
Understanding the Complexity Gains of Single-Task RL with a Curriculum

Qiyang Li * 1 Yuexiang Zhai * 1 Yi Ma 1 Sergey Levine 1

Abstract

Reinforcement learning (RL) problems can be
challenging without well-shaped rewards. Prior
work on provably efficient RL methods gener-
ally proposes to address this issue with dedi-
cated exploration strategies. However, another
way to tackle this challenge is to reformulate it
as a multi-task RL problem, where the task space
contains not only the challenging task of inter-
est but also easier tasks that implicitly function
as a curriculum. Such a reformulation opens up
the possibility of running existing multi-task RL
methods as a more efficient alternative to solv-
ing a single challenging task from scratch. In
this work, we provide a theoretical framework
that reformulates a single-task RL problem as
a multi-task RL problem defined by a curricu-
lum. Under mild regularity conditions on the
curriculum, we show that sequentially solving
each task in the multi-task RL problem is more
computationally efficient than solving the origi-
nal single-task problem, without any explicit ex-
ploration bonuses or other exploration strategies.
We also show that our theoretical insights can be
translated into an effective practical learning al-
gorithm that can accelerate curriculum learning
on simulated robotic tasks.

1. Introduction
Reinforcement learning (RL) provides an appealing and
simple way to formulate control and decision-making prob-
lems in terms of reward functions that specify what an
agent should do, and then automatically train policies to
learn how to do it. However, in practice the specification of
the reward function requires great care: if the reward func-
tion is well-shaped, then learning can be fast and effective,
but if rewards are delayed, sparse, or can only be achieved

1UC Berkeley. Correspondence to: Qiyang Li
<qcli@berkeley.edu>, Yuxiang Zhai <simonzhai@berkeley.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

Learning π⋆
ω′ from scratch

Learning π⋆
ω′ with ROLLIN

Figure 1: Illustration of ROLLIN. The red circle rep-
resents the initial state distribution. The dark curve rep-
resents the optimal policy of the preceding task ω. The
blue diamonds represent the optimal state distributions
d
π⋆
ω

µ , d
π⋆
ω′

µ of the preceding task ω and the current ω′ re-
spectively. ROLLIN runs the optimal policy of the preced-
ing task π⋆

ω to obtain a better initial state distribution for
faster learning of the optimal policy of the current task π⋆

ω′ .

after extensive explorations, RL problems can be excep-
tionally difficult (Kakade and Langford, 2002; Andrychow-
icz et al., 2017; Agarwal et al., 2019). This challenge is of-
ten overcome with either reward shaping (Ng et al., 1999;
Andrychowicz et al., 2017; 2020; Gupta et al., 2022) or
dedicated exploration methods (Tang et al., 2017; Stadie
et al., 2015; Bellemare et al., 2016; Burda et al., 2018),
but reward shaping can bias the solution away from opti-
mal behavior, while even the best exploration methods, in
general, may require covering the entire state space before
discovering high-reward regions.

On the other hand, a number of recent works have proposed
multi-task learning methods in RL that involve learning
contextual policies that simultaneously represent solutions
to an entire space of tasks, such as policies that reach any

1

Understanding the Complexity Gains of Single-Task RL with a Curriculum

potential goal (Fu et al., 2018; Eysenbach et al., 2020b; Fu-
jita et al., 2020; Zhai et al., 2022), policies conditioned on
language commands (Nair et al., 2022), or even policies
conditioned on the parameters of parametric reward func-
tions (Kulkarni et al., 2016; Siriwardhana et al., 2019; Ey-
senbach et al., 2020a; Yu et al., 2020b). While such meth-
ods are often not motivated directly from the standpoint of
handling challenging exploration scenarios, but rather di-
rectly aim to acquire policies that can perform all tasks in
the task space, these multi-task formulations often present
a more tractable learning problem than acquiring a solu-
tion to a single challenging task in the task space (e.g., the
hardest goal, or the most complex language command). We
pose the following question:

When do we expect solving the reformulated multi-task RL
problem with task-conditioned policies to be more efficient

than solving the original single-task problem directly?

In this work, we study this question by analyzing the com-
plexity of learning an optimal policy in the stochastic pol-
icy gradient (SPG) setting (Agarwal et al., 2021; Mei et al.,
2020; Ding et al., 2021) with a curriculum (learning a list
of tasks in sequence). As pointed out by Ding et al. (2021),
for learning an optimal policy, SPG requires a polynomial
sample complexity if the initialization is near-optimal.1 In
general, there is no guarantee that the initial policy is near-
optimal, which could potentially lead to an unbounded den-
sity ratio and thus poor sample complexity bound. While
there have been a lot of prior works that utilize exploration
bonuses to address the sample complexity (Azar et al.,
2017; Jin et al., 2018; Agarwal et al., 2020; Zhang et al.,
2020d), we take a different approach without the need for
exploration bonuses by making use of a curriculum of tasks
where adjacent tasks in the curriculum are close in terms of
their optimal state visitation distributions. Our algorithm,
ROLLIN, works by (1) using the optimal policy parameters
of the previous task as an initialization for the current task,
and (2) constructing the initial state distribution as a mix-
ture of the optimal state visitation distribution of the previ-
ous task and the original initial state distribution of interest.
In a nutshell, ROLLIN mixes in the distribution of the opti-
mal policy of the preceding task to the initial distribution to
make sure that such distribution is close to the optimal state
visitation distribution of the current task, reducing the den-
sity mismatch ratio and yielding better sample complexity.

We illustrate the intuition of ROLLIN in Figure 1. We adopt
the contextual MDP formulation, where we assume each
MDP,Mω , is uniquely defined by a context ω in the con-
text spaceW , and we are given a curriculum {ωk}Kk=0, with
the last MDP,MωK

, being the MDP of interest. Our main
results require a Lipschitz continuity assumption on the

1See Definition 4.2 of Section 4.2.

context-dependent reward function rω and a fixed transition
dynamics model across all contexts. We show that learning
π⋆
K by recursively rolling in with a near-optimal policy for

ωk to construct the initial distribution µk+1 for the next
context ωk+1, can have a smaller minimum required sam-
ple complexity compared with learning π⋆

ωK
from scratch

directly. In particular, we show that when an appropriate
sequence of contexts is selected, we can reduce the mini-
mum required iteration and sample complexity bounds of
entropy-regularized softmax policy gradient (with an inex-
act stochastic estimation of the gradient) from an original
exponential dependency on the state space size, as sug-
gested by Ding et al. (2021), to a polynomial dependency.
We also prescribe a practical implementation of ROLLIN.

Our contributions are as follows. We introduce ROLLIN, a
simple algorithm that facilitates single-task learning by re-
casting it as a multi-task problem. Theoretically, we show
that under the entropy-regularized softmax policy gradient
(PG) setting, our algorithm reduces the exponential com-
plexity bound to a polynomial dependency on S. Empiri-
cally, we verify our theory on a tabular MDP and provide
a practical implementation of ROLLIN that can accelerate
curriculum learning in the tabular environment and a range
of simulated robotic tasks.

2. Related Work
Convergence of policy gradient methods. Theoreti-
cal analysis of policy gradient methods has a long his-
tory (Williams, 1992; Sutton et al., 1999; Konda and
Tsitsiklis, 1999; Kakade and Langford, 2002; Peters and
Schaal, 2008). Motivated by the recent empirical suc-
cess (Schulman et al., 2015; 2017) in policy gradient (PG)
methods, the theory community has extensively studied the
convergence of PG in various settings (Fazel et al., 2018;
Agarwal et al., 2021; 2020; Bhandari and Russo, 2019;
Mei et al., 2020; Zhang et al., 2020b; Agarwal et al., 2020;
Zhang et al., 2020a; Li et al., 2021; Cen et al., 2021; Ding
et al., 2021; Yuan et al., 2022; Moskovitz et al., 2022).
Agarwal et al. (2021) established the asymptotic global
convergence of policy gradient under different policy pa-
rameterizations. We extend the result of entropy regu-
larized PG with stochastic gradient (Ding et al., 2021) to
the contextual MDP setting. In particular, our contextual
MDP setting reduces the exponential state space depen-
dency w.r.t. the iteration number and per iteration sample
complexity suggested by Ding et al. (2021) to a polyno-
mial dependency. While there exists convergence analyses
on other variants of PG that produce an iteration number
that does not suffer from an exponential state space depen-
dency (Agarwal et al., 2021; Mei et al., 2020), they assume
access to the exact gradient during each update of PG. In
contrast, we assume a stochastic estimation of the gradient.

2

Understanding the Complexity Gains of Single-Task RL with a Curriculum

Exploration bonuses. A number of prior works have
shown that one can achieve a polynomial complexity of
learning an optimal policy with effective exploration meth-
ods (Azar et al., 2017; Jin et al., 2018; Du et al., 2019;
Misra et al., 2020; Agarwal et al., 2020; Zhang et al.,
2020d). The computational efficiency suggested by our
work is different from some of the aforementioned prior
methods that rely on adding exploration bonuses (Azar
et al., 2017; Jin et al., 2018; Agarwal et al., 2020; Zhang
et al., 2020d), as we assume access to a “good” curriculum
which ensures the optimal policy of the next context is not
too different from the optimal policy of the current context
while eschewing exploration bonuses entirely.

Contextual MDPs. Contextual MDPs (or MDPs with
side information) have been studied extensively in the the-
oretical RL literature (Abbasi-Yadkori and Neu, 2014; Hal-
lak et al., 2015; Dann et al., 2019; Jiang et al., 2017; Modi
et al., 2018; Sun et al., 2019; Dann et al., 2019; Modi et al.,
2020). We analyze the iteration complexity and sample
complexity of (stochastic) policy gradient methods, which
is distinct from these prior works that mainly focus on re-
gret bounds (Abbasi-Yadkori and Neu, 2014; Hallak et al.,
2015; Dann et al., 2019) and PAC bounds (Jiang et al.,
2017; Modi et al., 2018; Sun et al., 2019; Dann et al.,
2019; Modi et al., 2020). Several works assumed linear
transition kernel and reward model (or generalized linear
model (Abbasi-Yadkori and Neu, 2014)) with respect to the
context (Abbasi-Yadkori and Neu, 2014; Modi et al., 2018;
Dann et al., 2019; Modi et al., 2020; Belogolovsky et al.,
2021). These assumptions share similarity to our assump-
tions — we have a weaker Lipschitz continuity assumption
with respect to the context space (since linear implies Lip-
schitz) on the reward function and a stronger shared transi-
tion kernel assumption.

Curriculum learning in reinforcement learning. Cur-
riculum learning is a powerful idea that has been widely
used in RL (Florensa et al., 2017; Kim and Choi, 2018;
Omidshafiei et al., 2019; Ivanovic et al., 2019; Akkaya
et al., 2019; Portelas et al., 2020; Bassich et al., 2020; Fang
et al., 2020; Klink et al., 2020; Dennis et al., 2020; Parker-
Holder et al., 2022; Liu et al., 2022) (also see (Narvekar
et al., 2020) for a detailed survey). Although curric-
ula formed by well-designed reward functions (Vinyals
et al., 2019; OpenAI, 2018; Berner et al., 2019; Ye et al.,
2020; Zhai et al., 2022) are usually sufficient given enough
domain knowledge, tackling problems with limited do-
main knowledge requires a more general approach where
a suitable curriculum is automatically formed from a task
space. In the goal-conditioned reinforcement learning lit-
erature, this corresponds to automatic goal proposal mech-
anisms (Florensa et al., 2018; Warde-Farley et al., 2018;
Sukhbaatar et al., 2018; Ren et al., 2019; Ecoffet et al.,

2019; Hartikainen et al., 2019; Pitis et al., 2020; Zhang
et al., 2020c; OpenAI et al., 2021; Zhang et al., 2021).
The practical instantiation of this work is also similar
to (Bassich et al., 2020; Liu et al., 2022), where a curricu-
lum is adopted for learning a progression of a set of tasks.
Klink et al. (2022) also analyzed the theoretical benefits of
curriculum learning in RL, but is primarily concerned with
the problem of representations for value functions when
utilizing approximate value iteration methods for curricu-
lum learning. This is accomplished by using boosting to in-
crease the effective capacity of the value function estimator.
In contrast, our method does not make any prescription in
regard to the representation, but is aimed at studying sam-
ple complexity and exploration, showing that "rolling in"
with the previous policy and then collecting data with the
new policy leads to good sample complexity. In principle,
we could even imagine in future work combining the repre-
sentation analysis in Klink et al. (2022) with the discussion
of state coverage in our analysis.

Learning conditional policies in multi-task RL. Multi-
task RL (Tanaka and Yamamura, 2003) approaches usually
learn a task-conditioned policy that is shared across differ-
ent tasks (Rusu et al., 2015; Rajeswaran et al., 2016; An-
dreas et al., 2017; Finn et al., 2017; D’Eramo et al., 2020;
Yu et al., 2020a; Ghosh et al., 2021; Kalashnikov et al.,
2021; Agarwal et al., 2022). Compared to learning each
task independently, joint training enjoys the sample effi-
ciency benefits from sharing the learned experience across
different tasks as long as the policies generalize well across
tasks. To encourage generalization, it is often desirable to
condition policies on low dimensional feature representa-
tions that are shared across different tasks instead (e.g., us-
ing variational auto-encoders (Nair et al., 2018; Pong et al.,
2019; Nair et al., 2020) or variational information bottle-
neck (Goyal et al., 2019; 2020; Mendonca et al., 2021)).
The idea of learning contextual policies has also been dis-
cussed in classical adaptive control literature (Sastry et al.,
1990; Tao, 2003; Landau et al., 2011; Åström and Witten-
mark, 2013; Goodwin and Sin, 2014). Different from these
prior works which have been mostly focusing on learning
policies that can generalize across different tasks, our work
focuses on how the near-optimal policy from a learned task
could be used to help the learning of a similar task.

3. Preliminaries
We consider the contextual MDP setting, where a con-
textual MDP, MW = (W,S,A,P , rω, γ, ρ), consists of
a context space W , a state space S, an action space A,
a transition dynamic function P : S × A → P(S)
(where P(X) denotes the set of all probability distribu-
tions over set X), a context-conditioned reward function
r :W×S×A → [0, 1], a discount factor γ ∈ (0, 1], and an

3

Understanding the Complexity Gains of Single-Task RL with a Curriculum

initial state distribution of interest ρ. For convenience, we
use S = |S|, A = |A| to denote the number of states and
actions. While some contextual MDP formulations (Hallak
et al., 2015) have context-conditioned transition dynamics
and reward functions, we consider the setting where only
the reward function can change across contexts. We denote
rω as the reward function conditioned on a fixed ω ∈ W
and Mω = (S,A,P , rω, γ, ρ) as the MDP induced by
such fixed reward function. We use π(a|s) : S → P(A)
to denote a policy and we adopt the softmax parameteri-
zation: πθ(a|s) = exp[θ(s,a)]∑

a′ exp[θ(s,a′)] , where θ : S ×A 7→ R.
We use dπρ (s) := (1 − γ)

∑∞
t=0 γ

tPπ(st = s|s0 ∼
ρ) to denote the discounted state visitation distribution
and V π

ω := E [
∑∞

t=0 γ
trω(st, at)] + αH(ρ, π) to denote

the entropy regularized discounted return on Mω , where
H(ρ, π) := Es0∼ρ,ah∼π(·|sh)

[∑∞
h=0−γh log π(ah|sh)

]
is

the discounted entropy term. We use π⋆
ω := argmaxπ V

π
ω

to denote an optimal policy that maximizes the discounted
return under Mω . We assume all the contextual re-
ward functions are bounded within [0, 1]: rω(s, a) ∈
[0, 1], ∀ω ∈ W,∀(s, a) ∈ S × A. Similarly to previ-
ous analysis (Agarwal et al., 2021; Mei et al., 2020; Ding
et al., 2021), we assume the initial distribution ρ for PG or
stochastic PG satisfies ρ(s) > 0,∀s ∈ S. Supposing we
are given a curriculum {ωk}Kk=0, where the last context ωK

definesMωK
the MDP of interest, our goal is to show that

sequentially solving π⋆
ωk

for k = 0, 1, . . . ,K, enjoys bet-
ter computational complexity and sample complexity than
learning π⋆

ωK
problemMωK

from scratch.

3.1. Assumptions

As we will show in Section 4, if there is a curricu-
lum {ωk}Kk=0 where the optimal policies π⋆

ωk
, π⋆

ωk+1
with

respect to two consecutive contexts ωk, ωk+1 are close
enough to each other in terms of their state visitation distri-
butions, using an ε-optimal policy of ωk as an initialization
allows us to directly start from the near-optimal regime of
ωk+1, hence only requiring polynomial complexity to learn
π⋆
ωk+1

. We describe our curriculum assumptions as follows.
Assumption 3.1 (Lipschitz reward in the context space).
The reward function is Lipschitz continuous with re-
spect to the context: maxs,a |rω(s, a)− rω′(s, a)| ≤
Lr ∥ω − ω′∥2, ∀ω, ω′ ∈ W .

Intuitively, Assumption 3.1 defines the similarity between
two tasks via a Lipschitz continuity in the context space.
Similar Lipschitz assumptions also appears in (Abbasi-
Yadkori and Neu, 2014; Modi et al., 2018; Dann et al.,
2019; Modi et al., 2020; Belogolovsky et al., 2021).
Assumption 3.2 (Similarity of Two Contexts). The cur-
riculum {ωk}Kk=0 satisfies max0≤k≤K−1 ∥ωk+1 − ωk∥2 ≤
O
(
S−2

)
, and we have access to a near-optimal initializa-

tion θ
(0)
0 for learning π⋆

ω0
(formally defined in Section 4.2).

At first glance, the near-optimal initialization θ
(0)
0 for the

first task ω0 in the curriculum (suggested by Assump-
tion 3.2) may seem like a strong assumption, but in many
practical settings, it could be quite easy to obtain. For ex-
ample, if the tasks correspond to reaching different goals,
the curriculum might start with a goal right on top of the
starting state, and therefore trivially easy to learn. As an-
other example, if the task is a locomotion task and ω con-
texts correspond to target velocities, ω0 might correspond
to a velocity of zero, corresponding to standing still.

Assumption 3.1 and Assumption 3.2 together quantify
the maximum difference between two consecutive tasks
Mωk−1

,Mωk
, in terms of the maximum difference be-

tween their reward function, which plays a crucial role in
reducing the exponential complexity to a polynomial one.
We will briefly discuss intuition in the next section.

3.2. Prior Analysis on PG with stochastic gradient

Ding et al. (2021) proposed a two-phased PG convergence
analysis framework with a stochastic gradient. In partic-
ular, the author demonstrates that with high probability,
stochastic PG with arbitrary initialization achieves an ε-
optimal policy can be achieved with iteration numbers of
T1, T2 and per iteration sample complexities of B1, B2

in two separate phases where T1 = Ω̃
(
S2S3

)
, T2 =

Ω̃
(
S3/2

)
(Ω̃(·) suppresses the logS and terms that do not

contain S) and B1 = Ω̃
(
S2S3

)
, B2 = Ω̃

(
S5
)
, respec-

tively, and PG enters phase 2 only when the updating pol-
icy becomes ε0-optimal, where ε0 is a term depending on S
(formally defined by (19) in Appendix A.3). For complete-
ness, we restate the main theorem of Ding et al. (2021) in
Theorem A.2, provide the details of such dependencies on
S in Corollary A.3, and describe the two-phase procedure
in Algorithm 4. The main implication of the two-phase re-
sults is that, when applying SPG to learn an optimal policy
from an arbitrary initialization, we suffer from exponen-
tial complexities, unless the initialization is ε0-optimal. We
will now discuss how Assumption 3.1 and Assumption 3.2
enable an ε0-optimal initialization for every ωk, reducing
the exponential complexities to polynomial complexities.

4. Theoretical Analysis
In this section, we first introduce ROLLIN, a simple algo-
rithm that accelerates policy learning under the contextual
MDP setup by bootstrapping new context learning with a
better initial distribution (Algorithm 1). Then, we pro-
vide the total complexity analysis of applying ROLLIN to
stochastic PG for achieving an ε-optimal policy. Finally,
we validate our theoretical results on a tabular MDP.

4

Understanding the Complexity Gains of Single-Task RL with a Curriculum

4.1. ROLLIN

The theoretical version of ROLLIN is provided in Algo-
rithm 1. The intuition behind ROLLIN is that when two
consecutive contexts in the curriculum {ωk}Kk=1 are close,
their optimal parameters θ⋆ωk−1

, θ⋆ωk
should be close to each

other. Let θ(k)t denote the parameters at the tth iteration of
stochastic PG for learning θ⋆ωk

. If we initialize θ
(k)
0 as the

optimal parameter of the previous context θ⋆ωk−1
(line 5 in

Algorithm 1), and set the initial distribution µk as a mix-
ture of the optimal state visitation distribution of the previ-

ous context d
π⋆
ωk−1

µk−1 and the original distribution of interest
ρ with β ∈ (0, 1) (line 6 in Algorithm 1),

µk = βd
π⋆
ωk−1

µk−1 + (1− β)ρ, (1)

then we can show that stochastic PG enjoys a faster conver-
gence rate. This is because setting θ

(k)
0 = θ⋆k−1 ensures a

near-optimal initialization for learning ωk, and setting µk

as the mixture further improves the rate of convergence

by decreasing the density mismatch ratio
∥∥∥dπ⋆

ωk
µk /µk

∥∥∥
∞

(a
term with that influences the convergence rate).

4.2. Main Results

We now discuss how to use a sequence of contexts to learn
the target context ωK with provable efficiency given a near-
optimal policy π

θ
(0)
0

of the initial context ω0, without in-
curring an exponential dependency on S (as mentioned in
Section 3.2). Our polynomial complexity comes as a result
of enforcing an ε0-optimal initialization (ε0 is the same as
Section 3.2 and (19)) for running stochastic PG (line 6 of
Algorithm 1). Hence, stochastic PG directly enters phase
2, with a polynomial dependency on S.

Our main results consist of two parts. We first show that
when two consecutive contexts ωk−1, ωk are close enough
to each other, using ROLLIN for learning θ⋆k with initial-
ization θ

(k)
0 = θ⋆ωk−1

and applying an initial distribution

µk = βd
π⋆
ωk−1

µk−1 + (1− β)ρ improves the convergence rate.
Specifically, the iteration number and complexity for learn-
ing θ⋆ωk

from θ⋆ωk−1
are stated as follows:

Theorem 4.1 (Complexity of Learning the Next Context).
Consider the context-based stochastic softmax policy gra-
dient (line 7 of Algorithm 1), and suppose Assumption 3.1
and Assumption 3.2 hold, then the iteration number of ob-
taining an ε-optimal policy for ωk from θ⋆ωk−1

is Ω̃ (S) and

the per iteration sample complexity is Ω̃
(

Lr

α(1−β)S
3
)

.

Theorem 4.1 shows that when ωk−1, ωk are close enough,
ROLLIN reduces the minimum required iteration and
sample complexity from an exponential dependency of
Ω̃(S2S3

) to an iteration number of Ω̃(S) and per iteration

Algorithm 1 Provably Efficient Learning via ROLLIN

1: Input: ρ, {ωk}Kk=0,MW , β ∈ (0, 1), θ(0)0 .
2: Initialize µ0 = ρ.
3: Run stochastic PG (Algorithm 4) with initialization

θ
(0)
0 , µ0,Mω0 and obtain θ⋆ω0

.
4: for k = 1, . . . ,K do
5: Set θ(k)1 = θ⋆ωk−1

. ▷ πθ⋆
ωk−1

is optimal for ωk−1.

6: Set µk = βd
π⋆
ωk−1

µk−1 + (1− β)ρ.
7: Run stochastic PG (Algorithm 4) with initialization

θ
(k)
0 , µk,Mωk

and obtain θ⋆ωk
.

8: end for
9: Output: θ⋆ωK

sample complexity of Ω̃(S3). It is worth noting that the the-
orem above only addresses the iteration number and sample
complexity for learning θ⋆ωk

from θ⋆ωk−1
. Theorem 4.3 pro-

vides the total complexity for learning θ⋆ωK
from θ

(0)
0 via

recursively applying the results in Theorem 4.1. Before in-
troducing Theorem 4.3, we first provide a criterion for the
desired initialization of θ(0)0 .

Definition 4.2 (Near-optimal Initialization). We say θ0 is
a near-optimal initialization for learning θ⋆ω if θ0 satisfies

V
π⋆
ω

ω (ρ)−V
πθ0
ω (ρ) < ε0 and

∥∥∥ρ− d
π⋆
ω0

ρ

∥∥∥
1
≤ ∥ω1 − ω0∥2.

Note that in the above definition, π⋆
ωk

represents the op-
timal policy of ωk, and V π

ωk
represents value function of

context ωk under policy π. We now introduce the results
for the overall complexity:

Theorem 4.3 (Main Results: Total Complexity of
ROLLIN). Suppose Assumption 3.1 and Assumption 3.2
hold, and θ

(0)
0 is a near-optimal initialization, then the total

number of iterations of learning π⋆
ωK

using Algorithm 1 is
Ω(KS) and the per iteration sample complexity is Ω̃

(
S3
)
,

with high probability.

A direct implication of Theorem 4.3 is that, with a cur-
riculum {ωk}Kk=0 satisfying Assumption 3.1 and Assump-
tion 3.2, one can reduce the daunting exponential depen-
dency on S caused by poor initialization to a polynomial
dependency. Admittedly the state space S itself is still large
in practice, but reducing the state space S itself requires
extra assumptions on S, which is beyond the scope of this
work. We now provide a sketch proof of Theorem 4.1 and
Theorem 4.3 in the next subsection and leave all the details
to Appendix A.4 and Appendix A.5 respectively.

4.3. Proof Sketch

Sketch proof of Theorem 4.1. The key insight for prov-
ing Theorem 4.1 is to show that in MDP Mωk

, the value

5

Understanding the Complexity Gains of Single-Task RL with a Curriculum

Entropy Coeff. Baseline ROLLIN

Hard α = 0.01 0.500± 0.000 0.562± 0.000
α = 0.001 0.856± 0.006 1.000± 0.000

Easy α = 0.01 0.944± 0.003 1.000± 0.000
α = 0.001 1.000± 0.000 1.000± 0.000

Entropy Coeff. Baseline ROLLIN

Hard α = 0.01 0.000± 0.000 0.000± 0.000
α = 0.001 0.424± 0.023 1.067± 0.000

Easy α = 0.01 4.093± 0.224 7.374± 0.216
α = 0.001 10.536± 0.002 10.620± 0.002

Table 1: Curriculum progress κ (left) and final return V π (right) on the four-room navigation with stochastic PG. Both
metrics are reported at the 50, 000th gradient step. We use a mixing ratio of β = 0.75. Across two entropy coefficients and two
reward settings (easy and hard), stochastic PG with ROLLIN consistently achieves better curriculum progress and final return. The
standard error is computed over 10 random seeds.

function with respect to π⋆
ωk
, π⋆

ωk−1
can be bounded by the

ℓ2-norm between ωk and ωk−1. In particular, we prove
such a relation in Lemma A.5:

V
π⋆
ωk

ωk (ρ)− V
π⋆
ωk−1

ωk (ρ) ≤ 2Lr ∥ωk − ωk−1∥2
(1− γ)2

. (2)

By setting θ
(k)
0 = θ⋆ωk−1

, Equation (2) directly implies

V
π⋆
ωk

ωk (ρ) − V θ
(k)
0 (ρ) ≤ 2Lr∥ωk−ωk−1∥2

(1−γ)2 . As suggested
by Ding et al. (2021) stochastic PG can directly start from
stage 2 with polynomial complexity of T2 = Ω̃(S), B2 =

Ω̃(S5), if V
π⋆
ωk

ωk (ρ) − V θ
(k)
0 (ρ) ≤ ε0, where ε0 (formally

defined in Equation (19) in Appendix A.3) is a constant sat-
isfying ε0 = O(S−2). Hence, by enforcing two consecu-
tive contexts to be close enough ∥ωk − ωk−1∥2 ≤ O(S−2),
we can directly start from a near-optimal initialization with
polynomial complexity with respect to S. It is worth high-
lighting that the per iteration sample complexity B2 shown
by Ding et al. (2021) scales as Ω̃(S5), while our result in
Theorem 4.1 only requires a smaller sample complexity of
Ω̃(S3). Such an improvement in the sample complexity

comes from line 6 of ROLLIN: µk = βd
π⋆
ωk−1

µk−1 + (1− β)ρ.

Intuitively, setting µk as βd
π⋆
ωk−1

µk−1 + (1 − β)ρ allows us to
provide an upper bound on the density mismatch ratio:∥∥∥∥dπ⋆

µk
µk /µk

∥∥∥∥
∞
≤ Õ

(
Lr

α(1− β)
∆k

ωS

)
, (3)

where ∆k
ω = max1≤i≤k ∥ωi − ωi−1∥2. Since the sample

complexity B2 (provided in Corollary A.3) contains one

multiplier of
∥∥∥∥dπ⋆

µk
µk /µk

∥∥∥∥
∞

, setting ∆k
ω = O(S−2) imme-

diately reduces the complexity by an order of S2. The proof
of the upper bound of the density mismatch ratio (Equa-
tion (3)) is provided in Lemma A.1.

Sketch proof of Theorem 4.3. We obtain Theorem 4.3
by recursively applying Theorem 4.1. More precisely, we
use induction to show that, if we initialize the parameters
of the policy as θ(k)0 = θ⋆ωk−1

, when t = Ω̃(S), ∀k ∈ [K],

we have V
π⋆
ωk

ωk (ρ)−V
π
θ
(k−1)
t

ωk (ρ) < ε0. Hence, for any con-
text ωk, k ∈ [K], initializing θ

(k)
0 = θ

(k−1)
t from learning

Figure 2: Visualization of the two reward functions for the
four-room navigation environment. Left: easy; Right: hard.
Darker color indicates a higher reward when the agent reaches
the state (with the goal state the darkest). The agent receives 0
reward when it is too far from the goal location (5 steps for the
easy reward function and 4 steps for the hard reward function).
The black line indicates walls in the environment where the agent
cannot pass through. The reward function visualization in this fig-
ure is for the last context. The reward function for other contexts
(other goals) is the same but with the reward function shifted ac-
cording to the goal state.

π⋆
ωk−1

via stochastic PG after t = Ω(S) iteration, θ(k)0 will
directly start from the efficient phase 2 with polynomial
complexity. Hence, the total iteration number for learning
the θ⋆K is Ω(KS), and the per iteration sample complexity
remains the same as Theorem 4.1 (Ω̃

(
S3
)
).

4.4. Numerical Experiments: Four-room Navigation

To provide empirical support for the validity of our theoret-
ical results, we follow the exact setting that is used in our
theoretical analysis and implement ROLLIN with stochas-
tic PG and the softmax policy parameterization on a tabular
contextual MDP. It is worth highlighting that this is distinct
from the practical implementation of ROLLIN in Section 5
– the focus there is to apply the idea of ROLLIN to design
a sample-efficient deep RL algorithm for a more practical
setting (e.g., continuous state and action space), whereas
the focus here is solely to validate our theory in the theoret-
ical setting. The contextual MDP is a grid world consisting
of 12× 12 grid cells where each cell corresponds to a state
in the MDP. The agent always starts from the bottom-left
corner of the grid world and navigates around to collect re-
wards. In particular, the agent receives a positive reward

6

Understanding the Complexity Gains of Single-Task RL with a Curriculum

when it is close to a pre-defined goal cell/state which is de-
fined by the context. We use a curriculum consisting of 17
contexts/goals in sequence, {ωk}16k=0, which form a path
from the initial state of the agent to a far away goal loca-
tion, and we switch from the current context to the next
one in the curriculum whenever the current goal location is
reached with more than 50% probability. We experiment
with two different reward functions (visualized in Figure
2). Table 1 summarizes the results of our experiments.
ROLLIN is able to consistently improve upon the vanilla
stochastic PG baseline (across two different entropy coeffi-
cients and two reward functions with varying difficulties) in
terms of the curriculum progress and the final return. This
verifies that ROLLIN can indeed improve the sample com-
plexity of stochastic PG in a curriculum learning setting,
validating our theory. See more implementation details of
the numerical experiments in Appendix F.

5. Practical Implementation of ROLLIN

We have shown empirical evidence through numerical ex-
periments that ROLLIN can lead to sample complexity re-
duction under our theoretical setting (tabular MDP with
discrete action space and state space, softmax parameter-
ization and entropy regularized objective). Now, we in-
troduce a practical implementation of ROLLIN using Soft-
Actor-Critic (Haarnoja et al., 2018) such that ROLLIN can
be applied to more practical problems with continuous ac-
tion space and state space. SAC can be seen as a variant of
entropy-regularized stochastic PG with the addition of the
critics to reduce gradient variance. Recall that in the theo-
retical analysis, we learn a separate policy for each context
that can start from the near-optimal state distribution of the
previous context to achieve a good return under the current
context. However, in practice, we usually would want to
have a policy that can directly start from the initial distri-
bution ρ to obtain a good return for the final context ωK .
In order to learn such a policy, we propose to have two
context-conditioned RL agents training in parallel, where
the first agent πmain is the main agent that eventually will
learn to achieve a good return from ρ, and the second agent
πexp is an exploration agent that learns to achieve a good
return under the current context from the near-optimal state
density of the previous context. Another purpose of the ex-
ploration agent (as the name suggests) is to provide a better
exploration experience for the main agent to learn the cur-
rent context better. This is made convenient by using an
off-policy RL agent where the main agent can learn from
the data collected by the exploration agent.

Specifically, for each episode, there is a probability of β
where we run the main agent conditioned on the previous
context for a random number of steps until we switch to the
exploration agent to collect experience for the current con-

text until the episode ends. Otherwise, we directly run the
main agent for the entire episode. Both agents are trained to
maximize the return under the current context. Whenever
the average return of the last 10 episodes exceeds a per-
formance threshold R, we immediately switch to the next
context and re-initialize the exploration agent and its replay
buffer. A high-level description is available in Algorithm 2
(a more detailed version in Algorithm 8).

Algorithm 2 Practical Implementation of ROLLIN

1: Input: {ωk}Kk=0: input curriculum, R: near-optimal
threshold, β: roll-in ratio, H: horizon, γ: discount fac-
tor.

2: Initialize D ← ∅,Dexp ← ∅, k ← 0, and two SAC
agents πmain and πexp.

3: for each episode do
4: if average return of the last 10 episodes under con-

text ωk is greater than R then
5: k ← k + 1, Dexp ← ∅, and re-initialize the

exploration agent πexp

6: end if
7: if k > 0 and with probability of β then
8: h ∼ Geom(1− γ) (truncated at H)
9: run πmain(a|s, ωk−1) from the initial state

for h steps and switch to πexp(a|s, ωk) until
the episode ends to obtain trajectory τ0:H =
{s0, a0, r0, s1, a1, · · · , sH}.

10: record τ0:H in D, and τh:H in Dexp.
11: else
12: run πmain(a|s, ωk) to obtain trajectory τ0:H

and record τ0:H in D.
13: end if
14: at each environment step in the episode, update

πmain(·|·, ωk) using D and πexp(·|·, ωk) using Dexp.
15: end for
16: Output: πmain

6. Experimental Results
While the focus of our work is on developing a provably ef-
ficient approach to curriculum learning, we also conduct an
experimental evaluation of our practical implementation of
ROLLIN with soft actor-critic (SAC) (Haarnoja et al., 2018)
as the RL algorithm on several continuous control tasks in-
cluding a goal reaching task and four non-goal reaching
tasks with oracle curricula.

6.1. Goal Reaching with an Oracle Curriculum

We adopt the antmaze-umaze environment (Fu et al.,
2020) for evaluating the performance of ROLLIN in goal-
reaching tasks. We use a hand-crafted path of contexts,
where each specifies a goal location (as shown in Ap-

7

Understanding the Complexity Gains of Single-Task RL with a Curriculum

w/o Geometric Sampling w/ Geometric Sampling

Setting Method ∆ = 1/24 ∆ = 1/12 ∆ = 1/24 ∆ = 1/12

Vanilla Baseline 0.40± 0.02 0.36± 0.00 0.82± 0.08 0.38± 0.03
ROLLIN 0.49± 0.04 0.44± 0.01 0.92± 0.02 0.55± 0.04

Relabeling Baseline 0.89± 0.03 0.66± 0.04 0.76± 0.02 0.72± 0.03
ROLLIN 0.91± 0.03 0.74± 0.01 0.78± 0.01 0.73± 0.00

Go-Explore Baseline 0.37± 0.02 0.38± 0.01 0.82± 0.07 0.42± 0.03
Noise = 0.1 ROLLIN 0.52± 0.07 0.38± 0.01 0.95± 0.02 0.43± 0.02

Table 2: Learning progress κ at 3 million environment steps with varying curriculum step size ∆ of different settings
of goal reaching in antmaze-umaze. We pick β = 0.1 for all experiments using ROLLIN, the results of using other
βs, ∆s, and exploration noises can be found in Table 8, Table 9, and Table 10 in Appendix G.1. The standard error is
computed over 8 random seeds.

pendix E.1, Figure 3). We consider a path of contexts
ω(κ) parameterized by κ ∈ [0, 1] where ω(0) = ω0 and
ω(1) = ωK , and step through the contexts along the path
with a fixed step size ∆. See Appendix E.1 for more im-
plementation details.

We combine ROLLIN with a variety of prior methods,
and we evaluate the following conditions: (1) stan-
dard goal reaching; (2) goal reaching with goal relabel-
ing (Andrychowicz et al., 2017); (3) goal reaching with
an exploration phase that is similar to Go-Explore (Ecof-
fet et al., 2019). For goal relabeling, we adopt a similar
relabeling technique as Pitis et al. (2020), where each mini-
batch contains 1/3 original transitions, 1/3 transitions with
future state relabeling, and 1/3 transitions with next state
relabeling. We implemented the Go-Explore method by
adding an additional standard Gaussian exploration noise
in the action to the agent for learning the next goal ω(k+1),
once it reaches the current goal ω(k). We empirically ob-
served that sampling the replay buffer from a geometric dis-
tribution with p = 10−5 (more recent transitions are sam-
pled more frequently) improves the overall performance.
Hence, in all future experiments, we compare the perfor-
mance of ROLLIN with classic uniform sampling and the
new geometric sampling. We compare the learning speed
of ROLLIN with parameter β = 0.1 on three different step
sizes ∆ = 1

24 ,
1
18 ,

1
12 in Table 2.

Main comparisons. We first provide an overview exper-
iments that compares ROLLIN with a fixed β = 0.1 on
different step sizes ∆ in different settings. In each case,
we compare the prior method (vanilla, relabeled, or Go-
Explore) with and without the addition of ROLLIN. As
shown in Table 2, ROLLIN improves the largest value of κ
reached by the agent in most presented settings (except Go-
Explore with ∆ = 1/12). This result suggests that ROLLIN
facilitates goal-conditioned RL with a curriculum, as we
only update the learning progress κ to κ+∆ when the re-
turn of the current policy reaches a certain threshold R (See

detailed update of κ in Algorithm 2). Note that β = 0.1
does not always produce the best result, we will provide
more results comparing different βs in different settings
later in this section, and we leave all the learning curves
and detailed tables to Appendix G.1. Note that we do not
include the results of directly learning the last context in the
antmaze-umaze environment because the agent cannot
reach the goal without the aid of a curriculum, which is
corroborated by (Pitis et al., 2020).

6.2. Non-Goal Reaching Tasks

For the non-goal tasks, we consider the tasks of gradually
increasing the x-velocity of a locomotion agent in the fol-
lowing environments: walker2d, hopper, humanoid,
and ant in OpenAI gym (Brockman et al., 2016). More
specifically, we set the desired speed range to be [λκ, λ(κ+
0.1)), where λ is a parameter depending on the physics
of the agent in different environments and we choose a
fixed contextual space with ten discrete contexts: κ ∈
{0.1, 0.2, . . . , 1}. The agent receives a higher reward when
the x-velocity is within the desired speed range and a lower
reward otherwise. In each environment, we increase the
task difficulty with later curriculum steps (larger κ), by in-
creasing the near-optimal threshold R(κ). Detailed param-
eters of the desired speed range λ, near optimal-threshold
R(κ), and the reward functions are in Appendix E.2.

Main comparisons. We first compare ROLLIN with a fixed
β = 0.1 at different environment steps: 0.5× 106, 1× 106.
In each case, we compare the learning progress κ, averaged
x-velocity, and averaged return, with and without the addi-
tion of ROLLIN. Note that for the case without ROLLIN, we
still provide the curriculum to the agent for training. The
results in Table 3 show that ROLLIN improves most bench-
marks (See detailed update of κ in Algorithm 2). Note that
β = 0.1 does not always produce the best result, and we
provide more results comparing different βs in different
settings later in this section, with learning curves and more

8

Understanding the Complexity Gains of Single-Task RL with a Curriculum

Step = 0.5× 106 Step = 1.0× 106

Env. Method κ x-velocity return κ x-velocity return

walker Scratch n/a 3.07± 0.26 3373.1± 170.5 n/a 3.30± 0.36 4212.3± 151.4
Baseline 0.83± 0.03 3.09± 0.31 3450.1± 307.4 0.92± 0.03 3.69± 0.27 4032.3± 224.3
ROLLIN 0.79± 0.04 2.83± 0.31 3350.4± 184.6 0.94± 0.03 3.62± 0.26 4128.8± 159.6

hopper Scratch n/a 2.50± 0.13 2943.6± 80.3 n/a 2.55± 0.12 3073.2± 137.7
Baseline 0.85± 0.02 2.42± 0.18 3192.5± 80.4 0.88± 0.01 2.58± 0.16 3386.2± 124.7
ROLLIN 0.82± 0.03 2.26± 0.22 3148.6± 160.7 0.89± 0.00 2.65± 0.15 3421.9± 109.8

humanoid Scratch n/a 0.24± 0.05 2417.1± 188.2 n/a 0.37± 0.05 2763.8± 96.5
Baseline 0.32± 0.05 0.26± 0.05 2910.1± 262.9 0.67± 0.03 0.39± 0.05 3017.2± 169.0
ROLLIN 0.36± 0.04 0.32± 0.07 2939.7± 392.0 0.69± 0.06 0.46± 0.09 3173.6± 238.3

ant Scratch n/a 3.60± 0.49 2910.7± 354.3 n/a 4.55± 0.36 4277.9± 120.0
Baseline 0.72± 0.02 3.38± 0.43 2976.2± 252.4 1.00± 0.00 4.29± 0.51 4248.5± 88.6
ROLLIN 0.82± 0.06 3.85± 0.41 3593.1± 237.8 1.00± 0.00 4.66± 0.30 4473.0± 102.2

Table 3: Learning progress κ, average x-velocity, and average return at 0.5 and 1.0 million environment steps in walker,
hopper, humanoid, and ant. The average x-velocity and return are estimated using the last 50k environment steps.
“Scratch” shows the results of directly training the agent with the last context ω(1). “Baseline” indicates β = 0, where we
provide the curriculum ω(κ) to the agent without using ROLLIN. We pick β = 0.1 for all experiments using ROLLIN, the
results of using other βs can be found in Table 11, Table 12, and Table 13 in Appendix G.2. The standard error is computed
over 8 random seeds.

detailed tables in Appendix G.2.

6.3. Experimental Summary

We empirically showed that ROLLIN improves the perfor-
mance of one goal-reaching task and four non-goal tasks
in different settings. Although ROLLIN introduces an extra
parameter β, our experiments show reasonable improve-
ment by simply choosing β = 0.1 or 0.2. More careful
selection of β might lead to further improvements.

7. Discussion and Future Work
We presented ROLLIN, a simple algorithm that accelerates
curriculum learning under the contextual MDP setup by
rolling in a near-optimal policy to bootstrap the learning
of new nearby contexts with provable learning efficiency
benefits. Theoretically, we show that ROLLIN attains poly-
nomial sample complexity by utilizing adjacent contexts to
initialize each policy. Since the key theoretical insight of
ROLLIN suggests that one can reduce the density mismatch
ratio by constructing a new initial distribution, it would be
interesting to see how ROLLIN can affect other variants of
convergence analysis of PG (e.g., NPG (Kakade, 2001; Cen
et al., 2021) or PG in a feature space (Agarwal et al., 2021;
2020)). On the empirical side, our experiments demon-
strate that ROLLIN improves the empirical performance of
various tasks beyond our theoretical assumptions, which
reveals the potential of ROLLIN in other practical RL tasks
with a curriculum. Our initial practical instantiation of the

ROLLIN algorithm has a lot of room for future research.
First of all, our implementation requires domain-specific
knowledge of a “good” return value as it currently rely on
a fixed return threshold R to determine when we are go-
ing to switch from the current context to the next context.
Another promising direction is to combine our algorithm
with context-based meta-RL methods such as learning to
generate sub-goal/context to accelerate the learning of the
current sub-goal/context. Finally, our method is not spe-
cific to the goal-conditioned settings, which opens up the
possibility of applying our algorithm to more challenging
domains.

8. Acknowledgements
We are thankful to Laura Smith, Dibya Ghosh, Chuer Pan,
and other members of the RAIL lab for feedback and sug-
gestions on earlier drafts. QL would like acknowledge
the support of the Berkeley Fellowship. YZ would like
to thank Jincheng Mei from Google and Yuhao Ding from
UC Berkeley for insightful discussions on the related proof.
YM would like to acknowledge the support of ONR grants
N00014-20-1-2002, N00014-22-1-2102, the joint Simons
Foundation-NSF DMS grant # 2031899, and Tsinghua-
Berkeley Shenzhen Institute (TBSI) Research Fund. SL
would like to acknowledge Air Force Office of Scien-
tific Research AFOSR FA9550-22-1-0273. The research is
supported by Savio computational cluster provided by the
Berkeley Research Compute program.

9

Understanding the Complexity Gains of Single-Task RL with a Curriculum

References
Yasin Abbasi-Yadkori and Gergely Neu. Online learn-

ing in MDPs with side information. arXiv preprint
arXiv:1406.6812, 2014.

Alekh Agarwal, Nan Jiang, Sham M Kakade, and Wen Sun.
Reinforcement learning: Theory and algorithms. CS
Dept., UW Seattle, Seattle, WA, USA, Tech. Rep, 2019.

Alekh Agarwal, Mikael Henaff, Sham Kakade, and Wen
Sun. PC-PG: Policy cover directed exploration for prov-
able policy gradient learning. Advances in Neural Infor-
mation Processing Systems, 33:13399–13412, 2020.

Alekh Agarwal, Sham M Kakade, Jason D Lee, and Gaurav
Mahajan. On the theory of policy gradient methods: Op-
timality, approximation, and distribution shift. Journal
of Machine Learning Research, 22(98):1–76, 2021.

Alekh Agarwal, Yuda Song, Wen Sun, Kaiwen Wang,
Mengdi Wang, and Xuezhou Zhang. Provable bene-
fits of representational transfer in reinforcement learn-
ing. arXiv preprint arXiv:2205.14571, 2022.

Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Ma-
teusz Litwin, Bob McGrew, Arthur Petron, Alex Paino,
Matthias Plappert, Glenn Powell, Raphael Ribas, et al.
Solving rubik’s cube with a robot hand. arXiv preprint
arXiv:1910.07113, 2019.

Jacob Andreas, Dan Klein, and Sergey Levine. Modular
multitask reinforcement learning with policy sketches.
In International Conference on Machine Learning,
pages 166–175. PMLR, 2017.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas
Schneider, Rachel Fong, Peter Welinder, Bob Mc-
Grew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech
Zaremba. Hindsight experience replay. Advances in neu-
ral information processing systems, 30, 2017.

OpenAI: Marcin Andrychowicz, Bowen Baker, Maciek
Chociej, Rafal Jozefowicz, Bob McGrew, Jakub Pa-
chocki, Arthur Petron, Matthias Plappert, Glenn Powell,
Alex Ray, et al. Learning dexterous in-hand manipula-
tion. The International Journal of Robotics Research, 39
(1):3–20, 2020.

Karl J Åström and Björn Wittenmark. Adaptive control.
Courier Corporation, 2013.

Mohammad Gheshlaghi Azar, Ian Osband, and Rémi
Munos. Minimax regret bounds for reinforcement learn-
ing. In International Conference on Machine Learning,
pages 263–272. PMLR, 2017.

Andrea Bassich, Francesco Foglino, Matteo Leonetti, and
Daniel Kudenko. Curriculum learning with a progres-
sion function. arXiv preprint arXiv:2008.00511, 2020.

Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom
Schaul, David Saxton, and Remi Munos. Unifying
count-based exploration and intrinsic motivation. In Ad-
vances in Neural Information Processing Systems, pages
1471–1479, 2016.

Stav Belogolovsky, Philip Korsunsky, Shie Mannor, Chen
Tessler, and Tom Zahavy. Inverse reinforcement learning
in contextual MDPs. Machine Learning, 110(9):2295–
2334, 2021.

Christopher Berner, Greg Brockman, Brooke Chan, Vicki
Cheung, Przemysław Dębiak, Christy Dennison, David
Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, et al.
Dota 2 with large scale deep reinforcement learning.
arXiv preprint arXiv:1912.06680, 2019.

Jalaj Bhandari and Daniel Russo. Global optimality guar-
antees for policy gradient methods. arXiv preprint
arXiv:1906.01786, 2019.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas
Schneider, John Schulman, Jie Tang, and Wojciech
Zaremba. OpenAI Gym, 2016.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg
Klimov. Exploration by random network distillation.
arXiv preprint arXiv:1810.12894, 2018.

Shicong Cen, Chen Cheng, Yuxin Chen, Yuting Wei, and
Yuejie Chi. Fast global convergence of natural policy
gradient methods with entropy regularization. Opera-
tions Research, 2021.

Christoph Dann, Lihong Li, Wei Wei, and Emma Brun-
skill. Policy certificates: Towards accountable reinforce-
ment learning. In International Conference on Machine
Learning, pages 1507–1516. PMLR, 2019.

Michael Dennis, Natasha Jaques, Eugene Vinitsky, Alexan-
dre Bayen, Stuart Russell, Andrew Critch, and Sergey
Levine. Emergent complexity and zero-shot transfer via
unsupervised environment design. Advances in Neu-
ral Information Processing Systems, 33:13049–13061,
2020.

Carlo D’Eramo, Davide Tateo, Andrea Bonarini, Marcello
Restelli, and Jan Peters. Sharing knowledge in multi-task
deep reinforcement learning. In International Confer-
ence on Learning Representations, 2020. URL https:
//openreview.net/forum?id=rkgpv2VFvr.

10

https://openreview.net/forum?id=rkgpv2VFvr
https://openreview.net/forum?id=rkgpv2VFvr

Understanding the Complexity Gains of Single-Task RL with a Curriculum

Yuhao Ding, Junzi Zhang, and Javad Lavaei. Beyond ex-
act gradients: Convergence of stochastic soft-max pol-
icy gradient methods with entropy regularization. arXiv
preprint arXiv:2110.10117, 2021.

Simon Du, Akshay Krishnamurthy, Nan Jiang, Alekh
Agarwal, Miroslav Dudik, and John Langford. Provably
efficient RL with rich observations via latent state decod-
ing. In International Conference on Machine Learning,
pages 1665–1674. PMLR, 2019.

Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O
Stanley, and Jeff Clune. Go-Explore: a new ap-
proach for hard-exploration problems. arXiv preprint
arXiv:1901.10995, 2019.

Ben Eysenbach, Xinyang Geng, Sergey Levine, and Russ R
Salakhutdinov. Rewriting history with inverse rl: Hind-
sight inference for policy improvement. Advances
in neural information processing systems, 33:14783–
14795, 2020a.

Benjamin Eysenbach, Ruslan Salakhutdinov, and Sergey
Levine. C-learning: Learning to achieve goals via re-
cursive classification. arXiv preprint arXiv:2011.08909,
2020b.

Kuan Fang, Yuke Zhu, Silvio Savarese, and Li Fei-
Fei. Adaptive procedural task generation for hard-
exploration problems. arXiv preprint arXiv:2007.00350,
2020.

Maryam Fazel, Rong Ge, Sham Kakade, and Mehran Mes-
bahi. Global convergence of policy gradient methods for
the linear quadratic regulator. In International Confer-
ence on Machine Learning, pages 1467–1476. PMLR,
2018.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-
agnostic meta-learning for fast adaptation of deep net-
works. In International conference on machine learning,
pages 1126–1135. PMLR, 2017.

Carlos Florensa, David Held, Markus Wulfmeier, Michael
Zhang, and Pieter Abbeel. Reverse curriculum genera-
tion for reinforcement learning. In Conference on robot
learning, pages 482–495. PMLR, 2017.

Carlos Florensa, David Held, Xinyang Geng, and Pieter
Abbeel. Automatic goal generation for reinforcement
learning agents. In International conference on machine
learning, pages 1515–1528. PMLR, 2018.

Justin Fu, Avi Singh, Dibya Ghosh, Larry Yang, and Sergey
Levine. Variational inverse control with events: A gen-
eral framework for data-driven reward definition. arXiv
preprint arXiv:1805.11686, 2018.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and
Sergey Levine. D4RL: Datasets for deep data-driven re-
inforcement learning. arXiv preprint arXiv:2004.07219,
2020.

Yasuhiro Fujita, Kota Uenishi, Avinash Ummadisingu,
Prabhat Nagarajan, Shimpei Masuda, and Mario Yno-
cente Castro. Distributed reinforcement learning of tar-
geted grasping with active vision for mobile manipula-
tors. In 2020 IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS), pages 9712–9719.
IEEE, 2020.

Dibya Ghosh, Abhishek Gupta, Ashwin Reddy, Justin Fu,
Coline Manon Devin, Benjamin Eysenbach, and Sergey
Levine. Learning to reach goals via iterated supervised
learning. In International Conference on Learning Rep-
resentations, 2021. URL https://openreview.
net/forum?id=rALA0Xo6yNJ.

Graham C Goodwin and Kwai Sang Sin. Adaptive filtering
prediction and control. Courier Corporation, 2014.

Anirudh Goyal, Riashat Islam, DJ Strouse, Zafarali
Ahmed, Hugo Larochelle, Matthew Botvinick, Sergey
Levine, and Yoshua Bengio. Transfer and exploration
via the information bottleneck. In International Confer-
ence on Learning Representations, 2019. URL https:
//openreview.net/forum?id=rJg8yhAqKm.

Anirudh Goyal, Yoshua Bengio, Matthew Botvinick, and
Sergey Levine. The variational bandwidth bottleneck:
Stochastic evaluation on an information budget. In
International Conference on Learning Representations,
2020. URL https://openreview.net/forum?
id=Hye1kTVFDS.

Abhishek Gupta, Aldo Pacchiano, Yuexiang Zhai, Sham M
Kakade, and Sergey Levine. Unpacking reward shaping:
Understanding the benefits of reward engineering on
sample complexity. arXiv preprint arXiv:2210.09579,
2022.

Tuomas Haarnoja. Acquiring diverse robot skills via maxi-
mum entropy deep reinforcement learning. University of
California, Berkeley, 2018.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen,
George Tucker, Sehoon Ha, Jie Tan, Vikash Kumar,
Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft
actor-critic algorithms and applications. arXiv preprint
arXiv:1812.05905, 2018.

Assaf Hallak, Dotan Di Castro, and Shie Mannor. Con-
textual markov decision processes. arXiv preprint
arXiv:1502.02259, 2015.

11

https://openreview.net/forum?id=rALA0Xo6yNJ
https://openreview.net/forum?id=rALA0Xo6yNJ
https://openreview.net/forum?id=rJg8yhAqKm
https://openreview.net/forum?id=rJg8yhAqKm
https://openreview.net/forum?id=Hye1kTVFDS
https://openreview.net/forum?id=Hye1kTVFDS

Understanding the Complexity Gains of Single-Task RL with a Curriculum

Kristian Hartikainen, Xinyang Geng, Tuomas Haarnoja,
and Sergey Levine. Dynamical distance learning for
semi-supervised and unsupervised skill discovery. arXiv
preprint arXiv:1907.08225, 2019.

Boris Ivanovic, James Harrison, Apoorva Sharma,
Mo Chen, and Marco Pavone. BARC: Backward reach-
ability curriculum for robotic reinforcement learning. In
2019 International Conference on Robotics and Automa-
tion (ICRA), pages 15–21. IEEE, 2019.

Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, John
Langford, and Robert E Schapire. Contextual decision
processes with low Bellman rank are PAC-learnable. In
International Conference on Machine Learning, pages
1704–1713. PMLR, 2017.

Chi Jin, Zeyuan Allen-Zhu, Sebastien Bubeck, and
Michael I Jordan. Is Q-learning provably efficient? Ad-
vances in neural information processing systems, 31,
2018.

Sham Kakade and John Langford. Approximately optimal
approximate reinforcement learning. In In Proc. 19th In-
ternational Conference on Machine Learning. Citeseer,
2002.

Sham M Kakade. A natural policy gradient. Advances in
neural information processing systems, 14, 2001.

Dmitry Kalashnikov, Jacob Varley, Yevgen Chebotar, Ben-
jamin Swanson, Rico Jonschkowski, Chelsea Finn,
Sergey Levine, and Karol Hausman. MT-opt: Contin-
uous multi-task robotic reinforcement learning at scale.
arXiv preprint arXiv:2104.08212, 2021.

Tae-Hoon Kim and Jonghyun Choi. Screenernet: Learning
self-paced curriculum for deep neural networks. arXiv
preprint arXiv:1801.00904, 2018.

Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In International Conference on
Learning Representations, 2015.

Pascal Klink, Carlo D’Eramo, Jan R Peters, and Joni Pa-
jarinen. Self-paced deep reinforcement learning. Ad-
vances in Neural Information Processing Systems, 33:
9216–9227, 2020.

Pascal Klink, Carlo D’Eramo, Jan Peters, and Joni Pajari-
nen. Boosted curriculum reinforcement learning. In
International Conference on Learning Representations,
2022. URL https://openreview.net/forum?
id=anbBFlX1tJ1.

Vijay Konda and John Tsitsiklis. Actor-critic algorithms.
Advances in neural information processing systems, 12,
1999.

Ilya Kostrikov. JAXRL: Implementations of Reinforce-
ment Learning algorithms in JAX, 10 2021. URL
https://github.com/ikostrikov/jaxrl.

Tejas D Kulkarni, Ardavan Saeedi, Simanta Gautam, and
Samuel J Gershman. Deep successor reinforcement
learning. arXiv preprint arXiv:1606.02396, 2016.

Ioan Doré Landau, Rogelio Lozano, Mohammed M’Saad,
and Alireza Karimi. Adaptive control: algorithms, anal-
ysis and applications. Springer Science & Business Me-
dia, 2011.

Gen Li, Yuting Wei, Yuejie Chi, Yuantao Gu, and Yuxin
Chen. Softmax policy gradient methods can take ex-
ponential time to converge. In Conference on Learning
Theory, pages 3107–3110. PMLR, 2021.

Xingyu Liu, Deepak Pathak, and Kris M Kitani. Revolver:
Continuous evolutionary models for robot-to-robot pol-
icy transfer. arXiv preprint arXiv:2202.05244, 2022.

Jincheng Mei, Chenjun Xiao, Csaba Szepesvari, and Dale
Schuurmans. On the global convergence rates of softmax
policy gradient methods. In International Conference on
Machine Learning, pages 6820–6829. PMLR, 2020.

Russell Mendonca, Oleh Rybkin, Kostas Daniilidis, Dani-
jar Hafner, and Deepak Pathak. Discovering and achiev-
ing goals via world models. Advances in Neural Infor-
mation Processing Systems, 34, 2021.

Dipendra Misra, Mikael Henaff, Akshay Krishnamurthy,
and John Langford. Kinematic state abstraction and
provably efficient rich-observation reinforcement learn-
ing. In International conference on machine learning,
pages 6961–6971. PMLR, 2020.

Aditya Modi, Nan Jiang, Satinder Singh, and Ambuj
Tewari. Markov decision processes with continuous side
information. In Algorithmic Learning Theory, pages
597–618. PMLR, 2018.

Aditya Modi, Nan Jiang, Ambuj Tewari, and Satinder
Singh. Sample complexity of reinforcement learning
using linearly combined model ensembles. In Interna-
tional Conference on Artificial Intelligence and Statis-
tics, pages 2010–2020. PMLR, 2020.

Ted Moskovitz, Michael Arbel, Jack Parker-Holder, and
Aldo Pacchiano. Towards an understanding of default
policies in multitask policy optimization. In Interna-
tional Conference on Artificial Intelligence and Statis-
tics, pages 10661–10686. PMLR, 2022.

Ofir Nachum, Mohammad Norouzi, Kelvin Xu, and Dale
Schuurmans. Bridging the gap between value and policy
based reinforcement learning. Advances in neural infor-
mation processing systems, 30, 2017.

12

https://openreview.net/forum?id=anbBFlX1tJ1
https://openreview.net/forum?id=anbBFlX1tJ1
https://github.com/ikostrikov/jaxrl

Understanding the Complexity Gains of Single-Task RL with a Curriculum

Ashvin Nair, Shikhar Bahl, Alexander Khazatsky, Vitchyr
Pong, Glen Berseth, and Sergey Levine. Contextual
imagined goals for self-supervised robotic learning. In
Conference on Robot Learning, pages 530–539. PMLR,
2020.

Ashvin V Nair, Vitchyr Pong, Murtaza Dalal, Shikhar Bahl,
Steven Lin, and Sergey Levine. Visual reinforcement
learning with imagined goals. Advances in neural infor-
mation processing systems, 31, 2018.

Suraj Nair, Eric Mitchell, Kevin Chen, Silvio Savarese,
Chelsea Finn, et al. Learning language-conditioned
robot behavior from offline data and crowd-sourced an-
notation. In Conference on Robot Learning, pages 1303–
1315. PMLR, 2022.

Sanmit Narvekar, Bei Peng, Matteo Leonetti, Jivko
Sinapov, Matthew E Taylor, and Peter Stone. Curriculum
learning for reinforcement learning domains: A frame-
work and survey. arXiv preprint arXiv:2003.04960,
2020.

Andrew Y Ng, Daishi Harada, and Stuart Russell. Pol-
icy invariance under reward transformations: Theory and
application to reward shaping. In ICML, volume 99,
pages 278–287, 1999.

Shayegan Omidshafiei, Dong-Ki Kim, Miao Liu, Gerald
Tesauro, Matthew Riemer, Christopher Amato, Murray
Campbell, and Jonathan P How. Learning to teach in
cooperative multiagent reinforcement learning. In Pro-
ceedings of the AAAI conference on artificial intelli-
gence, volume 33 issue 01, pages 6128–6136, 2019.

OpenAI. OpenAI Five. https://blog.openai.
com/openai-five/, 2018.

OpenAI OpenAI, Matthias Plappert, Raul Sampedro, Tao
Xu, Ilge Akkaya, Vineet Kosaraju, Peter Welinder,
Ruben D’Sa, Arthur Petron, Henrique P d O Pinto, et al.
Asymmetric self-play for automatic goal discovery in
robotic manipulation. arXiv preprint arXiv:2101.04882,
2021.

Jack Parker-Holder, Minqi Jiang, Michael Dennis, Mikayel
Samvelyan, Jakob Foerster, Edward Grefenstette, and
Tim Rocktäschel. Evolving curricula with regret-based
environment design. arXiv preprint arXiv:2203.01302,
2022.

Jan Peters and Stefan Schaal. Natural actor-critic. Neuro-
computing, 71(7-9):1180–1190, 2008.

Silviu Pitis, Harris Chan, Stephen Zhao, Bradly Stadie, and
Jimmy Ba. Maximum entropy gain exploration for long
horizon multi-goal reinforcement learning. In Interna-
tional Conference on Machine Learning, pages 7750–
7761. PMLR, 2020.

Vitchyr H Pong, Murtaza Dalal, Steven Lin, Ashvin Nair,
Shikhar Bahl, and Sergey Levine. Skew-fit: State-
covering self-supervised reinforcement learning. arXiv
preprint arXiv:1903.03698, 2019.

Rémy Portelas, Cédric Colas, Katja Hofmann, and Pierre-
Yves Oudeyer. Teacher algorithms for curriculum learn-
ing of deep rl in continuously parameterized environ-
ments. In Conference on Robot Learning, pages 835–
853. PMLR, 2020.

Aravind Rajeswaran, Sarvjeet Ghotra, Balaraman Ravin-
dran, and Sergey Levine. Epopt: Learning robust neural
network policies using model ensembles. arXiv preprint
arXiv:1610.01283, 2016.

Zhizhou Ren, Kefan Dong, Yuan Zhou, Qiang Liu, and Jian
Peng. Exploration via hindsight goal generation. Ad-
vances in Neural Information Processing Systems, 32,
2019.

Andrei A Rusu, Sergio Gomez Colmenarejo, Caglar Gul-
cehre, Guillaume Desjardins, James Kirkpatrick, Raz-
van Pascanu, Volodymyr Mnih, Koray Kavukcuoglu,
and Raia Hadsell. Policy distillation. arXiv preprint
arXiv:1511.06295, 2015.

Shankar Sastry, Marc Bodson, and James F Bartram.
Adaptive control: stability, convergence, and robustness,
1990.

John Schulman, Sergey Levine, Pieter Abbeel, Michael
Jordan, and Philipp Moritz. Trust region policy opti-
mization. In International conference on machine learn-
ing, pages 1889–1897. PMLR, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Rad-
ford, and Oleg Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

Shamane Siriwardhana, Rivindu Weerasakera, Denys JC
Matthies, and Suranga Nanayakkara. VUSFA: Varia-
tional universal successor features approximator to im-
prove transfer DRL for target driven visual navigation.
arXiv preprint arXiv:1908.06376, 2019.

Bradly C Stadie, Sergey Levine, and Pieter Abbeel. Incen-
tivizing exploration in reinforcement learning with deep
predictive models. arXiv preprint arXiv:1507.00814,
2015.

Sainbayar Sukhbaatar, Emily Denton, Arthur Szlam, and
Rob Fergus. Learning goal embeddings via self-play
for hierarchical reinforcement learning. arXiv preprint
arXiv:1811.09083, 2018.

Wen Sun, Nan Jiang, Akshay Krishnamurthy, Alekh Agar-
wal, and John Langford. Model-based RL in contextual

13

https://blog.openai.com/openai-five/
https://blog.openai.com/openai-five/

Understanding the Complexity Gains of Single-Task RL with a Curriculum

decision processes: PAC bounds and exponential im-
provements over model-free approaches. In Conference
on learning theory, pages 2898–2933. PMLR, 2019.

Richard S Sutton, David McAllester, Satinder Singh, and
Yishay Mansour. Policy gradient methods for reinforce-
ment learning with function approximation. Advances in
neural information processing systems, 12, 1999.

Fumihide Tanaka and Masayuki Yamamura. Multitask re-
inforcement learning on the distribution of MDPs. In
Proceedings 2003 IEEE International Symposium on
Computational Intelligence in Robotics and Automation.
Computational Intelligence in Robotics and Automation
for the New Millennium (Cat. No. 03EX694), volume 3,
pages 1108–1113. IEEE, 2003.

Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke,
OpenAI Xi Chen, Yan Duan, John Schulman, Filip De-
Turck, and Pieter Abbeel. # exploration: A study of
count-based exploration for deep reinforcement learn-
ing. In Advances in neural information processing sys-
tems, pages 2753–2762, 2017.

Gang Tao. Adaptive control design and analysis, vol-
ume 37. John Wiley & Sons, 2003.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki,
Michaël Mathieu, Andrew Dudzik, Junyoung Chung,
David H Choi, Richard Powell, Timo Ewalds, Petko
Georgiev, et al. Grandmaster level in starcraft ii using
multi-agent reinforcement learning. Nature, 575(7782):
350–354, 2019.

David Warde-Farley, Tom Van de Wiele, Tejas Kulkarni,
Catalin Ionescu, Steven Hansen, and Volodymyr Mnih.
Unsupervised control through non-parametric discrimi-
native rewards. arXiv preprint arXiv:1811.11359, 2018.

Ronald J Williams. Simple statistical gradient-following al-
gorithms for connectionist reinforcement learning. Ma-
chine learning, 8(3-4):229–256, 1992.

Deheng Ye, Guibin Chen, Wen Zhang, Sheng Chen,
Bo Yuan, Bo Liu, Jia Chen, Zhao Liu, Fuhao Qiu,
Hongsheng Yu, Yinyuting Yin, Bei Shi, Liang Wang,
Tengfei Shi, Qiang Fu, Wei Yang, Lanxiao Huang,
and Wei Liu. Towards playing full moba games
with deep reinforcement learning. In H. Larochelle,
M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin,
editors, Advances in Neural Information Processing
Systems, volume 33, pages 621–632. Curran Associates,
Inc., 2020. URL https://proceedings.
neurips.cc/paper/2020/file/
06d5ae105ea1bea4d800bc96491876e9-Paper.
pdf.

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey
Levine, Karol Hausman, and Chelsea Finn. Gradient
surgery for multi-task learning. Advances in Neural In-
formation Processing Systems, 33:5824–5836, 2020a.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Ju-
lian, Karol Hausman, Chelsea Finn, and Sergey Levine.
Meta-world: A benchmark and evaluation for multi-
task and meta reinforcement learning. In Conference on
Robot Learning, pages 1094–1100. PMLR, 2020b.

Rui Yuan, Robert M Gower, and Alessandro Lazaric. A
general sample complexity analysis of vanilla policy gra-
dient. In International Conference on Artificial Intelli-
gence and Statistics, pages 3332–3380. PMLR, 2022.

Yuexiang Zhai, Christina Baek, Zhengyuan Zhou, Jiantao
Jiao, and Yi Ma. Computational benefits of intermediate
rewards for goal-reaching policy learning. Journal of
Artificial Intelligence Research, 73:847–896, 2022.

Junzi Zhang, Jongho Kim, Brendan O’Donoghue, and
Stephen Boyd. Sample efficient reinforcement learn-
ing with reinforce. arXiv preprint arXiv:2010.11364,
page 97, 2020a.

Kaiqing Zhang, Alec Koppel, Hao Zhu, and Tamer Basar.
Global convergence of policy gradient methods to (al-
most) locally optimal policies. SIAM Journal on Control
and Optimization, 58(6):3586–3612, 2020b.

Tianjun Zhang, Benjamin Eysenbach, Ruslan Salakhut-
dinov, Sergey Levine, and Joseph E Gonzalez. C-
planning: An automatic curriculum for learning goal-
reaching tasks. arXiv preprint arXiv:2110.12080, 2021.

Yunzhi Zhang, Pieter Abbeel, and Lerrel Pinto. Automatic
curriculum learning through value disagreement. Ad-
vances in Neural Information Processing Systems, 33:
7648–7659, 2020c.

Zihan Zhang, Yuan Zhou, and Xiangyang Ji. Almost op-
timal model-free reinforcement learningvia reference-
advantage decomposition. Advances in Neural Informa-
tion Processing Systems, 33:15198–15207, 2020d.

14

https://proceedings.neurips.cc/paper/2020/file/06d5ae105ea1bea4d800bc96491876e9-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/06d5ae105ea1bea4d800bc96491876e9-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/06d5ae105ea1bea4d800bc96491876e9-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/06d5ae105ea1bea4d800bc96491876e9-Paper.pdf

Understanding the Complexity Gains of Single-Task RL with a Curriculum

A. Generalization Between Different Tasks in the Context Space
A.1. Summaries of Notations and Assumptions

1. The maximum entropy RL (MaxEnt RL) objective with initial state distribution ρ in reinforcement aims at maximizing
(Equation 15 & 16 of (Mei et al., 2020))

V π(ρ) :=

∞∑
h=0

γhEs0∼ρ,ah∼π(ah|sh) [r(sh, ah)] + αH(ρ, π) (4)

and H(π(ah|sh)) is the discounted entropy term

H(ρ, π) := E
s0∼ρ,ah∼π(·|sh)

[∞∑
h=0

−γh log π(ah|sh)
]
, (5)

and α is the penalty term. For simplicity, we denote the optimization objective function in (4) as α-MaxEnt RL.
Similar to Equation 18 & 19 of (Mei et al., 2020), we also define the advantage and Q-functions and for MaxEnt RL
as

Aπ(s, a) := Qπ(s, a)− α log π(s, a)− V π(s),

Qπ(s, a) := r(s, a) + γ
∑
s′

P (s′|s, a)V π(s). (6)

2. We let

dπs0(s) = (1− γ)

∞∑
t=0

γtPπ(st = s|s0), (7)

to denote the discounted state visitation of policy π starting at state s0, and let

dπρ (s) = Es∼ρ[d
π
s (s)] (8)

denote the initial state visitation distribution under initial state distribution ρ.

3. We assume the reward functions under all context are bounded within [0, 1]:

rω(s, a) ∈ [0, 1], ∀ω ∈ Ω,∀(s, a) ∈ S ×A. (9)

4. Similar to previous analysis in (Agarwal et al., 2021; Mei et al., 2020; Ding et al., 2021), we assume the initial
distribution µ for PG/stochastic PG satisfies ρ(s) > 0,∀s ∈ S.

A.2. Main Results: Mismatch Coefficient Upper Bound

Lemma A.1 (Density Mismatch Ratio via ROLLIN). Assuming ρ = Unif(S), and µk = βd
π⋆
ωk−1

µk−1 + (1 − β)ρ (using (1)

from ROLLIN), the density mismatch ratio
∥∥∥∥dπ⋆

ωk
µk /µk

∥∥∥∥
∞

satisfies

∥∥∥∥∥∥d
π⋆
ωk

µk

µk

∥∥∥∥∥∥
∞

≤ Õ

(
Lr

α(1− β)
∆k

ωS

)
, (10)

where ∆k
ω = max1≤i≤k ∥ωi − ωi−1∥2.

15

Understanding the Complexity Gains of Single-Task RL with a Curriculum

Proof. By (1) from ROLLIN, we have ∥∥∥∥∥∥d
π⋆
ωk

µk

µk

∥∥∥∥∥∥
∞

=

∥∥∥∥∥∥d
π⋆
ωk

µk − d
π⋆
ωk−1

µk−1 + d
π⋆
ωk−1

µk−1

µk

∥∥∥∥∥∥
∞

(i)

≤

∥∥∥∥dπ⋆
ωk

µk − d
π⋆
ωk−1

µk−1

∥∥∥∥
1

minµk
+

∥∥∥∥∥∥ d
π⋆
ωk−1

µk−1

βd
π⋆
ωk−1

µk−1 + (1− β)ρ

∥∥∥∥∥∥
∞

(ii)

≤

∥∥∥∥dπ⋆
ωk

µk − d
π⋆
ωk−1

µk−1

∥∥∥∥
1

minµk
+

1

β

(11)

where inequality (i) holds because of (1), and inequality (ii) holds because ρ(s) ≥ 0,∀s ∈ S . Now it remains to bound∥∥∥∥dπ⋆
ωk+1

µk+1 − d
π⋆
ωk

µk

∥∥∥∥
1

using the difference ∥ωk+1 − ωk∥2. Let Pk
h = P

π⋆
ωk

h (s′|s0 ∼ µk) denote the state visitation distribution

resulting from π⋆
ωk

probability starting at µk, then we have

Pk
h(s

′)− Pk−1
h (s′) =

∑
s,a

(
Pk
h−1(s)π

⋆
ωk
(a|s)− Pk−1

h−1(s)π
⋆
ωk−1

(a|s)
)
P (s′|s, a)

=
∑
s,a

(
Pk
h−1(s)π

⋆
ωk
(a|s)− Pk

h−1(s)π
⋆
ωk−1

(a|s) + Pk−1
h−1(s)π

⋆
ωk−1

(a|s)− Pk−1
h−1(s)π

⋆
ωk−1

(a|s)
)
P (s′|s, a)

=
∑
s

Pk
h−1(s)

[∑
a

(
π⋆
ωk
(a|s)− π⋆

ωk−1
(a|s)

)
P (s′|s, a)

]

+
∑
s

(
Pk
h−1(s)− Pk−1

h−1(s)
) [∑

a

π⋆
ωk−1

(a|s)P (s′|s, a)
]
.

(12)

Taking absolute value on both side, yields∥∥Pk
h − Pk−1

h

∥∥
1
=
∑
s′

∣∣Pk
h(s

′)− Pk−1
h (s′)

∣∣
≤
∑
s

Pk
h−1(s)

∑
a

∣∣∣π⋆
ωk
(a|s)− π⋆

ωk−1
(a|s)

∣∣∣︸ ︷︷ ︸
≤c1∥ωk−ωk−1∥2

∑
s′

P (s′|s, a)

+
∑
s

∣∣Pk
h−1(s)− Pk−1

h−1(s)
∣∣ [∑

s′

∑
a

π⋆
ωk−1

(a|s)P (s′|s, a)
]

(i)

≤c1 ∥ωk − ωk−1∥2 +
∥∥Pk

h−1 − Pk−1
h−1

∥∥
1
≤ · · · ≤ c1h ∥ωk − ωk−1∥2 +

∥∥Pk
0 − Pk−1

0

∥∥
1

(ii)
= c1h ∥ωk − ωk−1∥2 + ∥µk − µk−1∥1 ,

(13)

where inequality (i) holds by applying Lemma B.2 with c1 = Lr/α(1 − γ) and equality (ii) holds because the initial
distribution of Pk

h is µk. By the definition of dπµ, we have

d
π⋆
ωk

µk (s)− d
π⋆
ωk−1

µk−1 (s)
(i)
= dk(s)− dk−1(s) = (1− γ)

∞∑
h=0

γh
(
Pk
h(s)− Pk−1

h (s)
)
, ∀s ∈ S. (14)

where in equality (i), we use dk to denote d
π⋆
ωk

µk . Adding ℓ1 norm on both sides of (14) and applying (13), yields

∥dk − dk−1∥1 ≤ (1− γ)

∞∑
h=0

γh (c1h ∥ωk − ωk−1∥2 + ∥µk − µk−1∥1)

(i)
=

γc1
1− γ

∥ωk − ωk−1∥2 + ∥µk − µk−1∥1
(ii)
=

γc1
1− γ

∥ωk − ωk−1∥2 + β ∥dk−1 − dk−2∥1 ,
(15)

16

Understanding the Complexity Gains of Single-Task RL with a Curriculum

where equality (i) holds because
∑∞

h=0 γ
hh = γ/(1− γ)2 and equality (ii) holds because of (1). Hence, we know that

∥dk − dk−1∥1 ≤
γc1
1− γ

∥ωk − ωk−1∥2 + β ∥dk−1 − dk−2∥1

≤ γc1
1− γ

k−1∑
i=0

[
∥ωi+1 − ωi∥2 βk−i

]
+ βk−1 ∥d1 − d0∥1

≤ γc1
1− γ

· 1

1− β
∆k

ω + βk−1 ∥d1 − d0∥1 ≤
(

γc1
(1− γ)(1− β)

+ 1

)
∆k

ω

(16)

where ∆k
ω = max1≤i≤k ∥ωi − ωi−1∥2 and the last inequality holds due to the near optimality definition (Definition 4.2).

Therefore, applying (16) back to (11), we know that∥∥∥∥∥∥d
π⋆
ωk

µk

µk

∥∥∥∥∥∥
∞

≤

∥∥∥∥dπ⋆
ωk

µk − d
π⋆
ωk−1

µk−1

∥∥∥∥
1

minµk
+

1

β

(i)

≤ 1

minµk

(
γc1

(1− γ)(1− β)
+ 1

)
∆k

ω +
1

β
= Õ

(
Lr

α(1− β)
∆k

ωS

)
,

(17)

where inequality (i) holds since (1) Lemma B.2 implies c1 = Lr/α(1 − γ), and we omit the 1/(1 − γ)6 and log in

the Õ; (2) 1/minµk ≤ S/(1 − β) according to µk = βd
π⋆
ωk−1

µk−1 + (1 − β)ρ. Note that we can only achieve the final

bound Õ
(

Lr

α(1−β)∆
k
ωS
)

by setting β as a constant. If we pick an arbitrarily small β, then the 1/β term will dominate the

complexity and we will not have the final bound of Õ
(

Lr

α(1−β)∆
k
ωS
)

.

A.3. Complexity of Vanilla Stochastic PG

Theorem A.2 (Complexity of Stochastic PG (Theorem 5.1 of (Ding et al., 2021))). Consider an arbitrary tolerance level
δ > 0 and a small enough tolerance level ε > 0. For every initial point θ0, if θT+1 is generated by SPG (Algorithm 4) with

T1 ≥
(
6D(θ0)

δε0

) 8L

C0
δ

ln 2

, T2 ≥
(ε0
6δε
− 1
)
t0, T = T1 + T2,

B1 ≥ max

{
30σ2

C0
δ ε0δ

,
6σT1 log T1

∆̄L

}
, B2 ≥

σ2 ln(T2 + t0)

6Cζδε
,

ηt = η ≤ min

{
log T1

T1L
,
8

C0
δ

,
1

2L

}
∀1 ≤ t ≤ T1, ηt =

1

t− T1 + t0
∀t > T1,

(18)

where

D(θt) = V π⋆

(ρ)− V πθt (ρ), ε0 = min

{(
αmins∈S ρ(s)

6 ln 2

)2 [
ζ exp

(
− 1

(1− γ)α

)]4
, 1

}
,

t0 ≥
√

3σ2

2δε0
, C0

δ =
2α

S

∥∥∥∥∥dπ
⋆

ρ

ρ

∥∥∥∥∥
−1

∞

min
s∈S

ρ(s) min
θ∈G0

δ

min
s,a

πθ(a|s)2,

Cζ =
2α

S

∥∥∥∥∥dπ
⋆

ρ

ρ

∥∥∥∥∥
−1

∞

min
s∈S

ρ(s)(1− ζ)2 min
s,a

π⋆(a|s)2,

G0δ :=

{
θ ∈ RS×A : min

θ⋆∈Θ⋆
∥θ − θ⋆∥2 ≤ (1 + 1/δ)∆̄

}
, ∆̄ =

∥∥log cθ̄1,η − log π⋆
∥∥
2
,

cθ̄1,η = inf
t≥1

min
s,a

πθt(a|s), σ2 =
8

(1− γ)2

(
1 + (α logA)2

(1− γ1/2)2

)
, L =

8 + α(4 + 8 logA)

(1− γ)3
,

(19)

then we have P(D(θT+1) ≤ ε) ≥ 1− δ.2

2Note that the ζ here is an optimization constant that appears in ε0 and Cζ .

17

Understanding the Complexity Gains of Single-Task RL with a Curriculum

Corollary A.3 (Iteration Complexity and Sample Complexity for ε-Optimal Policies). Suppose we set the tolerance level
ε, δ = O(S−1), the iteration complexity and sample complexity of obtaining an ε-optimal policy using stochastic softmax
policy gradient (Algorithm 4) in phase 1 and phase 2 satisfies:

• Phase 1: T1 = Ω̃
(
S2S3

)
, B1 = Ω̃

(
S2S3

)
,

• Phase 2: T2 = Ω̃ (S), B2 = Ω̃
(
S5
)
,

with probability at least 1− δ.

Proof. We first check the dependency of (19) on S. Notice that

• ε0:
1

ε0
= max

{(
6 ln 2

αmins∈S ρ(s)

)2 [
ζ exp

(
− 1

(1− γ)α

)]−4

, 1

}
= Ω̃(S2); (20)

• t0:

t0 ≥
√

3σ2

2δε0
= Ω̃(S); (21)

• C0
δ :

1

C0
δ

=
S

2α

∥∥∥∥∥dπ
⋆

ρ

ρ

∥∥∥∥∥
∞

max
s∈S

ρ(s)−1 1

minθ∈G0
δ
mins,a πθ(a|s)2

= Ω̃(S3); (22)

• Cζ :
1

Cζ
=

S

2α

∥∥∥∥∥dπ
⋆

ρ

ρ

∥∥∥∥∥
∞

max
s∈S

ρ(s)−1(1− ζ)−2 max
s,a

π⋆(a|s)−2 = Ω̃(S3). (23)

Hence, the complexities in phase 1 scales at

T1 ≥
(
6D(θ0)

δε0

) 8L

C0
δ

ln 2

= Ω̃
(
S2S3

)
, B1 ≥ max

{
30σ2

C0
δ ε0δ

,
6σT1 log T1

∆̄L

}
= Ω̃

(
S2S3

)
. (24)

To enforce a positive T2, the tolerance level ε, δ should satisfy ε0
6δε ≥ 1, which implies 1

δε = Ω(S2). Hence, assuming
ε0
δε = o(S), ε, δ = O(S−1), then the complexities in phase 2 scales at

T2 ≥
(ε0
6δε
− 1
)
t0 = Ω̃ (S) , B2 ≥

σ2 ln(T2 + t0)

6Cζδε
= Ω̃

(
S5
)
. (25)

A.4. Complexity of Learning the Next Context

Theorem A.4 (Theorem 4.1: Complexity of Learning the Next Context). Consider the context-based stochastic softmax
policy gradient (line 7 of Algorithm 1), suppose Assumption 3.1 and Assumption 3.2 hold, then the iteration number of
obtaining an ε-optimal policy for ωk from θ⋆ωk−1 is Ω̃ (S) and the per iteration sample complexity is Ω̃

(
Lr

α(1−β)S
3
)

.

We first introduce the following lemma to aid the proof of Theorem A.4.

Lemma A.5 (Bounded Optimal Values Between two Adjacent Contexts). Under the same conditions as Theorem A.4, we
have

V
π⋆
ωk

ωk (ρ)− V
π⋆
ωk−1

ωk (ρ) ≤ 2Lr ∥ωk − ωk−1∥2
(1− γ)2

. (26)

18

Understanding the Complexity Gains of Single-Task RL with a Curriculum

Proof. Let V π
ω denote the value function of policy π with reward function rω . From (65) of Lemma B.3, we know that for

any initial distribution ρ, we have

V
π⋆
ωk

ωk (ρ)− V
π⋆
ωk−1

ωk (ρ) =
1

1− γ

∑
s

[
d
π⋆
ωk−1

ρ (s) · α ·DKL

(
π⋆
ωk−1

(·|s)||π⋆
ωk
(·|s)

)]
. (27)

From (47) of Lemma B.1, we know that

π⋆
ωk−1

(a|s) =
[
softmax(Q

π⋆
ωk−1 (·, s)/α)

]
a
:=

exp
[
Q

π⋆
ωk−1 (s, a)/α

]
∑

a′ exp
[
Q

π⋆
ωk−1 (s, a′)/α

]
π⋆
ωk
(a|s) =

[
softmax(Qπ⋆

ω (·, s)/α)
]
a
:=

exp
[
Qπ⋆

ωk (s, a)/α
]

∑
a′ exp

[
Qπ⋆

ωk (s, a′)/α
] ,

(28)

hence, we have

DKL

(
π⋆
ωk−1

(·|s)||π⋆
ωk
(·|s)

)
=
∑
a

π⋆
ωk−1

(a|s)
{
log
([

softmax(Q
π⋆
ωk−1 (a, s)/α)

]
a

)
− log

([
softmax(Qπ⋆

ωk (a, s)/α)
]
a

)}
.

(29)

Let f(x) denote the log soft max function for an input vector x = [x1, x2, . . . , xA]
⊤ such that xi ≥ 0, then for a small

perturbation ∆ ∈ RA, the intermediate value theorem implies

|[f(x+∆)]i − [f(x)]i| =
∣∣∣∆⊤∇z [f(z)]i

∣∣∣ , (30)

for some vector z on the segment [x,x+∆]. Now consider the Jacobian of the log softmax function ∂[∇zf(z)]i/∂zj :

∂[∇zf(z)]i
∂zj

=

{
1− pi(z) ∈ (0, 1) if i = j,

−pj(z) ∈ (−1, 0) otherwise,
(31)

where pi(z) = exp(zi)/
∑A

k=1 exp(zk). hence, we know that

|[f(x+∆)]i − [f(x)]i| =
∣∣∣∆⊤∇z [f(z)]i

∣∣∣ ≤ ∥∆∥∞ A∑
k=1

∣∣∣∣∂[f(z)]i∂zk

∣∣∣∣
= ∥∆∥∞

1− pi(z) +
∑
j ̸=i

pj(z)

 ≤ 2 ∥∆∥∞ .

(32)

Now let

x =
1

α
[Q

π⋆
ωk−1 (s, a1), Q

π⋆
ωk−1 (s, a2), . . . , Q

π⋆
ωk−1 (s, aA)],

x+∆ =
1

α
[Qπ⋆

ωk (s, a1), Q
π⋆
ωk (s, a2), . . . , Q

π⋆
ωk (s, aA)],

(33)

(57) from Lemma B.2 implies that

1

α

∥∥∥Qπ⋆
ωk −Q

π⋆
ωk−1

∥∥∥
∞
≤ Lr ∥ωk − ωk−1∥2

α(1− γ)
, (34)

substituting (34) and (32) into (29), yields

DKL

(
π⋆
ωk−1

(·|s)||π⋆
ωk
(·|s)

)
≤
∑
a

2π⋆
ωk−1

(a|s) ∥∆∥∞ ≤ 2 ∥∆∥∞ ≤
2Lr ∥ωk − ωk−1∥2

α(1− γ)
. (35)

19

Understanding the Complexity Gains of Single-Task RL with a Curriculum

Combine (35) with (27), we have

V
π⋆
ωk

ωk (ρ)− V
π⋆
ωk−1

ωk (ρ) =
1

1− γ

∑
s

[
d
π⋆
ωk−1

ρ (s) · α ·DKL

(
π⋆
ωk−1

(·|s)||π⋆
ωk
(·|s)

)]
≤2Lr ∥ωk − ωk−1∥2

(1− γ)2
,

(36)

which completes the proof.

Now we are ready to proceed to the proof of Theorem A.4.

Proof. From (19) we know that

ε0 = min

{(
αmins∈S ρ(s)

6 ln 2

)2 [
ζ exp

(
− 1

(1− γ)α

)]4
, 1

}
= O

(
1

S2

)
. (37)

And from Section 6.2 of (Ding et al., 2021), we can directly enter phase 2 of the stochastic PG when

V
π⋆
ωk

ωk (ρ)− V
π⋆
ωk−1

ωk (ρ) ≤ ε0. (38)

Hence, when ∆k
ω = max1≤i≤k ∥ωi − ωi−1∥2 = O(1/S2), we have

V
π⋆
ωk

ωk (ρ)− V
π⋆
ωk−1

ωk (ρ) ≤ 2Lr∆ω

(1− γ)2
≤ ε0

2
, (39)

which implies we can directly enter phase 2 and enjoys the faster iteration complexity of T2 = Ω(S) (by choosing
δ = O(S−1)) and the smaller batch size of

B2 ≥
σ2 ln(T2 + t0)

6Cζδε

(i)
= Ω̃

(
Lr

α(1− β)
∆k

ωS
5

)
(ii)
= Ω̃

(
Lr

α(1− β)
S3

)
, (40)

where equation (i) holds by applying Lemma A.1 to (23):

σ2 ln(T2 + t0)

6Cζδε
= Ω̃

(
S4 ·

∥∥∥∥dπ⋆
ωk

µk /µk

∥∥∥∥
∞

)
= Ω̃

(
Lr

α(1− β)
∆k

ωS
5

)
,

and equality (ii) holds by the assumption that ∆k
ω = O(S−2) and we omit the log term and components not related to S

in Ω̃.

A.5. Total Complexity of ROLLIN

Theorem A.6 (Theorem 4.3: Total Complexity of Learning the Target Context). Suppose Assumption 3.1 and Assump-
tion 3.2 hold, and θ

(0)
0 is an near-optimal initialization, then the total number of iteration of learning π⋆

ωK
using Algorithm 1

is Ω(KS) and the per iteration is Ω̃
(
S3
)
, with high probability.

Proof. From Lemma A.5, we know that

V
π⋆
ωk

ωk (ρ)− V
π⋆
ωk−1

ωk (ρ) ≤ 2Lr ∥ωk − ωk−1∥2
(1− γ)2

. (41)

Suppose for each context ωk, we initialize the parameters of the policy as θ(k)0 = θ⋆ωk−1
, and let θ(k)t denote the parameters

at the tth iteration of SPG. We will use induction to show that when t = Ω̃(S), ∀k ∈ [K], we have

V
π⋆
ωk

ωk (ρ)− V
π
θ
(k−1)
t

ωk (ρ) < ε0, (42)

20

Understanding the Complexity Gains of Single-Task RL with a Curriculum

this implies that for any context ωk, k ∈ [K], we can always find a good initialization by setting θ
(k)
0 = θ

(k−1)
t from

learning π⋆
ωk−1

using SPG after t = Ω(S) iteration. This result guarantees that every initialization θ
(k)
0 for learning the

optimal contextual policy π⋆
ωk

will directly start from the efficient phase 2.

Induction: k = 0. When k = 0, Assumption 3.2 and the near-optimal initialization (Definition 4.2) of θ(0)0 implies that

V
π⋆
ω0

ω0 (ρ)− V
π
θ
(0)
0

ω0 (ρ) < ε0. (43)

This result implies that a near-optimal initialization allows the initialization to directly start from phase 2 of SPG.

Induction: from k − 1 to k. Suppose the result in (42) holds for k − 1, then we know that

V
π⋆
ωk−1

ωk−1 (ρ)− V
π
θ
(k−1)
0

ωk−1 (ρ) = V
π⋆
ωk−1

ωk−1 (ρ)− V
π
θ
(k−2)
t

ωk−1 (ρ) < ε0. (44)

Select ε such that ε ≤ ε0/2. Theorem A.4 suggests that when t′ = Ω̃(S), with high probability, we have

V
π⋆
ωk

ωk (ρ)− V
π
θ
(k−1)

t′
ωk (ρ) < ε ≤ ε0

2
. (45)

Hence, if we initialize θ
(k)
0 = θ

(k−1)
t , with high probability when t′ = Ω̃(S), we have

V
π⋆
ωk

ωk (ρ)− V
π
θ
(k−1)

t′
ωk (ρ) = V

π⋆
ωk

ωk (ρ)− V
π⋆
ωk−1

ωk (ρ) + V
π⋆
ωk−1

ωk (ρ)− V
π
θ
(k−1)

t′
ωk (ρ)

(i)

≤ ε0
2

+ V
π⋆
ωk

ωk (ρ)− V
π
θ
(k−1)

t′
ωk (ρ)

(ii)
< ε0,

(46)

where inequality (i) holds by equation (39) in Theorem A.4, inequality (ii) holds because of the induction assumption
in (45).

Therefore, we have shown (42) holds for t = Ω̃(S), ∀k ∈ [K]. Since we have K contexts in total, we know that
Algorithm 1 can enforce a good initialization θ

(k)
0 that directly starts from phase 2 for learning all π⋆

ωk
, and for each

k ∈ [K], the iteration complexity is Ω̃(S). Hence the total iteration complexity of obtaining an ε-optimal policy for the
final context ωK is Ω̃ (KS), with per iteration sample complexity of Ω̃

(
S3
)
.

B. Key Lemmas
B.1. Optimal Policy of Maximum Entropy RL (Nachum et al., 2017)

Lemma B.1. The optimal policy π⋆ that maximizes the α-MaxEnt RL objective (4) with penalty term α satisfies:

π⋆(a|s) = exp
[(

Qπ⋆

(s, a)− V π⋆

(s)
)
/α
]
=

exp
(
Qπ⋆

(s, a)/α
)∑

a exp (Q
π⋆(s, a)/α)

(47)

for all h ∈ N, where

Qπ⋆

(s, a) := r(s, a) + γEs′∼P (s′|s,a)V (s′)

V π⋆

(s) := α log

(∑
a

exp
(
Qπ⋆

(s, a)/α
))

.
(48)

Proof. Similar proof appears in (Nachum et al., 2017), we provide the proof for completeness. At the optimal policy
πθ = π⋆, take the gradient of (4) w.r.t. p ∈ ∆(A) and set it to 0, we have

∂

∂p(a)

[∑
a∈A

p(a)
(
Qπ⋆

(s, a)− α ln p(a)
)]

= Qπ⋆

(s, a)− α ln p(a)− α = 0, (49)

which implies

p(a) = exp

(
Qπ⋆

(s, a)

α
− 1

)
∝ exp

(
Qπ⋆

(s, a)

α

)
. (50)

Hence, we conclude that π⋆(a|s) ∝ exp(Q⋆(s, a)/α).

21

Understanding the Complexity Gains of Single-Task RL with a Curriculum

B.2. Bounding the Difference between Optimal Policies

Lemma B.2. Suppose Assumption 3.1 holds, let π⋆
ω(a|s), π⋆

ω′(a|s) denote the optimal policy for α-MaxEnt RL (47), then
∀(s, a) ∈ S ×A, the optimal policies of α-MaxEnt RL under context ω, ω′ satisfy:

|π⋆
ω(a|s)− π⋆

ω′(a|s)| ≤ Lr ∥ω − ω′∥2
α(1− γ)

. (51)

Proof. From Lemma C.1, we know that the soft value iteration

T Q(s, a) = r(s, a) + γαEs′

[
log
∑
a′

expQ(s′, a′)/α

]
(52)

is a contraction. Let Qt
ω, Q

t
ω′ denote the Q functions at the tth value iteration under context ω, ω′ respectively, we know

Q∞
ω = Qπ⋆

ω and Q∞
ω′ = Qπ⋆

ω′ . Let εt = ∥Qt
ω −Qt

ω′∥∞, then we have

εt+1 =
∥∥Qt+1

ω −Qt+1
ω′

∥∥
∞

=

∥∥∥∥∥rω(s, a)− rω′(s, a) + γαEs′

[
log
∑
a′

exp
Qt

ω′(s′, a′)

α

]
− γαEs′

[
log
∑
a′

exp
Qt

ω′(s′, a′)

α

]∥∥∥∥∥
∞

≤∥rω − rω′∥∞ + γα

∥∥∥∥∥Es′ log
∑
s′

expQt
ω(s

′, a′)/α− Es′ log
∑
s′

expQt
ω′(s′, a′)/α

∥∥∥∥∥
∞

≤∥rω − rω′∥∞ + γ
∥∥Qt

ω −Qt
ω′

∥∥
∞ = ∥rω − rω′∥∞ + γεt,

(53)

where the last inequality holds because f(x) = log
∑n

i=1 exp(xi) is a contraction. From (53), we have

εt+1 ≤ ∥rω − rω′∥∞ + γεt ≤ (1 + γ) ∥rω − rω′∥∞ + γ2εt−1 ≤ · · · ≤ ∥rω − rω′∥∞
t∑

i=0

γi + γtε1, (54)

which implies ∥∥∥Qπ⋆

ω −Qπ⋆

ω′

∥∥∥
∞

= ε∞ ≤
∥rω − rω′∥∞

1− γ
≤ Lr ∥ω − ω′∥2

1− γ
, (55)

where the last inequality holds by Assumption 3.1. Hence, we have

1

α

∣∣∣Qπ⋆
ω (s, a)−Qπ⋆

ω′ (s, a)
∣∣∣ ≤ Lr ∥ω − ω′∥2

α(1− γ)
, ∀s, a ∈ S ×A (56)

which implies
1

α

∥∥∥Qπ⋆
ω −Qπ⋆

ω′
∥∥∥
∞
≤ Lr ∥ω − ω′∥2

α(1− γ)
. (57)

Next, let π⋆
ω, π

⋆
ω′ denote the maximum entropy policy RL under context ω, ω′ respectively. Then for a fixed state action

pair (s, a) ∈ S ×A, we have

π⋆
ω(a|s) =

[
softmax(Qπ⋆

ω (·, s)/α)
]
a
:=

exp
[
Qπ⋆

ω (s, a)/α
]∑

a′ exp [Qπ⋆
ω (s, a′)/α]

,

π⋆
ω′(a|s) =

[
softmax(Qπ⋆

ω′ (·, s)/α)
]
a
:=

exp
[
Qπ⋆

ω′ (s, a)/α
]∑

a′ exp
[
Qπ⋆

ω′ (s, a′)/α
] , (58)

where Qπ⋆
ω (·, s), Qπ⋆

ω′ (·, s) ∈ RA, and we want to bound |π⋆
ω(a|s)− π⋆

ω′(a|s)|. Next we will use (57) to bound
|π⋆

ω(a|s)− π⋆
ω′(a|s)|, where the last inequality holds by (56). Let f(x) denote the softmax function for an input vec-

tor x = [x1, x2, . . . , xA]
⊤ such that xi ≥ 0, then for a small perturbation ∆ ∈ RA, the intermediate value theorem

implies
|[f(x+∆)]i − [f(x)]i| =

∣∣∣∆⊤∇x [f(z)]i

∣∣∣ , (59)

22

Understanding the Complexity Gains of Single-Task RL with a Curriculum

for some vector z on the segment [x,x+∆]. Hence

|[f(x+∆)]i − [f(x)]i| =
∣∣∣∆⊤ [∇xf(z)]i

∣∣∣ ≤ ∥∆∥∞ A∑
k=1

∣∣∣∣∂[f(z)]i∂zk

∣∣∣∣
≤∥∆∥∞

pi(z)(1− pi(z)) +
∑
j ̸=i

pi(z)pj(z)

 < ∥∆∥∞

pi(z) +
∑
j ̸=i

pj(z)

 = ∥∆∥∞ ,

(60)

where the Jacobian of the softmax function ∂ [∇xf(z)]i /∂zj satisfies:

∂ [∇xf(z)]i
∂zj

=

{
pi(z)(1− pi(z)) if i = j,

pi(z)pj(z) otherwise,
(61)

and pi(z) = exp(zi)/
∑A

k=1 exp(zk). Now let

x =
1

α
[Qπ⋆

ω (s, a1), Q
π⋆
ω (s, a2), . . . , Q

π⋆
ω (s, aA)],

x+∆ =
1

α
[Qπ⋆

ω′ (s, a1), Q
π⋆
ω′ (s, a2), . . . , Q

π⋆
ω′ (s, aA)].

(62)

We know that f(x) = π⋆
ω(a|s) and f(x+∆) = π⋆

ω′(a|s). Then (57) implies that

∥∆∥∞ ≤
Lr ∥ω − ω′∥2
α(1− γ)

, (63)

substituting this bound on ∥∆∥∞ into (60), we have

|π⋆
ω(a|s)− π⋆

ω′(a|s)| = |f(x)− f(x+∆)| ≤ ∥∆∥∞ ≤
Lr ∥ω − ω′∥2
α(1− γ)

, (64)

which completes the proof.

B.3. Soft Sub-Optimality lemma (Lemma 25 & 26 of (Mei et al., 2020))

Lemma B.3. For any policy π and any initial distribution ρ, the value function V π(ρ) of the α-MaxEnt RL (48) satisfies:

V π⋆

(ρ)− V π(ρ) =
1

1− γ

∑
s

[
dπρ (s) · α ·DKL (π(·|s)||π⋆(·|s))

]
, (65)

where π⋆ is the optimal policy of the α-MaxEnt RL (4).

Proof. Similar proof appears in Lemma 25 & 26 of (Mei et al., 2020), we provide the proof here for completeness.

23

Understanding the Complexity Gains of Single-Task RL with a Curriculum

Soft performance difference. We first show a soft performance difference result for the MaxEnt value function (Lemma
25 of (Mei et al., 2020)). By the definition of MaxEnt value function and Q-function (4), (6), ∀π, π′, we have

V π′
(s)− V π(s)

=
∑
a

π′(a|s) ·
[
Qπ′

(s, a)− α log π′(a|s)
]
−
∑
a

π(a|s) · [Qπ(s, a)− α log π(a|s)]

=
∑
a

(π′(a|s)− π(a|s)) ·
[
Qπ′

(a|s)− α log π′(a|s)
]

+
∑
a

π(a|s) ·
[
Qπ′

(s, a)− α log π′(a|s)−Qπ(s, a) + α log π(a|s)
]

=
∑
a

(π′(a|s)− π(a|s)) ·
[
Qπ′

(a|s)− α log π′(a|s)
]
+ αDKL (π(·|s)||π′(·|s))

+ γ
∑
a

π(a|s)
∑
s′

P (s′|s, a) ·
[
V π′

(s′)− V π(s′)
]

=
1

1− γ

∑
s′

dπs (s
′)

[∑
a′

(π′(a′|s′)− π(a′|s′))
[
Qπ′

(s′, a′)− α log π′(a′|s′)
]

+ αDKL (π(·|s′)||π′(·|s′))
]
,

(66)

where the last equality holds because by the definition of state visitation distribution

dπs0(s) = (1− γ)

∞∑
t=0

γtPπ(st = s|s0), (67)

taking expectation of s with respect to s ∼ ρ, yields

V π′
(ρ)− V π(ρ)

=
1

1− γ

∑
s′

dπρ (s
′)

[∑
a′

(π′(a′|s′)− π(a′|s′)) ·
[
Qπ′

(s′, a′)− α log π′(a′|s′)
]

+ αDKL (π(·|s′)||π′(·|s′))
]
,

(68)

and (68) is known as the soft performance difference lemma (Lemma 25 in (Mei et al., 2020)).

Soft sub-optimality. Next we will show the soft sub-optimality result. By the definition of the optimal policy of α-
MaxEnt RL (47), we have

α log π⋆(a|s) = Qπ⋆

(s, a)− V π⋆

(s). (69)

24

Understanding the Complexity Gains of Single-Task RL with a Curriculum

Substituting π⋆ into the performance difference lemma (68), we have

V π⋆

(s)− V π(s)

=
1

1− γ

∑
s′

dπs (s
′) ·
[∑

a′

(π⋆(a′|s′)− π(a′|s′)) ·
[
Qπ⋆

(s′, a′)− α log π⋆(a′|s′)
]

︸ ︷︷ ︸
=V π⋆ (s′)

+ αDKL (π(·|s′)||π⋆(·|s′))
]

=
1

1− γ

∑
s′

dπs (s
′) ·
[∑

a′

(π⋆(a′|s′)− π(a′|s′))︸ ︷︷ ︸
=0

·V π⋆

(s′) + αDKL (π(·|s′)||π⋆(·|s′))
]

=
1

1− γ

∑
s′

[dπs (s
′) · αDKL (π(·|s′)||π⋆(·|s′))] ,

(70)

taking expectation s ∼ ρ yields

V π⋆

(ρ)− V π(ρ) =
1

1− γ

∑
s

[
dπρ (s) · α ·DKL (π(·|s)||π⋆(·|s))

]
, (71)

which completes the proof.

C. Supporting Lemmas
C.1. Bellman Consistency Equation of MaxEnt RL

Lemma C.1 (Contraction of Soft Value Iteration). From (48) and (6), the soft value iteration operator T defined as

T Q(s, a) := r(s, a) + γαEs′

[
log
∑
a′

exp (Q(s′, a′)/α)

]
(72)

is a contraction.

Proof. A similar proof appears in (Haarnoja, 2018), we provide the proof for completeness. To see (72) is a contraction,
for each (s, a) ∈ S ×A, we have

T Q1(s, a) = r(s, a) + γα log
∑
a′

exp

(
Q1(s, a)

α

)
≤r(s, a) + γα log

∑
a′

exp

(
Q2(s, a) + ∥Q1 −Q2∥∞

α

)

≤r(s, a) + γα log

{
exp

(∥Q1 −Q2∥∞
α

)∑
a′

exp

(
Q2(s, a)

α

)}

=γ ∥Q1 −Q2∥∞ + r(s, a) + γα log
∑
a′

exp

(
Q2(s, a)

α

)
= γ ∥Q1 −Q2∥∞ + T Q2(s, a),

(73)

which implies T Q1(s, a) − T Q2(s, a) ≤ γ ∥Q1 −Q2∥∞. Similarly, we also have T Q2(s, a) − T Q1(s, a) ≤
γ ∥Q1 −Q2∥∞, hence we conclude that

|Q1(s, a)−Q2(s, a)| ≤ γ ∥T Q1 − T Q2∥∞ , ∀(s, a) ∈ S ×A, (74)

which implies ∥Q1 −Q2∥∞ ≤ γ ∥T Q1 − T Q2∥∞. Hence T is a γ-contraction and the optimal policy π⋆ of it is unique.

25

Understanding the Complexity Gains of Single-Task RL with a Curriculum

C.2. Constant Minimum Policy Probability

Lemma C.2 (Lemma 16 of (Mei et al., 2020)). Using the policy gradient method (Algorithm 3) with an initial distribution
ρ such that ρ(s) > 0,∀S, we have

c := inf
t≥1

min
s,a

πθt(a|s) > 0 (75)

is a constant that does not depend on t.

Remark C.3 (State Space Dependency of constant c, C0
δ). For the exact PG case, c in Lemma C.2 could also depend on

S, similarly for the constant C0
δ in the stochastic PG case. As pointed out by Li et al. (2021) (Table 1), the constant c (or

C0
δ in Theorem A.2 of the SPG case) may depend on the structure of the MDP. The ROLLIN technique only improves the

mismatch coefficient
∥∥dπ⋆

µ /µ
∥∥
∞, instead of the constant c (or C0

δ). Still, in the exact PG case, if one replaces the constant
c with other S dependent function f(S), one still can apply a similar proof technique for Theorem 4.1 to show that ROLLIN
reduces the iteration complexity, and the final iteration complexity bound in Theorem 4.1 will include an additional f(S).
In addition, omitting the factor C0

δ , ROLLIN can improve the exponential complexity dependency incurred by the stochastic
optimization to a polynomial dependency.

D. Supporting Algorithms

Algorithm 3 PG for α-MaxEnt RL (Algorithm 1 in (Mei et al., 2020))

1: Input: ρ, θ0, η > 0.
2: for t = 0, . . . , T do
3: θt+1 ← θt + η · ∂V

πθt (ρ)
∂θt

4: end for

Algorithm 4 Two-Phase SPG for α-MaxEnt RL (Algorithm 5.1 in (Ding et al., 2021))

1: Input: ρ, θ0, α,B1, B2, T1, T, {ηt}Tt=0

2: for t = 0, 1, . . . , T do
3: if t ≤ T1 then
4: B = B1 ▷ Phase 1
5: else
6: B = B2 ▷ Phase 2
7: end if
8: Run random horizon SPG with ρ, α, θt, B, t, ηt ▷ Algorithm 5
9: end for

Algorithm 5 Random-horizon SPG for α-MaxEnt RL Update (Algorithm 3.2 in (Ding et al., 2021))

1: Input: ρ, α, θ0, B, t, ηt
2: for i = 1, 2, ..., B do
3: siHt

, aiHt
← SamSA(ρ, θt, γ) ▷ Algorithm 6

4: Q̂πθt ,i ← EstEntQ(siHt
, aiHt

, θt, γ, α) ▷ Algorithm 7
5: end for
6: θt+1 ← θt +

ηt

(1−γ)B

∑B
i=1

[
∇θ log πθt(a

i
Ht
|siHt

)
(
Q̂πθt ,i − α log πθt

)
(aiHt
|siHt

)
]

Remark D.1. Lemma 3.4 in (Ding et al., 2021) implies that the estimator

1

(1− γ)

[
∇θ log πθt(a

i
Ht
|siHt

)
(
Q̂πθt ,i − α log πθt

)
(aiHt
|siHt

)
]

(76)

in line 6 of Algorithm 6 is an unbiased estimator of the gradient∇θV
πθ (ρ).

26

Understanding the Complexity Gains of Single-Task RL with a Curriculum

Algorithm 6 SamSA: Sample s, a for SPG (Algorithm 8.1 in (Ding et al., 2021))

1: Input: ρ, θ, γ
2: Draw H ∼ Geom(1− γ) ▷ Geom(1− γ) geometric distribution with parameter 1− γ
3: Draw s0 ∼ ρ, a0 ∼ πθ(·|s0)
4: for h = 1, 2, . . . ,H − 1 do
5: Draw sh+1 ∼ P(·|sh, ah), ah+1 ∼ πθt(·|sh+1)
6: end for
7: Output: sH , aH

Algorithm 7 EstEntQ: Unbiased Estimation of MaxEnt Q (Algorithm 8.2 in (Ding et al., 2021))

1: Input: s, a, θ, γ, α
2: Initialize s0 ← s, a0 ← a, Q̂← r(s0, a0)
3: Draw H ∼ Geom(1− γ)
4: for h = 0, 1, . . . ,H − 1 do
5: sh+1 ∼ P(·|sh, ah), ah+1 ∼ πθ(·|sh+1)
6: Q̂← Q̂+ γh+1/2 [r(sh+1, ah+1)− α log πθ(ah+1|sh+1)]
7: end for
8: Output: Q̂

27

Understanding the Complexity Gains of Single-Task RL with a Curriculum

E. Experimental Details
We use the SAC implementation from https://github.com/ikostrikov/jaxrl (Kostrikov, 2021) for all our
experiments in the paper.

E.1. Goal Reaching with an Oracle Curriculum

For our antmaze-umaze experiments with oracle curriculum, we use a sparse reward function where the reward is 0
when the distance D between the ant and the goal is greater than 0.5 and r = exp(−5D) when the distance is smaller
than or equal to 0.5. The performance threshold is set to be R = 200. Exceeding such threshold means that the ant
stays on top of the desired location for at least 200 out of 500 steps, where 500 is the maximum episode length of the
antmaze-umaze environment. We use the average return of the last 10 episodes and compare it to the performance
threshold R. For both of the SAC agents, we use the same set of hyperparameters shown in Table 4. See Algorithm 8, for
a more detailed pseudocode.

Algorithm 8 Practical Implementation of ROLLIN

1: Input: {ωk}Kk=0: input curriculum, ρ: initial state distribution, R: near-optimal threshold, β: roll-in ratio, discount
factor γ.

2: Initialize D ← ∅,Dexp ← ∅, k ← 0, and two off-policy RL agents πmain and πexp.
3: for each environment step do
4: if episode terminating or beginning of training then
5: if average return of the last 10 episodes under context ωk is greater than R then
6: k ← k + 1, Dexp ← ∅
7: Re-initialize the exploration agent πexp

8: end if
9: Start a new episode under context ωk with s0 ∼ ρ, t← 0

10: if k > 0 and with probability of β then
11: enable Rollin for the current episode.
12: else
13: disable Rollin for the current episode.
14: end if
15: end if
16: if Rollin is enabled for the current episode then
17: if Rollin is stopped for the current episode then
18: at ∼ πexp(at|st, ωk)
19: else
20: at ∼ πmain(at|st, ωk−1)
21: with probability of 1− γ, stop Rollin for the current episode
22: end if
23: else
24: at ∼ πmain(at|st, ωk)
25: end if
26: take action at in the environment and receives st+1 and rt = rωk

(st, at)
27: add (st, at, st+1, rt) in replay buffer D
28: if Rollin is disabled for the current episode then
29: update πmain using D.
30: end if
31: if πexp was used to produce at then
32: add (st, at, st+1, rt) in replay buffer Dexp

33: update πexp using Dexp.
34: end if
35: t← t+ 1
36: end for
37: Output: πmain

28

https://github.com/ikostrikov/jaxrl

Understanding the Complexity Gains of Single-Task RL with a Curriculum

Figure 3: Oracle curriculum of desired goals on antmaze-umaze. The ant starts from the right top corner and the
farthest goal is located at the bottom right corner.

Initial Temperature 1.0

Target Update Rate update rate of target networks 0.005

Learning Rate learning rate for the Adam optimizer 0.0003

Discount Factor 0.99

Batch Size 256

Warmup Period number of steps of initial random exploration (random actions) 10000

Network Size (256, 256)

Table 4: Hyperparameters used for the SAC algorithm (Haarnoja et al., 2018)

E.2. Non-Goal Reaching

For the non goal reaching tasks in walker2d, hopper, humanoid, and ant experiments, the desired x-velocity range
[λκ, λ(κ + 0.1)), the near-optimal threshold R(κ), and the healthy_reward all depend on the environments. The
maximum episode length 1000. Details are provided in Table 5.

healthy_reward

Env. λ R(κ) original high low

walker 5 500 + 4500κ 1.0 1.5 0.5

hopper 3 500 + 4500κ 1.0 1.5 0.5

humanoid 1 2500 + 2500κ 5.0 7.5 2.5

ant 6 500 + 4500κ 1.0 1.5 0.25

Table 5: Learning progress κ, average x-velocity, and average return at the 0.75 and 1.0 million environment steps
in walker, hopper, humanoid, and ant. The average x-velocity and return are estimated using the last 50k time
steps. We pick β = 0.1 for all experiments using ROLLIN, the results of using other βs can be found in Table 11, Table 12,
and Table 13 in Appendix G.2. The standard error is computed over 8 random seeds.

29

Understanding the Complexity Gains of Single-Task RL with a Curriculum

F. Numerical Experiments: The Four Room Navigation
F.1. MDP Setup

The grid world consists of 12 × 12 grid cells where each cell corresponds to a state in the MDP. The agent can take four
different actions to move itself in four directions to a different cell or take a fifth action to receive reward (positive if close
to the goal, 0 otherwise). Each context in the context space represents a distinct goal state in the grid-world. The agent
(when taking the fifth action) receives higher reward the closer it is to the goal state and receives 0 reward when it is too
far (4 steps away for easy, and 5 steps away for hard). We also include 100 additional dummy actions in the action space
(taking these actions do not result in reward nor state changes) to make the exploration problem challenging. See Figure 2
for a visualization of the environment and the two reward functions we use. More concretely, let D(s, g) be the number of
action it takes to go from state s to state g (the current goal) if the walls did not exist (the Manhattan distance), the reward
received when taking the fifth action at state s is

rfour_room(s) =

{
γ
D(s,g)
reward, D(s, g) ≤ Dthreshold

0, D(s, g) > Dthreshold

For the easy reward function, γreward = 0.9, Dthreshold = 5. For the hard reward function, γreward = 0.5, Dthreshold = 4.

F.2. Pre-defined curriculum.

Our curriculum contains 16 contexts in sequence, {ωk}16k=0, which form a continuous path from the start location of the
agent (0, 0) to the goal location of the agent at (8, 8). We use a fixed success rate threshold (an episode is considered to be
successful if the agent reaches the goal state and perform the fifth action at that goal state) to determine convergence of the
stochastic PG algorithm. We switch to the next context/curriculum step whenever the success rate exceeds 50%. We use
κ ∈ [0, 1] to denote a normalized curriculum progress which is computed as the current curriculum step index divided by
the total number of curriculum steps.

F.3. Stochastic PG description

We follow Algorithm 1 closely for our implementation. In particular, we adopt the softmax parameterization of π that is
parameterized by θ ∈ RS×A as πθ(a = j|s = i) =

exp(θij)∑
j′ exp(θij′)

with i ∈ [S] and j ∈ [A] (in this MDP, S = 144 as there

are 12 × 12 = 144 cells in the grid world and A = 105 due to the dummy actions). To sample from d
π⋆
ωk−1

µk−1 (Line 6), we
rollout the policy from the previous context πθk−1

in the MDP for h steps (where h being sampled from Geom(1 − γ),

the geometric distribution with a rate of 1 − γ) and take the resulting state as a sample from d
π⋆
ωk−1

µk−1 . We implement the
stochastic PG using Adam optimizer (Kingma and Ba, 2015) on θ with a constant learning rate of 0.001. Every gradient
step is computed over 2000 trajectories with the trajectory length capped at 50 for each. The empirical policy gradient for
πθ is computed as over B = 2000 trajectories ({(sb0, ab0, sb1, · · · , sbT }Bb=1) and T = 50 time steps collected by rolling out
the current policy πθ: 1

BT

∑
b

∑
t∇θ log πθ(a

b
t |sbt)Rb

t with Rb
t = −

∑T
t′=t γ

t′−trbent,t′ , r
b
ent,t = r(sbt , a

b
t)−α log π(abt |sbt)

where Rb
t is the Monte-Carlo estimate of the discounted, entropy-regularized cumulative reward.

F.4. Results

Setting Entropy Coefficient β = 0.0 (Baseline) β = 0.1 β = 0.2 β = 0.3 β = 0.5 β = 0.75 β = 0.9

Hard α = 0.01 0.500 ± 0.000 0.506 ± 0.001 0.512 ± 0.001 0.525 ± 0.000 0.562 ± 0.000 0.562 ± 0.000 0.562 ± 0.000
α = 0.001 0.856 ± 0.006 0.981 ± 0.003 0.981 ± 0.001 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000

Easy α = 0.01 0.944 ± 0.003 0.994 ± 0.001 0.994 ± 0.001 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000
α = 0.001 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000

Table 6: Curriculum progress κ on the four-room navigation with stochastic PG at step 50,000. We tested with two different
entropy coefficients and seven different β’s. The standard error is computed over 10 random seeds.

30

Understanding the Complexity Gains of Single-Task RL with a Curriculum

Setting Entropy Coefficient β = 0.0 (Baseline) β = 0.1 β = 0.2 β = 0.3 β = 0.5 β = 0.75 β = 0.9

Hard α = 0.01 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
α = 0.001 0.424 ± 0.023 0.939 ± 0.0014 0.710 ± 0.021 1.010 ± 0.005 1.062 ± 0.000 1.067 ± 0.000 1.060 ± 0.000

Easy α = 0.01 4.093 ± 0.224 5.136 ± 0.230 4.156 ± 0.228 1.040 ± 0.140 3.913 ± 0.218 7.374 ± 0.216 4.227 ± 0.232
α = 0.001 10.536 ± 0.002 10.566 ± 0.003 10.602 ± 0.003 10.593 ± 0.002 10.611 ± 0.002 10.620 ± 0.002 10.575 ± 0.002

Table 7: Final return V π on the four-room navigation with stochastic PG at step 50,000. We tested with two different entropy
coefficients and seven different β’s. The standard error is computed over 10 random seeds.

0 20000 40000

of Gradient Steps

0

2

4

6

8

10

R
et

u
rn

(w
/

en
tr

op
y)

0 20000 40000

of Gradient Steps

0

2

4

6

8

10

R
et

u
rn

(w
/o

en
tr

op
y)

0 20000 40000

of Gradient Steps

0.0

0.2

0.4

0.6

0.8

1.0

C
u

rr
ic

u
lu

m
P

ro
gr

es
s

β = 0.0 β = 0.1 β = 0.2 β = 0.3 β = 0.5 β = 0.75 β = 0.9

0 20000 40000

of Gradient Steps

2

4

6

8

R
et

u
rn

(w
/

en
tr

op
y)

0 20000 40000

of Gradient Steps

0

2

4

6

R
et

u
rn

(w
/o

en
tr

op
y)

0 20000 40000

of Gradient Steps

0.0

0.2

0.4

0.6

0.8

1.0

C
u

rr
ic

u
lu

m
P

ro
gr

es
s

β = 0.0 β = 0.1 β = 0.2 β = 0.3 β = 0.5 β = 0.75 β = 0.9

Figure 4: Learning curves for the numerical experiments on the easy curriculum.

31

Understanding the Complexity Gains of Single-Task RL with a Curriculum

0 20000 40000

of Gradient Steps

0.2

0.4

0.6

0.8

1.0

R
et

u
rn

(w
/

en
tr

op
y)

0 20000 40000

of Gradient Steps

0.0

0.2

0.4

0.6

0.8

1.0

R
et

u
rn

(w
/o

en
tr

op
y)

0 20000 40000

of Gradient Steps

0.0

0.2

0.4

0.6

0.8

1.0

C
u

rr
ic

u
lu

m
P

ro
gr

es
s

β = 0.0 β = 0.1 β = 0.2 β = 0.3 β = 0.5 β = 0.75 β = 0.9

0 20000 40000

of Gradient Steps

1.32

1.34

1.36

1.38

1.40

R
et

u
rn

(w
/

en
tr

op
y)

0 20000 40000

of Gradient Steps

−0.04

−0.02

0.00

0.02

0.04
R

et
u

rn
(w

/o
en

tr
op

y)

0 20000 40000

of Gradient Steps

0.0

0.1

0.2

0.3

0.4

0.5

C
u

rr
ic

u
lu

m
P

ro
gr

es
s

β = 0.0 β = 0.1 β = 0.2 β = 0.3 β = 0.5 β = 0.75 β = 0.9

Figure 5: Learning curves for the numerical experiments on the hard curriculum.

32

Understanding the Complexity Gains of Single-Task RL with a Curriculum

G. Additional Learning Curves and Tables
G.1. Goal Reaching

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Env. Steps (×106)

0.00

0.25

0.50

L
ea

rn
in

g
P

ro
gr

es
s

(κ
) ∆=1/24

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Env. Steps (×106)

0.00

0.25

0.50

L
ea

rn
in

g
P

ro
gr

es
s

(κ
) ∆=1/18

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Env. Steps (×106)

0.00

0.25

0.50

L
ea

rn
in

g
P

ro
gr

es
s

(κ
) ∆=1/12

Baseline

β = 0.9

β = 0.75

β = 0.5

β = 0.2

β = 0.1

Vanilla ROLLIN without geometric sampling

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Env. Steps (×106)

0.0

0.5

1.0

L
ea

rn
in

g
P

ro
g
re

ss
(κ

) ∆=1/24

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Env. Steps (×106)

0.0

0.5

1.0

L
ea

rn
in

g
P

ro
g
re

ss
(κ

) ∆=1/18

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Env. Steps (×106)

0.0

0.5

1.0

L
ea

rn
in

g
P

ro
g
re

ss
(κ

) ∆=1/12

Vanilla ROLLIN with geometric sampling

Figure 6: Vanilla Goal reaching. Accelerating learning on antmaze-umaze with ROLLIN on an oracle curriculum in
Figure 3. The confidence interval represents the standard error computed over 8 random seeds.

33

Understanding the Complexity Gains of Single-Task RL with a Curriculum

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Env. Steps (×106)

0.0

0.5

1.0

L
ea

rn
in

g
P

ro
gr

es
s

(κ
) ∆=1/24

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Env. Steps (×106)

0.0

0.5

1.0

L
ea

rn
in

g
P

ro
gr

es
s

(κ
) ∆=1/18

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Env. Steps (×106)

0.0

0.5

1.0

L
ea

rn
in

g
P

ro
gr

es
s

(κ
) ∆=1/12

Baseline

β = 0.9

β = 0.75

β = 0.5

β = 0.2

β = 0.1

ROLLIN + relabeling without geometric sampling

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Env. Steps (×106)

0.0

0.5

1.0

L
ea

rn
in

g
P

ro
g
re

ss
(κ

) ∆=1/24

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Env. Steps (×106)

0.0

0.5

1.0

L
ea

rn
in

g
P

ro
g
re

ss
(κ

) ∆=1/18

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Env. Steps (×106)

0.0

0.5

1.0

L
ea

rn
in

g
P

ro
g
re

ss
(κ

) ∆=1/12

ROLLIN + relabeling with geometric sampling

Figure 7: Goal relabeling. Accelerating learning on antmaze-umaze with ROLLIN on an oracle curriculum in Figure 3.
The confidence interval represents the standard error computed over 8 random seeds.

34

Understanding the Complexity Gains of Single-Task RL with a Curriculum

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Env. Steps (×106)

0.00

0.25

0.50

L
ea

rn
in

g
P

ro
g
re

ss
(κ

) ∆=1/24

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Env. Steps (×106)

0.0

0.2

0.4

L
ea

rn
in

g
P

ro
g
re

ss
(κ

) ∆=1/18

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Env. Steps (×106)

0.0

0.2

0.4

L
ea

rn
in

g
P

ro
g
re

ss
(κ

) ∆=1/12

Baseline

β = 0.9

β = 0.75

β = 0.5

β = 0.2

β = 0.1

ROLLIN + Go-Explore without geometric sampling

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Env. Steps (×106)

0.0

0.5

1.0

L
ea

rn
in

g
P

ro
gr

es
s

(κ
) ∆=1/24

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Env. Steps (×106)

0.0

0.5

L
ea

rn
in

g
P

ro
gr

es
s

(κ
) ∆=1/18

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Env. Steps (×106)

0.0

0.2

0.4

L
ea

rn
in

g
P

ro
gr

es
s

(κ
) ∆=1/12

ROLLIN + Go-Explore with geometric sampling

Figure 8: Go-Explore (exploration noise = 0.1). Accelerating learning on antmaze-umaze with ROLLIN on an oracle
curriculum in Figure 3. The confidence interval represents the standard error computed over 8 random seeds.

35

Understanding the Complexity Gains of Single-Task RL with a Curriculum

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Env. Steps (×106)

0.00

0.25

0.50

L
ea

rn
in

g
P

ro
g
re

ss
(κ

) ∆=1/24

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Env. Steps (×106)

0.0

0.2

0.4

L
ea

rn
in

g
P

ro
g
re

ss
(κ

) ∆=1/18

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Env. Steps (×106)

0.0

0.2

L
ea

rn
in

g
P

ro
g
re

ss
(κ

) ∆=1/12

Baseline

β = 0.9

β = 0.75

β = 0.5

β = 0.2

β = 0.1

ROLLIN + Go-Explore without geometric sampling

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Env. Steps (×106)

0.0

0.5

1.0

L
ea

rn
in

g
P

ro
gr

es
s

(κ
) ∆=1/24

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Env. Steps (×106)

0.0

0.5

L
ea

rn
in

g
P

ro
gr

es
s

(κ
) ∆=1/18

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Env. Steps (×106)

0.0

0.2

0.4

L
ea

rn
in

g
P

ro
gr

es
s

(κ
) ∆=1/12

ROLLIN + Go-Explore with geometric sampling

Figure 9: Go-Explore (exploration noise = 0.25). Accelerating learning on antmaze-umaze with ROLLIN on an oracle
curriculum in Figure 3. The confidence interval represents the standard error computed over 8 random seeds.

36

Understanding the Complexity Gains of Single-Task RL with a Curriculum

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Env. Steps (×106)

0.0

0.5

L
ea

rn
in

g
P

ro
gr

es
s

(κ
) ∆=1/24

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Env. Steps (×106)

0.0

0.2

0.4

L
ea

rn
in

g
P

ro
gr

es
s

(κ
) ∆=1/18

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Env. Steps (×106)

0.0

0.2

0.4

L
ea

rn
in

g
P

ro
gr

es
s

(κ
) ∆=1/12

Baseline

β = 0.9

β = 0.75

β = 0.5

β = 0.2

β = 0.1

ROLLIN + Go-Explore without geometric sampling

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Env. Steps (×106)

0.0

0.5

1.0

L
ea

rn
in

g
P

ro
gr

es
s

(κ
) ∆=1/24

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Env. Steps (×106)

0.0

0.5

L
ea

rn
in

g
P

ro
gr

es
s

(κ
) ∆=1/18

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Env. Steps (×106)

0.0

0.2

0.4

L
ea

rn
in

g
P

ro
gr

es
s

(κ
) ∆=1/12

ROLLIN + Go-Explore with geometric sampling

Figure 10: Go-Explore (exploration noise = 0.5). Accelerating learning on antmaze-umaze with ROLLIN on an oracle
curriculum in Figure 3. The confidence interval represents the standard error computed over 8 random seeds.

37

Understanding the Complexity Gains of Single-Task RL with a Curriculum

Geo ∆ Baseline β = 0.1 β = 0.2 β = 0.5 β = 0.75 β = 0.9

✗ 1/24 0.40± 0.02 0.49± 0.04 0.51± 0.05 0.57 ± 0.04 0.55± 0.02 0.49± 0.02
✗ 1/18 0.36± 0.01 0.39± 0.01 0.46± 0.01 0.54 ± 0.03 0.46± 0.03 0.50± 0.02
✗ 1/12 0.36± 0.00 0.44± 0.01 0.41± 0.02 0.47± 0.02 0.56 ± 0.05 0.56 ± 0.02

✓ 1/24 0.82± 0.08 0.92± 0.02 0.95 ± 0.02 0.88± 0.01 0.81± 0.01 0.70± 0.02
✓ 1/18 0.68± 0.07 0.74± 0.07 0.76± 0.06 0.78 ± 0.03 0.75± 0.02 0.72± 0.02
✓ 1/12 0.38± 0.03 0.55± 0.04 0.55± 0.04 0.64± 0.06 0.69 ± 0.06 0.67± 0.03

Table 8: Vanilla Goal reaching. Learning progress κ at 3 million environment steps with varying β and curriculum step
size ∆ of vanilla goal reaching task. Geo indicates the usage of geometric sampling. Baseline corresponds to β = 0,
where no ROLLIN is used. The standard error is computed over 8 random seeds. We highlight the values that are larger
than the baseline (β = 0) in purple, and the largest value in bold font.

Geo ∆ β = 0 β = 0.1 β = 0.2 β = 0.5 β = 0.75 β = 0.9

✗ 1/24 0.89± 0.03 0.91 ± 0.03 0.85± 0.04 0.86± 0.02 0.86± 0.02 0.80± 0.02
✗ 1/18 0.76± 0.03 0.81± 0.01 0.85 ± 0.04 0.79± 0.01 0.84± 0.03 0.68± 0.04
✗ 1/12 0.66± 0.04 0.74 ± 0.01 0.73± 0.03 0.66± 0.06 0.67± 0.05 0.69± 0.03

✓ 1/24 0.76± 0.02 0.78± 0.01 0.78± 0.03 0.82± 0.02 0.87 ± 0.02 0.83± 0.02
✓ 1/18 0.72± 0.02 0.76± 0.01 0.76± 0.02 0.78± 0.04 0.85 ± 0.03 0.81± 0.01
✓ 1/12 0.72± 0.03 0.73 ± 0.00 0.73 ± 0.00 0.73 ± 0.03 0.69± 0.04 0.66± 0.04

Table 9: Goal relabeling. All other settings are the same as Table 8.

EN Geo ∆ β = 0 β = 0.1 β = 0.2 β = 0.5 β = 0.75 β = 0.9

0.1 ✗ 1/24 0.37± 0.02 0.52± 0.07 0.54 ± 0.06 0.51± 0.06 0.39± 0.02 0.37± 0.01
0.1 ✗ 1/18 0.38± 0.01 0.37± 0.01 0.36± 0.01 0.38± 0.01 0.38± 0.01 0.35± 0.00
0.1 ✗ 1/12 0.38± 0.01 0.38± 0.01 0.36± 0.00 0.39 ± 0.01 0.36± 0.00 0.36± 0.00

0.1 ✓ 1/24 0.82± 0.07 0.95 ± 0.02 0.91± 0.02 0.92± 0.02 0.71± 0.02 0.45± 0.01
0.1 ✓ 1/18 0.57± 0.09 0.71 ± 0.08 0.65± 0.07 0.63± 0.07 0.62± 0.02 0.43± 0.01
0.1 ✓ 1/12 0.42± 0.03 0.43± 0.02 0.38± 0.04 0.49 ± 0.04 0.45± 0.02 0.39± 0.01

0.25 ✗ 1/24 0.38± 0.02 0.49± 0.06 0.48± 0.05 0.55 ± 0.07 0.43± 0.04 0.40± 0.02
0.25 ✗ 1/18 0.35± 0.00 0.39 ± 0.03 0.39 ± 0.02 0.36± 0.01 0.36± 0.01 0.35± 0.00
0.25 ✗ 1/12 0.36± 0.00 0.36± 0.00 0.36± 0.00 0.36± 0.00 0.36± 0.00 0.36± 0.00

0.25 ✓ 1/24 0.82± 0.10 0.97± 0.02 1.00 ± 0.00 0.94± 0.02 0.77± 0.02 0.49± 0.02
0.25 ✓ 1/18 0.64± 0.10 0.70± 0.07 0.79 ± 0.07 0.64± 0.06 0.63± 0.03 0.44± 0.01
0.25 ✓ 1/12 0.39± 0.01 0.47 ± 0.03 0.45± 0.02 0.47 ± 0.03 0.36± 0.04 0.40± 0.02

0.5 ✗ 1/24 0.49± 0.06 0.60± 0.08 0.66 ± 0.08 0.61± 0.08 0.65± 0.06 0.46± 0.04
0.5 ✗ 1/18 0.36± 0.01 0.41 ± 0.02 0.39± 0.01 0.38± 0.01 0.37± 0.01 0.35± 0.00
0.5 ✗ 1/12 0.36± 0.00 0.38 ± 0.01 0.38 ± 0.01 0.36± 0.00 0.38 ± 0.01 0.36± 0.00

0.5 ✓ 1/24 0.92± 0.08 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.87± 0.03 0.55± 0.03
0.5 ✓ 1/18 0.66± 0.09 0.71± 0.08 0.80 ± 0.08 0.68± 0.08 0.67± 0.04 0.44± 0.02
0.5 ✓ 1/12 0.41± 0.02 0.44± 0.04 0.43± 0.03 0.50 ± 0.04 0.47± 0.03 0.39± 0.04

Table 10: Go-Explore with different exploration noise. EN represents the multiplier for the Gaussian exploration noise.
All other settings are the same as Table 8.

38

Understanding the Complexity Gains of Single-Task RL with a Curriculum

G.2. Non Goal Reaching Tasks

0.0 0.5 1.0

Env. Steps (×106)

0.0

0.5

1.0

L
ea

rn
in

g
P

ro
g
re

ss
(κ

) walker

0.0 0.5 1.0

Env. Steps (×106)

0

2

4

x
ve

lo
ci

ty

walker

0.0 0.5 1.0

Env. Steps (×106)

0

2000

4000

re
tu

rn

walker

Baseline β = 0.1

0.0 0.5 1.0

Env. Steps (×106)

0.0

0.5

L
ea

rn
in

g
P

ro
gr

es
s

(κ
) hopper

0.0 0.5 1.0

Env. Steps (×106)

0

2

x
ve

lo
ci

ty

hopper

0.0 0.5 1.0

Env. Steps (×106)

0

2000

re
tu

rn

hopper

0.0 0.5 1.0

Env. Steps (×106)

0.0

0.5

L
ea

rn
in

g
P

ro
gr

es
s

(κ
) humanoid

0.0 0.5 1.0

Env. Steps (×106)

0.0

0.5

x
ve

lo
ci

ty

humanoid

0.0 0.5 1.0

Env. Steps (×106)

0

2000

4000

re
tu

rn

humanoid

0.0 0.5 1.0

Env. Steps (×106)

0.0

0.5

1.0

L
ea

rn
in

g
P

ro
g
re

ss
(κ

) ant

0.0 0.5 1.0

Env. Steps (×106)

0.0

2.5

5.0

x
ve

lo
ci

ty

ant

0.0 0.5 1.0

Env. Steps (×106)

0

2000

4000

re
tu

rn

ant

Figure 11: Accelerating learning on several non goal-reaching tasks. The confidence interval represents the standard
error computed over 8 random seeds, for β = 0.1.

39

Understanding the Complexity Gains of Single-Task RL with a Curriculum

Env. Step β = 0 β = 0.1 β = 0.2 β = 0.5 β = 0.75

walker 0.5m 0.83± 0.03 0.79± 0.04 0.75± 0.04 0.78± 0.05 0.76± 0.05
1m 0.92± 0.03 0.94 ± 0.03 0.90± 0.01 0.92± 0.04 0.92± 0.03

hopper 0.5m 0.85± 0.02 0.82± 0.03 0.83± 0.02 0.78± 0.02 0.75± 0.02
1m 0.88± 0.01 0.89 ± 0.00 0.89 ± 0.03 0.82± 0.02 0.81± 0.02

humanoid 0.5m 0.32± 0.05 0.36 ± 0.04 0.21± 0.07 0.33± 0.04 0.14± 0.06
1m 0.67± 0.03 0.69± 0.06 0.62± 0.02 0.76 ± 0.03 0.71± 0.06

ant 0.5m 0.72± 0.02 0.82 ± 0.06 0.68± 0.08 0.64± 0.05 0.47± 0.05
1m 1.00± 0.00 1.00± 0.00 0.83± 0.08 0.86± 0.06 0.71± 0.07

Table 11: Learning progress κ at 0.5 and 1.0 million environment steps with varying β of non goal reaching tasks.
Baseline corresponds to β = 0, where no ROLLIN is used. The standard error is computed over 8 random seeds. We
highlight the values that are larger than the baseline (β = 0) in purple, and the largest value in bold font.

Env. Step β = 0 β = 0.1 β = 0.2 β = 0.5 β = 0.75

walker 0.5m 3.09± 0.31 2.83± 0.31 2.41± 0.33 2.77± 0.31 2.88± 0.32
1m 3.69± 0.27 3.62± 0.26 3.09± 0.28 3.48± 0.27 3.14± 0.34

hopper 0.5m 2.42± 0.18 2.26± 0.22 2.45 ± 0.14 2.34± 0.16 2.34± 0.16
1m 2.58± 0.16 2.65 ± 0.15 2.65 ± 0.17 2.39± 0.18 2.52± 0.19

humanoid 0.5m 0.26± 0.05 0.32± 0.07 0.27± 0.05 0.34± 0.05 0.38 ± 0.07
1m 0.39± 0.05 0.46± 0.09 0.41± 0.05 0.41± 0.06 0.49 ± 0.10

ant 0.5m 3.38± 0.43 3.85 ± 0.41 3.43± 0.53 3.15± 0.45 2.38± 0.46
1m 4.29± 0.51 4.66 ± 0.30 3.93± 0.45 3.99± 0.48 3.50± 0.49

Table 12: Average x-direction velocity of the last 50k time steps, at 0.5 and 1.0 million environment steps with
varying β of non goal reaching tasks. Baseline corresponds to β = 0, where no ROLLIN is used. The standard error is
computed over 8 random seeds. We highlight the values that are larger than the baseline (β = 0) in purple, and the largest
value in bold font.

Env. Step β = 0 β = 0.1 β = 0.2 β = 0.5 β = 0.75

walker 0.5m 3450.1± 307.4 3350.4± 184.6 2897.4± 276.5 3255.9± 203.8 3185.8± 341.5
1m 4032.3± 224.3 4128.8 ± 159.6 3685.5± 135.6 4028.8± 164.2 3895.4± 265.4

hopper 0.5m 3192.5± 80.4 3148.6± 160.7 3241.5 ± 130.8 3116.5± 141.8 3059.6± 153.8
1m 3386.2± 124.7 3421.9 ± 109.8 3262.3± 98.1 3170.7± 180.6 3394.5± 126.5

humanoid 0.5m 2910.1± 262.9 2939.7± 392.0 2598.9± 309.8 3137.3 ± 305.6 2259.6± 245.4
1m 3017.2± 169.0 3173.6± 238.3 2935.8± 181.1 2905.5± 125.9 3290.7 ± 275.9

ant 0.5m 2976.2± 252.4 3593.1 ± 237.8 3071.8± 340.0 2818.3± 265.2 2188.3± 256.2
1m 4248.5± 88.6 4473.0 ± 102.2 3683.1± 345.0 3708.7± 290.5 3250.1± 316.2

Table 13: Average return of the last 50k time steps, at the 0.5 and 1.0 million environment steps with varying β of
non goal reaching tasks. Baseline corresponds to β = 0, where no ROLLIN is used. The standard error is computed over
8 random seeds. We highlight the values that are larger than the baseline (β = 0) in purple, and the largest value in bold
font.

40

