 83.5 83.7 83.6 84.8 84.1

et al., 2021) are pre-trained image tokenizers, while EMA
refers to the momentum encoder. Our A2MIM outperforms
CL and MIM baselines, and A2MIM+ achieves competitive
results as current state-of-the-art methods with complex
supervision, e.g., SplitMask (MIM with CL combined),
iBOT (complex teacher-student architecture), and CIM
(pre-trained BEiT as supervision). Based on ViT-S/B/L,
A2MIM significantly improves the baseline SimMIM by
0.5%/0.4%/0.5% with the RGB target and 0.7%/0.7%/0.6%
with the HOG feature as supervision.

CNNs. We then compare A2MIM with classical self-
supervised learning methods (Inpainting (Pathak et al.,
2016), Relative-Loc (Doersch et al., 2015), and Rotation (Gi-
daris et al., 2018)), CL, and MIM methods with 100/300
pre-training epochs. We modified MIM methods to run them
on ResNet-50: the learnable mask token is employed to the
encoder for BEiT (Bao et al., 2022), Data2Vec (Baevski
et al., 2022), and SimMIM (Xie et al., 2021b) after the
stem (the output feature of 56 × 56 resolutions); the en-
coder of MAE randomly selects 25% from 56× 56 output
features of the stem as unmasked patches and takes the
reorganized 28 × 28 patches as the input of four stages.
In Tab. 2, our approach achieves competitive performance
with state-of-the-art contrastive-based methods under 100-
epoch FT evaluation. Note that MIM methods see fewer
training samples per epoch than CL methods (e.g., 40% vs.
200% of patches) and usually require longer pre-training
epochs. Based on a longer FT evaluation, A2MIM (300-
epoch) outperforms contrastive-based methods with even
fewer training epochs. Meanwhile, A2MIM also improves
the baseline SimMIM† (+0.8%) and the concurrent work
CIM (+0.4%) in terms of 100-epoch FT for the longer pre-
training. Besides, we also report the linear probing (Lin.)
results of the fast pre-training for reference, although we
focus on learning representations with better fine-tuning
performances. Although A2MIM achieves lower Lin. re-
sults than popular CL methods, A2MIM still improves the
baseline by 0.6%. Moreover, we further conduct scaling-up
experiments of A2MIM and pre-training methods based on
ResNet and ConvNeXt models. Notice that two concurrent
works proposed after our A2MIM (SparK (Tian et al., 2023)

Table 4. Performance of object detection and semantic segmenta-
tion tasks based on ViT-B on COCO and ADE-20K.
Method Target Epochs IN-1K COCO ADE-20K

PT FT APbox APmask mIoU
DeiT (Sup.) Label 300 81.8 47.9 42.9 47.0
MoCoV3 CL 300 83.2 47.9 42.7 47.3
DINO CL 400 83.6 46.8 41.5 47.2
BEiT DALLE 300 83.2 43.1 38.2 47.1
iBOT EMA 400 84.0 48.4 42.7 48.0
PeCo VQ-VAE 300 84.5 43.9 39.8 46.7
MAE RGB 1600 83.6 48.5 42.8 48.1
MaskFeat HOG 800 84.0 49.2 43.2 48.8
SimMIM RGB 800 83.8 48.9 43.0 48.4
CAE DALLE 800 83.6 49.2 43.3 48.8
A2MIM RGB 800 84.2 49.4 43.5 49.0

and ConvNeXtV2 (Woo et al., 2023)) are specially designed
MIM approaches for CNNs, which employ the sparse con-
volution to handle the irregular masked input. As shown in
Table 3, we compare A2MIM with DeiT (as the supervised
baseline), MoCoV3, SimMIM, and SparK, where A2MIM
noticeably surpasses the two popular self-supervised meth-
ods (MoCoV3 and SimMIM). Despite the proposed A2MIM
yields inferior performances than SparK, A2MIM can also
work for Transformer architectures.

5.3. Transfer Learning Experiments

Object detection and segmentation on COCO. To verify
the transferring abilities, we benchmark CL and MIM meth-
ods on object detection and segmentation with COCO (Lin
et al., 2014). For evaluation on CNN, we follow the setup
in MoCo, which fine-tunes Mask R-CNN (He et al., 2017)
with ResNet-50-C4 backbone using 2× schedule on the
COCO train2017 and evaluates on the COCO val2017. Re-
sults in Tab. 5 indicate that A2MIM (300-epoch) outper-
forms contrastive-based methods with longer pre-training
(+0.7% APbox and +0.6% APmask). For evaluation on
Transformer, we follow MAE and CAE, which efficiently
fine-tunes Mask R-CNN with ViT-B backbone using 1×
schedule. In Tab. 4, A2MIM (800-epoch) is superior to pop-
ular contrastive-based and MIM methods, e.g., outperforms
MAE (1600-epoch) by 0.9% APbox and 0.8% APmask.

Table 5. Performance of object detection and semantic segmenta-
tion tasks based on ResNet-50 on COCO and ADE20K.

Method Target Epochs IN-1K COCO ADE-20K
PT FT APbox APmask mIoU

Sup. Label 90 79.8 38.2 33.3 36.1
SimCLR CL 800 79.9 37.9 33.3 37.6
MoCoV2 CL 800 79.8 39.2 34.3 37.5
BYOL CL 400 80.1 38.9 34.2 37.2
SwAV CL 800 80.2 38.4 33.8 37.3
SimSiam CL 400 80.0 39.2 34.4 37.2
Balow Twins CL 800 79.9 39.2 34.3 37.3
SimMIM‡ RGB 300 79.9 39.1 34.2 37.4
CIM BEiT 300 80.4 - - 38.0
A2MIM RGB 300 80.4 39.8 34.9 38.3
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Figure 4. Visualizations of predicted results from SimMIM (middle) and our A2MIM (right) based on ViT-S pre-trained 400-epochs on
IN-1K. Notice that T (l∗) denotes the mask token T to the optimal layer-5 in ViT-S. We ablate the proposed components by adding them
to the baseline. Compared to results from SimMIM, reconstruction results of the modified baseline (Lspa) with the RGB mean mask
relieves grid-like artifacts; adding the mask token T (l∗) further improves the smoothness; using the proposed Lfreq helps the model to
capture more informative details and contours.

Semantic segmentation on ADE20K. We then evaluate
the transferring performances on semantic segmentation
with ADE20K (Zhou et al., 2019) by fine-tuning FCN (Shel-
hamer et al., 2017) and UperNet (Xiao et al., 2018). Based
on ResNet-50, all models are fine-tuned for 160K iterations
with SGD following MoCo and CIM. Results in Tab. 5 show
that our method outperforms CL methods by at least 0.9%
mIoU and outperforms CIM (required extra pre-trained
BEiT (Bao et al., 2022)) by 0.3% mIoU. Based on ViT-B,
we fine-tune models for 160K iterations with AdamW fol-
lowing MAE and CAE. Tab. 4 shows that our approach con-
sistently improves MIM methods (e.g., outperforms MAE
and SimMIM by 0.9% and 0.6% mIoU).

Table 6. Ablation of A2MIM on IN-100 and IN-1K. w/o ω denotes
removing the re-weighting term ω in Lfreq and T (l∗) denotes
adding the mask token T to the optimal layer-l∗.

Backbones ResNet-50 ViT-S ViT-B
Datasets IN-100 IN-1K IN-100 IN-1K
Pre-training Epochs 400 ep 100 ep 400 ep 400 ep
SimMIM 87.75 78.2 85.10 83.1
Lspa 88.19 78.4 85.27 83.2
+Lfreq w/o ω 88.47 78.4 86.05 83.3
+Lfreq 88.73 78.6 86.41 83.4
+Lfreq + T (l∗) 88.86 78.8 86.62 83.5

5.4. Ablation Study

We next verify the effectiveness of the proposed components.
Ablation studies are conducted with ResNet-50 and ViTs
on IN-100 and IN-1K using the fine-tuning protocol. Based
on the modified baseline SimMIM (Lspa), we first compare
different mask token mechanisms: Replacing denotes the
original way in most MIM methods, and Addition denotes
our proposed way that adds the mask token to intermediate
feature maps of the backbone. Replacing masked patches in
input images by RGB mean value slightly improves the base-

line SimMIM, especially for ResNet-50 (88.19 vs. 87.75
on IN-100). Then, we verify the proposed Lfreq in Tab. 6.
We find that simply using Lfreq without the adaptive re-
weighting ω (Eqn. 5) brings limited improvements as the
frequency constraint to Lspa, while employing ω further
enhances performances by helping the model to learn more
informative frequency components. Additionally, we visual-
ize reconstruction results in Fig. 4 to show the improvements
brought by our proposed components. Refer to Appendix C
and D for more ablations and visualization results.

5.5. Verification of A2MIM Design Rules

We verify whether A2MIM meets the intended design rules
using the same experiment settings as Sec. 5.4 from two
aspects. (i) A2MIM is generic to incorporate advanced
components proposed in previous works (e.g., complex
decoders, advanced prediction targets). As for the decoder
structure, we replace the original linear decoder with 2-layer
MLP or Transformer decoders, but find limited improve-
ments or degenerated performances (similar to SimMIM)
in Tab. 7. Inspired by PVT.V2 (Wang et al., 2022), we in-
troduce a depth-wise (DW) convolution layer (w/ DW) to
the MLP decoder (adding a 5 × 5 DW layer in between)
and the Transformer decoder (adding a 3× 3 DW layer in
each FFN (Wang et al., 2022)), which brings improvements
compared to the linear decoder. As for the prediction tar-
get, we follow MaskFeat to change the RGB target to the
HoG feature or the output feature from ViT-B/16 pre-trained
by DINO (Caron et al., 2021). Tab. 7 shows that using
advanced targets significantly improves the performance
of A2MIM for both ResNet-50 and ViT-B. Therefore, we
can conclude A2MIM is a generally applicable framework.
(ii) A2MIM enhances occlusion robustness and middle-
order interaction among patches from experiments on IN-
1K in Fig. 5. We analyze occlusion robustness and interac-
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Figure 5. Robustness and interaction of A2MIM with ViT-S and ResNet-50 on ImageNet-1K. (a)(b): Robustness against different
occlusion ratios of images is studied for A2MIM and various methods. (c)(d): Distributions of the interaction strength J(m) are explored.
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Figure 6. Analysis of A2MIM pre-training epochs and fine-tune performances with ResNet, ConvNeXt, and ViT models on ImageNet-1K.
(a)(b) show CNN architectures obtain less performance gains and benefit less from longer pre-training from A2MIM than ViTs in (c).

tion strength of A2MIM with ViT-S (pre-training 400-epoch)
and ResNet-50 (pre-training 100-epoch) on ImageNet-1K,
as shown in Fig. 5. Fig. 5(a) and 5(b) shows that A2MIM
is more robust to occlusion than the baseline SimMIM and
contrastive learning methods with both Transformers and
CNNs. Meanwhile, we find that MIM methods learn more
balanced interaction strength than both supervised and con-
trastive learning methods in Fig. 5(c) and 5(d). A2MIM
further improves SimMIM by capturing more middle-order
interactions (0.2n to 0.6n) with Transformers and CNNs.
Therefore, we can conclude that A2MIM helps the model to
learn better middle-order interactions between patches for
more generalized visual representation.
Table 7. Analysis of the scalability for advanced components.

Module ResNet-50 ViT-B
Linear 78.8 82.4

2-layer MLP 78.8 82.4
Decoder 2-layer MLP (w/ DW) 78.9 82.5

2-layer Transformer 78.6 82.3
2-layer Transformer (w/ DW) 78.8 82.6

RGB 78.8 82.4
Target HoG Feature 78.9 82.6

DINO Feature 79.0 82.7

6. Conclusion and Limitation
In this paper, we attempted to answer the question of what is
learned during MIM pre-training. We adopted multi-order
interactions to study the interaction order among image
patches. We discovered that MIM essentially teaches the
network to learn middle-order interactions among image

patches for more complex feature extraction regardless of
the network architecture. Based on our findings, we fur-
ther proposed a general MIM framework A2MIM that is
compatible with both Transformers and CNNs. Besides a
proposed novel masking mechanism, we also proposed a
loss in the Fourier domain to enhance the middle-order inter-
action among patches. Experimental results showed that our
proposed framework improves the representations learned
for CNNs and Transformers, yielding superior performance
than prior methods on various downstream tasks.

Meanwhile, we list two limitations of A2MIM, as shown in
Figure 6. (i) CNNs architectures benefit less from A2MIM
pre-training compared to ViTs, e.g., ResNet and ConvNeXt
gain around 1% Acc while ViTs obtain more than 2% gains.
We hypothesize that the inductive bias of CNNs limits the
learning of middle-order interactions induced by MIM. (ii)
ViTs benefit more with longer pre-training, while no sig-
nificant gain is observed for CNNs after 300 epochs pre-
training. Figure 6(a) shows that ResNet-50/152 obtains
limited or negative performance gains for pre-training of
800 epochs or more. We hope our work could inspire the
community to further promote self-supervised pre-training.
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A. Details of Comparison Experiments
This section provides experimental details for Sec. 5, e.g.,
pre-training and evaluation on ImageNet-1K and transfer-
ring learning settings on downstream tasks. Experiment
results and models are available at https://github.c
om/Westlake-AI/A2MIM.

A.1. ImageNet-1K Experiments

Pre-training. The default settings of A2MIM for CNNs
and ViTs are provided in Tab. A1, following SimMIM (Xie
et al., 2021b). We use AdamW (Loshchilov & Hutter, 2019)
optimizer with the cosine scheduler and the linear learning
rate scaling rule (Goyal et al., 2020): lr = base lr×batchsize
/ 2048. Similar to current MIM methods, we only em-
ploy RandomResizedCrop with the scale of (0.67, 1.0) or
(0.8, 1.0) and RandomFlip, while do not require other com-
plex augmentations (e.g., Rand Augment (Cubuk et al.,
2020), mixups (Zhang et al., 2018; Yun et al., 2019; Liu
et al., 2022a; Li et al., 2021), or stochastic depth (Huang
et al., 2016)) during pre-training. As for ResNet and Con-
vNeXt models, we adopt Cosine learning rate decay for
100/300 and 800 epochs pre-training. As for ViTs, we use
a similar Cosine decay when pre-training epochs less than
400 while using Step decay (the learning rate multiplied by
0.1 at 700-epoch) for 800-epoch pre-training.

End-to-end fine-tuning. As shown in Tab. A2, our fine-
tuning settings follow common practices of supervised im-
age classification on ImageNet-1K. For ViT architectures,
the pre-trained model is fine-tuned for 200 epochs using
the BEiT (Bao et al., 2022) version of DeiT (Touvron
et al., 2021) training recipe to fully explore the performance,
which employs AdamW (Loshchilov & Hutter, 2019) op-
timizer with the cross-entropy (CE) loss and layer-wise
learning rate decay. For CNNs, we adopt RSB A3 (Wight-
man et al., 2021) setting for 100-epoch fine-tuning, which
employs LAMB (You et al., 2020) optimizer with the binary
cross-entropy (BCE) loss and smaller training resolutions.
To fully explore the PT performances of CNNs, we also
apply 300-epoch fine-tuning with RSB A2 (Wightman et al.,
2021) and ConvNeXt (Liu et al., 2022b) training settings
for ResNet and ConvNeXt models. Notice that the default
drop depth rates of ResNet-50/101/152/200 and ConvNeXt-
T/S/B are 0.05/0.1/0.15/0.2 and 0.1/0.3/0.4 in 300-epoch
fine-tuning. The learning rates and drop depth can also be
tuned for different PT methods.

A.2. Object Detection and Segmentation on COCO

We adopt Mask-RCNN (He et al., 2017) to perform trans-
fer learning to object detection and semantic segmentation
on COCO (Lin et al., 2014) using MMDetection1 and De-

1https://github.com/open-mmlab/mmdetecti
on

tectron22 code bases. For evaluation on ResNet-50, we
follow MoCo (He et al., 2020) and fine-tune Mask R-CNN
with the pre-trained ResNet-50-C4 backbone with SGD op-
timizer using 2× schedule (24 epochs). For evaluation of
ViTs, we follow MAE (He et al., 2022) and CAE (Chen
et al., 2022), which apply the pre-trained ViT backbone
and an FPN neck (Lin et al., 2017) in Mask R-CNN. The
model is fine-tuned by AdamW optimizer with 1× schedule
(12 epochs). For a fair comparison, we follow (Bao et al.,
2022; Xie et al., 2021b) to turn on relative position bias in
ViT (Dosovitskiy et al., 2021) during both pre-training and
transfer learning, initialized as zero, and the learning rate
can be tuned for different PT methods.

Table A1. ImageNet-1K pre-training settings of A2MIM for
ResNet/ConvNeXt and ViT/Swin models.

Configuration ResNet / ConvNeXt ViT / Swin
Pre-training resolution 224× 224 224× 224
Mask patch size 32× 32 32× 32
Mask ratio 60% 60%
Optimizer AdamW AdamW
Base learning rate 1.2× 10−3 4× 10−4

Weight decay 0.05 0.05
Optimizer momentum β1, β2=0.9, 0.999 β1, β2=0.9, 0.999
Batch size 2048 2048
Learning rate schedule Cosine Step / Cosine
Warmup epochs 10 10
RandomResizedCrop [0.8, 1] [0.67, 1]
Rand Augment ✗ ✗
Stochastic Depth ✗ ✗
Gradient Clipping ✗ max norm= 5
PT epochs 100 / 300 / 800 300 / 800

Table A2. ImageNet-1K fine-tuning recipes of ViT, RSB A2/A3,
and ConvNeXt architectures. Here we take ViT-B, ResNet-50, and
ConvNeXt-T as examples.
Configuration ViT RSB A2 RSB A3 ConvNeXt
FT epochs 200 300 100 300
Training resolution 224 224 160 224
Testing resolution 224 224 224 224
Testing crop ratio 0.875 0.95 0.95 0.875
Optimizer AdamW LAMB LAMB AdamW
Base learning rate 1× 10−2 5× 10−3 8× 10−3 4× 10−3

Layer-wise decay 0.65 ✗ ✗ ✗
Weight decay 0.05 0.02 0.02 0.05
Batch size 1024 2048 2048 4096
Learning rate schedule Cosine Cosine Cosine Cosine
Warmup epochs 20 5 5 20
Label smoothing ϵ 0.1 ✗ ✗ 0.1
Stochastic depth 0.1 0.05 ✗ 0.1
Gradient clipping 5.0 ✗ ✗ ✗
Rand Augment (9, 0.5) (7, 0.5) (6, 0.5) (9, 0.5)
Mixup alpha 0.8 0.1 0.1 0.8
CutMix alpha 1.0 1.0 1.0 1.0
EMA decay 0.99996 ✗ ✗ 0.9999
Loss function CE loss BCE loss BCE loss CE loss

2https://github.com/facebookresearch/dete
ctron2
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Figure A1. (a)(b): Occlusion robustness against different occlusion ratios of images (CL vs. MIM) is studied for both ViT-S and ResNet-50
on ImageNet-100. (c)(d): Distributions of the interaction strength J(m) (CL vs. MIM) are explored for both ViT-S and ResNet-50
on ImageNet-100. The label indicates the pre-training method + fine-tuning augmentation used, random stands for random weight
initialization.
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Figure A2. Occlusion robustness against various random or salient occlusion ratios of images is studied in (a)(b) for ViT-S, and (c)(d) for
ResNet-50 using various experimental settings on ImageNet-100. The label indicates the pre-training method + fine-tuning setting used,
random stands for random weight initialization.

A.3. Semantic Segmentation on ADE-20K

We adopt UperNet (Xiao et al., 2018) to perform transfer
learning to semantic segmentation on ADE-20K and use
the semantic segmentation implementation in MMSegmen-
tation3. We initialize the FCN (Shelhamer et al., 2017) or
UperNet (Xiao et al., 2018) using the pre-trained backbones
(ResNet-50 or ViTs) on ImageNet-1K. For ViTs, we fine-
tune end-to-end for 160K iterations with AdamW and a
batch size of 16. We search a optimal layer-wise decay
from {0.8, 0.9} and search optimal a learning rate from
{1× 10−4, 2× 10−4, 3× 10−4} for all competitors. Sim-
ilar to fine-tuning settings on COCO, we use relative po-
sition bias in ViT (Dosovitskiy et al., 2021) during both
pre-training and transfer learning as (Bao et al., 2022; Xie
et al., 2021b). For ResNet-50, we follow MoCo (He et al.,
2020), i.e., all CNN models are fine-tuned for 160K itera-
tions by SGD optimizer with the momentum of 0.9 and a
batch size of 16.

B. Empirical Experiments
This section provides background information and experi-
mental details for Sec. 3, and additional results of occlusion
robustness evaluation and multi-order interaction strength.

3https://github.com/open-mmlab/mmsegment
ation

B.1. Occlusion Robustness

In Sec. 3.1, we analyze robustness against occlusion for
models pre-trained and fine-tuned on ImageNet-100 (a sub-
set on ImageNet-1K divided by (Tian et al., 2020)) using the
official implementation4 provided by Naseer et al. (2021).
Both MIM and contrastive-based methods are pre-trained
400 epochs on ImageNet-100 using their pre-training set-
tings on ImageNet-1K. We adopt the fine-tuning training
recipe as DeiT in Tab. A2 and use the same setting train-
ing 100 epochs for both ViT-S and ResNet-50. Note that
we use the modified SimMIM for ResNet-50 (replacing
masked patches in the input image with the RGB mean) in
all experiments.

As shown in Fig. 1 and A1, we compared MIM pre-trained
models supervised methods with various augmentations and
contrastive learning pre-trained methods in terms of the top-
1 accuracy under various occlusion ratios. We find that MIM
methods show better occlusion robustness on both Trans-
formers and CNNs. In addition to Sec. 3.1, we also provide
results of salient occlusion (i.e., dropping patches according
to salient maps) for ViT-S and ResNet-50 on ImageNet-100
in Fig. A2. Note that the occlusion ratio means the ratio
of dropped and total patches, and we plot the mean of ac-
curacy across 3 runs. Overall, we can conclude that MIM

4https://github.com/Muzammal-Naseer/Intr
iguing-Properties-of-Vision-Transformers
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pre-trained models have stronger robustness against random
and salient occlusions than supervised and contrastive-based
pre-trained methods.

B.2. Multi-order Interaction

In Sec. 3.2, we interpret what is learned by MIM by multi-
order interaction (Deng et al., 2022; Zhang et al., 2020).
The interaction complexity can be represented by I(m)(i, j)
(defined in Eqn. 1), which measures the average interaction
utility between variables i, j on all contexts consisting of
m variables. Notice that the order m reflects the contex-
tual complexity of the interaction I(m)(i, j). For example,
a low-order interaction (e.g., m = 0.05n) means the rel-
atively simple collaboration between variables i, j, while
a high-order interaction (e.g., m = 0.05n) corresponds to
the complex collaboration. As figured out in the represen-
tation bottleneck (Deng et al., 2022), deep neural networks
(DNNs) are more likely to encode both low-order inter-
actions and high-order interactions, but often fail to learn
middle-order interactions. We hypothesize that MIM helps
models learn more middle-order interactions since MIM
has a natural advantage in cases where some parts of the
image are masked out. In Fig. 1, we calculate the interac-
tion strength J (m) (defined in Eqn. 2) for fine-tuned models
on ImageNet-100 using the official implementation5 pro-
vided by Deng et al. (2022). Specially, we use the image
of 224× 224 resolution as the input and calculate J (m) on
14×14 grids, i.e., n = 14×14. And we set the model output
as f(xS) = log P (ŷ=y|xS)

1−P (ŷ=y|xS) given the masked sample xS ,
where y denotes the ground-truth label and P (ŷ = y|xS)
denotes the probability of classifying the masked sample xS

to the true category.
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Figure A3. Fourier transformed feature maps. The vertical axis is
the relative log amplitudes of the high-frequency components, and
the horizontal axis is the normalized depth of the network. The
blue columns indicate the pooling layers, while the white columns
indicate the convolution layers.

5https://github.com/Nebularaid2000/bottle
neck
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Figure A4. Feature maps variance. The vertical axis is the average
variance value of feature maps. DeiT (Sup.) is supervised pre-
training. The results of the randomly initialized network are plotted
for reference.

B.3. MIM from Frequency Perspective

We first plot the log magnitude of Fourier-transformed fea-
ture maps of ResNet-50 with different pre-training meth-
ods using the tools6 provided by Park & Kim (2022) on
ImageNet-1K. Following (Park & Kim, 2022), we first con-
vert feature maps into the frequency domain and represent
them on the normalized frequency domain (the highest fre-
quency components are at {−π,+π}). In Fig. A3, we report
the amplitude ratio of high-frequency components by us-
ing ∆ log amplitude. As shown in Fig. A3, inpainting
and MIM show similar low-pass filtering effects at con-
volution layers as compared to contrastive learning. This
indicates that inpainting and MIM reduce noise and uncer-
tainty induced by high-frequency features. We argue that
the reconstruction performance of MIM is mainly related
to low or high-order interactions of patches (Deng et al.,
2022), while reconstruction performance is not directly re-
lated to the learned representation quality. Then, we provide
the standard deviation of feature maps by block depth as
(Park & Kim, 2022; 2021), which first calculates the feature
map variance on the last two dimensions and then averages
over the channel dimension for the whole dataset. Fig. A4
shows the feature variance of each layer of ResNet-50 with
different pre-training methods on IN-1K. This figure indi-
cates that MIM tends to reduce the feature map variance,
and conversely, supervised training, inpainting, and con-
trastive learning based on CNN tend to increase variance
(i.e., high frequencies). Compared to MIM, which learns
better middle-order interactions, the inpainting task fails
to filter out low-order interactions and thus leads to higher
variance. To conclude, MIM methods learn middle-order
interactions and reduce the feature map uncertainty (high
frequencies) based on the CNN encoder for a generalized
and stabilized feature extraction.

6https://github.com/xxxnell/how-do-vits-w
ork
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C. More Experiment Results
C.1. Ablation of Layers for Mask Token

In addition to Sec. 5.4, we analyze the optimal stage or
layer for the mask token. The ablation experiments are
conducted with ResNet-50 and ViTs on IN-100 and IN-1K
using the fine-tuning protocol as Sec. 5.4. As shown in
Fig. A5, adding the mask token to the medium stages (stage-
3 of ResNet-50) or layers (layer-5 of ViT-S) yields the best
performance on the pre-trained representation. Therefore,
we apply the mask token to the 3-stage or the medium layer
(around 3/4 of the total layers) in A2MIM by default.

Figure A5. Ablation of the mask token in various stages (S) in
ResNet-50 or layers (L) in ViT-S based on SimMIM (without
Lfreq) on ImageNet-100.
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C.2. Ablation of the Proposed Modules

In addition to ablation studies in Sec. 5.4, we provide more
ablation studies and empirical analysis on the proposed
Lfreq in the Fourier domain, as shown in Figure A6. As we
discussed in Sec. 4, we hypothesize that learning medium
frequencies would help better learn middle-order interac-
tions. we thereby propose Lfreq to tackle the dilemma of
Lspa, which tends to learn low-frequency components (i.e.,
contents reflected by high-order interactions). Although
the reconstruction loss in the Fourier domain has a global
perception, the high-frequency components are usually con-
structed by local details and noises (i.e., low-order interac-
tions), which might hurt the generalization abilities. There-
fore, we introduce the reweight w(u, v) to force the model
to learn more medium-frequency components, which are
identical to middle-order interactions. Then, we perform
further analysis of the masked patch size for A2MIM in
Tab. A3. Note that we pre-train ResNet-50 for 100 epochs
and ViT-B for 400 epochs on ImageNet-1K and report the
fine-tuning results. As shown in Tab. A3, when the mask
ratio is 60%, the optimal masked patch size is 32× 32 for
A2MIM, which is the same as SimMIM.

D. Visualization Experimental Details
In addition to visualization results in Sec. 5.4, we visualize
more reconstruction results of A2MIM here. Similar to
Fig. 4, we ablate the proposed components in A2MIM based

Table A3. Ablation of masked patch size for A2MIM based on
ResNet-50 and ViT-B on ImageNet-1K.

Model Masked Mask PT Top-1 Accuracy (%)
patch size ratio epoch

ResNet-50 8 / 16 / 32 / 64 0.6 100 78.2 / 78.6 / 78.8 / 78.7
ViT-B 8 / 16 / 32 / 64 0.6 400 82.9 / 83.4 / 83.5 / 83.3

on ResNet-50 in Fig. A7, which demonstrates that A2MIM
helps ResNet-50 learn more spatial details, i.e., more middle-
order interactions. Moreover, we study the effects of the
mask token in both ViTs and CNNs in Fig. A8.

E. Extended Related Work
In the recent decade, Deep Neural Networks (DNNs) have
gained great success in various tasks with full supervision,
such as computer vision (He et al., 2016; Liu et al., 2021;
He et al., 2017; Song et al., 2023), natural language pro-
cessing (Vaswani et al., 2017; Devlin et al., 2018; Radford
et al., 2018), and graph representation learning (Xu et al.,
2019; Wu et al., 2023). As DNNs scale up with more pa-
rameters, pre-training without labels by leveraging pre-text
tasks has become increasingly popular. In addition to Sec. 2,
we provide extended discussions of two types of popular
self-supervised vision pre-training approaches.

Contrastive Learning. Contrastive learning learns
instance-level discriminative representations by extracting
invariant features over distorted views of the same data,
which is first introduced by CPC (van den Oord et al.,
2018), CMC (Tian et al., 2020), and NPID (Wu et al.,
2018). MoCo (He et al., 2020) and SimCLR (Chen et al.,
2020b) adopted different mechanisms to introduce negative
samples for contrast with the positive. BYOL (Grill
et al., 2020) and its variants (Chen & He, 2020; Ge
et al., 2021) further eliminate the requirement of negative
samples to avoid representation collapse. Besides pairwise
contrasting, SwAV (Caron et al., 2020) clusters the data
while enforcing consistency between multi-augmented
views of the same image. Barlow Twins (Zbontar et al.,
2021) proposed to measure the cross-correlation matrix of
distorted views of the same image to avoid representation
collapsing. Meanwhile, some efforts have been made
on top of contrastive methods to improve pre-training
quality for specific downstream tasks (Xie et al., 2021a;
Xiao et al., 2021; Selvaraju et al., 2021; Wu et al., 2022),
which conduct fine-grained contrastive supervisions.
MoCo.V3 (Chen et al., 2021) and DINO (Caron et al., 2021)
adopted ViT (Dosovitskiy et al., 2021) in self-supervised
pre-training to replace CNN backbones.

Autoregressive Modeling. Autoencoders (AE) is a typical
type of network architecture that allows representation learn-
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Figure A6. Visualization of predicted images and Lfreq loss weight in Fourier domain. From the view of the Fourier spectrum, the raw
image (left) contains 99% low-frequency components (usually present contents) and rich medium-frequency (structural patterns) and
high-frequency components (local details and noises), while the predicted result (middle) provides fewer medium or high-frequency
components. Calculated in the Fourier domain, the loss weights (right) of Lfreq w/o w help the model to learn the full spectrum while
Lfreq focusing on the low and medium-frequency parts, which are more likely to be low-order or middle-order interactions.

ing with no annotation requirement (Hinton & Zemel, 1993).
By forcing denoising property onto the learned representa-
tions, denoising autoencoders (Vincent et al., 2008; 2010)
are a family of AEs that reconstruct the uncorrected input
signal with a corrupted version of the signal as input. Gen-
eralizing the notion of denoising autoregressive modeling,
masked predictions attracted the attention of both the NLP
and CV communities. BERT (Devlin et al., 2018) performs
masked language modeling (MLM), where the task is to
classify the randomly masked input tokens. Representations
learned by BERT as pre-training generalize well to various
downstream tasks. For CV, inpainting tasks (Pathak et al.,
2016) to predict large missing regions using CNN encoders
and colorization tasks (Zhang et al., 2016) to reconstruct the
original color of images with removed color channels are
proposed to learn representation without supervision. With
the introduction of Vision Transformers (ViTs) (Dosovitskiy
et al., 2021; Liu et al., 2021), iGPT (Chen et al., 2020a) pre-
dicts succeeding pixels given a sequence of pixels as input.
MAE (He et al., 2022) and BEiT (Bao et al., 2022) randomly
mask out input image patches and reconstruct the missing
patches with ViTs. Compared to MAE, MaskFeat (Wei et al.,
2021) and SimMIM (Xie et al., 2021b) adopt linear layers
as the decoder instead of another Transformer as in MAE.
MaskFeat applied HOG as the prediction target instead of
the RGB value. Other research endeavors (El-Nouby et al.,
2021; Zhou et al., 2021; Assran et al., 2022; Akbari et al.,
2021; Sameni et al., 2022) combine the idea of contrastive
learning (CL) with MIM. SplitMask (El-Nouby et al., 2021)
proposed to use half of the image pixels to predict the other
half while applying InfoNCE loss (Van den Oord et al.,
2018) across the corresponding latent features. MSN (As-
sran et al., 2022) matches the representation of an image
view containing randomly masked patches and the origi-
nal unmasked image. Similarly, iBOT (Zhou et al., 2021)
adopts the Siamese framework to combine self-distillation
with MIM. Moreover, Data2Vec (Baevski et al., 2022) pro-
posed a framework that applies the masked prediction idea
for either speech, NLP, or CV. However, most MIM works

are confined to ViT architectures, recently proposed CIM
(Fang et al., 2022) uses the output of a pre-trained tokenizer
as the target and takes the output of a frozen BEiT as the
encoder’s input as a workaround to enable MIM on CNNs.

In this work, we propose A2MIM with no components na-
tive to ViTs adopted to perform MIM with ViTs and CNNs.
Two concurrent two after A2MIM, SparK (Tian et al., 2023)
and ConvNeXt.V2 (Woo et al., 2023), designed CNN-based
MIM with sparse convolutions to tackle the irregular masked
images. Compared to them, A2MIM provides empirical ex-
planations of why MIM works and designs an architecture-
agnostic framework.
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Figure A7. Visualizations of predicted results from SimMIM (middle) and our A2MIM (right) based on ResNet-50 pre-trained 100-epochs
on ImageNet-1K. T (s∗) denotes the mask token T to the optimal stage-s in ResNet-50. We ablate the proposed components by adding
them to the baseline SimMIM: replacing the zero mask with the RGB mean mask (the modified SimMIM baseline) and adding the mask
token T (s∗) relieve grid-like artifacts in predicted results; adding the proposed Lfreq helps the model to capture more informative details.
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Figure A8. Visualizations of predicted results with and without the mask token on ImageNet-1K. Notice that mask tokens are adopted in
the pre-trained models based on ViT-S (300-epoch) or ResNet-50 (100-epoch). Based on ViT-S, removing the mask token corrupts both
contents of masked patches and overall colors in SimMIM while only corrupting the masked contents in A2MIM. Based on ResNet-50,
removing the mask token slightly affects spatial details in the masked patches and causes grid-like artifacts in the unmasked patches.
The different effects of the mask token in ViT-S and ResNet-50 might be because the two architectures use different spatial-mixing
operators and normalization layers. As for ViTs, the self-attention operation captures informative details from unmasked patches, but the
non-overlap patch embedding and layer normalization mask each patch isolated. The mask token learns the mean templates (contents)
of masked patches and gathers spatial details from unmasked patches by the self-attention operation. As for CNNs, each patch shares
the same contents extracted by batch normalization layers, and the convolution operation extracts features from unmasked and masked
patches equally. The mask token learns more high-frequency and informative details.
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