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Abstract

Masked image modeling, an emerging self-
supervised pre-training method, has shown im-
pressive success across numerous downstream
vision tasks with Vision transformers. Its under-
lying idea is simple: a portion of the input im-
age is masked out and then reconstructed via a
pre-text task. However, the working principle
behind MIM is not well explained, and previ-
ous studies insist that MIM primarily works for
the Transformer family but is incompatible with
CNNSs. In this work, we observe that MIM es-
sentially teaches the model to learn better middle-
order interactions among patches for more gen-
eralized feature extraction. We then propose an
Architecture-Agnostic Masked Image Modeling
framework (A2MIM), which is compatible with
both Transformers and CNNs in a unified way.
Extensive experiments on popular benchmarks
show that A2MIM learns better representations
without explicit design and endows the backbone
model with the stronger capability to transfer to
various downstream tasks.

1. Introduction

Supervised deep learning with large-scale annotated data
has witnessed an explosion of success in computer vision
(CV) (Krizhevsky et al., 2012a; He et al., 2016) and natural
language processing (NLP) (Vaswani et al., 2017). However,
a large number of high-quality annotations are not always
available in real-world applications. Learning representa-
tions without supervision by leveraging pre-text tasks has
become increasingly popular.

In CV, early self-supervised learning approaches (Zhang
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et al., 2016; Doersch et al., 2015; Gidaris et al., 2018) aim
to capture invariant features through predicting transforma-
tions applied to the same image. However, these methods
rely on vision ad-hoc heuristics, and the learned represen-
tations are less generic. Recently, contrastive learning ap-
proaches (Tian et al., 2020; Chen et al., 2020b; He et al.,
2020) have witnessed significant progress, even outperform-
ing supervised methods on several downstream tasks (Chen
et al., 2020c; Grill et al., 2020; Zbontar et al., 2021). More
recently, inspired by masked autoencoding methods (Devlin
et al., 2018; Radford et al., 2018) in NLP, Masked Image
Modeling (MIM) methods (Bao et al., 2022; He et al., 2022;
Wei et al., 2021; Xie et al., 2021b) have brought about
new advances for self-supervised pre-training on CV tasks.
The transition from human language understanding to NLP
masked autoencoding is quite natural because the filling
of missing words in a sentence requires comprehensive se-
mantic understanding. In analogy, humans can understand
and imagine masked content by visually filling the missing
structures in an image containing occluded parts.

Different from contrastive learning, which yields a cluster-
ing effect by pulling similar samples and pushing away dis-
similar samples, MIM pre-training methods have not been
extensively explored in the context of the expected knowl-
edge learned. Existing works mainly focus on improving
downstream tasks performance via explicit design such as
trying different prediction targets (Wei et al., 2021), adopt-
ing pre-trained tokenizer (Zhou et al., 2021), utilizing com-
plex Transformer decoder (He et al., 2022) or combining
with contrastive learning (El-Nouby et al., 2021). Moreover,
the success of existing MIM methods is largely confined
to Vision Transformer (ViT) structures (Dosovitskiy et al.,
2021) since it leads to under-performing performance to di-
rectly apply mask token (Devlin et al., 2018) and positional
embedding to CNNs.

In this work, we carry out systematic experiments and show
that MIM as a pre-training task essentially teaches the model
to learn better middle-order interactions between patches
for more generalized feature extraction regardless of the
underlying network structure. Compared to the local texture
features learned by low-order interactions between patches,
more complex features such as shape and edge could be
extracted via middle-order interactions among patches. The
interaction of patches could be considered as information



Architecture-Agnostic Masked Image Modeling — From ViT back to CNN

fusion via both the convolution operation of a CNN and no annotation requirement (Hinton & Zemel, 1993). By
the self-attention mechanism of a Transformer. That is tdorcing denoising property onto the learned representations,
say, CNN and Transformer should both bene t from betterdenoising autoencoders (Vincent et al., 2008; 2010) are a
middle-order interactions with MIM as the pre-text task. family of AEs that reconstruct the uncorrected input signal

To bridge the gap of MIM in terms of network architectures with a corrupted version of the signal as input. Generalizing
based on our extensive experimental analysis, we propose éﬂe notion of denaising autoregressive modeling, masked
Architecture-Agnostic Masked Image Modelir']g framework predictions attracted the attention of both the NLP and CV
2 . ) . communities. BERT (Devlin et al., 2018) performs masked
(A=MIM) that focuses on enhancing the middle-order inter- : ) )
. o : language modeling (MLM) where the task is to classify the
action capabilities of the network. Speci cally, we mask . )
qr)andomly masked input tokens. Representations learned
mask token at intermediate feature maps of the network. In y BERT as pre-tralnlr_lg g_en_erallze well to various down-
addition. we probose a loss in the Fourier domain to fur_stream tasks. For CV, inpainting tasks (Pathak et al., 2016)
) prop to predict large missing regions using CNN encoders and

ther enhance the n_mdd_le—order mteractpn capability OT thecoIorization tasks (Zhang et al., 2016) to reconstruct the
network. Our contributions are summarized as follows:

original color of images with removed color channels are

» We conducted systematic experiments and showed thproposed to learn representation without supervision. With
essence of MIM is to better learn middle-order inter-the introduction of Vision Transformers (ViTs) (Dosovitskiy
actions between patches but not reconstruction qualitet al., 2021; Liu et al., 2021), iGPT (Chen et al., 2020a) pre-

« We proposed a novel MIM-based framework dubbegdicts succeeding pixels giveq a sequence of pixels as input.
A2MIM that bridges the gap between CNNs and TransMAE (He etal., 2022) and BEIT (Bao et al., 2022) randomly
formers. We are also the rst to perform MIM on mask out input image patches and reconstruct the missing
CNNs without adopting designs native to ViTs that patches with ViTs. Compared to MAE, MaskFeat (Wei et al.,
outperform contrastive learning counterparts. 2021) and SimMIM (Xie et al., 2021b) adopt linear layers

s the decoder instead of another Transformer as in MAE.

« Extensive experiments with both Transformers andliil/laskFeat applied HOG as the prediction target instead of

CNNs on ImageNet-1K and public benchmarks for Vaihe RGB value. Other research endeavors (ElI-Nouby et al.,

ious downstream tasks show that our method improvesiOZl. Zhou et al.. 2021 Assran et al.. 2022 Akbari et al

performances on pre-trained representations. 2021; Sameni et al., 2022) combine the idea of CL with
MIM. Moreover, Data2Vec (Baevski et al., 2022) proposed
2. Related Work a framework that applies the masked prediction idea for

. . . . either speech, NLP, or CV. However, most MIM works are
Contrastive Learning. Contrastive learning (CL) learns con ned to ViTs, recently proposed CIM (Fang et al., 2022)
instance-level discriminative representations by extractin%ses the outpu£ of a pre-trained tokenizer as the tz;rget and

invariant features over distorted views of the same dat{?akes the output of a frozen BEIT as the encoder's input as

MoCo (He_ etal.,, 2020) aqd S|mC_LR (Chenetal, 2020b)a workaround to enable MIM on CNNs, and the concurrent
adopted different mechanisms to introduce numerous ne

York Spark (Tian et al., 2023) employs the sparse convolu-
ative samples for contrast with the positive. BYOL (Girill P (! ; ) employ P

. : tion operators to tackle the irregular masked input for CNNs.
et al., 2020) and its variants (Chen & He, 2020; Ge et al., P g P

2021) further eliminate the requirement of negative sam-
ples to avoid representation collapse. Besides pairwise con- )
trasting, SWAV (Caron et al., 2020) clusters the data while3- Midst of Masked Image Modeling
enforcing consistency between multi-augmented views o
the same image. Barlow Twins (Zbontar et al., 2021) an
its variants (Ermolov et al., 2021; Bardes et al., 2022) pro€ompared to CNN, Transformers gain tremendous perfor-
posed to measure the cross-correlation matrix of distortechance improvement with carefully designed image aug-
views of the same image to avoid representation collapsnentation techniques(Cubuk et al., 2020; Yun et al., 2019;
ing. Meanwhile, some efforts have been made on top oZhong et al., 2020). For instance, Random erasing and Cut-
contrastive methods to improve pre-training quality for spemix randomly remove part of the image and replace the
ci c downstream tasks (Xie et al., 2021a; Xiao et al., 2021;corresponding region with either Gaussian noise or a patch
Selvaraju et al., 2021). MoCo.V3 (Chen et al., 2021) androm another image. Similarly, as in most MIM pre-training
DINO (Caron et al., 2021) adopted ViT (Dosovitskiy et al., tasks, some image patches are masked out and replaced
2021) in CL pre-training to replace CNN backbones. with a learnable mask token. Noticing the resemblance
of the masking operationsje hypothesize that MIM as a

Autoregressive Modeling. Autoencoders (AE)is atypical pre-training task and masking-based data augmentations en-
type of architecture that allows representation learning with

.1. Is MIM Better Image Augmentation?
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a b c d
Figure 1.(a)(b)(: )Robustness against differen(t )occlusion ratios of images i(s )studied for both ViT-S and I(?(gsNet-SO under different
experimental settings (see Section 3.1). (c)(d): Distributions of the interaction stiEfigtiare explored for both ViT-S and ResNet-50
under different experimental settings. The label indicates the pre-training methagdtuning augmentation used, random stands for
random weight initialization. Appendix B provides more results and implement details.

hance the network's robustness towards occlusion, enablingatch interactions imposed by MIM while supported by the
the network with a more generalized feature extraction abilself-attention mechanism of ViTs.

ity. To verify our hypothesis, we design an occlusion robust-

nesstest. Let 2 R* H W pe aninputimage ang2 R®  3.2. Middle-order Interactions for Generalized Feature

be its corresponding label, whegis the class number. Extraction

Considering a classi cation tagk= f (x) wheref denotes

a neural network, the network is considered robust if thd\€Xt, we show that MIM essentially enables better middle-
network outputs the correct label given an occluded versioff"der interactions between patches. Note that existing MIM
of the imagex®, namelyy = f (x9). For occlusion, we con- works adopt a medium or high masking ratio (Xie et al.,

sider the patch-based random masking as adopted in mogp21b; He etal., 2022g(g, 60% or 70%, see Fig. 2) dur-

MIM works (He et al., 2022; Xie et al., 2021b: Wei et al., ing pre-training, and in these settings, the pairwise inter-
2021). In particular, we split the image of si24 224 actions between patches are under a middle-size context

into patch sizel6 16 and randomly mash patches measured by the order. Early inpainting work based on
out of the total number dfl patches. The occlusion ratio CNN (Pathak et al., 2016) resembles MIM but attracts little

could then be de ned a%. We conduct experiments on attention due to limited performance. The inpainting task

ImageNet-100 (IN-100) (Krizhevsky et al., 2012b) for both adopts the masking strategy as illustrated in Fig. 1(c), which
Transformer and CNN with different settings. We chooseMasks a full large region instead of random small patches.
ViT-S (Dosovitskiy et al., 2021) and ResNet-50(He et al, Such masking mechanisms ignore patch interaction and fo-

2016) as the network architecture. Robustness is compardd'S Only on reconstruction leading to poor representation
under the following settinggi) random weight initialization ~ duality. To investigate whether MIM makes the model more
with no image augmentation applie@i) random weight sensitive to patch interactions of some particular orders,
initialization with different image augmentations applied'We resort to the tool of multi-order interactions introduced

’ . -y h
(iii) MIM pre-training as weight initialization with and with- Y (Deng etal., 2022; Zhang et al., 2020). Intuitivety;' -
out image augmentations applied. In Fig. 1, we report th@rder interactions of patches refer to inference patterns (deep

average top-1 accuracy across ve runs trained with diﬁer_features) induced froom number of patches of the original

ent settings under various occlusion ratios. Fig. 1(a) andMage inthe input space. With a small valuew({low-order
1(b) show that both MIM and patch-removing alike augmen_lnteractmns), the model 5|mp_ly Iearn_s local _feat)ur_e_s such
tations signi cantly improve model occlusion robustness S texture. Formally, the multi-order interactioi” (i;] )
for both ViT-S and ResNet-50. Nevertheless, MIM yields S to measure the order of interactions between patches
more robust feature extraction than adopting augmentation&ndi - We de nel (m)_(liJ ) to be the average interaction
Although MIM and patch-removing alike augmentations utility between patcheisandj on all contexts consisting of
share similar masking mechanisms, MIM explicitly forces ™ Patches, wheren denotes the order of contextual com-
the model to learn the interactions between patches in orddt/€Xity of the interaction. Mathem_auce.xl.ly./,' given an input
to reconstruct missing patches enabling more robust featurlg’@gex with a set ofn patches.i(\)lﬁ;)f},_ :iing (e.g, n
extraction. Comparing Fig. 1(a) and 1(b), the convex trend®X€ls), the multi-order interacti (i:j ) is de ned as:
of accuracy from ViT-S indicates better robustness than the (M) finiy — N 1
concave trend from ResNet-50. This can be attributed to the P(05) = Bs notig gisi=m[ FGES)E (@)
higher degrees of freedom of the self-attention mechanism . . .

. . . where f(i;j;S)=f(S[fi;jg f(S[fig f(S|

| | hat th . . .

compared to convolution prior§Ve claim that the success fi0)+ f (S). 1 (S) indicates the score of output with patches

of MIM on ViTs can be seen as resonance in terms of better . .
in N nS kept unchanged but replaced with the baseline
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Figure 2.(a) Four patche§; j; k; 1 ) interact with each other and forms a contour or edge pattern of the fox for image categorization. (b)
Image with 30% masking ratio. Masked patchesdk interact with neighboring patch¢sandl to predict the missing patches. (c)

Image with 50% masking ratio. Masked patches force the model to extract information from unmasked patches and learn middle-order
interactions for the MIM task. (d) Image with 70% masking ratio. Masked Haittleracts with longer-range patchieandk, forming an

edge pattern. (e) A typical masking pattern for existing inpainting tasks.

value (Ancona et al., 2019), where the cont8xt N. frameworks in terms of three key components: masking
See Appendix B.2 for details. To measure the interactiorstrategy, encoder/decoder network architecture design and
complexity of the neural network, we measured the relaprediction targets.

tive interaction strengttd (™) of the encodedn-th order

interaction as: 4.1. Architecture Agnostic Framework

MG i)
B Bi JI, (;’J,J),(),J o’ (2)  Mask Where Middle-order Interactions Occur. ~ Exist-
EmoBxz By J1 MO (i5] )] ing works (El-Nouby et al., 2021; He et al., 2022; Wei
where isthe setofallsamplesatd m n 2. J(m  etal, 2021) adopt the masking strategy where the input
is the average value over all possible pairs of patches dmage is divided into non-overlapping patches, and a ran-
input samples.J(M is normalized by the average value dom subset of patches is masked. MAE utilizes a Trans-
of all interaction strengths] (™ then indicates the distri- former as a decoder and takes only the visible patches into

bution (area under curve sums up to one) of the order ofh€ encoder. Masked tokens are appended to the decoder
interactions of the network. We ugé™ as the metricto 0 reconstruct the masked patches. SimMIM and Mask-

evaluate and analyze interaction orders of the network witd-€at (Wei et al., 2021) utilize a fully connected layer as the
MIM pre-training. We conduct experiments on IN-100 with decoder and feed the mask token into the encoder together
image size224 224 and use ViT-S (Dosovitskiy et al., with the visible patches. The mask token (Devlin et al.,
2021) and ResNet-50 (He et al., 2016) as the network ar018) is a token-shared learnable parameter that indicates
chitecture. We consider a patch of siz® 16 as input. the presence of missing patches to be predicted. Despite
For the computation of (™, we adopt the sampling solu- different choices of decoder structures, the mask token is
tion following previous works (Deng et al., 2022; Zhang either placed at the input to the encoder or the decoder.
et al., 2020). As can be seen from Fig. 1(c), ViT-S with Mathematically, the masking process of MIM is de ned as
random weight initialization tends to learn simple interacXmask = X (1 M)+ T M, whereM is the random
tions with few patches (e.g., less tha®5n patches) while occlusion mask., andl represents the Igarnable mask tq—
MIM pre-trained models show a stronger interaction forken. Such masking at the patch embedding layer aligns with
relative middle-order (fron®:05n to 0:5n). Similarly, as the attention mechanism of Transformers, which is robust
observed from 1(d), MIM pre-trained ResNet-50 enhance&gainst occlusion. However, masking at the stem layer un-
the middle-order interactions fro1n to 0:55n compared ~dermines the context extraction capability of CNN, which
to random initialized models. Stronger middle-order interJ€lies on local inductive biases. Moreover, masking at input
actions form more complex features such as shape and ed§&9€s of the network leads to low-order interactions. Thus,

compared to local texture features learned from low-orde¥Ve Propose to mask intermediate features where the output
interactions (Naseer et al., 2021). feature contains both semantic and spatial information, and

the mask token can encode interactions with a medium num-
4 A h ber of tokens€.g, the last embedded stage). Concretely, our
- Approac masking operationisde ned &, = 2+ T D(M),

We propose a generic MIM framework following two de- Wherez' is the intermediate feature map at stage-CNN

sign rules: (aBetter middle-order interactions between ~ €ncoders (or layeirin Transformers) an® () is the corre-
patches for more generalized feature extraction(b) No sponding down-sampling function of the occlusion mask.
complex or non-generic designs are adopted to ensure

compatibility with all network architectures. Figure 3  Filling Masked Tokens with RGB Mean. Existing works
highlights the difference betweerfMIM and existing MIM  directly replace the occluded patches with the mask token
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Figure 3. Anillustration comparison between the existing MIM framework and our proposed framework. For the existing MIM framework,

the input image is patch ed into a sequence of patches without overlapping with masked patches that are replaced with learnable mask
tokens. The sequence is then input to the Transformer encodek sphés applied between the ground truth patches and the reconstructed
patches from the decoder in the spatiotemporal domain. Our proposed framework uses the mean RGB value of the image instead of the
mask token in the input space. We then add a learnable mask token onto the intermediate feature mabaffdtagas of the encoder

instead of replacement in the input space. The encoder could either be of the Transformer or the CNN family. In additlog40 e

adopt afreq in the Fourier domain to enhance the encoder to learn more middle-order interactions. Speci cally, we apply DFT on both
the ground truth image and the predicted image and then use Mean square error (MSE) to measure the difference.

in the input space or after the patch embedding (Bao et aland high-pass Itering properties, respectively (Park & Kim,
2022; Xie et al., 2021b). In contrast, we use the averag@022; 2021). ViTs and CNNs have certain frequency bands
RGB value to Il the occluded patches as the input to the enthat they each cannot model well, and both cannot model
coder and add the mask token onto the intermediate featumaiddle-order interactions well (detailed in Appendix B.3).
maps of the encoder. The masking mechanism originateBhe observation of the medium frequency descriptor HOG
from NLP where languages are of high-level semantics andmproves middle-order interactions and leads to the hypoth-
do not require low-level feature extraction as image proesis that learning medium frequencies would help the model
cessing. Masking at the early stages of the network wherkearn more middle-order interactions. Given a RGB image
low-level feature extraction happens is harmful in terms ofx 2 R® H W the discrete Fourier transform (DFT) of
feature extraction. The RGB mean is the DC component otach channel is de ned as:

images. Filling with RGB mean alleviates local statistics he H we W _
distortion caused by the masking operation and forces the Fluv) = x(h;w)e 2! (R %) 3
network to model more informative medium frequencies in- h=1 w=1

stead of lling the masked patches with blurry color blocks | addition to the common MIM loss in the spatial domain

(low frequencies)_. The proposed ma_lskipg strategy is generig spa» WE Proposé req in Fourier domain:
to both convolution and self-attention in that it accommo-

: i . §€3 % H V\XW
dates low-level to semantic-level feature extraction. Lireq = | (u:v) DFT( nged M +

c=1 u=1 w=1 (4)

4.2.Middle-order Interactions from Fourier Perspective de(®®) (1 M)) DFT(xc) :

Current works (EI-Nouby et al., 2021; He et al., 2022; x'ewherexpfed is the predicted imagele() is detach gradi-

et al., 2021b) adopt raw RGB values as the prediction tarénto eration, anti(u; v) is a dynamic frequency weightin
get. However, raw pixels in the spatial domain are heavily P ' ’ y 9 y weighting

redundant and often contain low-order statistics (Bao et almatrlx. Inspired by Focal Frequency loss (Jiang etal., 2021),

2022; Wei et al., 2021; Zhou et al., 2021). MaskFeat (Wel'€ 4€ N€ adaptivé (u;v) as follows:

et al., 2021) adopts the Histogram of Oriented Gradients ! (u;v) = DFT xP®d M+

(HOG) as the predigtion target o.utperformin_g MAE gnd det(xPd) (1 M) DFT(xq) ; ®)
SimMIM. HOG is a discrete descriptor of medium or high-

frequency features that captures shape patterns based bft; V) enables both ViTs and CNNs to model features of

middle-order interactions. ViTs and CNNs have |0W_passmedium frequencies rather than local textures and noise cor-
responding to high frequencies. Since lling masked tokens
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with RGB mean is lling with DC components, combining Table 1.ImageNet-1K ne-tuning (FT) top-1 accuracy (%) of ViT-
our proposed masking strategy with the weighting effect ofS and ViT-B models? denotes our netuned results.

theL +eq leads to the better modeling of medium frequency method | Date Target  PT |VIT-S VIT-B ViT-L
features (middle-order interactions). Fig. B.3 veri es that Epochs FT FT FT
Eq. (5) allows the model to learn previously ignored frequen- Rand init. |- Label 300 [ 79.9 818 82.6

cies (mostly the medium frequencies). Note thagq intro- SIMCLR |ICML2020  CL 300 | 80.2 823 -
duces negligible overhead by using Fast Fourier TransformBYOL  |NIPS2020 ~ CL 300 | 80.9 828 -
(FFT) algorithms withO(n logn) complexity to achieve =~ M0oCoV3 |iCCv2021 CL 300 | 814 832 841

. . DINO ICCV'2021 CL 300 | 81.5 83.6 -
DFT. The overall loss of AMIM is de ned as: BET CLR2055 DALLE 800 1 813 835 €53

L= Lspa+ Lireq; (6)  SplitMask |arxiv2022 DALLE 300 | 815 836 -

iBOT ICLR'2022 EMA 800 | 82.3 84.0 85.2

whereLgpa = XxP¢ X M and is aloss weighting  MAE CVPR'2022 RGB 1600| 81.6 83.6 85.9
hyper-parameter. We setto 0.1 by default. MaskFeat|CVPR'2022 HOG 800 | - 84.0 857

Data2Vec |ICML'2022 EMA 800 - 84.2 86.2
SimMIM |CVPR'2022 RGB 800 | 81.7 83.8 85.6

5. Experiments CAE arXiv2022 DALLE 1600 | 81.8 83.6 86.3
51 p s mc-BEIT |ECCV2022 VQGAN 800 | - 841 856
.1. Pre-training Setup BOOtMAE |[ECCV'2022 EMA 800 | - 842 859

We adopt Vision Transformer (Dosovitskiy et al., 2021) P€CO  |AAAI2023 VQVAE 800 84.5 86.5

.~ CIM ICLR2023 BEIT 300 | 81.6 83.3 -
(ViT/16), ResNet (He et al., 2016), and ConvNeXt (Liu MC-MAE |IcLR2023 EMA 1600 | 820 836 86.1

et al., 2022b) as the backbone encoder. Models areage-c |cvpr2023 VQGAN 1600 | - 82.9 843
pre-trained on ImageNet-1K (IN-1K) training set with | gcaMiM |cvPR'2023 HOG 1600 - 840 85.8
AdamW (Loshchilov & Hutter, 2019) optimizer, a batch aA2mMiM  |Ours RGB 800 |82.1 842 86.1
size of 2048, and a basic learning rateldt 10 3 ad- A2MIM+ | Ours HOG 800 | 82.3 84.4 86.3

justed by a cosine learning rate scheduler. The input imagé . ] ] .

size is224 224with a masked patch size 82 32, and Table 2.ImageNet-1K linear probing (Lin.) and ne-tuning (FT)
. . - 0 -

the random masking ratio is 60%. By default, the learnabl op 1.accuracy (%) 9f ReZSNet 50'_

mask tokens are placed at stage-3 and layer-0 in ReSNeTMUItI_Cmp augmentation. ZOur modi ed MIM methods for CNN.

ConvNeXt and ViT architectures, respectively. We adopt Method Fast Pre-training | Longer Pre-training

a linear prediction head as the MIM decoder (Xie et al., _ Epochs Lin. FT (A3)Epochs FT (A3) FT (A2)

2021b). AMIM+ indicates adopting HOG as the MIM Sa?d 'T-S o ?642 7788-13 o 7788-19 77%-89

target and using the MLP decoder with depth-wise (DW) yTorch (Sup.) ' ' ' '

. . . Inpainting 70 401 784 | 300 78.0 -
convolutions. Our experiments are implemented on Openygjative-Loc | 70 388 77.8| 300 77.9 i
Mixup (Li et al., 2022) by Pytorch and conducted on work- Ratation 70 48.1 77.7| 300 782 -
stations with NVIDIA A100 GPUs.Bold andunderline SimCLR 100 64.4 785| 800 788 799
indicate the best and the second-best performance, and gramoCoVv2 100 66.8 785| 800 788 79.8
denotes the uncomparable resuéigy( not in the same tech- BYOL 100 68.4 78.7| 400 78.9 80.1
nical scope). See Appendix A for pre-training details. SwAVY 100 71.9 v89 | 400 79.0 80.2

Barlow Twins | 100 67.2 78.5| 300 78.8 79.9
5.2. Image Classi cation on ImageNet-1K '\B"giii’“ 188 igi ;21 3?0 7?'0 8?'1
Evaluation Protocols. We evaluate the learned represen- Data2Veé 100 432 78.0| - - -
tation by end-to-end ne-tuning (FT) and linear probing MAE* 100 376 771} 300 772 79.0
(Lin.) protocols on IN-1K. For FT evaluations of ViTs, we g'IEM'M 1(_30 4_7'5 7_8'2 288 ;g'g ;g'i
employ the ne-tuning as MAE (He et al., 2022), which AZMIM 100 451 78.8 | 300 789 804

applies DeiT (Touvron et al., 2021) augmentations, AdamW 2y v+ 100 503 789 | 300 79.0 805
optimizer with a batch size of 1024 for 200 epochs, and
adopt a layer-wise learning rate decay of 0.65 as BEIT (Baq . . . . .

etal., 2022). For FT evaluations of CNNs, ResNet variantgra'ns.a linear classi er t_)y SGD with a batch S'Ze.Of 256,
are ne-tuned with RSB A2/A3 (Wightman et al., 2021) and ViTs follow MAE, WhI'Ch tunes the'lmear layer W!th BN
training settings, which employ LAMB (You et al., 2020) by AdamW. See Appendix A for detailed con gurations.
optimizer with a batch size 2048 for 300/100 epochs, and/iTs. We rst evaluate AMIM variants with ViT-S/B/L
ConvNeXt models are ne-tuned 300-epoch with its origi-on IN-1K. We list the supervision target used by vari-
nal supervised learning settings. For the linear evaluation®us pre-training algorithms in the third column of Tab. 1.
ResNet-50 settings follow MoCo (He et al., 2020), whichVQVAE/DALL-E (Ramesh et al., 2021) and VQGAN (Esser
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Table 3.ImageNet-1K ne-tuning (FT) top-1 accuracy (%) with Table 4.Performance of object detection and semantic segmenta-
ResNet and ConvNeXt of various model scales. We adopt th¢ion tasks based on ViT-B on COCO and ADE-20K.

300-epoch ne-tuning protocols for both architectureslenotes Method Target EpochHN-1K COCO ADE-20K
our reproduced results. PT | FT AP Apmask  mjoy
Methods  |#Paral Sup. MoCoV3 SimMIM? Spark A2MIM DeiT (Sup.) Label 300 | 81.8 47.9 429 47.0
Target (M) |Label CL RGB RGB RGB MoCoV3 CL 300 | 83.2 479 427 47.3
ResNet-50 | 25.6| 79.8  80.1 799 80F 80.4 DINO CL 400 | 83.6 46.8 415 47.2
ResNet-101| 44.5|81.3 81.6 813 827 819 BEIT DALLE 300 | 83.2 431 382 47.1
ResNet-152| 60.2|81.8  82.0 819 827 825 iBOT EMA 400 | 84.0 484 427 48.0
ResNet-200| 64.7 | 82.1 825 82.2 83.1 83.0 PeCo VQ-VAE 300 | 845 439 398 46.7
ConvNeXt-T| 28.6 | 82.1  82.3 821 827 825 MAE RGB 1600 | 83.6 485 428 48.1
ConvNeXt-S| 50.2 [ 83.1  83.3 832 841 837 MaskFeat | HOG 800 | 84.0 49.2 432 488
ConvNeXt-B| 88.6 | 83.5  83.7 83.6 84.f 84.1 SimMIM RGB 800 | 83.8 489 430 48.4
CAE DALLE 800 | 83.6 49.2 43.3  48.8
AZMIM RGB 800 | 84.2 494 435 490

et al., 2021) are pre-trained image tokenizers, while EMA

refers to the momentum encoder. OUWWIM outperforms ) )
CL and MIM baselines, and MM+ achieves competitive 21d ConvNextv2 (Woo et al., 2023)) are specially designed

results as current state-of-the-art methods with comple!M approaches for CNNs, which employ the sparse con-
supervision,e.g., SplitMask (MIM with CL combined) volution to handle the irregular masked input. As shown in
iBOT (complex teacher-student architecture), and Cim'able 3, we compare AMIM with DeiT (as the supervised

(pre-trained BEIT as supervision). Based on ViT-S/B/L,Paseline), MoCoV3, SimMIM, and SparkK, wherépﬂIM
AZMIM signi cantly improves the baseline SimMIM by noticeably surpasses the two popular self-supervised meth-

0.5%/0.4%/0.5% with the RGB target and 0.7%/0.7%/0.690dS (MoCoV3 and SimMIM). Despite the proposethiM
with the HOG feature as supervision. yields inferior performances than Spark;MIM can also

) ] work for Transformer architectures.
CNNs. We then compare #MIM with classical self-

supervised _Iearning methods (Inpainting (Pathak_ et al_5_3_ Transfer Learning Experiments

2016), Relative-Loc (Doersch et al., 2015), and Rotation (Gi-

daris et al., 2018)), CL, and MIM methods with 100/300 Object detection and segmentation on COCO. To verify
pre-training epochs. We modi ed MIM methods to run them the transferring abilities, we benchmark CL and MIM meth-
on ResNet-50: the learnable mask token is employed to theds on object detection and segmentation with COCO (Lin
encoder for BEIT (Bao et al., 2022), Data2Vec (Baevskiet al., 2014). For evaluation on CNN, we follow the setup
et al., 2022), and SimMIM (Xie et al., 2021b) after the in MoCo, which ne-tunes Mask R-CNN (He et al., 2017)
stem (the output feature &6 56 resolutions); the en- with ResNet-50-C4 backbone using Zchedule on the
coder of MAE randomly selects 25% frof% 56output COCOtrain2017and evaluates on the COG@I2017 Re-
features of the stem as unmasked patches and takes thelts in Tab. 5 indicate that?MIM (300-epoch) outper-
reorganized28 28 patches as the input of four stages.forms contrastive-based methods with longer pre-training
In Tab. 2, our approach achieves competitive performancér0.7% AP and +0.6% APk ). For evaluation on
with state-of-the-art contrastive-based methods under 100+ansformer, we follow MAE and CAE, which ef ciently
epoch FT evaluation. Note that MIM methods see fewerne-tunes Mask R-CNN with ViT-B backbone using 1
training samples per epoch than CL methaelg(40%vs. schedule. In Tab. 4, ZMIM (800-epoch) is superior to pop-
200% of patches) and usually require longer pre-trainingllar contrastive-based and MIM methodsy, outperforms
epochs. Based on a longer FT evaluatioAMAM (300-  MAE (1600-epoch) by 0.9% APX and 0.8% APk |

epoch) outperforms contrastive-based methods with EV€fLhle 5.Performance of object detection and semantic segmenta-

. o .
fewer trammg (-?‘pochs. MeaQWh'le’ NIM also improves tion tasks based on ResNet-50 on COCO and ADE20K.
the baseline SImMIM (+0.8%) and the concurrent work Target EpochbIN-1K COCO ADE-20K

CIM (+0.4%) in terms of 100-epoch FT for the longer pre- PT | FT AP AP™ask  mioU
training. Besides, we also report the linear probing (Lin.) Sup. Label 90 | 79.8 382 333 36.1
results of the fast pre-training for reference, although we SimCLR CL 800 | 799 379 333 37.6
focus on learning representations with better ne-tuning '\BA?gEVZ gt igg ;g-? %é 33‘,‘432 3;7-52
performances. Although ZMIM achieves lower Lin. re- SWAV CL 800 | 80.2 384 338 373

sults than popular CL methods?KIM still improves the  gjmgiam CL 400 | 800 392 344 372
baseline by 0.6%. Moreover, we further conduct scaling-up Balow Twins] CL 800 | 79.9 39.2 343 37.3
experiments of AMIM and pre-training methods based on SimMIM? [RGB 300 | 79.9 39.1 342 374
ResNet and ConvNeXt models. Notice that two concurrent ¢/M BEIT 300 | 804 - - 38.0
works proposed after ourMIM (SparK (Tian et al., 2023) MIM RGB 300 | 804 398 349 282
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Figure 4. Visualizations of predicted results from SimMIM (middle) and od\iM (right) based on ViT-S pre-trained 400-epochs on
IN-1K. Notice thatT (I ) denotes the mask tokénto the optimal layer-5 in ViT-S. We ablate the proposed components by adding them
to the baseline. Compared to results from SimMIM, reconstruction results of the modi ed baelingWith the RGB mean mask
relieves grid-like artifacts; adding the mask toke€l ) further improves the smoothness; using the propaseg helps the model to
capture more informative details and contours.

Semantic segmentation on ADE20K. We then evaluate line SimMIM, especially for ResNet-50 (88.18. 87.75

the transferring performances on semantic segmentatioon IN-100). Then, we verify the proposégieq in Tab. 6.
with ADE20K (Zhou et al., 2019) by ne-tuning FCN (Shel- We nd that simply usingLeq Wwithout the adaptive re-
hamer et al., 2017) and UperNet (Xiao et al., 2018). Baseaveighting! (Egn. 5) brings limited improvements as the
on ResNet-50, all models are ne-tuned for 160K iterationsfrequency constraint tb spa, while employing! further
with SGD following MoCo and CIM. Results in Tab. 5 show enhances performances by helping the model to learn more
that our method outperforms CL methods by at least 0.9%nformative frequency components. Additionally, we visual-
mloU and outperforms CIM (required extra pre-trainedize reconstruction results in Fig. 4 to show the improvements
BEIT (Bao et al., 2022)) by 0.3% mloU. Based on ViT-B, brought by our proposed components. Refer to Appendix C
we ne-tune models for 160K iterations with AdamW fol- and D for more ablations and visualization results.

lowing MAE and CAE. Tab. 4 shows that our approach con-

sistently improves MIM method®(g.,outperforms MAE 5.5, Veri cation of A 2MIM Design Rules

and SimMIM by 0.9% and 0.6% mloU).
Y ’ ’ ) We verify whether AMIM meets the intended design rules

Table 6.Ablation of A’MIM on IN-100 and IN-1K.w=0! denotes using the same experiment settings as Sec. 5.4 from two
removing the re-weighting terh in Lreq andT(l ) denotes  gspects. (iA2MIM is generic to incorporate advanced

adding the mask tokef to the optimal layet- . componentsproposed in previous worke(g, complex
Backbones ResNet-50 ViT-S  ViT-B decoders, advanced prediction targets). As for the decoder
Datasets IN-100 IN-1K [IN-100 IN-1K structure, we replace the original linear decoder with 2-layer
Pre-training Epochs 400 ep 100ep 400ep 400ep MLP or Transformer decoders, but nd limited improve-
SimMIM 87.75 78.2 8510 83.1 ments or degenerated performances (similar to SimMIM)
L spa 88.19 784 8527 832 in Tab. 7. Inspired by PVT.V2 (Wang et al., 2022), we in-
+Lfreq W=0! 88.47 784 86.05 833 troduce a depth-wise (DW) convolution layer< DW) to
+Ltreq 88.73 786 86.41 834 the MLP decoder (adding@ 5 DW layer in between)
tLireqg + T(I) 88.86 78.8 86.62 83.5 and the Transformer decoder (adding a 3 DW layer in

each FFN (Wang et al., 2022)), which brings improvements
5.4. Ablation Study compared to the linear decoder. As for the prediction tar-

i ) get, we follow MaskFeat to change the RGB target to the
We next verify the effectiveness of the proposed component o feature or the output feature from ViT-B/16 pre-trained

Ablation studies are co.nducted with ResNet—SO and \ﬁTsOy DINO (Caron et al., 2021). Tab. 7 shows that using
on IN-100 and IN-1K using the ne-tuning protocol. Based 4qyanced targets signi cantly improves the performance
on the modi ed baseline SIMMIMU(spa), we rstcompare ot A2\iM for both ResNet-50 and ViT-B. Therefore, we
different mask token mechanisni@eplacingdenotes the  ,n concluded2MIM is a generally applicable framework
original way in most MIM methods, andiddition denotes iy A2MiM enhances occlusion robustness and middle-
our proposed way that adds the mask token to intermediat_grder interaction among patchesfrom experiments on IN-

feature maps of the backbone. Replacing masked patches {ik i Fig. 5. We analyze occlusion robustness and interac-
inputimages by RGB mean value slightly improves the base-
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@) (b) (c) (d)
Figure 5. Robustness and interaction of MIM with ViT-S and ResNet-50 on ImageNet-1K. (a)(b): Robustness against different
occlusion ratios of images is studied fof MIM and various methods. (c)(d): Distributions of the interaction streddth are explored.

CY (b) (©)
Figure 6.Analysis of A2MIM pre-training epochs and ne-tune performances with ResNet, ConvNeXt, and ViT models on ImageNet-1K.
(a)(b) show CNN architectures obtain less performance gains and bene t less from longer pre-training ¥vhtAan ViTs in (c).

tion strength of AMIM with ViT-S (pre-training 400-epoch) patches for more complex feature extraction regardless of
and ResNet-50 (pre-training 100-epoch) on ImageNet-1Kthe network architecture. Based on our ndings, we fur-
as shown in Fig. 5. Fig. 5(a) and 5(b) shows thalVAM ther proposed a general MIM frameworkMIM that is

is more robust to occlusion than the baseline SImMIM andcompatible with both Transformers and CNNs. Besides a
contrastive learning methods with both Transformers angbroposed novel masking mechanism, we also proposed a
CNNs. Meanwhile, we nd that MIM methods learn more loss in the Fourier domain to enhance the middle-order inter-
balanced interaction strength than both supervised and coaetion among patches. Experimental results showed that our
trastive learning methods in Fig. 5(c) and 5(d)?M{M proposed framework improves the representations learned
further improves SimMIM by capturing more middle-order for CNNs and Transformers, yielding superior performance
interactions @:2n to 0:6n) with Transformers and CNNs. than prior methods on various downstream tasks.

Therefore, we can conclude thatMIM helps the model to Meanwhile, we list two limitations of AMIM, as shown in

qj—:igure 6. () CNNs architectures bene t less frordMIM
_ " pre-training compared to ViTg.g, ResNet and ConvNeXt
Table 7.Analysis of the scalability for advanced components. gain around 1% Acc while ViTs obtain more than 2% gains.

more generalized visual representation.

Module ResNet-50 ViT-B We hypothesize that the inductive bias of CNNSs limits the

Linear 78.8 82.4 learning of middle-order interactions induced by MIM. (i)

2-layer MLP 78.8 82.4 ViTs bene t more with longer pre-training, while no sig-
Decoder Zél?yer 'V'T'-P (V¥/ bw) ;g-g %22-53 ni cant gain is observed for CNNs after 300 epochs pre-

-layer Transformer . . . : 3 ;
2-layer Transformer (w/ DW)  78.8 89.6 t_ral'nlng. Flgurg 6(a) shows that ResNet 50/152_ qbtams

limited or negative performance gains for pre-training of

RGB 78.8 82.4 800 h We h K Id inspire th
Target HoG Feature 78.9 82.6 epochs or more. We hope our work could inspire the
DINO Eeature 79.0 82.7 community to further promote self-supervised pre-training.
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A. Details of Comparison Experiments

tectronZ code bases. For evaluation on ResNet-50, we

follow MoCo (He et al., 2020) and ne-tune Mask R-CNN

This section provides experimental details for Se.§,,

with the pre-trained ResNet-50-C4 backbone with SGD op-

pre-training and evaluation on ImageNet-1K and transferﬂmiZer using 2 schedule (24 epochs). For evaluation of
ring learning settings on downstream tasks. Experiment,rt< \ e follow MAE (He et al., 2022) and CAE (Chen

results and models are availablenttps://github.c

et al., 2022), which
om/Westlake-Al/A2MIM

A.1. ImageNet-1K Experiments
Pre-training. The default settings of ZMIM for CNNs

apply the pre-trained ViT backbone

and an FPN neck (Lin et al., 2017) in Mask R-CNN. The
model is ne-tuned by
(12 epochs). For a fair comparison, we follow (Bao et al.,
2022; Xie et al., 2021b) to turn on relative position bias in

AdamW optimizer with 1schedule

and ViTs are provided in Tab. A1, following SimMIM (Xie ViT (Dosovitskiy et al., 2021) during both pre-training and

etal., 2021b). We use AdamW (Loshchilov & Hutter, 2019) transfer learning, in

itialized as zero, and the learning rate

optimizer with the cosine scheduler and the linear learningan be tuned for different PT methods.

rate scaling rule (Goyal et al., 2020):= baselr batchsize
/ 2048. Similar to current MIM methods, we only em-

Table Al.ImageNet-1K pre-training settings of 2MIM for
ResNet/ConvNeXt and ViT/Swin models.

ploy RandomResizedCrapith the scale 0{0:67; 1:0) or

(0:8; 1:0) andRandomFlip while do not require other com-
plex augmentationse(g., Rand Augment (Cubuk et al.,
2020), mixups (Zhang et al., 2018; Yun et al., 2019; Liu pask ratio

et al., 2022a; Li et al., 2021), or stochastic depth (Huang optimizer

et al., 2016)) during pre-training. As for ResNet and Con- Base learning rate
vNeXt models, we adopt Cosine learning rate decay for Weight decay
100/300 and 800 epochs pre-training. As for ViTs, we use Optimizer momentun
a similar Cosine decay when pre-training epochs less tharPaich size

400 while using Step decay (the learning rate multiplied by
0:1 at 700-epoch) for 800-epoch pre-training.

End-to-end ne-tuning. As shown in Tab. A2, our ne-
tuning settings follow common practices of supervised im-
age classi cation on ImageNet-1K. For ViT architectures,

Con guration ResNet / ConvNeXt ViT / Swin
Pre-training resolution 224 224 224 224
Mask patch size 32 32 32 32
60% 60%
AdamwW AdamwW
12 103 4 104
0.05 0.05
1; 2=0:9;0:999 ,; ,=0:9;0:999
2048 2048
Learning rate schedule Cosine Step / Cosine
Warmup epochs 10 10
RandomResizedCrop [0.8, 1] [0.67, 1]
Rand Augment 7 7
Stochastic Depth 7 7
Gradient Clipping 7 max norn¥ 5
PT epochs 100/300/800 300/800

the pre-trained model is ne-tuned for 200 epochs using
the BEIT (Bao et al.,, 2022) version of DeiT (Touvron
et al., 2021) training recipe to fully explore the performance
which employs AdamW (Loshchilov & Hutter, 2019) op-
timizer with the cross-entropy (CE) loss and layer-wise

Table A2.ImageNet-1K ne-tuning recipes of ViT, RSB A2/A3,
and ConvNeXt architectures. Here we take ViT-B, ResNet-50, and
ConvNeXt-T as examples.

learning rate decay. For CNNs, we adopt RSB A3 (Wight--£01 guration VIT RSBA2 RSBA3 ConvNext
man et al., 2021) setting for 100-epoch ne-tuning, which FT epochs . 200 300 100 300
Y o . ] Training resolution 224 224 160 224
employs LAMB (You et al., 2020) optimizer with the binary  testing resolution 224 224 224 224
cross-entropy (BCE) loss and smaller training resolutions Testing crop ratio 0.875 0.95 0.95 0.875
To fully explore the PT performances of CNNs, we also Optimizer AdamW LAMB LAMB AdamwW
apply 300-epoch ne-tuning with RSB A2 (Wightman et al., Baseleamingrate |1 1025 10°8 10° 4 10°
2021) and ConvNeXt (Liu et al., 2022b) training settings \';\‘l"‘YeL'Wése decay 8'32 0702 0702 305
for ResNet and ConvNeXt models. Notice that the default Baetlgh tsizicay 1024 2048 2048 4096
drop depth rates of ResNet-50/101/152/200 and ConvNeXty garming rate scheduleCosine  Cosine ~ Cosine  Cosine
T/S/B are 0.05/0.1/0.15/0.2 and 0.1/0.3/0.4 in 300-epochwarmup epochs 20 5 5 20
ne-tuning. The learning rates and drop depth can also beLabel smoothing 0.1 7 7 0.1
tuned for different PT methods. Stochastic depth 0.1 0.05 7 01
Gradient clipping 5.0 7 7 7
; ; ; Rand Augment (9,05 (7,05 (6,0.5 (9,0.5)
A.2. Object Detection and Segmentation on COCO Mixup alpha 0.8 o1 o1 0.8
We adopt Mask-RCNN (He et al., 2017) to perform trans- CutMix alpha 1.0 1.0 1.0 1.0
fer learning to object detection and semantic segmentationfFMA decay 099996 7 ! 0.9999
Loss function CE loss BCE loss BCE loss CE loss

on COCO (Lin et al., 2014) using MMDetectiband De-

https://github.com/open-mmlab/mmdetecti

on ctron2
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CY (b) (© (d)
Figure Al.(a)(b): Occlusion robustness against different occlusion ratios of imagess(®AIM) is studied for both ViT-S and ResNet-50
on ImageNet-100. (c)(d): Distributions of the interaction streriftf) (CL vs. MIM) are explored for both ViT-S and ResNet-50
on ImageNet-100. The label indicates the pre-training methode-tuning augmentation used, random stands for random weight
initialization.

@) (b) (c) (d)
Figure A2. Occlusion robustness against various random or salient occlusion ratios of images is studied in (a)(b) for ViT-S, and (c)(d) for
ResNet-50 using various experimental settings on ImageNet-100. The label indicates the pre-training-me¢htuthing setting used,
random stands for random weight initialization.

A.3. Semantic Segmentation on ADE-20K B.1. Occlusion Robustness

We adopt UperNet (Xiao et al., 2018) to perform transferln Sec. 3.1, we analyze robustness against occlusion for
learning to semantic segmentation on ADE-20K and usenodels pre-trained and ne-tuned on ImageNet-100 (a sub-
the semantic segmentation implementation in MMSegmerset on ImageNet-1K divided by (Tian et al., 2020)) using the
tatior®. We initialize the FCN (Shelhamer et al., 2017) or of cial implementatiorf provided by Naseer et al. (2021).
UperNet (Xiao et al., 2018) using the pre-trained backbone8oth MIM and contrastive-based methods are pre-trained
(ResNet-50 or ViTs) on ImageNet-1K. For ViTs, we ne- 400 epochs on ImageNet-100 using their pre-training set-
tune end-to-end for 160K iterations with AdamW and atings on ImageNet-1K. We adopt the ne-tuning training
batch size of 16. We search a optimal layer-wise decayecipe as DeiT in Tab. A2 and use the same setting train-
from f 0.8, 0.9 and search optimal a learning rate from ing 100 epochs for both ViT-S and ResNet-50. Note that
f1 10 42 10 4,3 10 “gfor all competitors. Sim- we use the modi ed SimMIM for ResNet-50 (replacing
ilar to ne-tuning settings on COCO, we use relative po-masked patches in the input image with the RGB mean) in
sition bias in ViT (Dosovitskiy et al., 2021) during both all experiments.

pre-training and transfer learning as (Bao et al., 2022; XleAS shown in Fig. 1 and AL, we compared MIM pre-trained
et al., 2021b). For ResNet-50, we follow MoCo (He et al., . : . .
2020).i.¢.,all CNN models are ne-tuned for 160K itera- models supervised methods with various augmentations and

tions by SGD optimizer with the momentum of 0.9 and acontrasnve learning pre-tramed _metho_ds in terms of the top-
batch size of 16. 1 accuracy under various occlusion ratios. We nd that MIM

methods show better occlusion robustness on both Trans-
o ) formers and CNNs. In addition to Sec. 3.1, we also provide
B. Empirical Experiments results of salient occlusion.¢., dropping patches according

: . . . . .to salient maps) for ViT-S and ResNet-50 on ImageNet-100
This section provides background information and experi-_ _: ; . )
. o .in Fig. A2. Note that the occlusion ratio means the ratio

mental details for Sec. 3, and additional results of occlusion
) . . ! of dropped and total patches, and we plot the mean of ac-

robustness evaluation and multi-order interaction strength,

turacy across 3 runs. Overall, we can conclude that MIM

3https://github.com/open-mmlab/mmsegment

ation “https://github.com/Muzammal-Naseer/Intr

iguing-Properties-of-Vision- Transformers
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pre-trained models have stronger robustness against random
and salient occlusions than supervised and contrastive-based
pre-trained methods.

B.2. Multi-order Interaction

In Sec. 3.2, we interpret what is learned by MIM by multi-
order interaction (Deng et al., 2022; Zhang et al., 2020).
The interaction complexity can be represented 8% (i; | )

(de ned in Egn. 1), which measures the average interaction
utility between variable§j on all contexts consisting of

m variables. Notice that the order re ects the contex-
tual complexity of the interactioh(™)(i;j ). For example,

a low-order interactiong.g.,m = 0:05n) means the rel- Figure A4.Feature maps variance. The vertical axis is the average
atively simple collaboration between variablgs, while  variance value of feature maps. DeiT (Sup.) is supervised pre-
a high-order interactione(g.,m = 0:05n) corresponds to training. The results of the randomly initialized network are plotted
the complex collaboration. As gured out in the represen-or reference.

tation bottleneck (Deng et al., 2022), deep neural networks

(DNNs) are more likely to encode both low-order inter-B.3. MIM from Frequency Perspective

actions and high-order interactions, but often fail to lear

middle-order interactions. We hypothesize that MIM helpst ¢ ResNet-50 with diff : traini th
models learn more middle-order interactions since MIMUI€ Maps of RESNEL-SU wi ierent pre-training metnh-

has a natural advantage in cases where some parts of tﬁgs US’\'ln? ﬂ‘f It:O(I)l?sp_rowds d kbé E_ark 28652"“ (2022t) on
image are masked out. In Fig. 1, we calculate the intera magelNet-11. Fo pwmg( ar im, ) we rstcon-
tion strengthl ™ (de ned in Eqn. 2) for ne-tuned models vert feature maps mto the frequency domam and. represent
on ImageNet-100 using the of cial implementatfopro- them on the normalized frequency domain (the highest fre-

vided by Deng et al. (2022). Specially, we use the imagequency cqmponents aref_at » *9). InFig. A3, we report
of 224 224resolution as the input and calculat€™ on the amplitude ratio of high-frequency components by us-

14 14grids,i.e.,n =14 14. And we set the model output ing log amplitude. As shown in Fig. A3, inpainting
asf (xs) = I(;g "B (9= yixs) given the masked sampie and MIM show similar low-pass Itering effects at con-
l 1

P(9=yixs) ! volution layers as compared to contrastive learning. This
wherey denotes the ground-truth label aRd§ = yjxs)  ingicates that inpainting and MIM reduce noise and uncer-
denotes the probability of classifying the masked sarrple tainty induced by high-frequency features. We argue that
to the true category. the reconstruction performance of MIM is mainly related

to low or high-order interactions of patches (Deng et al.,
2022), while reconstruction performance is not directly re-
lated to the learned representation quality. Then, we provide
the standard deviation of feature maps by block depth as
(Park & Kim, 2022; 2021), which rst calculates the feature
map variance on the last two dimensions and then averages
over the channel dimension for the whole dataset. Fig. A4
shows the feature variance of each layer of ResNet-50 with
different pre-training methods on IN-1K. This gure indi-
cates that MIM tends to reduce the feature map variance,
and conversely, supervised training, inpainting, and con-
trastive learning based on CNN tend to increase variance
(i.e., high frequencies). Compared to MIM, which learns

r middle-order interactions, the inpainting task fail
Figure A3.Fourier transformed feature maps. The vertical axis isbette ddle-order interactions, the inpainting task fails

the relative log amplitudes of the high-frequency components, an(.IiO Iter out jow-order interactions and thus leads to higher

the horizontal axis is the normalized depth of the network. TheVarance. To conclude, MIM methods learn middle-order

blue columns indicate the pooling layers, while the white columnsinteractions and reduce the feature map uncertainty (high
indicate the convolution layers. frequencies) based on the CNN encoder for a generalized

and stabilized feature extraction.

e rst plot the log magnitude of Fourier-transformed fea-

Shttps://github.com/Nebularaid2000/bottle Shttps://github.com/xxxnell/lhow-do-vits-w
neck ork
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C. More Experiment Results
C.1. Ablation of Layers for Mask Token

In addition to Sec. 5.4, we analyze the optimal stage or
layer for the mask token. The ablation experiments are
conducted with ResNet-50 and ViTs on IN-100 and IN-1K
using the fine-tuning protocol as Sec. 5.4. As shown in
Fig. AS, adding the mask token to the medium stages (stage-
3 of ResNet-50) or layers (layer-5 of ViT-S) yields the best
performance on the pre-trained representation. Therefore,
we apply the mask token to the 3-stage or the medium layer
(around 3/4 of the total layers) in A2MIM by default.

Figure A5. Ablation of the mask token in various stages (S) in
ResNet-50 or layers (L) in ViT-S based on SimMIM (without
L freq) on ImageNet-100.

ResNet50 ViT-S

—— Replacing
—=— Addition

--== SimMIM
—— MoCoV3

—e— Replacing
—=— Addition
SimMIM

. mAE ) //\

86.2

86.0

Top— 1 accuracy (%) 1

L8

C.2. Ablation of the Proposed Modules

In addition to ablation studies in Sec. 5.4, we provide more
ablation studies and empirical analysis on the proposed
Lfreq in the Fourier domain, as shown in Figure A6. As we
discussed in Sec. 4, we hypothesize that learning medium
frequencies would help better learn middle-order interac-
tions. we thereby propose Lfreq to tackle the dilemma of
Lspa, which tends to learn low-frequency components (i.e.,
contents reflected by high-order interactions). Although
the reconstruction loss in the Fourier domain has a global
perception, the high-frequency components are usually con-
structed by local details and noises (i.e., low-order interac-
tions), which might hurt the generalization abilities. There-
fore, we introduce the reweight w(u; v) to force the model
to learn more medium-frequency components, which are
identical to middle-order interactions. Then, we perform
further analysis of the masked patch size for A2MIM in
Tab. A3. Note that we pre-train ResNet-50 for 100 epochs
and ViT-B for 400 epochs on ImageNet-1K and report the
fine-tuning results. As shown in Tab. A3, when the mask
ratio is 60%, the optimal masked patch size is 32 32 for
AZMIM, which is the same as SimMIM.

D. Visualization Experimental Details

In addition to visualization results in Sec. 5.4, we visualize
more reconstruction results of A2MIM here. Similar to
Fig. 4, we ablate the proposed components in A2MIM based
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Table A3. Ablation of masked patch size for A2MIM based on
ResNet-50 and ViT-B on ImageNet-1K.

Model Masked Mask PT  Top-1 Accuracy (%)
patch size  ratio epoch
ResNet-50(8/16/32/64 0.6 100 78.2/78.6/78.8/78.7
ViT-B ‘ 8/16/32/64 0.6 400 82.9/83.4/83.5/83.3

on ResNet-50 in Fig. A7, which demonstrates that AZMIM
helps ResNet-50 learn more spatial details, i.e., more middle-
order interactions. Moreover, we study the effects of the
mask token in both ViTs and CNNs in Fig. AS.

E. Extended Related Work

In the recent decade, Deep Neural Networks (DNNs) have
gained great success in various tasks with full supervision,
such as computer vision (He et al., 2016; Liu et al., 2021;
He et al., 2017; Song et al., 2023), natural language pro-
cessing (Vaswani et al., 2017; Devlin et al., 2018; Radford
et al., 2018), and graph representation learning (Xu et al.,
2019; Wu et al., 2023). As DNNs scale up with more pa-
rameters, pre-training without labels by leveraging pre-text
tasks has become increasingly popular. In addition to Sec. 2,
we provide extended discussions of two types of popular
self-supervised vision pre-training approaches.

Contrastive Learning. Contrastive learning learns
instance-level discriminative representations by extracting
invariant features over distorted views of the same data,
which is first introduced by CPC (van den Oord et al.,
2018), CMC (Tian et al., 2020), and NPID (Wu et al.,
2018). MoCo (He et al., 2020) and SimCLR (Chen et al.,
2020b) adopted different mechanisms to introduce negative
samples for contrast with the positive. BYOL (Grill
et al.,, 2020) and its variants (Chen & He, 2020; Ge
et al., 2021) further eliminate the requirement of negative
samples to avoid representation collapse. Besides pairwise
contrasting, SWAV (Caron et al., 2020) clusters the data
while enforcing consistency between multi-augmented
views of the same image. Barlow Twins (Zbontar et al.,
2021) proposed to measure the cross-correlation matrix of
distorted views of the same image to avoid representation
collapsing. Meanwhile, some efforts have been made
on top of contrastive methods to improve pre-training
quality for specific downstream tasks (Xie et al., 2021a;
Xiao et al., 2021; Selvaraju et al., 2021; Wu et al., 2022),
which conduct fine-grained contrastive supervisions.
MoCo.V3 (Chen et al., 2021) and DINO (Caron et al., 2021)
adopted ViT (Dosovitskiy et al., 2021) in self-supervised
pre-training to replace CNN backbones.

Autoregressive Modeling. Autoencoders (AE) is a typical
type of network architecture that allows representation learn-
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Figure A6. Visualization of predicted images and L ¢,q loss weight in Fourier domain. From the view of the Fourier spectrum, the raw
image (left) contains 99% low-frequency components (usually present contents) and rich medium-frequency (structural patterns) and
high-frequency components (local details and noises), while the predicted result (middle) provides fewer medium or high-frequency
components. Calculated in the Fourier domain, the loss weights (right) of L ¢,..q w/0 w help the model to learn the full spectrum while
L freq focusing on the low and medium-frequency parts, which are more likely to be low-order or middle-order interactions.

ing with no annotation requirement (Hinton & Zemel, 1993).
By forcing denoising property onto the learned representa-
tions, denoising autoencoders (Vincent et al., 2008; 2010)
are a family of AEs that reconstruct the uncorrected input
signal with a corrupted version of the signal as input. Gen-
eralizing the notion of denoising autoregressive modeling,
masked predictions attracted the attention of both the NLP
and CV communities. BERT (Devlin et al., 2018) performs
masked language modeling (MLM), where the task is to
classify the randomly masked input tokens. Representations
learned by BERT as pre-training generalize well to various
downstream tasks. For CV, inpainting tasks (Pathak et al.,
2016) to predict large missing regions using CNN encoders
and colorization tasks (Zhang et al., 2016) to reconstruct the
original color of images with removed color channels are
proposed to learn representation without supervision. With
the introduction of Vision Transformers (ViTs) (Dosovitskiy
et al., 2021; Liu et al., 2021), iGPT (Chen et al., 2020a) pre-
dicts succeeding pixels given a sequence of pixels as input.
MAE (He et al., 2022) and BEiT (Bao et al., 2022) randomly
mask out input image patches and reconstruct the missing
patches with ViTs. Compared to MAE, MaskFeat (Wei et al.,
2021) and SimMIM (Xie et al., 2021b) adopt linear layers
as the decoder instead of another Transformer as in MAE.
MaskFeat applied HOG as the prediction target instead of
the RGB value. Other research endeavors (El-Nouby et al.,
2021; Zhou et al., 2021; Assran et al., 2022; Akbari et al.,
2021; Sameni et al., 2022) combine the idea of contrastive
learning (CL) with MIM. SplitMask (El-Nouby et al., 2021)
proposed to use half of the image pixels to predict the other
half while applying InfoNCE loss (Van den Oord et al.,
2018) across the corresponding latent features. MSN (As-
sran et al., 2022) matches the representation of an image
view containing randomly masked patches and the origi-
nal unmasked image. Similarly, iBOT (Zhou et al., 2021)
adopts the Siamese framework to combine self-distillation
with MIM. Moreover, Data2Vec (Baevski et al., 2022) pro-
posed a framework that applies the masked prediction idea
for either speech, NLP, or CV. However, most MIM works
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are confined to ViT architectures, recently proposed CIM
(Fang et al., 2022) uses the output of a pre-trained tokenizer
as the target and takes the output of a frozen BEiT as the
encoder’s input as a workaround to enable MIM on CNNS.

In this work, we propose A2MIM with no components na-
tive to ViTs adopted to perform MIM with ViTs and CNNs.
Two concurrent two after A2MIM, SparK (Tian et al., 2023)
and ConvNeXt.V2 (Woo et al., 2023), designed CNN-based
MIM with sparse convolutions to tackle the irregular masked
images. Compared to them, A2MIM provides empirical ex-
planations of why MIM works and designs an architecture-
agnostic framework.
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Cucumber

Raw image Masked image ~ SimMIM Masked image A’MIM

Figure A7. Visualizations of predicted results from SimMIM (middle) and our A2MIM (right) based on ResNet-50 pre-trained 100-epochs
on ImageNet-1K. T'(s ) denotes the mask token 7" to the optimal stage-s in ResNet-50. We ablate the proposed components by adding
them to the baseline SimMIM: replacing the zero mask with the RGB mean mask (the modified SimMIM baseline) and adding the mask
token T'(s ) relieve grid-like artifacts in predicted results; adding the proposed L f,¢q helps the model to capture more informative details.
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Figure A8. Visualizations of predicted results with and without the mask token on ImageNet-1K. Notice that mask tokens are adopted in
the pre-trained models based on ViT-S (300-epoch) or ResNet-50 (100-epoch). Based on ViT-S, removing the mask token corrupts both
contents of masked patches and overall colors in SimMIM while only corrupting the masked contents in A>MIM. Based on ResNet-50,
removing the mask token slightly affects spatial details in the masked patches and causes grid-like artifacts in the unmasked patches.
The different effects of the mask token in ViT-S and ResNet-50 might be because the two architectures use different spatial-mixing
operators and normalization layers. As for ViTs, the self-attention operation captures informative details from unmasked patches, but the
non-overlap patch embedding and layer normalization mask each patch isolated. The mask token learns the mean templates (contents)
of masked patches and gathers spatial details from unmasked patches by the self-attention operation. As for CNNs, each patch shares
the same contents extracted by batch normalization layers, and the convolution operation extracts features from unmasked and masked
patches equally. The mask token learns more high-frequency and informative details.
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