
Achieving Hierarchy-Free Approximation for Bilevel Programs With
Equilibrium Constraints

Jiayang Li 1 Jing Yu 1 Boyi Liu 2 Yu Nie 1 Zhaoran Wang 2

Abstract

In this paper, we develop an approximation
scheme for solving bilevel programs with equi-
librium constraints, which are generally difficult
to solve. Among other things, calculating the
first-order derivative in such a problem requires
differentiation across the hierarchy, which is com-
putationally intensive, if not prohibitive. To by-
pass the hierarchy, we propose to bound such
bilevel programs, equivalent to multiple-followers
Stackelberg games, with two new hierarchy-free
problems: a T -step Cournot game and a T -step
monopoly model. Since they are standard equi-
librium or optimization problems, both can be
efficiently solved via first-order methods. Im-
portantly, we show that the bounds provided by
these problems — the upper bound by the T -step
Cournot game and the lower bound by the T -step
monopoly model — can be made arbitrarily tight
by increasing the step parameter T for a wide
range of problems. We prove that a small T usu-
ally suffices under appropriate conditions to reach
an approximation acceptable for most practical
purposes. Eventually, the analytical insights are
highlighted through numerical examples.

1. Introduction
Many bilevel optimization problems arising from real-world
applications can be cast as a mathematical program whose
feasible region is defined by an equilibrium problem (Luo,
Pang, and Ralph, 1996; Outrata, Kocvara, Zowe, and Zowe,
1998). A typical example is a Stackelberg game concerning
a leader who aims to induce a desirable outcome in an eco-

1Department of Civil and Environmental Engineering, North-
western University, Evanston, IL, USA 2Department of Industrial
Engineering and Management Science Engineering, Northwestern
University, Evanston, IL, USA. Correspondence to: Yu (Marco)
Nie <y-nie@northwestern.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

nomic or social system comprised of many self-interested
followers, who can be seen as playing a non-cooperative
game that converges to a Nash equilibrium (Dafermos, 1973;
Requate, 1993; Marcotte and Marquis, 1992; Labbé, Mar-
cotte, and Savard, 1998; Ehtamo, Kitti, and Hämäläinen,
2002). More recently, motivated by such applications, devel-
oping efficient algorithms for solving bilevel programs with
equilibrium constraints has also emerged as an essential
topic in machine learning (Mguni, Jennings, Sison, Valcar-
cel Macua, Ceppi, and Munoz de Cote, 2019; Zheng, Trott,
Srinivasa, Naik, Gruesbeck, Parkes, and Socher, 2020; Liu,
Li, Yang, Wai, Hong, Nie, and Wang, 2022; Maheshwari,
Kulkarni, Wu, and Sastry, 2022).

In the optimization literature, a bilevel program with equi-
librium constraints is often written as (Luo et al., 1996)

min
x∈X, y∗∈Y

l(x,y∗),

s.t. ⟨f(x,y∗),y − y∗⟩ ≥ 0, ∀y ∈ Y,
(1)

where X ⊆ Rm and Y ⊆ Rn are two convex set; l :
X × Y → R and f : X × Y → Rn are two continuously
differentiable functions. The lower-level problem in Prob-
lem (1) is a variational inequality (VI) problem, which is a
general formulation for many equilibrium problems (Scu-
tari, Palomar, Facchinei, and Pang, 2010; Nagurney, 2013;
Parise and Ozdaglar, 2019). Problem (1) is well known
for its intractability. Indeed, it is NP-hard even when the
upper-level objective function is linear, and the lower-level
VI can be reduced to a linear program (LP) (Ben-Ayed and
Blair, 1990), leading to a so-called bilevel linear program
(Bialas, Karwan, and Shaw, 1980; Candler and Townsley,
1982; Bard and Falk, 1982).

When the lower level is not an LP, Problem (1) is usually
solved via first-order methods that strive to find good local
solutions (Colson, Marcotte, and Savard, 2007). Classical
algorithms in this category include basic gradient descent
(Friesz, Tobin, Cho, and Mehta, 1990), steepest descent
built on quadratic approximation (Luo et al., 1996), and the
penalty method (Aiyoshi and Shimizu, 1984). Applying
a gradient descent method requires differentiation through
the lower-level equilibrium problem, which is a challenging
computational task. In the literature, it is often accomplished
via implicit differentiation (ID), which requires inverting a

1

Achieving Hierarchy-Free Approximation for Bilevel Programs With Equilibrium Constraints

matrix whose size scales quadratically with the dimension of
the lower-level VI problem (Tobin, 1986; Dafermos, 1988;
Parise & Ozdaglar, 2019). In large-scale problems, even
storing such a matrix may be impractical, let alone inverting
them.

The recent advance in machine learning (ML) has inspired a
new class of algorithms for solving bilevel programs based
on automatic differentiation (AD) (Griewank et al., 1989).
In AD-based methods, the gradient of a bilevel program
is computed in two phases (Franceschi, Donini, Frasconi,
and Pontil, 2017; Franceschi, Frasconi, Salzo, Grazzi, and
Pontil, 2018). In the first phase, the lower-level problem
is first solved, while the computation process, along with
intermediate results, is stored in a computational graph. In
the second phase, the gradient of the lower-level solution is
evaluated by unrolling the computational graph. In the liter-
ature, AD-based methods were originally proposed for ML
applications, e.g., hyperparameter optimization (Maclau-
rin, Duvenaud, and Adams, 2015) and neural architecture
search (Liu, Simonyan, and Yang, 2018), which can usually
be formulated as a bilevel program whose lower level is an
unconstrained optimization problem. More recently, they
were also extended to handle those with equilibrium con-
straints (Li, Yu, Nie, and Wang, 2020). Although AD-based
methods bypass implicit differentiation, they may run into
another challenge: since the computational graph grows
with the number of iterations required to solve the lower-
level equilibrium problem, it may become too deep to unroll
efficiently even with AD (Li, Yu, Wang, Liu, Wang, and
Nie, 2022b) when solving the lower-level problem requires
too many iterations.

In a nutshell, finding the gradient for Problem (1) remains a
potential obstacle to large-scale applications, whether ID or
AD is used. These difficulties have motivated many work
to accelerate ID (Hong, Wai, Wang, and Yang, 2020; Chen,
Sun, and Yin, 2021; Liao, Xiong, Fetaya, Zhang, Yoon,
Pitkow, Urtasun, and Zemel, 2018; Grazzi, Franceschi,
Pontil, and Salzo, 2020; Vicol, Lorraine, Duvenaud, and
Grosse, 2021; Fung, Heaton, Li, McKenzie, Osher, and
Yin, 2022; Liu et al., 2022) or approximate AD (Luketina,
Berglund, Greff, and Raiko, 2016; Metz, Poole, Pfau, and
Sohl-Dickstein, 2016; Finn, Abbeel, and Levine, 2017; Liu
et al., 2018; Shaban, Cheng, Hatch, and Boots, 2019; Ablin,
Peyré, and Moreau, 2020; Yang, Ji, and Liang, 2021; Li, Gu,
and Huang, 2022a). But fundamentally, the difficulty is in-
herent in the hierarchy of the problem, or the fact that to ob-
tain the gradient, one is obligated to solve and differentiate
through the lower-level problem, which is computationally
demanding in many cases. Our work is prompted by the
following question: is it possible to free the process from
that obligation, or to “bypass the hierarchy”?

We believe a hierarchy-free method is possible. Our inspi-

ration comes from the duopoly model in economics, which
concerns two firms, A and B, selling a homogeneous prod-
uct in the same market. The duopoly can be organized in
three ways (Shapiro, 1989). (1) Stackelberg duopoly: Firm
A sets its output first, according to which Firm B makes
the decision, giving rise to a typical bilevel program. (2)
Cournot duopoly: Firms A and B simultaneously optimize
their own output, which results in a Nash equilibrium prob-
lem. (3) Monopoly: Firm A becomes the only producer by
taking over Firm B’s business and setting the total output
for both. In economics, it is well known that Firm A’s opti-
mal profit in the Stackelberg duopoly is lower than that in a
monopoly but higher than that in a Cournot duopoly.

As Problem (1) can be interpreted as a Stackelberg game
in which the leader and the followers control the upper-
and lower-level decision variables, respectively, we reason
that it may be bounded in a similar way as the Stackelberg
duopoly is bounded. Specifically, instead of directly solving
Problem (1), we may first solve the corresponding “Cournot
game” and “monopoly model” — both of which are single-
level problems — to obtain lower and upper bounds. If the
two bounds are close enough, we may accept the feasible
one as an approximate solution. The caveat, of course,
is that the natural gap between these two models may be
unacceptably large for practical purposes. Thus, the focus
of this investigation is to narrow down this gap.

Our contribution. In this paper, we view Problem (1) as
a Stackelberg game and develop a new Cournot game and
a new monopoly model that can provide arbitrarily tight
upper and lower bounds for Problem (1). The development
of both models assumes the lower-level equilibrium state
is the outcome of a dynamical process through which the
followers improve their decisions step-by-step towards op-
timality (Weibull, 1997). The two proposed models are
defined as follows: in a T -step Cournot game, the leader
and followers make decisions simultaneously, but the leader
anticipates the followers’ decisions by T steps, while in a
T -step monopoly model, the leader has full control over
the followers but allows them to move on their dynamical
process toward equilibrium by T steps after the leader first
dictates their decision.

Our contributions are threefold. (1) We show that both
models can be efficiently solved via first-order methods, and
the computation cost in each iteration grows linearly with
T . (2) We prove that under appropriate assumptions and by
choosing a suitable T , the gap between the upper and lower
bounds provided by the solutions to the two models becomes
arbitrarily tight; for most practical purposes, a small T
suffices to provide a high-quality approximate solution to
Problem (1). (3) We demonstrate the applications of the
proposed approximation scheme in a range of real-world
problems.

2

Achieving Hierarchy-Free Approximation for Bilevel Programs With Equilibrium Constraints

Organization. In Section 2, we highlight a few real-world
applications that motivate the present study. In Section 3, we
discuss the difficulties in solving Problem (1), along with
a review of how they are addressed in previous research.
Section 4 motivates the proposed hierarchy-free scheme by
drawing an analogy between Problem (1) and the classical
Stackelberg duopoly model. Section 5 lays the foundation
for the scheme: the formulations of the T -step Cournot
game and the T -step monopoly model before presenting the
solution algorithm and discussing the analytical properties
of the scheme. Finally, Section 6 presents numerical results,
and Section 7 concludes the paper.

Notation. We use R, R+, and N to denote the set of real
numbers, non-negative real numbers, and non-negative inte-
gers. The inner product of two vectors a, b ∈ Rn is written
as ⟨a, b⟩ = aTb. For a matrix A ∈ Rn×m, we denote ∥A∥2
as its matrix norm induced by the 2-norm for vectors. For a
closed set A, we denote diam (A) = maxa,a′∈A ∥a− a′∥
as its diameter. For a finite set A, we write |A| as the number
of elements in A and ∆(A) = {p ∈ R|A|

+ : 1Tp = 1}.

2. Background
We will first discuss how VI provides a unified formulation
for many equilibrium problems (Section 2.1) and then in-
troduce a few real-world applications that motivate bilevel
programs with equilibrium constraints (Section 2.2)

2.1. Variational Inequalities

VI provides a unified formulation for both atomic and
nonatomic games, classified according to whether the set of
agents is endowed with an atomic or a nonatomic measure
(Nash, 1951; Schmeidler, 1973). Simply put, each agent’s
decision can affect the outcome of an atomic game, but
the outcome of a nonatomic game solely depends on the
aggregate behavior of the agents.

Example 2.1 (Atomic game). Consider a game played by
n atomic agents. Suppose that each agent i aims to select a
strategy zi ∈ Zi ⊆ Rmi to minimize its cost, which a deter-
mined by a continuously differentiable function ui : Z → R
where Z =

∏
i Zi. Formally, a joint strategy z∗ ∈ Z is

a Nash equilibrium if ui(z
∗
i , z

∗
−i) = minzi∈Zi ui(zi, z

∗
−i)

(i = 1, . . . , k). Denote v(z) = (vi(z))
k
i=1 be a function

with vi(z) = ∇zi
u(z). Suppose that Zi is convex and

closed, then any Nash equilibrium z∗ = (z∗
i)

k
i=1 ∈ Z is

also a solution to the following VI (Scutari et al., 2010)

⟨v(z∗), z − z∗⟩ ≥ 0, ∀z ∈ Z. (2)

Meanwhile, the reverse also holds if each vi is convex in zi.

Example 2.2 (Nonatomic game). Consider a game played
by n classes of nonatomic agents. Let Ai be the discrete
action set for agents in class i. Let pi = (pia)a∈Ai ∈

∆(Ai) be the proportion of agents in class i selecting each
action a ∈ Ai. Suppose that each agent in class i aims
to select an action a to minimize the cost determined by
a continuous function cia : ∆(A) → R where ∆(A) =∏

i ∆(Ai). Formally, a mass distribution p∗ = (p∗
i)

k
i=1 ∈

∆(A) is a Nash equilibrium (also known as a Wardrop
equilibrium) if cia′(p∗) = mina∈Ai

cia(p
∗) for all a′ ∈

Ai satisfying qia′ > 0 (i = 1, . . . , k). Letting ci(p) =
(cia(p))a∈Ai and c(p) = (ci(p))

k
i=1, then p∗ is a Nash

equilibrium if and only if (Bernhard, 2011)

⟨c(p∗),p− p∗⟩ ≥ 0, ∀p ∈ ∆(A). (3)

As most equilibrium problems can be cast as VI, Problem
(1) provides a standard formulation for bilevel programs
with equilibrium constraints (Luo et al., 1996).

2.2. Bilevel Programs with Equilibrium Constraints

The study of bilevel programs can be traced back to the
Stackelberg duopoly model (von Stackelberg, 1952).
Example 2.3 (Stackelberg duopoly). Consider two firms,
A and B, selling a homogeneous product. Let their outputs
be denoted, respectively, as x and y, and suppose that Firm
A chooses x first, and then Firm B chooses y subsequently.
Let the inverse demand (i.e., price) for the product be p =
1− x− y. Then the profits for firms A and B are given as
l(x, y) = x(1 − x − y) and g(x, y) = y(1 − x − y). The
optimal decisions x∗ and y∗ of the two firms are the solution
to the following bilevel program

x∗ = argmax
x≥0

l(x, y∗), s.t. y∗ = argmax
y≥0

g(x, y). (4)

The optimal solution is x∗ = 1/2 and y∗ = 1/4, with Firm
A making an optimal profit of 1/8.

The earliest study on bilevel programs with equilibrium
constraints was motivated by Stackelberg congestion games
(SCGs), which concern a leader (usually a traffic planner)
who aims to induce a desirable equilibrium state in a con-
gestion game (Wardrop, 1952; Roughgarden and Tardos,
2002) played by many self-interested followers (travelers).
The network design problem (LeBlanc, 1975; Li, Yang, Zhu,
and Meng, 2012) and the congestion pricing problem (Law-
phongpanich and Hearn, 2004; Li, Kockelman, and Huang,
2021) are two classic examples. More recently, the study of
SCGs has been influenced by the introduction and constant
evolution of connected and automated vehicle (CAV) tech-
nologies (Mahmassani, 2016), leading to such applications
as the design of dedicated CAV facilities (Chen, He, Zhang,
and Yin, 2016; Chen, He, Yin, and Du, 2017; Bahrami and
Roorda, 2020) and the control of CAVs within such facilities
(Levin and Boyles, 2016; Zhang and Nie, 2018).

The question of inducing a desirable outcome in non-
cooperative games can be traced back to the work of Pigou

3

Achieving Hierarchy-Free Approximation for Bilevel Programs With Equilibrium Constraints

(1920) on welfare economics. Bilevel programming has
long been recognized as the standard approach to such in-
quiries in operations research, and more recently in the ML
community (Mguni et al., 2019; Zheng et al., 2020; Liu
et al., 2022; Maheshwari et al., 2022). Our algorithms are
focused on the applications pertinent to this question.

We hope to clarify that not all bilevel programs (and Stack-
elberg games) are amenable to our algorithms. The first
class is the Stackelberg games played by one leader and one
follower in which the action sets of both are finite. Such
problems can be reformulated as a linear program; examples
include the generalized principal-agent problem (Myerson,
1982) and the Stackelberg security game (Sinha, Fang, An,
Kiekintveld, and Tambe, 2018). The second class is a bilevel
program constrained by an LP (Bracken and McGill, 1973),
which is equivalent to an NP-hard mixed-integer program
(Ben-Ayed & Blair, 1990) that cannot be effectively solved
via first-order methods.

3. Challenges
In this section, we will discuss the difficulties in computing
the first-order gradient of Problem (1), which reads

∂l(x,y∗)

∂x
= ∇xl(x,y

∗) +
∂y∗

∂x
· ∇yl(x,y

∗). (5)

To obtain this gradient, we need to solve and differentiate
through the lower-level VI problem.

Given any x ∈ X, we denote the solution set to the lower-
level VI problem in Problem (1) as Y∗(x). We first give the
following proposition for characterizing Y∗(x).

Proposition 3.1 (Hartman, Stampacchia, et al. (1966)). Sup-
pose that Y is closed. Let h : X×Y → Y be a function that
satisfies

h(x,y) = argmin
y′∈Y

∥y′ − r · f(x,y)∥22. (6)

Then given any x ∈ X, we have y∗ ∈ Y∗(x) if and only if
y∗ is a fixed point of h(x, ·), i.e., y∗ = h(x,y∗).

To solve Y∗(x), Proposition 3.1 has inspired a general class
of algorithms, commonly known as the projection method
Dafermos (1983); Pang and Chan (1982); Marcotte and Wu
(1995), which iteratively project yt to yt+1 = h(x;yt),
starting from some y0 ∈ Y, until a fixed point is found.

To differentiate through Y∗(x), however, the lower-level
VI problem must admit a unique solution; otherwise, the
Jacobian matrix ∂y∗/∂x is not well defined. To secure the
uniqueness, one often needs to assume f(x, ·) is strongly
monotone (Mancino and Stampacchia, 1972). Our work
follows many previous studies (Ghadimi and Wang, 2018;
Hong et al., 2020; Chen et al., 2021; Guo, Hu, Zhang, and

Yang, 2021; Ji, Yang, and Liang, 2021; Liu et al., 2022) to
adopt this assumption, but we will discuss how to relax it in
the appendix. The following proposition characterizes the
convergence rate of the projection method when f(x, ·) is
strongly monotone.

Proposition 3.2 (Nagurney (2013)). Suppose that f(x, ·)
is γ-strongly monotone and L-Lipschitz continuous, then

∥h(x,y)− h(x,y′)∥2 ≤ η · ∥y − y′∥2 (7)

for all y,y′ ∈ Y, where η = (1 − 2γr/σ + r2L2/σ2)1/2.
Hence, starting from any y0 ∈ Y, then the sequence yt+1 =
h(x,yt) converges to the unique point y∗ ∈ Y∗(x) at a
linear rate as long as the step size r < 2γ/L2.

In the remainder of this section, we will discuss the cal-
culation of ∂y∗/∂x, which is the main obstacle behind
implementing any first-order methods.

3.1. Implicit Differentiation (ID) Methods

The first method to calculate ∂y∗/∂x is to implicitly dif-
ferentiate through the fixed-point equation y∗ = h(x,y∗),
which subsequently gives rise to the following proposition.

Proposition 3.3 (Dafermos (1988)). If h(x,y) is continu-
ously differentiable and f(x, ·) is strongly monotone, then
the unique y∗ ∈ Y∗(x) is continuously differentiable in x
with the Jacobian matrix satisfying

∂y∗

∂x
= ∇xh(x,y

∗) · (I −∇yh(x,y
∗))−1. (8)

To calculate ∂y∗/∂x according to Equation (8), one first
needs to obtain ∇xh(x,y

∗) and ∇yh(x,y
∗), that is, dif-

ferentiating through a Euclidean projection problem, equiv-
alent to a quadratic program (QP). One way to perform it
is using the Python package cvxpylayers developed by
Agrawal, Amos, Barratt, Boyd, Diamond, and Kolter (2019).
The computational cost of implicit differentiation (ID) is
high because it requires solving the lower-level VI problem
and inverting a matrix that can be prohibitively large.

Single-looped ID. To prevent repeatedly solving for y∗, one
could update both x and y by one gradient-descent step at
each iteration in a single loop. In such schemes, instead
of calculating the exact upper-level gradient via Equations
(5) and (8), we replace y∗ therein by the current iteration.
The scheme was initially proposed by Hong et al. (2020);
Chen et al. (2021) and later extended to Problem (1) by
Liu et al. (2022). The single-loop scheme simplifies the
overall structure of ID-based methods but does not bypass
the difficulty of inverting large matrices.

Approximated ID. To prevent matrix inversion in (8), one
can represent its inversion by the corresponding Neumann
series and then truncate the series by keeping only its first

4

Achieving Hierarchy-Free Approximation for Bilevel Programs With Equilibrium Constraints

few terms (Liao et al., 2018; Grazzi et al., 2020; Vicol
et al., 2021). The Jacobian-free scheme proposed by Fung
et al. (2022) can also be interpreted through Neumann-series
truncation. The scheme significantly reduces the time com-
plexity but requires storing ∇yh(x,y

∗).

There are other schemes designed to improve ID. For exam-
ple, Bertrand, Klopfenstein, Blondel, Vaiter, Gramfort, and
Salmon (2020) developed a matrix-free ID scheme for lasso-
type problems; Blondel, Berthet, Cuturi, Frostig, Hoyer,
Llinares-López, Pedregosa, and Vert (2021) developed a
toolbox combining ID and AD benefits; Sow, Ji, and Liang
(2022) proposed a method that adopts a zeroth-order-like
estimator to approximate the Jacobian matrix.

3.2. Automatic Differentiation Methods

The second method to compute ∂y∗/∂x is to unroll the
computation process for solving the lower-level VI problem
via AD (Franceschi et al., 2017; 2018). For example, if the
projection method is adopted, the computation process can
be written as

yt = h(x,yt−1), t = 1, . . . , T, (9)

where T is a sufficiently large number such that the dis-
tance between yT and Y∗(x) is smaller than a tolerance
value. The aforementioned cvxpylayers proposed by
Agrawal et al. (2019) package can be employed to wrap
the computation process behind each yt = h(x,yt−1) as a
computational graph.

Since the computational graph grows with the number of
iterations required to solve the lower-level equilibrium prob-
lem, it may become too deep to unroll efficiently even with
AD, when solving the equilibrium problem requires too
many iterations. Particularly for Problem (1), h(x,yt−1) is
equivalent to a constrained QP, which is more costly to store
than in most ML applications, whose lower-level problem
is typically unconstrained.

Truncated AD. The difficulty in storing a large computa-
tional graph may be bypassed by truncated AD, which, by
only unrolling the last portion of the graph, settles for an
approximate gradient (Shaban et al., 2019).

One-stage AD. Another approximation scheme is called
one-stage AD, which updates x and y simultaneously in a
single loop. Specifically, whenever y in the lower level is
updated by one step, one-stage AD unrolls it to obtain the
gradient for updating x in the upper level. The scheme has
delivered satisfactory performance on many tasks (Luketina
et al., 2016; Metz et al., 2016; Finn et al., 2017; Liu et al.,
2018; Xu, Xie, Zhang, Chen, Qi, Tian, and Xiong, 2019).
The method proposed by Li et al. (2022a) also shares a
similar single-loop structure.

The performance of the above approximation schemes has

been extensively tested (Franceschi et al., 2018; Wu, Ren,
Liao, and Grosse, 2018). Ablin et al. (2020) discussed the
efficiency of AD; Ji et al. (2021) analyzed the convergence
rate of AD and approximated ID; Yang et al. (2021) and
Dagréou, Ablin, Vaiter, and Moreau (2022) studied variance
reduction in AD-based methods. For other bilevel program-
ming algorithms for ML applications, see, e.g.,Pedregosa
(2016); Lorraine and Duvenaud (2018); MacKay, Vicol,
Lorraine, Duvenaud, and Grosse (2019); Bae and Grosse
(2020); Ji et al. (2021); Grazzi, Pontil, and Salzo (2021);
Zucchet and Sacramento (2022). The reader may also con-
sult Liu, Gao, Zhang, Meng, and Lin (2021) for a survey.

Our scheme. A main difference between our scheme and
the previous works is that we do not attempt to approximate
the Jacobian matrix ∂y∗/∂x returned by exact ID or AD.
Instead, we directly approximate the original bilevel pro-
gram with two hierarchy-free models inspired by the classic
economic competition theory; to the best of our knowledge,
this angle is novel, even though the resulting algorithms
do share some features with existing ID- and AD-based
methods, as we shall see.

4. Motivation
We first discuss how the Stackelberg duopoly model (cf.
Example 2.3) can be bounded by single-level models.

4.1. Classic Models

We first introduce the market structures of classic Cournot
duopoly and monopoly models based on Example 2.3.

Cournot duopoly. Firm A loses its first-mover advantage
and has to make decisions simultaneously with Firm B. The
optimal decisions x̄ and ȳ of the two firms can be found by
solving the following equilibrium problem

x̄ = argmax
x≥0

l(x, ȳ),

ȳ = argmax
y≥0

g(x̄, y).
(10)

The optimal solution is x̄ = 1/3 and ȳ = 1/3, with Firm A
earning an optimal profit of 1/9.

Monopoly. Firm B is taken over by Firm A. To find the
optimal production levels x̂ and ŷ, we need to solve the
following optimization problem

x̂, ŷ = argmax
x,y≥0

l(x, y). (11)

The optimal solution is x̂ = 1/2 and ŷ = 0, and the optimal
profit of Firm A rises to 1/4.

Comparision. Intuitively, when the leader gives up the
first-mover advantage, its market power is weakened; on
the contrary, when the leader takes over Firm B’s business,

5

Achieving Hierarchy-Free Approximation for Bilevel Programs With Equilibrium Constraints

its market power is maximized. Indeed, comparing the
optimal profits of Firm A, we have 1/4 > 1/8 > 1/9,
which indicates that a Stackelberg duopoly is bounded by
a monopoly from above and by a Cournot duopoly from
below.

4.2. Our Models

Our focus is to narrow the gap between the upper and lower
bounds. To this end, we “decompose” the best response of
Firm B against Firm A’s decision into a dynamical process.
Since Firm B faces a constrained optimization problem,
the projected gradient descent method charts a natural path
to optimality. Specifically, given x and a step size r >
0, the dynamical process through which Firm B finds its
optimal decision can be described by a gradient-descent
step, represented by

h(x, y) = max{y + r · (1− x− 2y), 0}.

Starting with h(0)(x, y) := y, thus, h(t+1)(x, y) can be
defined recursively as h(x, h(t)(x, y)) (t = 0, 1, . . .).

We are now ready to introduce the T -step Cournot duopoly
model and the T -step monopoly model.

T -step Cournot duopoly. Firm A and Firm B still choose
x and y simultaneously, but Firm A bases its decision on
the expectation that Firm B will update its decision T times
given x, i.e., from y to h(T)(x, y). Therefore, the optimal
decisions x̄ and ȳ can be found by solving

x̄ = argmax
x≥0

l(x, h(T)(x, ȳ)),

ȳ = argmax
y≥0

g(x̄, y).
(12)

T -step monopoly. Firm A imposes a decision y on Firm
B but allows Firm B to update its decision T steps starting
from y. To find the optimal decision x̂ and ŷ (ŷ refers to the
production of Firm B initially dictated by Firm A), we need
to solve

x̂, ŷ = argmax
x,y≥0

l(x, h(T)(x, ȳ)). (13)

The question we set out to answer is the following: will
Firm A’s optimal profit in the two new models be closer to
that in the Stackelberg duopoly? Intuitively, the answer is
yes, because the T -step Cournot duopoly interpolates “no
anticipation” and “full anticipation” on Firm B’s response,
whereas the T -step duopoly interpolates “full dictation” and
“no dictation” on Firm B’s decision. Hence, the market
power of Firm A will rise and fall, respectively, in T -step
monopoly and T -step Cournot, leading to an optimal profit
closer to that in the Stackelberg duopoly.

A key observation. From the formulations, we find the two
proposed models can be respectively viewed as a classic

Cournot duopoly and a classic monopoly, with Firm A’s
objective function changed from l(x, y) to l(T)(x, y) :=
l(x, h(T)(x, y)). Based on this observation, we are now
ready to approximate Problem (1) with the two models.

5. Main Results
We view Problem (1) as a Stackelberg game and refer to
the upper- and lower-level decision-makers therein as the
leader and the followers, respectively. To extend the two
models presented in Section 4, we first need a function to
model the process through which the followers iteratively
update their decisions towards equilibrium. As the lower
level is a VI, the function h(x,y) defined by Equation (6)
is a natural choice. Similarly, starting with h(0)(x,y) := y,
we can recursively define h(t+1)(x,y) = h(x, h(t)(x,y))
and l(T)(x,y) = l(x, h(T)(x,y)).

T -step Cournot game. The leader and the followers choose
x ∈ X and y ∈ Y simultaneously, but the leader looks
ahead T steps along the followers’ evolutionary path. The
equilibrium state (x̄, ȳ) thus can be found by solvingx̄ ∈ argmin

x∈X
l(T)(x, ȳ),

ȳ ∈ Y∗(x̄).
(14)

It is a Nash-equilibrium problem: no follower has an in-
centive to change their decisions because ȳ ∈ Y∗(x̄); the
leader also cannot further reduce l(T)(x, ȳ) given ȳ.

T -step monopoly model. The leader dictates a decision
y ∈ Y for the followers but allows them to update their
decisions T steps based on y ∈ Y. To find the optimal
decision x̂ and ŷ, we need to solve

x̂, ŷ ∈ argmin
x∈X,y∈Y.

l(T)(x,y). (15)

It is a single-level optimization problem with the leader’s
and the followers’ decisions optimized altogether.

5.1. Optimality gaps

We first give the following proposition, which holds true
regardless of the form of h(x,y) or the properties of f(x, ·).
Proposition 5.1. Suppose that the function h : X → Y
used for formulating Problems (14) and (15) satisfies the
following condition

lim
t→∞

h(t)(x,y) ∈ Y∗(x), ∀x ∈ X, y ∈ Y. (16)

Then given any (x̄, ȳ) and (x̂, ŷ) that solve Problems (14)
and (15), respectively, and (x∗,y∗) that solves Problem (1),
we have l(T)(x̂, ŷ) ≤ l(x∗,y∗) ≤ l(T)(x̄, ȳ).

Proof. See Appendix A.2 for the proof.

6

Achieving Hierarchy-Free Approximation for Bilevel Programs With Equilibrium Constraints

The following assumptions are needed in our analysis.
Assumption 5.2. The set X is closed and convex; l(x,y) is
twice continuously differentiable; we have ∥∇xl(x,y)∥2 ≤
Gx, ∥∇yl(x,y)∥2 ≤ Gy, ∥∇xyl(x,y)∥2 ≤ Gxy, and
∥∇yyl(x,y)∥2 ≤ Gyy for all x ∈ X and y ∈ Y.
Assumption 5.3. The set Y is closed and convex; f(x,y)
is continuously differentiable; there exists γ > 0 such that
f(x, ·) is γ-strongly monotone for all x ∈ X; we have
∥∇yf(x,y)∥2 ≤ Ly and ∥∇xf(x,y)∥2 ≤ Lx for all x ∈
X and y ∈ Y.
Assumption 5.4. The function h(x,y) is twice continu-
ously differentiable; the intrinsic parameter r < 2γ/L2

y; we
have ∥∇xh(x,y)∥2 ≤ Hx, ∥∇xyh(x,y)∥2 ≤ Hxy, and
∥∇yyh(x,y)∥2 ≤ Hyy for all x ∈ X and y ∈ Y.

Assumptions 5.2 and 5.3 are similar to those adopted by
Ghadimi & Wang (2018) and Hong et al. (2020) with one
notable difference: they require strong convexity in the
lower-level optimization problem whereas we require strong
monotonicity in the VI. According to Hiriart-Urruty (1982),
h(x,y) is differentiable as long as the boundary of Y is
smooth; without this condition, h(x,y) is still almost every-
where differentiable (Rademacher, 1919). Under Assump-
tions 5.3 and 5.4, Proposition 3.2 ensures Condition (16)
be satisfied. Also, according to Proposition 3.3, a differen-
tiable implicit function y∗(x) that maps x to Y∗(x) can be
defined. The objective function of Problem (1) then can be
rewritten as l∗(x) = l(x, y∗(x)). Under these assumptions,
Example 2.1 gives the VI formulation of the two models.
Proposition 5.5. Suppose that (x̄, ȳ) solves the T -step
Cournot game (14), then for all (x,y) ∈ X× Y, we have

⟨∇xl
(T)(x̄, ȳ),x− x̄⟩+ ⟨f(x̄, ȳ),y − ȳ⟩ ≥ 0. (17)

The converse also holds if l(T)(x,y) is convex in x.
Proposition 5.6. Suppose that (x̂, ŷ) solves the T -step
monopoly model (15), then for all (x,y) ∈ X×Y, we have

⟨∇xl
(T)(x̂, ŷ),x− x̂⟩+ ⟨∇yl(x̂, ŷ),y − ŷ⟩ ≥ 0. (18)

The converse also holds if l(T)(x,y) is convex in (x,y).

Next, we will confirm T -step Cournot games and monopoly
models respectively provide an upper and a lower bound to
Problem (1). More importantly, we will prove that the gap
between the bounds provided by the two models converges
to 0 at a fast rate as T increases, which implies that a small
T would make a good approximation.
Theorem 5.7. Under Assumptions 5.2-5.4, suppose that
l∗(x) is µ-strongly convex on X and denote x∗ as the unique
minimizer of l∗(x) on X. We write η = 1 − 2γr + r2L2

y,
Gl = Gx + LxGy and, without loss of generality, assume
µ = 1 and γ = 1. For any (x̄, ȳ) that solves Problem (14),
denoting δ̄T = l(T)(x̄, ȳ)− l∗(x∗), we then have

0 ≤ δ̄T ≤ Gl ·GyLx · ηT/2. (19)

Further assuming dmax = diam (Y) < ∞, given any (x̂, ŷ)
that solves the Problem (15), denoting δ̂T = l∗(x∗) −
l(T)(x̂, ŷ), we then have

0 ≤ δ̂T ≤ M ·Gl · ηT/2

+Gydmax · (1 +Hxy + LxHyy) · (T + 1) · ηT/2,
(20)

where M = 2GyLx +Gxydmax + 2LxGyydmax +GyHx.

Proof. Proposition 5.1 directly guarantees δ̄T ≥ 0 and
δ̂T ≥ 0; the remaining proof is given in Appendix A.2.

Based on Theorem 5.7, we may develop the following
simple procedure to obtain an approximated feasible so-
lution to Problem (1). (1) Select an appropriate T ∈ N.
(2) Solve the two VI problems (17) and (18) to obtain
(x̄, ȳ) and (x̄, ȳ), respectively, and then calculate δT =
l(T)(x̄, ȳ) − l(T)(x̂, ŷ). (3) If δT is small enough, accept
(x̄, ȳ) as an approximated feasible solution; otherwise, in-
crease T and return to Step (2). We expect the above pro-
cedure to converge quickly, as Theorem 5.7 guarantees the
gap decreases at an exponential rate as T increases.

5.2. Solution algorithms

The two VI problems, (17) and (18), can be solved using
the projection method, see Algorithms 1 and 2 respectively,
for the pseudocodes.

Algorithm 1 Solving T -step Cournot game. Input: x0 ∈ X,
y0 ∈ Y, step size α. Output: x̄ ∈ X and ȳ ∈ Y.

1: for t = 0, 1, . . . do
2: Calculate lx = ∇xl

(T)(xt,yt).
3: Set xt+1 = argmin

x∈X
α · ⟨lx,x− xt⟩+ ∥x− xt∥2.

4: Set yt+1 = h(T)(xt,yt).
5: After convergence, break and return (x̄, ȳ) = (xt,yt).
6: end for

Algorithm 2 Solving T -step monopoly model. Input: x0 ∈ X,
y0 ∈ Y, step sizes α and β. Output: x̂ ∈ X and ŷ ∈ Y.

1: for t = 0, 1, . . . do
2: Calculate lx = ∇xl

(T)(xt,yt) and ly = ∇yl
(T)(xt,yt).

3: Set xt+1 = argmin
x∈X

α · ⟨lx,x− xt⟩+ ∥x− xt∥2.

4: Set yt+1 = argmin
y∈Y

β · ⟨ly,y − yt⟩+ ∥y − yt∥2.

5: After convergence, break and return (x̂, ŷ) = (xt,yt).
6: end for

In the two algorithms, the leader and the followers evolve to-
gether, meaning they each update strategies simultaneously
in every step of a shared evolution process. Hence, they
break the bilevel hierarchy and turn the solution process into
a single loop. At each iteration of that single loop, we need

7

Achieving Hierarchy-Free Approximation for Bilevel Programs With Equilibrium Constraints

to calculate the gradients of l(T)(x,y) = l(x, h(T)(x,y)),
which has an explicit expression. Hence, we may directly
calculate its gradient via AD. To this end, we first need
to feed the function h(x,y) as a differentiable layer into
differentiable-programming frameworks, e.g., TensorFlow
(Abadi, Agarwal, Barham, Brevdo, Chen, Citro, Corrado,
Davis, Dean, Devin, et al., 2016) or PyTorch (Paszke, Gross,
Massa, Lerer, Bradbury, Chanan, Killeen, Lin, Gimelshein,
Antiga, et al., 2019). As discussed earlier, using the package
cvxpylayers to code h(x,y) is always an option. In
many cases, however, h(x,y) can be directly coded as a dif-
ferentiable program built by elementary operations only (no
differentiable optimization solver is involved). In such cases,
AD guarantees the complexity of calculating the gradient
of l(T)(x,y) can be tightly bounded by that of calculating
l(T)(x,y) itself. We refer the readers to Appendix B.1 for
more details.

Summary. To summarize, our main result is that Problem
(1) can be tightly and efficiently bounded by two easier prob-
lems, which can be solved by AD-based first-order methods.
The proposed approximation scheme thus promises to sig-
nificantly reduce the computational overhead for obtaining
high-quality local solutions to Problem (1).

Comparison. The proposed framework bridges two gen-
eral classes of schemes for approximating bilevel programs
proposed under different contexts. The first class includes
several classic heuristics for solving Stackelberg congestion
games (SCGs) (see Section 2.2) dated back to the 1970s.
For example, Dantzig, Harvey, Lansdowne, Robinson, and
Maier (1979) proposed to solve an SCG by assuming the
followers work cooperatively with the leader to achieve the
system-optimal state, which essentially turns the leader into
a “dictator”. Another is Tan, Gershwin, and Athans (1979)’s
algorithm that finds the best response of the leader and fol-
lowers iteratively while holding each other’s decisions as
a fixed input so that the leader and the followers are com-
peting “à la Cournot”. Our scheme extends the behavior
assumptions underlying these two.

The second class is AD-based approximation schemes. The
proposed algorithms are similar to one-stage AD (see Sec-
tion 3.2) that are originally motivated by ML applications,
e.g., neural architecture search (Liu et al., 2018). One-stage
AD and our algorithm are structurally similar; the difference
lies in how the lower-level solution (the followers’ decision)
is updated. In our scheme, the follower may move T steps
according to either their own interest (T -step Cournot) or
the leader’s mandate (T -step monopoly). The former may
be viewed as a natural extension of one-stage AD; the latter,
however, represents a novel behavior interpretation. With
this interpretation, our scheme yields adjustable upper and
lower bounds on the original problem.

By bringing together the two classes of approximation

schemes motivated by different applications from differ-
ent disciplines, our work provides new insights for both. On
the one hand, it shows that classical game-theoretic approx-
imations for bilevel programs can be substantially refined
with modest computational efforts, using ideas borrowed
from the ML community. On the one hand, it provides a
theoretical justification to AD-based methods from the lens
of game theory.

Extensions. We leave the discussion of several extensions
to the appendix. In Appendix B.2, we discuss other choices
of the form of h(x,y) to formulate two proposed models.
In Appendix B.3, we discuss how to search for the global
solution efficiently when the global convexity assumption on
l∗(x) is relaxed. In Appendix B.4, we address the case when
the lower-level VI admits multiple solutions by developing
a heuristic based on Algorithms 1 and 2.

6. Numerical Examples
6.1. Stackelberg duopoly

To validate our analytical insights, we first test our frame-
work on the Stackelberg duopoly (cf. Example 2.3). We
solve the T -step Cournot duopoly (10) and the T -step
monopoly (11) via Algorithms 1 and 2, respectively, with
r = 0.4 and T = 0, . . . , 4. Firm A’s profits are then re-
ported in Table 1, which indicates that, as T increases, Firm
A’s optimal profit generated by either new model quickly
converges to that by the Stackelberg duopoly. The decreas-
ing rate also meets the expectation set by Theorem 5.7.

Table 1. Firm A’s profit in T -step Cournot duopoly and T -step
monopoly models with different T s.

T 0 1 2 3 4

T -step Cournot 0.111 0.124 0.125 0.125 0.125
T -step monopoly 0.250 0.150 0.130 0.126 0.125

6.2. Bilevel optimization

We then consider a bilevel program of the following form

min
a+x≥0

∥x∥2 + ⟨DT(a+ x+ b · v),w · y∗⟩,

s.t. x4 = 0, v = Dy,

y∗ ∈ argmin
y≥0, 1Ty=1

⟨1T, (a+ x) · v +
1

2
· b · v2⟩,

(21)

where x ∈ R4, y ∈ R4, w = [2, 1.1, 0.9, 0.01]T, b =
[15, 2, 8, 5]T, a = [2, 3, 4, 5]T, D = [e1+e3, e2+e4, e1+
e4, e2 + e3]. Thus, the lower level is a convex but not
strongly convex optimization, whose optimal solution set
is a non-singleton. We first run Algorithm 1 and 2 for

8

Achieving Hierarchy-Free Approximation for Bilevel Programs With Equilibrium Constraints

T = 0, . . . , 5. At each round, x0 is randomly sampled from
a Gaussian distribution while y0 is first randomly sampled
from a uniform distribution and then re-weighted to fit the
constraint. The result (see Figure 1) shows the boxplot of the
objective values reached from different initial points. It ver-
ifies our conclusions that T -step Cournot games may have
multiple solutions with different objective values, while
T -step monopoly models always have a unique optimal
objective value.

0 1 2 3 4 5
6

8

10

12
(a) Cournot Model

0 1 2 3 4 5
0

2

4

6
(b) Monopoly Model

T: Number of Steps

Ob
je

ct
iv

e
Va

lu
e

Figure 1. Comparison between Algorithm 1 and 2 starting from
different initial points.

We then compare two initialization strategies. (a) Fixed
initialization strategy: we follow the procedure devised
at the end of Section 5.2; the initial solutions are set as
x0 = [0, 0, 0, 0]T and y0 = [0.4, 0.3, 0.2, 0.1] whenever
Algorithms 1 and 2 are invoked. (b) Adaptive initializa-
tion strategy: we directly run Algorithm 3 with x0 =
[0, 0, 0, 0]T and y0 = [0.4, 0.3, 0.2, 0.1] as the initial in-
put. When testing both strategies, we gradually increase
T as 0, 1, 2, 3, 4, 5, 7, 10, 20, 30, 40, 50, 60, 70. The result
(see Figure 2) shows that when using the fixed-initialization
strategy, the gap between upper and lower bounds is still
non-eligible when T = 70. On the contrary, when using
the adaptive-initialization strategy, a near-optimal feasible
is found when T is only 1 because the previous monopoly
model identifies a neighborhood of the “optimistic” solution.
The gap between the two models then gradually decreases
to 0, eventually settling down at the exact optimal solution.

0 10 20 30 40 50 60 70
0.0

2.5

5.0

7.5

10.0

12.5
(a) Fixed Initialization

Cournot
Monopoly

0 10 20 30 40 50 60 70
0.0

2.5

5.0

7.5

10.0

12.5
(b) Adaptive Initialization

Cournot
Monopoly

Ob
je

ct
iv

e
Va

lu
e

T: Number of Steps

Figure 2. Comparison between fixed- and adaptive-initialization
strategies (Algorithm 3).

Additional experiments. Due to space limitations, the
results of other experiments are reported in Appendix C.
These additional experiments are designed to test the pro-
posed scheme on larger and harder problems that arise from

diverse applications and to compare it against benchmark
bilevel algorithms.

7. Conclusion
It is well known that non-cooperative games may lead to
inefficient outcomes. Caused by the lack of cooperation
between self-interested agents, this loss of efficiency — also
known as the price of anarchy — is best illustrated by the
Braess paradox (Braess, 1968) in transportation. Neverthe-
less, Roughgarden & Tardos (2002) proves that the total
travel time experienced by travelers at user equilibrium
(UE) is tightly bounded from the above by that achieved
when they are fully cooperative, a state called system op-
timum (SO). Evidently, the UE state corresponds to the
outcome of a Cournot game because everyone competes
equally, whereas the SO state can be brought about only
if the choices of all travelers are monopolized. The find-
ing in this paper indicates that the gap between “Cournot”
and “monopolized” states can not only be bounded but also
be narrowed by simultaneously giving the leader a limited
ability of anticipation in the Cournot game and the follow-
ers limited “freedom” to pursue their own interests in the
monopoly model. Moreover, given the right conditions, they
both can converge to the outcome of a Stackelberg game,
where a compromise is arranged: the leader cannot dictate
the followers’ choice but can influence it indirectly; the
followers enjoy the freedom of choice but must heed the
leader’s guidance.

The models proposed as approximations of the Stackelberg
game (bilevel program) are solved by AD-based methods.
This connects our work to many bilevel programming al-
gorithms developed in the ML literature (Liu et al., 2021).
Our theoretical results help answer a question that has been
extensively debated recently: when and why can AD-based
approximation schemes deliver satisfactory solutions? Our
work contributes to this debate by revealing that — besides
the power of AD itself (Ablin et al., 2020) — the underlying
game-theoretic structure plays an important role in shaping
the power of these methods. We hope this finding will in-
spire more interdisciplinary works across the domains that
count bilevel programming in their toolbox.

Acknowledgements
This research is funded by US National Science Founda-
tion’s Civil Infrastructure System (CIS) Program under
the award CMMI #2225087 and Energy, Power, Control,
and Networks (EPCN) Program under the award ECCS
#2048075. The authors are grateful for the data offered by
Ms. Qianni Wang at Northwestern University.

9

Achieving Hierarchy-Free Approximation for Bilevel Programs With Equilibrium Constraints

References
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z.,

Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin,
M., et al. Tensorflow: Large-scale machine learning
on heterogeneous distributed systems. arXiv preprint
arXiv:1603.04467, 2016.

Ablin, P., Peyré, G., and Moreau, T. Super-efficiency of
automatic differentiation for functions defined as a mini-
mum. In International Conference on Machine Learning,
pp. 32–41. PMLR, 2020.

Agrawal, A., Amos, B., Barratt, S., Boyd, S., Diamond,
S., and Kolter, J. Z. Differentiable convex optimization
layers. In Advances in Neural Information Processing
Systems, pp. 9558–9570, 2019.

Aiyoshi, E. and Shimizu, K. A solution method for the static
constrained Stackelberg problem via penalty method.
IEEE Transactions on Automatic Control, 29(12):1111–
1114, 1984.

Bae, J. and Grosse, R. B. Delta-stn: Efficient bilevel opti-
mization for neural networks using structured response
Jacobians. Advances in Neural Information Processing
Systems, 33:21725–21737, 2020.

Bahrami, S. and Roorda, M. J. Optimal traffic management
policies for mixed human and automated traffic flows.
Transportation Research Part A: Policy and Practice,
135:130–143, 2020.

Bard, J. F. and Falk, J. E. An explicit solution to the multi-
level programming problem. Computers & Operations
Research, 9(1):77–100, 1982.

Beck, A. and Teboulle, M. Mirror descent and nonlinear
projected subgradient methods for convex optimization.
Operations Research Letters, 31(3):167–175, 2003.

Ben-Ayed, O. and Blair, C. E. Computational difficulties of
bilevel linear programming. Operations Research, 38(3):
556–560, 1990.

Bernhard, P. ESS, population games, replicator dynamics:
dynamics and games if not dynamic games. In Advances
in Dynamic Games, pp. 291–311. Springer, 2011.

Bertrand, Q., Klopfenstein, Q., Blondel, M., Vaiter, S.,
Gramfort, A., and Salmon, J. Implicit differentiation
of lasso-type models for hyperparameter optimization.
In International Conference on Machine Learning, pp.
810–821. PMLR, 2020.

Bialas, W., Karwan, M., and Shaw, J. A parametric comple-
mentary pivot approach for two-level linear programming.
State University of New York at Buffalo, 57, 1980.

Blondel, M., Berthet, Q., Cuturi, M., Frostig, R., Hoyer,
S., Llinares-López, F., Pedregosa, F., and Vert, J.-P. Effi-
cient and modular implicit differentiation. arXiv preprint
arXiv:2105.15183, 2021.

Boyle, J. P. and Dykstra, R. L. A method for finding projec-
tions onto the intersection of convex sets in hilbert spaces.
In Advances in order restricted statistical inference, pp.
28–47. Springer, 1986.

Bracken, J. and McGill, J. T. Mathematical programs with
optimization problems in the constraints. Operations
Research, 21(1):37–44, 1973.

Braess, D. Über ein paradoxon aus der verkehrsplanung.
Unternehmensforschung, 12(1):258–268, 1968.

Candler, W. and Townsley, R. A linear two-level program-
ming problem. Computers & Operations Research, 9(1):
59–76, 1982.

Chen, T., Sun, Y., and Yin, W. A single-timescale
stochastic bilevel optimization method. arXiv preprint
arXiv:2102.04671, 2021.

Chen, Z., He, F., Zhang, L., and Yin, Y. Optimal deployment
of autonomous vehicle lanes with endogenous market
penetration. Transportation Research Part C: Emerging
Technologies, 72:143–156, 2016.

Chen, Z., He, F., Yin, Y., and Du, Y. Optimal design of
autonomous vehicle zones in transportation networks.
Transportation Research Part B: Methodological, 99:44–
61, 2017.

Colson, B., Marcotte, P., and Savard, G. An overview of
bilevel optimization. Annals of operations research, 153
(1):235–256, 2007.

Dafermos, S. An iterative scheme for variational inequali-
ties. Mathematical Programming, 26(1):40–47, 1983.

Dafermos, S. Sensitivity analysis in variational inequali-
ties. Mathematics of Operations Research, 13(3):421–
434, 1988.

Dafermos, S. C. Toll patterns for multiclass-user transporta-
tion networks. Transportation science, 7(3):211–223,
1973.

Dagréou, M., Ablin, P., Vaiter, S., and Moreau, T. A frame-
work for bilevel optimization that enables stochastic and
global variance reduction algorithms. arXiv preprint
arXiv:2201.13409, 2022.

Dantzig, G. B., Harvey, R. P., Lansdowne, Z. F., Robinson,
D. W., and Maier, S. F. Formulating and solving the net-
work design problem by decomposition. Transportation
Research Part B: Methodological, 13(1):5–17, 1979.

10

Achieving Hierarchy-Free Approximation for Bilevel Programs With Equilibrium Constraints

Ehtamo, H., Kitti, M., and Hämäläinen, R. P. Recent studies
on incentive design problems in game theory and man-
agement science. In Optimal Control and Differential
Games, pp. 121–134. Springer, 2002.

Finn, C., Abbeel, P., and Levine, S. Model-agnostic meta-
learning for fast adaptation of deep networks. In Interna-
tional Conference on Machine Learning, pp. 1126–1135.
PMLR, 2017.

Franceschi, L., Donini, M., Frasconi, P., and Pontil, M.
Forward and reverse gradient-based hyperparameter opti-
mization. In International Conference on Machine Learn-
ing, pp. 1165–1173. PMLR, 2017.

Franceschi, L., Frasconi, P., Salzo, S., Grazzi, R., and Pontil,
M. Bilevel programming for hyperparameter optimiza-
tion and meta-learning. In International Conference on
Machine Learning, pp. 1568–1577. PMLR, 2018.

Friesz, T. L., Tobin, R. L., Cho, H.-J., and Mehta, N. J.
Sensitivity analysis based heuristic algorithms for mathe-
matical programs with variational inequality constraints.
Mathematical Programming, 48(1-3):265–284, 1990.

Fung, S. W., Heaton, H., Li, Q., McKenzie, D., Osher,
S., and Yin, W. Jfb: Jacobian-free backpropagation for
implicit networks. In Proceedings of the AAAI Conference
on Artificial Intelligence, 2022.

Ghadimi, S. and Wang, M. Approximation methods for
bilevel programming. arXiv preprint arXiv:1802.02246,
2018.

Grazzi, R., Franceschi, L., Pontil, M., and Salzo, S. On
the iteration complexity of hypergradient computation.
In International Conference on Machine Learning, pp.
3748–3758. PMLR, 2020.

Grazzi, R., Pontil, M., and Salzo, S. Convergence properties
of stochastic hypergradients. In International Conference
on Artificial Intelligence and Statistics, pp. 3826–3834.
PMLR, 2021.

Griewank, A. et al. On automatic differentiation. Mathemat-
ical Programming: recent developments and applications,
6(6):83–107, 1989.

Guo, Z., Hu, Q., Zhang, L., and Yang, T. Random-
ized stochastic variance-reduced methods for multi-
task stochastic bilevel optimization. arXiv preprint
arXiv:2105.02266, 2021.

Hartman, P., Stampacchia, G., et al. On some non-linear el-
liptic differential-functional equations. Acta mathematica,
115:271–310, 1966.

Hiriart-Urruty, J.-B. At what points is the projection
mapping differentiable? The American Mathematical
Monthly, 89(7):456–458, 1982.

Hong, M., Wai, H.-T., Wang, Z., and Yang, Z. A two-
timescale framework for bilevel optimization: Complex-
ity analysis and application to actor-critic. arXiv preprint
arXiv:2007.05170, 2020.

Ji, K., Yang, J., and Liang, Y. Bilevel optimization: Con-
vergence analysis and enhanced design. In Interna-
tional Conference on Machine Learning, pp. 4882–4892.
PMLR, 2021.

Labbé, M., Marcotte, P., and Savard, G. A bilevel model of
taxation and its application to optimal highway pricing.
Management science, 44(12-part-1):1608–1622, 1998.

Lawphongpanich, S. and Hearn, D. W. An mpec approach
to second-best toll pricing. Mathematical programming,
101(1):33–55, 2004.

LeBlanc, L. J. An algorithm for the discrete network design
problem. Transportation Science, 9(3):183–199, 1975.

Levin, M. W. and Boyles, S. D. A cell transmission model
for dynamic lane reversal with autonomous vehicles.
Transportation Research Part C: Emerging Technologies,
68:126–143, 2016.

Li, C., Yang, H., Zhu, D., and Meng, Q. A global optimiza-
tion method for continuous network design problems.
Transportation Research Part B: Methodological, 46(9):
1144–1158, 2012.

Li, J., Yu, J., Nie, Y. M., and Wang, Z. End-to-end learning
and intervention in games. Advances in Neural Informa-
tion Processing Systems, 33, 2020.

Li, J., Gu, B., and Huang, H. A fully single loop algo-
rithm for bilevel optimization without Hessian inverse. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, 2022a.

Li, J., Yu, J., Wang, Q., Liu, B., Wang, Z., and Nie, Y. M.
Differentiable bilevel programming for Stackelberg con-
gestion games. arXiv preprint arXiv:2209.07618, 2022b.

Li, W., Kockelman, K. M., and Huang, Y. Traffic and
welfare impacts of credit-based congestion pricing appli-
cations: An Austin case study. Transportation Research
Record, 2675(1):10–24, 2021.

Liao, R., Xiong, Y., Fetaya, E., Zhang, L., Yoon, K., Pitkow,
X., Urtasun, R., and Zemel, R. Reviving and improving
recurrent back-propagation. In International Conference
on Machine Learning, pp. 3082–3091. PMLR, 2018.

11

Achieving Hierarchy-Free Approximation for Bilevel Programs With Equilibrium Constraints

Liu, B., Li, J., Yang, Z., Wai, H. T., Hong, M., Nie, Y.,
and Wang, Z. Inducing equilibria via incentives: Si-
multaneous design-and-play ensures global convergence.
In Advances in Neural Information Processing Systems,
2022.

Liu, H., Simonyan, K., and Yang, Y. Darts: Differentiable
architecture search. arXiv preprint arXiv:1806.09055,
2018.

Liu, R., Gao, J., Zhang, J., Meng, D., and Lin, Z. Investigat-
ing bi-level optimization for learning and vision from a
unified perspective: A survey and beyond. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
2021.

Loridan, P. and Morgan, J. Weak via strong Stackelberg
problem: new results. Journal of global Optimization, 8
(3):263–287, 1996.

Lorraine, J. and Duvenaud, D. Stochastic hyperparame-
ter optimization through hypernetworks. arXiv preprint
arXiv:1802.09419, 2018.

Luketina, J., Berglund, M., Greff, K., and Raiko, T. Scal-
able gradient-based tuning of continuous regularization
hyperparameters. In International conference on machine
learning, pp. 2952–2960. PMLR, 2016.

Luo, Z.-Q., Pang, J.-S., and Ralph, D. Mathematical pro-
grams with equilibrium constraints. Cambridge Univer-
sity Press, 1996.

MacKay, M., Vicol, P., Lorraine, J., Duvenaud, D., and
Grosse, R. Self-tuning networks: Bilevel optimization of
hyperparameters using structured best-response functions.
arXiv preprint arXiv:1903.03088, 2019.

Maclaurin, D., Duvenaud, D., and Adams, R. Gradient-
based hyperparameter optimization through reversible
learning. In International conference on machine learn-
ing, pp. 2113–2122. PMLR, 2015.

Maheshwari, C., Kulkarni, K., Wu, M., and Sastry, S. S.
Inducing social optimality in games via adaptive incentive
design. In 2022 IEEE 61st Conference on Decision and
Control (CDC), pp. 2864–2869. IEEE, 2022.

Mahmassani, H. S. 50th anniversary invited arti-
cle—autonomous vehicles and connected vehicle sys-
tems: Flow and operations considerations. Transporta-
tion Science, 50(4):1140–1162, 2016.

Mancino, O. and Stampacchia, G. Convex programming and
variational inequalities. Journal of Optimization Theory
and Applications, 9(1):3–23, 1972.

Marcotte, P. Network design problem with congestion ef-
fects: A case of bilevel programming. Mathematical
programming, 34(2):142–162, 1986.

Marcotte, P. and Marquis, G. Efficient implementation of
heuristics for the continuous network design problem.
Annals of Operations Research, 34(1):163–176, 1992.

Marcotte, P. and Wu, J. H. On the convergence of projec-
tion methods: application to the decomposition of affine
variational inequalities. Journal of Optimization Theory
and Applications, 85(2):347–362, 1995.

Mertikopoulos, P. and Zhou, Z. Learning in games with
continuous action sets and unknown payoff functions.
Mathematical Programming, 173(1-2):465–507, 2019.

Metz, L., Poole, B., Pfau, D., and Sohl-Dickstein, J. Un-
rolled generative adversarial networks. arXiv preprint
arXiv:1611.02163, 2016.

Mguni, D., Jennings, J., Sison, E., Valcarcel Macua, S.,
Ceppi, S., and Munoz de Cote, E. Coordinating the crowd:
Inducing desirable equilibria in non-cooperative systems.
In Proceedings of the 18th International Conference on
Autonomous Agents and MultiAgent Systems, pp. 386–
394, 2019.

Myerson, R. B. Optimal coordination mechanisms in gener-
alized principal–agent problems. Journal of mathematical
economics, 10(1):67–81, 1982.

Nagurney, A. Network economics: A variational inequal-
ity approach, volume 10. Springer Science & Business
Media, 2013.

Nash, J. Non-cooperative games. Annals of mathematics,
pp. 286–295, 1951.

Nemirovskij, A. S. and Yudin, D. B. Problem Complex-
ity and Method Efficiency in Optimization. A Wiley-
Interscience publication. Wiley, 1983.

Outrata, J., Kocvara, M., Zowe, J., and Zowe, J. Nonsmooth
Approach to Optimization Problems with Equilibrium
Constraints: Theory, Applications and Numerical Results,
volume 28. Springer Science & Business Media, 1998.

Pang, J.-S. and Chan, D. Iterative methods for variational
and complementarity problems. Mathematical program-
ming, 24(1):284–313, 1982.

Parise, F. and Ozdaglar, A. A variational inequality frame-
work for network games: Existence, uniqueness, conver-
gence and sensitivity analysis. Games and Economic
Behavior, 114:47–82, 2019.

12

Achieving Hierarchy-Free Approximation for Bilevel Programs With Equilibrium Constraints

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., et al. Pytorch: An imperative style, high-performance
deep learning library. Advances in neural information
processing systems, 32, 2019.

Pedregosa, F. Hyperparameter optimization with approxi-
mate gradient. In International conference on machine
learning, pp. 737–746. PMLR, 2016.

Pigou, A. C. The economics of welfare. Palgrave Macmillan,
1920.

Rademacher, H. Über partielle und totale differenzierbarkeit
von funktionen mehrerer variabeln und über die transfor-
mation der doppelintegrale. Mathematische Annalen, 79
(4):340–359, 1919.

Requate, T. Pollution control in a Cournot duopoly via taxes
or permits. Journal of Economics, 58(3):255–291, 1993.

Roughgarden, T. and Tardos, É. How bad is selfish routing?
Journal of the ACM, 49(2):236–259, 2002.

Schmeidler, D. Equilibrium points of nonatomic games.
Journal of statistical Physics, 7(4):295–300, 1973.

Scutari, G., Palomar, D. P., Facchinei, F., and Pang, J.-
S. Convex optimization, game theory, and variational
inequality theory. IEEE Signal Processing Magazine, 27
(3):35–49, 2010.

Shaban, A., Cheng, C.-A., Hatch, N., and Boots, B. Trun-
cated back-propagation for bilevel optimization. In The
22nd International Conference on Artificial Intelligence
and Statistics, pp. 1723–1732. PMLR, 2019.

Shapiro, C. Theories of oligopoly behavior. Handbook of
industrial organization, 1:329–414, 1989.

Sinha, A., Fang, F., An, B., Kiekintveld, C., and Tambe, M.
Stackelberg security games: Looking beyond a decade of
success. In Proceedings of the Twenty-Seventh Interna-
tional Joint Conference on Artificial Intelligence, IJCAI-
18, pp. 5494–5501. International Joint Conferences on
Artificial Intelligence Organization, 2018.

Sow, D., Ji, K., and Liang, Y. On the convergence theory for
Hessian-free bilevel algorithms. In Advances in Neural
Information Processing Systems, 2022.

Tan, H.-N., Gershwin, S. B., and Athans, M. Hybrid op-
timization in urban traffic networks. Technical report,
Massachusetts Institute of Technology, 1979.

Tobin, R. L. Sensitivity analysis for variational inequalities.
Journal of Optimization Theory and Applications, 48(1):
191–204, 1986.

Vicol, P., Lorraine, J., Duvenaud, D., and Grosse, R. Implicit
regularization in overparameterized bilevel optimization.
In ICML 2021 Beyond First Order Methods Workshop,
2021.

von Stackelberg, H. The theory of the market economy.
Oxford University Press, 1952.

Wardrop, J. G. Some theoretical aspects of road traffic
research. In Proceedings of the Institution of Civil Engi-
neers, volume 1, pp. 325–362, 1952.

Weibull, J. W. Evolutionary game theory. MIT press, 1997.

Wu, Y., Ren, M., Liao, R., and Grosse, R. Understanding
short-horizon bias in stochastic meta-optimization. arXiv
preprint arXiv:1803.02021, 2018.

Xu, Y., Xie, L., Zhang, X., Chen, X., Qi, G.-J., Tian, Q.,
and Xiong, H. Pc-darts: Partial channel connections
for memory-efficient architecture search. arXiv preprint
arXiv:1907.05737, 2019.

Yang, J., Ji, K., and Liang, Y. Provably faster algorithms
for bilevel optimization. Advances in Neural Information
Processing Systems, 34:13670–13682, 2021.

Zhang, K. and Nie, Y. M. Mitigating the impact of selfish
routing: An optimal-ratio control scheme (orcs) inspired
by autonomous driving. Transportation Research Part C:
Emerging Technologies, 87:75–90, 2018.

Zheng, S., Trott, A., Srinivasa, S., Naik, N., Gruesbeck,
M., Parkes, D. C., and Socher, R. The AI economist:
Improving equality and productivity with ai-driven tax
policies. arXiv preprint arXiv:2004.13332, 2020.

Zucchet, N. and Sacramento, J. Beyond backpropagation:
implicit gradients for bilevel optimization. arXiv preprint
arXiv:2205.03076, 2022.

13

Achieving Hierarchy-Free Approximation for Bilevel Programs With Equilibrium Constraints

A. Proofs in Section 5
A.1. Proof of Proposition 5.1

Proof of Proposition 5.1. First, (x̄, ȳ) is a feasible solution to Problem (1) since (x̄, ȳ) ∈ {(x,y) : x ∈ X,y ∈ Y∗(x)}.
Thus, we can directly conclude l(x∗,y∗) ≤ l(x̄, ȳ) = l(T)(x̄, ȳ). Next, as l(x,y) = l(x, h(T)(x,y)) = l(T)(x,y) for all
(x,y) ∈ {(x,y) : x ∈ X,y ∈ Y∗(x)}, we claim (x∗,y∗) also solves the following optimization

x∗,y∗ ∈ argmin
x∈X,y∈Y∗(x).

l(T)(x,y). (22)

Eventually, {(x,y) : x ∈ X,y ∈ Y∗(x)} ⊆ X× Y implies that l(T)(x̂, ŷ) ≤ l(T)(x∗,y∗) = l(x∗,y∗).

A.2. Proof of Theorem 5.7

We first provide the following lemmas.

Lemma A.1. If l∗(x) = l(x, y∗(x)) is µ-strongly convex on x ∈ X, then we have

µ · ∥x∗ − x∥22 ≤ ⟨∇l∗(x),x− x∗⟩, ∀x ∈ X. (23)

Proof. As l∗(x) is µ-strongly convex, we havel∗(x∗) ≥ l∗(x) + ⟨∇l∗(x),x∗ − x⟩+ µ

2
· ∥x∗ − x∥22,

l∗(x) ≥ l∗(x∗) + ⟨∇l∗(x∗),x− x∗⟩+ µ

2
· ∥x∗ − x∥22.

(24)

Adding these two equations, we then have

0 ≥ ⟨∇l∗(x),x∗ − x⟩+ ⟨∇l∗(x∗),x− x∗⟩+ µ · ∥x∗ − x∥22 ≥ ⟨∇l∗(x),x∗ − x⟩+ µ · ∥x∗ − x∥22, (25)

where the second inequality comes from the fact that x∗ minimizes l∗(x).

Lemma A.2. For all x ∈ X, we have ∥∇y∗(x)∥2 ≤ Lx/γ.

Proof. Let x and x′ be two arbitrary points in X. Denote y∗ = y∗(x) and y′∗ = y∗(x′). Then we have{
⟨f(x,y∗),y′∗ − y∗⟩ ≥ 0,

⟨f(x′,y′∗),y∗ − y′∗⟩ ≥ 0.
(26)

Adding these two inequalities, we then have

⟨f(x′,y′∗)− f(x,y′∗) + f(x,y′∗)− f(x,y∗),y∗ − y′∗⟩ ≥ 0. (27)

We can further obtain that

⟨f(x′,y′∗)− f(x,y′∗),y∗ − y′∗⟩ ≥ ⟨f(x,y∗)− f(x,y′∗),y∗ − y′∗⟩ ≥ γ · ∥y∗ − y′∗∥22, (28)

where the first inequality comes from (27) and the second inequality comes from the assumption that f is strongly monotone
with respect to ∥·∥2. Noting that f(·,y) is Lx-Lipschitz continuous and using the Cauchy-Schwartz inequality, we eventually
have

∥y∗ − y′∗∥2 ≤ 1

γ
· ∥f(x′,y′∗)− f(x,y′∗)∥2 ≤ Lx

γ
· ∥x− x′∥2. (29)

Letting x′ → x, we then conclude the proof.

Lemma A.3. The function l∗(x) is (Gx + LxGy/γ)-Lipschitz continuous with respect to ∥ · ∥2.

14

Achieving Hierarchy-Free Approximation for Bilevel Programs With Equilibrium Constraints

Proof. Noting that l(x, ·), l(·,y) and y∗(x) are respectively Gy-, Gx- and Lx/γ-Lipschitz continuous, by directly applying
the triangle inequality of norms, we can obtain that

∥∇l∗(x)∥ = ∥∇xl(x, y
∗(x)) +∇y∗(x) · ∇yl(x, y

∗(x))∥

≤ ∥∇xl(x, y
∗(x))∥+ ∥∇y∗(x)∥ · ∥∇yl(x, y

∗(x))∥ ≤ Gx +
LxGy

γ
.

(30)

We thus conclude the proof.

Lemma A.4. We can directly obtain the following formulas by applying the chain rule

∇l∗(x) = ∇xl(x, y
∗(x)) +∇y∗(x) · ∇yl(x, y

∗(x)), (31)

∇xl
(T)(x,y) = ∇xl(x, h

(T)(x,y)) +∇xh
(T)(x,y) · ∇yl(x, h

(T)(x,y)), (32)

∇xh
(t)(x,y) = ∇xh(x, h

(t−1)(x,y)) +∇xh
(t−1)(x,y) · ∇yh(x, h

(t−1)(x,y)), (33)

∇yh
(t)(x,y) = ∇yh(x, h

(t−1)(x,y)) · ∇yh
(t−1)(x,y). (34)

Proposition A.5. For any x ∈ X and y∗ = y∗(x), we have

∥∇y∗(x)−∇xh
(T)(x,y∗)∥2 ≤ Lx

γ
· ηT/2. (35)

Proof. By reformulating Equation (8) in Proposition 3.2, we have

∇y∗(x) = ∇xh(x,y
∗) +∇y∗(x) · ∇yh(x,y

∗). (36)

Based on Equations (33), (34), and (36), we can then iteratively obtain

∇y∗(x)−∇xh
(T)(x,y∗) =

(
∇y∗(x)−∇xh

(T−1)(x,y∗)
)
· ∇yh

(1)(x,y∗)

=
(
∇y∗(x)−∇xh

(T−2)(x,y∗)
)
· ∇yh

(2)(x,y∗)

= · · · = ∇y∗(x) · ∇yh
(T)(x,y∗).

(37)

Using the triangle inequality of norms and Applying Lemma A.2, we then obtain

∥∇y∗(x)−∇xh
(T)(x,y∗)∥2 ≤ ∥∇y∗(x)∥2 · ∥∇yh

(T)(x,y∗)∥2 ≤ Lx

γ
· ∥∇yh

(T)(x,y∗)∥2. (38)

We eventually conclude the proof by applying Proposition 3.2.

The remaining proof will be decomposed into two parts, Part I and Part II, in which we will prove the upper bounds given to
δ̄T = l(T)(x̄, ȳ)− l∗(x) and δ̂T = l∗(x)− l(T)(x̂, ŷ), respectively.

A.2.1. PART I OF THE REMAINING PROOF

By applying Lemma A.3, we can obtain that

l(x̄, ȳ)− l∗(x∗) = l∗(x̄)− l∗(x∗) ≤
(
Gx +

LxGy

γ

)
· ∥x̄− x∗∥2 (39)

Therefore, we only need to bound ∥x̄− x∗∥2. Based on Proposition 5.5, we have

⟨∇xl
(T)(x̄, ȳ),x∗ − x̄⟩ ≥ 0. (40)

Then we can set x = x̄ in Equation (23) and combine it with Equation (40), which gives

µ · ∥x∗ − x̄∥22 ≤ ⟨∇l∗(x̄), x̄− x∗⟩+ ⟨∇xl
(T)(x̄, ȳ),x∗ − x̄⟩ = ⟨∇l∗(x̄)−∇xl

(T)(x̄, ȳ), x̄− x∗⟩ (41)

15

Achieving Hierarchy-Free Approximation for Bilevel Programs With Equilibrium Constraints

Using the Cauchy-Schwartz inequality, we then obtain

∥x∗ − x̄∥2 ≤ 1

µ
· ∥∇l∗(x̄)−∇xl

(T)(x̄, ȳ)∥2. (42)

Noting that ȳ = y∗(x̄) = h(T)(x̄, ȳ), substituting ∇l∗(x̄) and ∇xl
(T)(x̄, ȳ) by Equations (31) and (32), and then applying

Proposition A.5, we eventually have

∥x∗ − x̄∥2 ≤ 1

µ
· ∥∇y∗(x̄)−∇xh

(T)(x̄, ȳ)∥2 · ∥∇yl(x̄, ȳ)∥2 ≤ GyLx

µγ
· ηT/2. (43)

We can hence conclude the proof by combining Equations (39) and (43).

A.2.2. PART II OF THE REMAINING PROOF

We need an additional lemma to prove the upper bound given to δ̂T = l∗(x)− l(T)(x̂, ŷ).

Lemma A.6. For any x ∈ X and y ∈ Y, we have

∥∇xh
(T)(x,y)−∇y∗(x)∥2 ≤

(
∥∇xh(x,y)∥2 + δ0T

(
Hxy +

Lx

γ
·Hyy

))
ηT/2, (44)

where δ0 = ∥y − y∗(x)∥2.

Proof. In the sequel, we write yt = h(t)(x,y), D(t) = ∇xh
(t)(x,y0)−∇y∗(x), E(t) = ∇xh(x,y

t−1)−∇xh(x,y
∗)

and F (t) = ∇yh(x,y
t−1)−∇yh(x,y

∗), H(t) = ∇yh
(t)(x,yT−t) and J = ∇y∗(x). By recursively applying (33) and

(36), we then have

D(T) = D(T−1) ·H(1) +E(T) + J · F (T)

= D(T−2) ·H(2) +E(T−1) ·H(1) +E(T) + J · (F (T−1) ·H(1) + F (T))

= · · · = D(0) ·H(T) +

T∑
t=0

E(T−t) ·H(t) + J ·
T∑

t=0

F (T−t) ·H(t)

(45)

Applying the triangle inequality of norms, we then have

∥D(T)∥2 ≤ ∥D(0)∥2 · ∥H(T)∥2 +
T∑

t=0

(∥E(T−t)∥2 + ∥J∥2 · ∥F (T−t)∥2) · ∥H(t)∥2. (46)

Lemma A.2 and Proposition 3.2 then imply that ∥J∥2 ≤ Lx/γ, ∥E(t)∥2 ≤ Hxy · ∥yt−1 − y∗∥ ≤ Hxyδ
0ηt/2, ∥F (t)∥2 ≤

Hyy · ∥yt−1 − y∗∥ ≤ Hyyδ
0ηt/2, and also ∥H∥t ≤ ηt/2. Thus, we eventually have

∥D(T)∥2 ≤ ηt/2∥D(0)∥2 +
T∑

t=0

(Hxyδ
0η(T−t)/2 +

Lx

γ
·Hyyδ

0η(T−t)/2) · ηt/2

=

(
∥D(0)∥2 + δ0(T + 1)

(
Hxy +

Lx

γ
·Hyy

))
ηT/2.

(47)

Now we are ready to complete the proof. Using the triangle inequality and applying Lemma A.3, we obtain

l∗(x∗)− l(x̂, h(T)(x̂, ŷ)) ≤ |l∗(x∗)− l∗(x̂)|+ |l(x̂, y∗(x̂))− l(x̂, h(T)(x̂, ŷ))|2

≤
(
Gx +

LxGy

γ

)
· ∥x̂− x∗∥2 +Gy · ∥y∗(x̂)− h(T)(x̂, ŷ)∥2

(48)

16

Achieving Hierarchy-Free Approximation for Bilevel Programs With Equilibrium Constraints

We first bound ∥y∗(x̂)− h(T)(x̂, ŷ)∥2. We can obtain that

∥y∗(x̂)− h(T)(x̂, ŷ)∥2 ≤ ηT/2 · ∥ŷ − y∗(x̂)∥2 ≤ dmax · ηT/2, (49)

where dmax = diam (Y) < ∞.

We then bound ∥x̂− x∗∥. Based on Proposition 5.6, we have

⟨∇xl
(T)(x̂, ŷ),x∗ − x̂⟩ ≥ 0. (50)

Combining it with Equation (23) by setting x = x̂ and using the Cauchy-Schwartz inequality, we then have

µ · ∥x∗ − x̂∥22
≤ ⟨∇l∗(x̂)−∇xl

(T)(x̂, ŷ), x̂− x∗⟩
= ⟨∇l∗(x̂)−∇xl

(T)(x̂, y∗(x̂)) +∇xl
(T)(x̂, y∗(x̂))−∇xl

(T)(x̂, ŷ), x̂− x∗⟩
≤ (∥∇l∗(x̂)−∇xl

(T)(x̂, y∗(x̂))∥2 + ∥∇xl
(T)(x̂, y∗(x̂))−∇xl

(T)(x̂, ŷ)∥2) · ∥x̂− x∗∥2.

(51)

Thus, we have

∥x̂− x∗∥2 ≤ 1

µ
· (∥∇l∗(x̂)−∇xl

(T)(x̂, y∗(x̂))∥2 + ∥∇xl
(T)(x̂, y∗(x̂))−∇xl

(T)(x̂, ŷ)∥2). (52)

By applying Proposition A.5, we then have

∥∇l∗(x̂)−∇xl
(T)(x̂, y∗(x̂))∥2 ≤ ∥∇y∗(x̂)−∇xh

(T)(x̂, y∗(x̂))∥2 · ∥∇yl(x̂, y
∗(x̂))∥2 ≤ GyLxη

T/2

γ
. (53)

Meanwhile, using the triangle inequality of norms, we have

∥∇xl
(T)(x̂, y∗(x̂))−∇xl

(T)(x̂, ŷ)∥2 = ∥∇xl(x̂, y
∗(x̂))−∇xl(x̂, h

(T)(x̂, ŷ))∥2
+ ∥∇xh

(T)(x̂, y∗(x̂))∥2 · ∥∇yl(x̂, y
∗(x̂))−∇yl(x̂, h

(T)(x̂, ŷ)∥2
+ ∥∇xh

(T)(x̂, y∗(x̂))−∇xh
(T)(x̂, ŷ)∥2 · ∥∇yl(x̂, h

(T)(x̂, ŷ))∥2.

(54)

Firstly, noted that ∇xl(x, ·) is Gxy-Lipschitz continuous, we have

∥∇xl(x̂, y
∗(x̂))−∇xl(x̂, h

(T)(x̂, ŷ))∥2 ≤ Gxy · ∥y∗(x̂)− h(T)(x̂, ŷ)∥2 ≤ Gxydmaxη
T/2, (55)

where the second inequality comes from Equation (49).

Secondly, by applying the triangle inequality, we can obtain

∥∇xh
(T)(x̂, y∗(x̂))∥2 ≤ ∥∇xh

(T)(x̂, y∗(x̂))−∇xy
∗(x̂)∥2 + ∥∇y∗(x̂)∥2 ≤ Lx

γ
(1 + ηT/2). (56)

where the second inequality comes from Lemma A.2 and 3.2. Noting that ∇yl(x, ·) is Gyy-Lipschitz continuous, we also
have

∥∇yl(x̂, y
∗(x̂))−∇yl(x̂, h

(T)(x̂, ŷ)∥2 ≤ Gyy · ∥y∗(x̂)− h(T)(x̂, ŷ)∥2 ≤ Gyydmaxη
T/2, (57)

where the second inequality also comes from (49).

Thirdly, we have ∥∇yl(x̂, h
(T)(x̂, ŷ))∥2 ≤ Gy . Meanwhile, we also have

∥∇xh
(T)(x̂, y∗(x̂))−∇xh

(T)(x̂, ŷ)∥2
≤ ∥∇xh

(T)(x̂, y∗(x̂))−∇xy
∗(x̂)∥2 + ∥∇xh

(T)(x̂, ŷ)−∇xy
∗(x̂)∥2

≤ Lxη
T/2

γ
+

(
Hx + Tdmax

(
Hxy +

Lx

γ
·Hyy

))
ηT/2,

(58)

17

Achieving Hierarchy-Free Approximation for Bilevel Programs With Equilibrium Constraints

where the second inequality comes from Lemma A.6.

Combing these, we obtain that

µ∥x̂∗ − x∗∥2 ≤ GyLxη
T/2

γ
+Gxydmax · ηT/2 +

Lx

γ
(1 + ηT/2)Gyydmax · ηT/2+

Gy

(
Lxη

T/2

γ
+

(
Hx + Tdmax

(
Hxy +

Lx

γ
·Hyy

))
· ηT/2

)
.

(59)

Without loss of generality, we assume that γ = 1 and µ = 1. Then we have

∥x̂∗ − x∗∥2 ≤ GyLx · ηT/2 +Gxydmax · ηT/2 + Lx(1 + ηT/2)Gyydmax · ηT/2

+Gy

(
Lx · ηT/2 + (Hx + Tdmax (Hxy + Lx ·Hyy)) · ηT/2

)
≤ (2GyLx +Gxydmax + 2LxGyydmax +GyHx) · ηT/2

+Gy(Hxy + LxHyy) · (T + 1) · ηT/2.

(60)

Eventually, we obtain that

l∗(x∗)− l(x̂, h(T)(x̂, ŷ)) ≤ Gy(Hxy + LxHyy) · (T + 1) · ηT/2 +M · ηT/2, (61)

where M = (Gx + LxGy) · (2GyLx +Gxydmax + 2LxGyydmax +GyHx) +Gydmax.

B. More Discussion on the Results in Section 5
B.1. Gradient Calculation in Algorithms 1 and 2

Below we briefly discuss how to code h(x,y) so that it can be fed into differentiable-programming frameworks. For
simplicity, we denote g(z) = argminy∈Y ∥y − z∥2, then h(x,y) = g(y − r · f(x,y)), where z = y − r · f(x,y). Thus,
the problem reduces to how to code g(z). Since g(z) is equivalent to a Euclidean projection problem, it can always be
coded via cvxpylayers (Agrawal et al., 2019), as discussed earlier. Here we consider some other coding strategies. For
example, there are three cases when g(z) is analytic, so that we can directly code g(z) according to its analytic expression.

• (i) When Y = Rn (the full space), we always have g(z) = z.

• (ii) When Y = {y : a ≤ y ≤ b} (a box constraint), we have g(z) = min{max{z,a}, b}.

• (iii) When Y = {y : 1Ty = 1} (an equity constraint), we have g(z) = z − (1Tz − 1)/n.

We are now ready to handle a more complicated case when Y is probability simplex as in many practical applications.

• (iv) When Y = {y ≥ 0 : 1Ty = 1} (a probability simplex constraint), we can rewrite Y = {y : y ≥ 0} ∩ {y :
1Ty = 1}, which is the intersection of a box constraint and an equity constraint. Thus, we can use Dykstra’s projection
algorithm (Boyle and Dykstra, 1986) to solve g(z), which iteratively projects z onto two sets until a fixed point is
found. This alternating projection process is differentiable because the projections on both sets respectively correspond
to cases (ii) and (iii), both of which are analytic.

Subsequently, we can move to a more complicated case when Y is rewritten as Y = Y1 × · · · × Yn, i.e., the Cartesian
product of some other sets, the projection then can be carried out on Yi (i = 1, . . . , n) independently. Hence, as long as
every Yi falls into the four cases discussed above, the function g(z) can still be coded as a differentiable program easily.
Decomposing the projection problem g(z) into n parallel sub-problems can also accelerate AD.
Remark B.1. Here we mark that a “differentiable program” is not necessarily everywhere differentiable. Instead, it only
means that the program can be fed to differentiable-programming frameworks. For example, in case (ii), the operation
min{max{z,a}, b} is not differentiable at z = a and z = b; at those points, a sub-gradient can be used to run AD.

18

Achieving Hierarchy-Free Approximation for Bilevel Programs With Equilibrium Constraints

B.2. Other Functions for Formulating the Two Models

To formulate the two proposed models, the selection of h(x,y) is not absolute. Indeed, we have shown that whenever
h(x,y) charts a provably convergent path to solve the lower-level VI in Problem (1), the resulting T -step Cournot games
and monopoly models will provide an upper and a lower bound to Problem (1), respectively. For example, the mirror descent
method (Nemirovskij and Yudin, 1983) gives

h(x,y) = argmin
y′∈Y

r · ⟨f(x,y),y′ − y⟩+Dϕ(y
′,y), (62)

where Dϕ(y
′,y) = ϕ(y′)− ϕ(y)− ⟨∇ϕ(y),y′ − y⟩ is the Bregman divergence between y′ and y induced by a strongly

convex function ϕ : Y → R. We refer the readers to Mertikopoulos and Zhou (2019) for sufficient conditions under which
the mirror descent algorithm converges to the solution to a VI. When Y is a probability simplex (or the Cartesian product
of several probability simplices) and Dϕ(y

′,y) is specified as the KL divergence, h(x,y) becomes analytic (Beck and
Teboulle, 2003) so that it can be more easily differentiated through via AD. We refer the readers to Li et al. (2022b) for a
more detailed discussion on how to unroll the mirror descent method.

B.3. Global Optimization Strategies

In Theorem 5.7, we assume l∗(x) to be globally convex; in general, this assumption does not hold for most practical
applications. In this section, we briefly discuss how to search for the global minimizer of Problem (1). Typically, when an
optimization problem is not convex, then we have no choice but to accept the best local solution after running an appropriate
first-order method multiple times with different initial solutions. But for bilevel programs, repeatedly searching for local
solutions is not easy. Nevertheless, with our framework, we may first fix T as a small value (e.g., 0 or 1) and first run
Algorithm 1 and/or Algorithm 2 many times, each time with a randomly generated initial solution. This step may be viewed
as a quick-and-dirty “scan” of the geometry of the overall problem. Afterward, the best local solution to either T -step
Cournot games or monopoly models then can be used to roughly estimate where the global optimal solution to (1) might be
located. Subsequently, we can search for the optimal solution to Problem (1) around that region, following the procedure
that we devised at the end of Section 5.1.

B.4. Extension to Bilevel Programs with Multiple Lower-Level Solutions

We then discuss the case when Y∗(x) is not a singleton, which renders a principled rule for selecting a y∗ ∈ Y∗(x) to
evaluate l(x,y∗) as a necessity. To this end, the optimistic and pessimistic principles respectively select the best and worst
solutions, as judged by the leader’s objective. In other words, they respectively solve

min
x∈X

min
y∗∈Y∗(x)

l(x,y∗) and min
x∈X

max
y∗∈Y∗(x)

l(x,y∗). (63)

The above two problems are commonly referred to as a strong and a weak Stackelberg game respectively (Loridan and
Morgan, 1996). Denoting the solutions to those two problems as (x∗

opt,y
∗
opt) and (x∗

pes,y
∗
pes), then we have l(x∗

opt,y
∗
opt) ≤

l(x∗
pes,y

∗
pes). In the literature, the strong Stackelberg games is more frequently regarded as the “standard” formulation (Luo

et al., 1996). The original formulation (1) is indeed a strong Stackelberg game because it allows the leader to pick any
y∗ ∈ Y∗(x). Thus, the leader can always pick the most favorable (i.e., the optimistic) one. According to Proposition 5.1, the
solutions given by T -step Cournot games and monopoly models always provide an upper and a lower bound for l(x∗

opt,y
∗
opt),

respectively. We are hence motivated to ask whether our models would still provide arbitrarily tight bounds to l(x∗
opt,y

∗
opt)

when T → ∞.

Unfortunately, we cannot answer this question with a certain yes. Indeed, in a T -step Cournot game, the followers’ decision
ȳ is not necessarily the one that minimizes l(x̄,y∗) among all y∗ ∈ Y∗(x̄). In other words, a T -step Cournot game is not
intrinsically optimistic; instead, it has to let the followers pick an equilibrium by themselves. Hence, even though T is
sufficiently large, a T -step Cournot game may still admit multiple solutions. If one solution (x̄, ȳ) accidentally satisfies
ȳ ∈ argminy∗ l(x̄,y∗), then we expect l(x̄, ȳ) may be close to l(x∗

opt,y
∗
opt). Otherwise, if ȳ is the solution in Y∗(x̄)

against the leader’s interest, the gap may still be unacceptably large. Below we give an example.

19

Achieving Hierarchy-Free Approximation for Bilevel Programs With Equilibrium Constraints

Example B.2. Consider the following problem

min
1≥x≥0.5

(x+ y∗ − 1)2

s.t. y∗ ∈ argmin
y∈R

g(x, y) =

(y − x− 0.25)2, if y ≥ x+ 0.25,

0, if y ∈ (x− 0.25, x+ 0.25),

(y − x+ 0.25)2, if y ≤ x− 0.25,

(64)

which is equivalent to the following one

min
1≥x≥0.5

(x+ y∗ − 1)2

s.t. y∗ ∈ [x− 0.25, x+ 0.25].
(65)

Under this setting, the optimal solution set to (65) is Z∗ = {(x, y) : x ∈ [0.5, 1], y = 1 − x} and the solution set to the
corresponding 0-step Cournot game is Z(0) = Z∗ ∪ {(x, y) : x = 0.5, y ∈ [0.5, 0.75]}. We then prove that the solution sets
to T -step Cournot models are still Z(0) for alll T > 0.

∇yg(x, y) =

2(y − x− 0.25), if y ≥ x+ 0.25,

0, if y ∈ (x− 0.25, x+ 0.25),

2(y − x+ 0.25), if y ≤ x− 0.25.

(66)

We can then define
h(x, y) = argmin

1≥x≥0.5
y − r · ∇yg(x, y) (67)

to model the dynamics, which satisfies h(x, y) = y for any x ∈ [0.5, 1] and y ∈ [x − 0.25, x + 0.25]. Thus, for any
ȳ ∈ [0.5, 0.75], the optimal solution to

min
1≥x≥0.5

(x+ h(T)(x, ȳ)− 1)2 = (x+ ȳ − 1)2 (68)

is still x̄ = 0.5 for all T > 0. Therefore, we have Z(T) = Z∗ ∪ {(x, y) : x = 0.5, y ∈ [0.5, 0.75]} for all T ∈ N. Among
these solutions, the worst one is (x̄, ȳ) = (0.5, 0.75), whose corresponding objective value is 0.0625 > 0.

In contrast, a T -step monopoly model, to some extent, is essentially optimistic. Intuitively, if (x̂, ŷ) solves a T -step
monopoly model with a sufficiently large T , we may expect that h(T)(x̂, ŷ) is close to the one that minimizes l(x̂,y∗)
among all y∗ ∈ Y∗(x̂), as the leader has the authority to steer the follower’s evolutionary path by manipulating their initial
strategy.

Motivated by the above discussion, we design a heuristic for approximating Problem (1) by iteratively solving T -step Cournot
games and monopoly models. Specifically, setting T as a small number and starting with an arbitrary (x0,y0) ∈ X×Y, we
may first run run Algorithms 1 and 2 to obtain (x̄, ȳ) and (x̂, ŷ), respectively. If the gap between l(T)(x̄, ȳ) and l(T)(x̂, ŷ)
is sufficiently small, then we can accept (x̄, ȳ) as an approximated solution to Problem (1). Otherwise, we can increase
T and repeat the above procedure. But during the next iteration, we may use a warm-start initial solution, rather than the
original (x0,y0), to run Algorithms 1 and 2 to reduce the number of iterations required for convergence. Particularly, that
initial solution could set as (x̂, h(T)(x̂, ŷ)), where (x̂, ŷ) is the output of Algorithm 2 in the previous iteration. As discussed
earlier, the pair (x̂, h(T)(x̂, ŷ)) is intrinsically optimistic. Hence, if in the next iteration, we run Algorithm 1 starting from
(x̂, h(T)(x̂, ŷ)), the new output (x̄, ȳ) is more likely to within the neighborhood of (x∗

opt,y
∗
opt). The pseudocode code

is provided in Algorithm 3. We are not sure whether the gap δ(T) in Algorithm 3 would eventually converge to 0 or a
sufficiently small value for all practical purposes; we leave a theoretical analysis of the algorithm to future work. But later,
we will numerically test it.

C. Numerical Experiments
In Experiment II (Appendix C.1), we study the network design problem on the Braess network (Braess, 1968). We will
compare the solutions provided by the T -step Cournot games and monopoly models formulated by two types of h(x,y):
the projection method and the mirror descent method (see Appendix B.2). Eventually, in Experiment III (Appendix C.2), we
study the network problem on a real transportation network and compare the proposed scheme with many existing bilevel
programming algorithms.

20

Achieving Hierarchy-Free Approximation for Bilevel Programs With Equilibrium Constraints

Algorithm 3 Adaptive-initialization strategy for approximating Problem (1).

1: Input: (x0,y0) ∈ X× Y, T as a small integer
2: while True do
3: Starting from (x0,y0), run Algorithm 1 to obtain (x̄, ȳ) and then run Algorithm 2 to obtain (x̂, ŷ).
4: If l(T)(x̄, ȳ)− l(T)(x̂, ŷ) is sufficiently small, break and return (x̄, ȳ); otherwise, increase T and set (x0,y0) = (x̂, h(T)(x̂, ŷ)).
5: end while

C.1. Experiment II

We then test our algorithms on a classic network design problem, which studies how to add capacities in a traffic network
to reduce congestion. We model the network as a directed graph G(N,A), where N and A are the set of nodes and arcs.
We write W ⊆ N× N as the set of origin-destination (OD) pairs and K ⊆ 2A as the set of paths connecting the OD pairs.
We assume that each OD pair w ∈ W is associated with qw vehicles. Let Kw ⊆ K be the set of all paths connecting w.
We assume that the traffic planner’s objective is a weighted sum of the total monetary cost associated with the capacity
enhancement and the total travel time experienced by the vehicles. We denote the original arc capacity as s ∈ R|A|

+ and the
capacity enhancement added by the planning agent as x. We assume that the capacities can only be added to selected arcs,
denoted as Ã ⊆ A. The feasible region for x then becomes X = {x ∈ R|A|

+ : xa = 0, a ∈ A\ Ã}. We write m(x) = ⟨b,x2⟩
as the total monetary cost associated with the capacity enhancement, where b ∈ R|A|

+ are cost parameters. We assume
that the arc travel time is given by u(x,v) = u0 ·

(
1 + 0.15 · (v/(s+ x))4

)
, where v,u0 ∈ R|A|

+ represent arc vehicle
flows and free-flow travel times, respectively. Meanwhile, we write the vehicles’ route choices as a vector y = (yk)k∈K
with yk equals the proportion of vehicles between w using the path k ∈ Kw, and the travel times for using each path as
c = (ck)k∈K. Denote Σw,k as the OD-path incidence, with Σw,k equals 1 if the path k ∈ Kw and 0 otherwise. Meanwhile,
denote Λa,k as the arc-path incidence, with Λa,k equals 1 if a ∈ Ak and 0 otherwise. For notational convenience, we write
Λ = (Λa,k)a∈A,k∈K and Σ = (Σw,k)w∈W,k∈K. Let d = (dk)k∈K be a vector with dk = qw if k ∈ Kw. The feasible region
for y can then be written as Y = {y ≥ 0 : Σy = 1}. Meanwhile, we also have v = Λ(d · y) and c = ΛTu(x,v). The
results in Example 2.2 imply that the set of Wardrop equilibria Y∗(x) is the solution set to the following VI problem:

⟨ΛTu(x,Λ(d · y∗)),y − y∗⟩ ≥ 0, ∀y ∈ Y. (69)

The network design problem then has the following form

min
x∈X

⟨u(x,v∗)),v∗)⟩+ γ ·m(x),

s.t. v∗ = Λ(d · y∗), y∗ ∈ Y∗(x).
(70)

We first solve the network design problem on the Braess network (Braess, 1968) as shown in Figure 3. The network has
three paths connecting the origin (node 1) and the destination (node 4): path 1 uses links 1 and 3, path 2 uses links 1, 4, and
5, and path 3 uses links 2 and 5. The Braess paradox (Braess, 1968) implies that no capacities should be added to link 4 (the
bridge link), otherwise it would increase the total travel time experienced by the travelers at equilibrium.

1

2

3

4
1

2

3
4

5

Figure 3. The Braess network.

We set m(x) = ⟨w,x2⟩, d = 6, u0 = [1, 3, 3, 0.5, 1]T, v0 = [2, 4, 4, 1, 2]T, w = [1, 3, 3, 0.5, 1]T, and γ = 1. The problem
is first solved via two existing AD-based methods proposed by Li et al. (2020) and Li et al. (2022b), both of which unroll the
full computational process for solving the lower-level VI problem. The difference lies in the algorithm being unrolled: the
first unrolls the projection method while the second unrolls the mirror descent method (see Section B.2). In the following
experiments, the solutions returned by Li et al. (2020)’s and Li et al. (2022b)’s methods will be used as the benchmark.

21

Achieving Hierarchy-Free Approximation for Bilevel Programs With Equilibrium Constraints

When testing our scheme, we also formulate T -step Cournot games and monopoly models with two types of h(x,y): the
projection method and the mirror descent method. To investigate whether their solutions can make a nice approximation
to the benchmark solutions, we progressively increase T in the experiment until the gap is closed. Our models are solved
by Algorithms 1 and 2; the same hyperparameters are employed for all tested algorithms (including both the benchmarks
and our algorithms), except the learning rate r, which is set to be 0.1 in the projection-method version and 0.25 in the
mirror-descent version. Table 2 reports the solutions (upper-level: capacity enhancement; lower-level: route choice), the
corresponding objective function values as well as the total CPU (2.9 GHz Quad-Core Intel Core i7) time and the number of
iterations required to obtain the solutions (for notational simplicity, we use “S” to represent the benchmarks and use “C-”
and “M-” to represent T -step Cournot games and monopoly models with different T s).

Table 2. Performance of T -step Cournot games and T -step monopoly models when solving the continuous network design problem on
the Braess network.

(a) Setting A: Modeling the lower-level solution process using the projection method.

Method Time (s) Iterations Value
Capacity enhancement Route choice

a = 1 a = 2 a = 3 a = 4 a = 5 k = 1 k = 2 k = 3

C-0 1.06 80 38.786 2.075 0 0 2.826 2.075 0.000 1.000 0.000
C-1 6.68 109 28.920 0.936 0.016 0.016 0 0.936 0.339 0.321 0.339

S 12.5 92 28.920 0.928 0.016 0.016 0 0.928 0.333 0.333 0.333

M-4 8.22 46 28.920 0.928 0.016 0.016 0 0.928 0.329 0.343 0.329
M-3 35.1 339 26.745 0.867 0.027 0.027 0.192 0.867 0.156 0.688 0.156
M-2 2.16 43 26.789 0.744 0.039 0.039 0.009 0.744 0.217 0.565 0.217
M-1 0.31 40 27.142 0.603 0.066 0.066 0.000 0.603 0.225 0.549 0.225
M-0 0.03 70 26.722 0.821 0.030 0.030 0.113 0.821 0.424 0.151 0.424

(b) Setting B: Modeling the lower-level solution process using the mirror descent method.

Method Time (s) Iterations Value
Capacity enhancement Route choice

a = 1 a = 2 a = 3 a = 4 a = 5 k = 1 k = 2 k = 3

C-0 0.103 264 38.786 2.075 0 0 2.830 2.075 0.000 1.000 0.000
C-1 0.148 254 28.925 0.966 0.015 0.015 0 0.966 0.339 0.322 0.339
C-2 0.208 270 28.920 0.939 0.016 0.016 0 0.939 0.339 0.321 0.339

S 0.393 232 28.920 0.928 0.016 0.016 0 0.928 0.333 0.333 0.333

M-5 0.292 232 28.920 0.928 0.016 0.016 0 0.928 0.319 0.363 0.319
M-4 0.562 512 26.722 0.821 0.03 0.03 0.083 0.821 0.169 0.663 0.169
M-3 0.459 440 26.722 0.821 0.03 0.03 0.084 0.821 0.179 0.642 0.179
M-2 0.323 381 26.722 0.821 0.03 0.03 0.085 0.821 0.190 0.620 0.190
M-1 0.235 341 26.722 0.82 0.03 0.03 0.088 0.82 0.202 0.596 0.202
M-0 0.151 447 26.722 0.821 0.03 0.03 0.095 0.821 0.425 0.151 0.425

The solutions returned by the two benchmark algorithms are identical; no capacity is added on link 4 as indicated by the
Braess paradox. However, if we adopt T -step Cournot games and monopoly models to approximate the original problem,
then some capacity would be added on link 4 when T is overly too small, which falls into the trap. However, a slightly
larger T will fix the problem in both models, no matter which method is used to model the lower-level solution process.
It is worth noting that when T is the same, the solutions to the models formulated by the projection method have better
quality. However, the slight improvement in solution quality can hardly offset the increase in computational cost. Take
C-1 for instance. Using the projection method instead of the mirror descent method could decrease the objective value by
merely (28.92− 28.925)/28.925 = 0.170%, but the required CPU time is increased by (6.68− 0.148)/0.148 = 4410%.
Eventually, we remark that a classic result is that C-0 and M-0 can deliver satisfactory solutions on many networks (Marcotte,
1986); here the Braess network is intentionally selected as a counterexample. Our goal is to show that if our models are able
to make good approximations on the Braess network, then we can be more confident in applying it to other problems.

22

Achieving Hierarchy-Free Approximation for Bilevel Programs With Equilibrium Constraints

C.2. Experiment III

We then move to the network in the City of Sioux Fall, South Dakota; the network data (topology, travel demand, arc travel
time function) are downloaded from the Transportation Network GitHub repository1. For this network, we have |N| = 24,
|A| = 76, |K| = 638. We select 10 arcs for expanding the capacities (see Table 3).

Table 3. Selected arcs for adding capacities and their corresponding cost parameters.

a 16 19 17 20 25 26 29 48 39 74
ba 26.0 26.0 40.0 40.0 25.0 25.0 48.0 48.0 34.0 34.0

In the experiment, we set γ = 0.01. Based on the results given by Experiment II (see Appendix C.1), we use the mirror
descent method to formulate the proposed models. We compare our approaches with some previous bilevel programming
methods studied in the optimization and ML literature.

• “c0”: Algorithm 1 with T = 0. It solves a 0-step Cournot game. The classic single-level approximation scheme
proposed by (Tan et al., 1979) essentially solves the same model but uses different algorithms.

• “c1”: Algorithm 1 with T = 1. It solves a 1-step Cournot game. It may be viewed as a straightforward extension of
one-stage AD (Liu et al., 2018).

• “c10”: Algorithm 1 with T = 10. It solves a 10-step Cournot game.

• “m0”: Algorithm 2 with T = 0. It solves a 0-step monopoly model. The classic single-level approximation scheme
proposed by (Dantzig et al., 1979) essentially solves the same model.

• “m45”: Algorithm 2 with T = 45. It solves a 45-step monopoly model.

• “ad”: The Algorithm proposed by Li et al. (2022b).

• “tad”: An extension of truncated AD (Shaban et al., 2019). It is similar to “ad”; the difference is that we only unroll the
last 10 iterations of the dynamical process for solving the lower-level problem.

• “id”: The implicit differentiation scheme proposed by Li et al. (2020).

• “aid”: An extension of approximated ID. It shares the same overall structure as “id”; the difference is that we only keep
the first 10 terms in the Neumann series for matrix inversion.

• “sid”: We extend the two-timescale single-looped method proposed by Hong et al. (2020).

We appropriately design hyperparameters in all of these algorithms and stop running the algorithms based on similar
termination conditions. The results are shown in Figure 4, in which we report the total CPU (2.9 GHz Quad-Core Intel Core
i7) time, the final optimality gaps, the total iteration number as well as the CPU time per iteration.

Observation 1. We first note that “c0” and Tan et al. (1979) essentially solve the same models. Compared with the previous
approach, our methods can provide more accurate solutions (see “c1” and “c10”). Particularly, the optimality gap induced
by “c10” is almost the same as “tad” and “aid”, the two approximation schemes proposed in the machine learning literature.
Meanwhile, it is just slightly larger than the two exact methods, namely, “id” and “ad”.

Observation 2. The total CPU time required by “c10” is significantly lower than “ad”, “tad”, “id” and “aid”. Specifically,
the total number of iterations increases by 5-6 times, but the CPU time per iteration is reduced from 2.5-5.5s to just 0.007s
(roughly 400 times). Hence, “c10” is more efficient.

Observation 3. The single-looped scheme “sid” is more special. Its CPU time per iteration is obviously much lower than
“ad”, “tad”, “id” and “aid” because it also bypasses the difficulty in repeatedly solving for the lower-level solution. However,
it is still 30 times higher than our approach, mainly because it still builds on implicit differentiation, which involves storing
and inverting large matrices.

1https://github.com/bstabler/TransportationNetworks/tree/master/SiouxFalls

23

https://github.com/bstabler/TransportationNetworks/tree/master/SiouxFalls

Achieving Hierarchy-Free Approximation for Bilevel Programs With Equilibrium Constraints

c0 c1 c10 m0 m45 ad tad id aid sid

100

101

102

103

0.16
0.42

4.17
1.29

48.1

369
156

537
184

24.0

Total CPU time (s)

c0 c1 c10 m0 m45 ad tad id aid sid

1.00
0.75
0.50
0.25
0.00
0.25
0.50

0.210.16
0.03

-0.99

-0.23

0.010.030.010.030.02

Optimality gap

c0 c1 c10 m0 m45 ad tad id aid sid
0

200
400
600
800

1000
1200

151 183

588

1015
1209

78 57 99 57 109

Itertation number

c0 c1 c10 m0 m45 ad tad id aid sid
10 3

10 2

10 1

100

101

0.001
0.002

0.007

0.001

0.040

4.742.73
5.433.23

0.220

Time per iteration (s)

Figure 4. Comparison between our methods and previous methods.

Observation 4. The lower bound provided by “m45” is not that accurate compared with the upper bound provided by “c10”.
Nevertheless, it answers how good the upper bound is. Specifically, “(upper bound - lower bound) / lower bound” would be
a reasonable estimation of the accuracy. If it is smaller than the tolerance, then we are sure that we already find a sufficiently
good solution. To the best of our knowledge, no previous method in the machine learning literature can provide such a lower
bound for bilevel programs. The classic scheme (Dantzig et al., 1979) in the optimization literature could provide such a
bound (see “m0”). However, the gap between the accurate solution and this lower bound is too large. If we use this lower
bound to evaluate the upper bound, it may be over too pessimistic.

24

	Introduction
	Background
	Variational Inequalities
	Bilevel Programs with Equilibrium Constraints

	Challenges
	Implicit Differentiation (ID) Methods
	Automatic Differentiation Methods

	Motivation
	Classic Models
	Our Models

	Main Results
	Optimality gaps
	Solution algorithms

	Numerical Examples
	Stackelberg duopoly
	Bilevel optimization

	Conclusion
	Proofs in Section 5
	Proof of Proposition 5.1
	Proof of Theorem 5.7
	Part I of the Remaining Proof
	Part II of the Remaining Proof

	More Discussion on the Results in Section 5
	Gradient Calculation in Algorithms 1 and 2
	Other Functions for Formulating the Two Models
	Global Optimization Strategies
	Extension to Bilevel Programs with Multiple Lower-Level Solutions

	Numerical Experiments
	Experiment II
	Experiment III

