
Offline Reinforcement Learning with Closed-Form Policy Improvement
Operators

Jiachen Li * 1 Edwin Zhang * 1 2 Ming Yin 1 Qinxun Bai 3 Yu-Xiang Wang 1 William Yang Wang 1

Abstract

Behavior constrained policy optimization has
been demonstrated to be a successful paradigm
for tackling Offline Reinforcement Learning. By
exploiting historical transitions, a policy is trained
to maximize a learned value function while con-
strained by the behavior policy to avoid a sig-
nificant distributional shift. In this paper, we
propose our closed-form policy improvement op-
erators. We make a novel observation that the
behavior constraint naturally motivates the use
of first-order Taylor approximation, leading to
a linear approximation of the policy objective.
Additionally, as practical datasets are usually
collected by heterogeneous policies, we model
the behavior policies as a Gaussian Mixture and
overcome the induced optimization difficulties
by leveraging the LogSumExp’s lower bound
and Jensen’s Inequality, giving rise to a closed-
form policy improvement operator. We instanti-
ate both one-step and iterative offline RL algo-
rithms with our novel policy improvement op-
erators and empirically demonstrate their effec-
tiveness over state-of-the-art algorithms on the
standard D4RL benchmark. Our code is available
at https://cfpi-icml23.github.io/.

1. Introduction
The deployment of Reinforcement Learning (RL) (Sutton &
Barto, 2018) in real-world applications is often hindered by
the large amount of online data it requires. Implementing
an untested policy can be costly and dangerous in fields
such as robotics (Cabi et al., 2019) and autonomous driv-

*Equal contribution 1Department of Computer Science, Uni-
versity of California, Santa Barbara, Santa Barbara, CA 93106
USA, USA 2Harvard University, USA 3Horizon Robotics Inc.,
Cupertino, CA, 95014 USA. Correspondence to: Jiachen Li <ji-
achen li@ucsb.edu>, Edwin Zhang <ete@ucsb.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

ing (Sallab et al., 2017). To address this issue, offline RL
(a.k.a batch RL) (Levine et al., 2020; Lange et al., 2012) has
been proposed to learn a policy directly from historical data
without environment interaction. However, learning compe-
tent policies from a static dataset is challenging. Previous
research has shown that learning a policy without constrain-
ing its deviation from the data-generating policies suffers
from significant extrapolation errors, leading to training
divergence (Fujimoto et al., 2019; Kumar et al., 2019).

Current literature has demonstrated two successful
paradigms for managing the trade-off between policy im-
provement and limiting the distributional shift from the be-
havior policies. Under the actor-critic framework (Konda &
Tsitsiklis, 1999), behavior constrained policy optimization
(BCPO) (Fujimoto et al., 2019; Kumar et al., 2019; Fuji-
moto & Gu, 2021; Wu et al., 2019; Brandfonbrener et al.,
2021; Ghasemipour et al., 2021; Li et al., 2020; Vuong et al.,
2022; Wu et al., 2022) explicitly regularizes the divergence
between learned and behavior policies, while conservative
methods (Kumar et al., 2020; Bai et al., 2022; Yu et al.,
2020; 2021; Yang et al., 2022; Lyu et al., 2022) penalize
the value estimate for out-of-distribution (OOD) actions to
avoid overestimation errors. However, most existing model-
free offline RL algorithms use stochastic gradient descent
(SGD) to optimize their policies, which can lead to insta-
bility during the training process and require careful tuning
of the number of gradient steps. As highlighted by Fuji-
moto & Gu 2021, the performance of the offline-trained
policies can be influenced by the specific stopping point
chosen for evaluation, with substantial variations often ob-
served near the final stage of training. This instability poses
a significant challenge in offline RL, given the restricted ac-
cess to environment interaction makes it difficult to perform
hyper-parameter tuning. In addition to the variations across
different stopping points, our experiment in Table 4 reveals
that using SGD for policy improvement can result in signifi-
cant performance variations across different random seeds,
a phenomenon well-documented for online RL algorithms
as well (Islam et al., 2017).

In this work, we aim to mitigate the aforementioned learn-
ing instabilities of offline RL by designing stable policy
improvement operators. In particular, we take a closer look

1

https://cfpi-icml23.github.io/


Offline Reinforcement Learning with Closed-Form Policy Improvement Operators

at the BCPO paradigm and make a novel observation that
the requirement of limited distributional shift motivates the
use of the first-order Taylor approximation (Callahan, 2010),
leading to a linear approximation of the policy objective that
is accurate in a sufficiently small neighborhood of the behav-
ior action. Based on this crucial insight, we construct our
policy improvement operators that return closed-form solu-
tions by carefully designing a tractable behavior constraint.
When modeling the behavior policies as a Single Gaussian,
our policy improvement operator deterministically shifts
the behavior policy towards a value-improving direction
derived by solving a Quadratically Constrained Linear Pro-
gram (QCLP) in closed form. As a result, our method avoids
the training instability in policy improvement since it only
requires learning the underlying behavior policies of a given
dataset, which is a supervised learning problem.

Furthermore, we note that practical datasets are likely to
be collected by heterogeneous policies, which may give
rise to a multimodal behavior action distribution. In this
scenario, a Single Gaussian will fail to capture the multiple
modes of the underlying distribution, limiting the potential
for policy improvement. While modeling the behavior as a
Gaussian Mixture provides better expressiveness, it incurs
extra optimization difficulties due to the non-concavity of
its log-likelihood. We tackle this issue by leveraging the
LogSumExp’s lower bound and Jensen’s inequality, again
leading to a closed-form policy improvement (CFPI) opera-
tor applicable to multimodal behavior policies. Empirically,
we demonstrate the effectiveness of Gaussian Mixture over
the conventional Single Gaussian when the underlying dis-
tribution comes from heterogenous policies.

In summary, our main contributions are threefold:

• CFPI operators that are compatible with single mode
and multimodal behavior policies and can be leveraged
to improve policies learned by the other algorithms.

• Empirical evidence showing the benefits of modeling
the behavior policy as a Gaussian Mixture.

• One-step and iterative instantiations of our algorithm
that outperform state-of-the-art (SOTA) algorithms on
the standard D4RL benchmark (Fu et al., 2020).

2. Preliminaries
Reinforcement Learning. RL aims to maximize returns in
a Markov Decision Process (MDP) (Sutton & Barto, 2018)
M = (S,A, R, T, ρ0, γ), with state space S, action space
A, reward function R, transition function T , initial state
distribution ρ0, and discount factor γ ∈ [0, 1). At each time
step t, the agent starts from a state st ∈ S , selects an action
at ∼ π(·|st) from its policy π, transitions to a new state
st+1 ∼ T (·|st, at), and receives reward rt := R(st, at).

We define the action value function associated with π by
Qπ(s, a) = Eπ[

∑∞
t=0 γ

trt|s0 = s, a0 = a]. The goal of an
RL agent is to learn an optimal policy π∗ that maximizes
the expected discounted cumulative reward without access
to the ground truth R and T and can thus be formulated as

π∗ = argmax
π

J(π) := Es∼ρ0,a∼π(·|s)[Q
π(s, a)] (1)

In this paper, we consider offline RL settings, where we as-
sume restricted access to the MDPM, and a previously col-
lected dataset D with N transition tuples {(sit, ait, rit)}Ni=1.
We denote the underlying policy that generates D as πβ ,
which may or may not be a mixture of individual policies.

Behavior Constrained Policy Optimization. One of the
critical challenges in offline RL is that the learned Q func-
tion tends to assign spuriously high values to OOD actions
due to extrapolation error, which is well documented in pre-
vious literature (Fujimoto et al., 2019; Kumar et al., 2019).
Behavior Constrained Policy Optimization (BCPO) meth-
ods (Fujimoto et al., 2019; Kumar et al., 2019; Fujimoto
& Gu, 2021; Wu et al., 2019; Brandfonbrener et al., 2021)
explicitly constrain the action selection of the learned policy
to stay close to the behavior policy πβ , resulting in a policy
improvement step that can be generally summarized by the
optimization problem below:

max
π

Es∼D
[
Eã∼π(·|s) [Q (s, ã)]− αD (π(· | s), πβ(· | s))

]
,

(2)
where D(·, ·) is a divergence function that calculates the
divergence between two action distributions, and α is a
hyper-parameter controlling the strength of regularization.
Consequently, the policy is optimized to maximize the Q-
value while staying close to the behavior distribution.

Different algorithms may choose different D(·, ·) (e.g., KL
Divergence (Wu et al., 2019; Jaques et al., 2019), Rényi
divergence (Metelli et al., 2018; 2020), MSE (Fujimoto &
Gu, 2021) and MMD (Kumar et al., 2019)). However, to
the best of our knowledge, all existing methods tackle this
optimization via SGD. In this paper, we take advantage of
the regularization and solve the problem in closed form.

3. Closed-Form Policy Improvement
In this section, we introduce our policy improvement opera-
tors that map the behavior policy to a higher-valued policy,
which is accomplished by solving a linearly approximated
BCPO. We first show that modeling the behavior policy
as a Single Gaussian transforms the approximated BCPO
into a QCLP and thus can be solved in closed-form (Sec.
3.1). Given that practical datasets are usually collected by
heterogeneous policies, we generalize the results by model-
ing the behavior policies as a Gaussian Mixture to facilitate
expressiveness and overcome the incurred optimization dif-
ficulties by leveraging the LogSumExp’s lower bound (LB)

2



Offline Reinforcement Learning with Closed-Form Policy Improvement Operators

and Jensen’s Inequality (Sec. 3.2). We close this section by
presenting an offline RL paradigm that leverages our policy
improvement operators (Sec. 3.3).

3.1. Approximated behavior constrained optimization

We aim to design a learning-free policy improvement op-
erator to avoid learning instability in offline settings. We
observe that optimizing towards BCPO’s policy objective
(2) induces a policy that admits limited deviation from the
behavior policy. Consequently, it will only query the Q-
value within the neighborhood of the behavior action during
training, which naturally motivates the employment of the
first-order Taylor approximation to derive the following lin-
ear approximation of the Q function

Q̄(s, a; aβ) = (a− aβ)
T [∇aQ(s, a)]a=aβ

+Q(s, aβ)

= aT [∇aQ(s, a)]a=aβ
+ const.

(3)
By Taylor’s theorem (Callahan, 2010), Q̄(s, a; aβ) only pro-
vides an accurate linear approximation of Q(s, a) in a suffi-
ciently small neighborhood of aβ . Therefore, the choice of
aβ is critical.

Recognizing (2) as a Lagrangian and with the linear approx-
imation (3), we propose to solve the following surrogate
problem of (2) given any state s:

max
π

E
ã∼π

[
ãT [∇aQ(s, a)]a=aβ

]
,

s.t. D (π(· | s), πβ(· | s)) ≤ δ.
(4)

Note that it is not necessary for D(·, ·) to be a (mathemati-
cally defined) divergence measure since any generic D(·, ·)
that can constrain the deviation of π’s action from πβ can
be considered.

Single Gaussian Behavior Policy. In general, (4) does not
always have a closed-form solution. We analyze a special
case where πβ = N (µβ ,Σβ) is a Gaussian policy, π =
µ is a deterministic policy, and D(·, ·) is a negative log-
likelihood function. In this scenario, a reasonable choice of
µ should concentrate around µβ to limit distributional shift.
Therefore, we set aβ = µβ and the optimization problem
(4) becomes the following:

max
µ

µT [∇aQ(s, a)]a=µβ
, s.t. − log πβ(µ|s) ≤ δ (5)

We now show that (5) has a closed-form solution.
Proposition 3.1. The optimization problem (5) has a closed-
form solution that is given by

µsg(τ) = µβ +

√
2 log τ Σβ [∇aQ(s, a)]a=µβ∥∥∥[∇aQ(s, a)]a=µβ

∥∥∥
Σβ

, (6)

where δ = 1
2 log det(2πΣβ) + log τ and ∥x∥Σ =

√
xTΣx.

Proof sketch. (5) can be converted into the QCLP below
that has a closed-form solution given by (6).

max
µ

µT [∇aQ(s, a)]a=µβ
,

s.t.
1

2
(µ− µβ)

TΣ−1
β (µ− µβ) ≤ log τ

(7)

A full proof is given in Appendix A.1.

Although we still have to tune τ as tuning α in (2) for
conventional BCPO methods, we have a transparent inter-
pretation of τ ’s effect on the action selection thanks to the
tractability of (5). Due to the KKT conditions (Boyd et al.,
2004), the µsg returned by (6) has the following property

log πβ(µsg|s) = −δ = log
πβ(µβ |s)

τ

⇐⇒ πβ(µsg|s) =
πβ(µβ |s)

τ

. (8)

While setting τ = 1 will always return the mean of πβ , a
large τ might send µsg out of the support of πβ , breaking the
accuracy guarantee of the first-order Taylor approximation.

3.2. Gaussian Mixture as a more expressive model

Performing policy improvement with (6) enjoys favorable
computational efficiency and avoids the potential instability
caused by SGD. However, its tractability relies on the Single
Gaussian assumption of the behavior policy πβ . In practice,
the historical datasets are usually collected by heterogeneous
policies with different levels of expertise. A Single Gaussian
may fail to capture the whole picture of the underlying
distribution, motivating the use of a Gaussian Mixture to
represent πβ .

πβ =

N∑
i=1

λiN (µi,Σi),

N∑
i=1

λi = 1 (9)

However, directly plugging the Gaussian Mixture πβ into (5)
breaks its tractability, resulting in a non-convex optimization

max
µ

µT [∇aQ(s, a)]a=aβ
,

s.t. log

N∑
i=1

(
λi det(2πΣi)

− 1
2 exp

(
− 1

2
(µ− µi)

TΣ−1
i (µ− µi)

))
≥ −δ

(10)

We are confronted with two major challenges to solve the
optimization problem (10). First, it is unclear how to choose
a proper aβ while we need to ensure that the solution µ lies
within a small neighborhood of aβ . Second, the constraint

3



Offline Reinforcement Learning with Closed-Form Policy Improvement Operators

of (10) does not admit a convex form, posing non-trivial
optimization difficulties. We leverage the lemma below to
tackle the non-convexity of the constraint.

Lemma 3.1. log
∑N

i=1 λi exp(xi) admits the following
inequalities:

1. (LogSumExp’s LB)
log
∑N

i=1 λi exp(xi) ≥ maxi {xi + log λi}

2. (Jensen’s Inequality)
log
∑N

i=1 λi exp(xi) ≥
∑N

i=1 λixi

Next, we show that applying each inequality in Lemma 3.1
to the constraint of (10) respectively resolves the intractabil-
ity and leads to natural choices of aβ .

Proposition 3.2. By applying the first inequality of Lemma
3.1 to the constraint of (10), we can derive an optimization
problem that lower bounds (10)

max
µ

µT [∇aQ(s, a)]a=aβ
,

s.t. max
i

{
− 1

2
(µ− µi)

TΣ−1
i (µ− µi)

− 1

2
log det(2πΣi) + log λi

}
≥ −δ,

(11)

and the closed-form solution to (11) is given by

µlse(τ) = argmax
µi(δ)

µi
T [∇aQ(s, a)]a=µi

,

s.t. δ = min
i
{1
2
log det(2πΣi)− log λi}+ log τ,

where µi(δ) = µi +
κiΣi [∇aQ(s, a)]a=µi∥∥∥[∇aQ(s, a)]a=µi

∥∥∥
Σi

,

and κi =
√
2(δ + log λi)− log det(2πΣi) .

(12)

Proposition 3.3. By applying the second inequality of
Lemma 3.1 to the constraint of (10), we can derive an opti-
mization problem that lower bounds (10)

max
µ

µT [∇aQ(s, a)]a=aβ
,

s.t.
N∑
i=1

λi

(
− 1

2
log det(2πΣi)

− 1

2
(µ− µi)

TΣ−1
i (µ− µi)

)
≥ −δ

(13)

and the closed-form solution to (13) is given by

µjensen(τ) = µ+
κiΣ[∇aQ(s, a)]a=µ∥∥∥[∇aQ(s, a)]a=µ

∥∥∥
Σ

, where

κi =

√√√√2 log τ −
N∑
i=1

λiµT
i Σ

−1
i µi + µTΣ

−1
µ ,

Σ =

(
N∑
i=1

λiΣ
−1
i

)−1

, µ = Σ

(
N∑
i=1

λiΣ
−1
i µi

)
,

δ = log τ +
1

2

N∑
i=1

λi log det(2πΣi)

(14)

We defer the detailed proof of Proposition 3.2 and Proposi-
tion 3.3 as well as how we choose aβ for each optimization
problem to Appendix A.2 and A.3, respectively.

Comparing to the original optimization problem (10), both
problems (11) and (13) impose more strict trust region
constraints, which is accomplished by enforcing the lower
bound of the log probabilities of the Gaussian Mixture to
exceed a certain threshold, with τ controlling the size of
the trust region. Indeed, these two optimization problems
have their own assets and liabilities. When πβ exhibits an
obvious multimodality as is shown in Fig. 1 (L), the lower
bound of log πβ constructed by Jensen’s Inequality cannot
capture different modes due to its concavity, losing the ad-
vantage of modeling πβ as a Gaussian Mixture. In this case,
the optimization problem (11) can serve as a reasonable sur-
rogate problem of (10), as LogSumExp’s LB still preserves
the multimodality of log πβ .

When πβ is reduced to a Single Gaussian, the approxima-
tion with the Jensen’s Inequality becomes equality as is
shown in Fig. 1 (M). Thus µjensen returned by (14) exactly
solves the optimization problem (10). However, in this case,
the tightness of LogSumExp’s LB largely depends on the
weights λi=1...N . If each Gaussian component is distributed
and weighted identically, the lower bound will be logN
lower than the actual value. Moreover, there also exists the
scenario (Fig. 1 (R)) when both (11) and (13) can serve as
reasonable surrogates to the original problem (10).

Fortunately, we can combine the best of both worlds and de-
rives a CFPI operator accounting for all the above scenarios,
which returns a policy that selects the higher-valued action
from µlse and µjensen

µmg(τ) = argmax
µ∈{µlse(τ),µjensen(τ)}

Q(s, µ) (15)

3.3. Algorithm template

We have derived two CFPI operators that map the behavior
policy to a higher-valued policy. When the behavior pol-

4



Offline Reinforcement Learning with Closed-Form Policy Improvement Operators

Figure 1: Apply Lemma 3.1 to Gaussian Mixture’s log probability log πβ at different scenarios. (L) log πβ has multiple
modes. LogSumExp’s LB preserves multimodality. (M) log πβ reduces to Single Gaussian. Jensen’s inequality becomes
equality. (R) log πβ is similar to a uniform distribution.

Algorithm 1 Offline RL with CFPI operators

Input: Dataset D, baseline policy π̂b, value function Q̂−1,
HP τ

1: Warm start Q̂0 = SARSA(Q̂−1,D) with the SARSA-
style algorithm (Sutton & Barto, 2018)

2: Get one-step policy π̂1 = I(π̂b, Q̂0; τ)
3: for t = 1 . . . T do
4: Policy evaluation: Q̂t = E(Q̂t−1, π̂t,D)
5: Get policy: π̂t+1 = I(π̂b, Q̂t; τ) (concrete choices

of I includes IMG and ISG)
6: end for

icy πβ is a Single Gaussian, ISG(πβ , Q; τ) returns a policy
with action selected by (6). When πβ is a Gaussian Mix-
ture, IMG(πβ , Q; τ) returns a policy with action selected by
(15). We note that our methods can also work with a non-
Gaussian πβ . Appendix D provides the derivations for the
corresponding CFPI operators when πβ is modeled as both
a deterministic policy and VAE. Algorithm 1 shows that
our CFPI operators enable the design of a general offline
RL template that can yield one-step, multi-step and iterative
methods, where E is a general policy evaluation operator
that returns a value function Q̂t. When setting T = 0, we
obtain our one-step method. We defer the discussion on
multi-step and iterative methods to the Appendix C.

While the design of our CFPI operators is motivated by the
behavior constraint, we highlight that they are compatible
with general baseline policies πb besides πβ . Sec. 5.2 and
Appendix G.7 show that our CFPI operators can improve
policies learned by IQL and CQL (Kumar et al., 2020).

3.4. Theoretical guarantees for CFPI operators

At a high level, Algorithm 1 follows the approximate policy
iteration (API) (Perkins & Precup, 2002) by iterating over
the policy evaluation (E step, Line 4) and policy improve-
ment (I step, Line 5). Therefore, to verify E provides the

improvement, we need to first show policy evaluation Q̂t is
accurate. We employ the Fitted Q-Iteration (Sutton & Barto,
2018) to perform policy evaluation, which is known to be
statistically efficient (e.g. (Chen & Jiang, 2019)) under the
mild condition for the function approximation class. Next,
for the performance gap between J(π̂t+1)− J(π̂t), we ap-
ply the standard performance difference lemma (Kakade &
Langford, 2002; Kakade, 2003).
Theorem 3.2. [Safe Policy Improvement] Assume the state
and action spaces are discrete.1 Let π̂1 be the policy ob-
tained after the CFPI update (Line 2 of Algorithm 1). Then
with probability 1− δ,

J(π̂1)− J(π̂β)

≥ 1

1− γ
Es∼dπ̂1

[
Q̄π̂β (s, π̂1(s))− Q̄π̂β (s, π̂β(s))

]
− 2

1− γ
Es∼dπ̂1Ea∼π̂1(·|s)

[
Cγ,δ√
D(s, a)

+ CCFPI(s, a)

]
:= ζ.

Similar results can be derived for multi-step and iterative
algorithms by defining π̂0 = π̂β . With probability 1− δ,

J(π̂T )− J(π̂β) =

T∑
t=1

J(π̂t)− J(π̂t−1) ≥
T∑

t=1

ζ(t),

where D(s, a) denotes number of samples at (s, a), Cγ,δ

denotes the learning coefficient of SARSA and CCFPI(s, a)
denotes the first-order approximation error from (3). We
defer detailed derivation and the expression of Cγ,δ, ζ

(t)

and CCFPI(s, a) in Appendix A.4. Note that when a = aβ ,
CCFPI(s, a) = 0.

By Theorem 3.2, π̂1 is a ζ-safe improved policy. The ζ safe-
ness consists of two parts: CCFPI is caused by the first-order
approximation, and the Cγ,δ/

√
D(s, a) term is incurred by

the SARSA update. Similarly, π̂T is a
∑T

t=1 ζ
(t)-safe im-

proved policy.

1The assumption of discreteness is made only for the purpose of
analysis. For the more general cases, please refer to Appendix A.4.

5



Offline Reinforcement Learning with Closed-Form Policy Improvement Operators

4. Related Work
Our methods belong and are motivated by the successful
BCPO paradigm, which imposes constraints as in (2) to
prevent from selecting OOD actions. Algorithms from
this paradigm may apply different divergence functions,
e.g., KL-divergence (Wu et al., 2019; Jaques et al., 2019),
Rényi divergence (Metelli et al., 2018; 2020), MMD (Ku-
mar et al., 2019) or the MSE (Fujimoto & Gu, 2021). All
these methods perform policy improvement via SGD. In-
stead, we perform CFPI by solving a linear approximation
of (2). Another line of research enforces the behavior con-
straint via parameterization. BCQ (Fujimoto et al., 2019)
learns a generative model as the behavior policy and a Q
function to select the action from a set of perturbed behavior
actions. (Ghasemipour et al., 2021) further show that the
perturbation model can be discarded.

The design of our CFPI operators is inspired by the SOTA
online RL algorithm OAC (Ciosek et al., 2019), which treats
the single Gaussian evaluation policy as the baseline πb and
obtains an optimistic exploration policy by solving a similar
optimization problem as (7). Since the underlying action dis-
tribution of an offline dataset often exhibits multimodality,
we extend the result to accommodate a Gaussian Mixture πb

and overcome additional optimization difficulties by lever-
aging Lemma 3.1. Importantly, we successfully incorporate
our CFPI operators into an iterative algorithm (Sec. 5.1).
When updating the critics, we construct the TD target with
actions chosen by the policy improved by our CFPI opera-
tors. This is in stark contrast to OAC, as OAC only employs
the exploration policy to collect new transitions from the
environment and does not use the actions generated by the
exploration policy to construct the TD target for the critic
training. These key differences highlight the novelty of our
proposed method. We defer additional comparisons between
our methods and OAC to Appendix H.1. In Appendix H.2,
we further draw connections with prior works that leveraged
the Taylor expansion to RL.

Recently, one-step (Kostrikov et al., 2021; Brandfonbrener
et al., 2021) algorithms have achieved great success. Instead
of iteratively performing policy improvement and evalua-
tion, these methods only learn a Q function via SARSA
without bootstrapping from OOD action value. These meth-
ods further apply an policy improvement operator (Wu et al.,
2019; Peng et al., 2019) to extract a policy. We also in-
stantiate a one-step algorithm with our CFPI operator and
evaluate on standard benchmarks.

5. Experiments
Our experiments aim to demonstrate the effectiveness of our
CFPI operators. Firstly, on the standard offline RL bench-
mark D4RL (Fu et al., 2020), we show that instantiating

offline RL algorithms with our CFPI operators in both one-
step and iterative manners outperforms SOTA methods (Sec.
5.1). Secondly, we show that our operators can improve a
policy learned by other algorithms (Sec. 5.2). Ablation stud-
ies in Sec. 5.3 further show our superiority over the other
policy improvement operators and demonstrate the benefit
of modeling the behavior policy as a Gaussian Mixture.

5.1. Comparison with SOTA offline RL algorithms

We instantiate a one-step offline RL algorithm from Algo-
rithm 1 with our policy improvement operator IMG. We
learned a Gaussian Mixture baseline policy π̂β via behav-
ior cloning. We employed the IQN (Dabney et al., 2018a)
architecture to model the Q value network for its better gen-
eralizability, as we need to estimate out-of-buffer Q(s, a)
during policy deployment. We trained the Q̂0 with SARSA
algorithm (Sutton & Barto, 2018; Parisotto et al., 2015).
Appendix F.1 includes detailed training procedures of π̂β

and Q̂0 with full HP settings. We obtain our one-step policy
as IMG(π̂β , Q̂0; τ).

We evaluate the effectiveness of our one-step algorithm
on the D4RL benchmark focusing on the Gym-MuJoCo
domain, which contains locomotion tasks with dense re-
wards. Table 1 compares our one-step algorithm with SOTA
methods, including the other one-step actor-critic methods
IQL (Kostrikov et al., 2021), OneStepRL (Brandfonbrener
et al., 2021), BCPO method TD3+BC (Fujimoto & Gu,
2021), conservative method CQL (Kumar et al., 2020), and
trajectory optimization methods DT (Chen et al., 2021),
TT (Janner et al., 2021). We also include the performance
of two behavior policies SG-BC and MG-BC modeled with
Single Gaussian and Gaussian Mixture, respectively. We
directly report results for IQL, BCQ, TD3+BC, CQL, and
DT from the IQL paper, and TT’s result from its own paper.
Note that OneStepRL instantiates three different algorithms.
We only report its (Rev. KL Reg) result because this algo-
rithm follows the BCPO paradigm and achieves the best
overall performance. We highlight that OnesteRL reports
the results by tuning the HP for each dataset.

Results in Table 1 demonstrate that our one-step algorithm
outperforms the other algorithms by a significant margin
without training a policy to maximize its Q-value through
SGD. We note that we use the same τ for all datasets except
Hopper-M-E. In Sec. 5.3, we will perform ablation studies
and provide a fair comparison between our CFPI operators
and the other policy improvement operators.

We further instantiate an iterative algorithm with IMG and
evaluate its effectiveness on the challenging AntMaze do-
main of D4RL. The 6 tasks from AntMaze are more chal-
lenging due to their sparse-reward nature and lack of optimal
trajectories in the static datasets. Table 2 compares our Iter-
ative IMG with SOTA algorithms on the AntMaze domain.

6



Offline Reinforcement Learning with Closed-Form Policy Improvement Operators

Table 1: Comparison between our one-step policy and SOTA methods on the Gym-MuJoCo domain of D4RL. Our method
uses the same τ for all datasets except Hopper-M-E (detailed in Appendix F.1). We report the mean and standard deviation
of our method’s performance across 10 seeds. Each seed contains an individual training process and evaluates the policy for
100 episodes. We use Cheetah for HalfCheetah, M for Medium, E for Expert, and R for Replay. We bold the best results for
each task.

Dataset SG-BC MG-BC DT TT OnestepRL TD3+BC CQL IQL Our IMG(π̂β , Q̂0)

Cheetah-M-v2 40.6 40.6 42.6 46.9 55.6 48.3 44.0 47.4 52.1± 0.3
Hopper-M-v2 53.7 53.9 67.6 61.1 83.3 59.3 58.5 66.2 86.8± 4.0
Walker2d-M-v2 71.9 70.0 74.0 79.8 85.6 83.7 72.5 78.3 88.3± 1.6

Cheetah-M-R-v2 34.9 33.0 36.6 41.9 42.4 44.6 45.5 44.2 44.5± 0.4
Hopper-M-R-v2 12.4 21.2 82.7 91.5 71.0 60.9 95.0 94.7 93.6± 7.9
Walker2d-M-R-v2 22.9 22.8 66.6 82.6 71.6 81.8 77.2 73.8 78.2± 5.6

Cheetah-M-E-v2 46.6 51.7 86.8 95.0 93.5 90.7 91.6 86.7 97.3± 1.8
Hopper-M-E-v2 53.9 69.2 107.6 101.9 102.1 98.0 105.4 91.5 104.2± 5.1
Walker2d-M-E-v2 92.3 93.2 108.1 110.0 110.9 110.1 108.8 109.6 111.9± 0.3

Total 429.1 455.6 672.6 710.1 716.0 677.4 698.5 692.4 757.0± 27.0

Table 2: Comparison between our Iterative IMG and SOTA methods on the AntMaze domain. We report the mean and
standard deviation across 5 seeds for our method with each seed evaluating for 100 episodes. The performance for all
baselines is directly reported from the IQL paper. Our Iterative IMG outperforms all baselines on 5 out of 6 tasks and obtains
the best overall performance.

Dataset BC DT Onestep RL TD3+BC CQL IQL Iterative IMG

antmaze-umaze-v0 54.6 59.2 64.3 78.6 74.0 87.5 90.2± 3.9
antmaze-umaze-diverse-v0 45.6 49.3 60.7 71.4 84.0 62.2 58.6± 15.2
antmaze-medium-play-v0 0.0 0.0 0.3 10.6 61.2 71.2 75.2± 6.9
antmaze-medium-diverse-v0 0.0 0.7 0.0 3.0 53.7 70.0 72.2± 7.3
antmaze-large-play-v0 0.0 0.0 0.0 0.2 15.8 39.6 51.4± 7.7
antmaze-large-diverse-v0 0.0 1.0 0.0 0.0 14.9 47.5 52.4± 10.9

Total 100.2 112.2 125.3 163.8 303.6 378.0 400.0± 52.0

Our method uses the same set of HP for all 6 tasks, outper-
forming all baselines on 5 out of 6 tasks and obtaining the
best overall performance. Appendix C.1 presents additional
details with training curves and pseudo-codes.

5.2. Improvement over a learned policy

Table 3: Our ISG(πIQL, QIQL) improves the IQL policy πIQL
on AntMaze. We report the mean and standard deviation of
10 seeds. Each seed evaluates for 100 episodes.

Dataset πIQL (train) πIQL (1M) ISG(πIQL, QIQL)

antmaze-u-v0 87.4± 3.2 83.6± 3.2 85.1± 5.3
antmaze-u-d-v0 59.0± 5.7 55.8± 7.9 55.0± 9.1

antmaze-m-p-v0 71.1± 5.43 64.2± 13.2 75.5± 6.1
antmaze-m-d-v0 70.0± 6.16 66.8± 9.4 79.9± 3.8

antmaze-l-p-v0 34.4± 6.04 35.6± 7.0 37.7± 7.7
antmaze-l-d-v0 39.8± 9.09 38.8± 7.1 40.1± 5.6

Total 361.7± 35.6 344.7± 47.8 373.3± 37.5

In this section, we show that our CFPI operator ISG can fur-

ther improve the performance of a Single Gaussian policy
πIQL learned by IQL (Kostrikov et al., 2021) on the AntMaze
domain. We first obtain the IQL policy πIQL and QIQL by
training for 1M gradient steps using the PyTorch Implemen-
tation from RLkit (Berkeley). We emphasize that we follow
the authors’ exact training and evaluation protocols and in-
clude all training curves in Appendix G.6. Interestingly,
even though the average of the evaluation results during
training matches the results reported in the IQL paper, Ta-
ble 3 shows that the evaluation of the final 1M-step policy
πIQL does not match the reported performance on all 6 tasks.
This demonstrates how drastically performance can fluc-
tuate across just dozens of epochs, echoing the unstable
performance of offline-trained policies highlighted by Fu-
jimoto & Gu 2021. Thanks to the tractability of ISG, we
directly obtain an improved policy ISG(πIQL, QIQL; τ) that
achieves better overall performance than both πIQL (train)
and (1M), as shown in Table 3. We tune the HP τ using
a small set of seeds for each task following the practice
of (Brandfonbrener et al., 2021; Fu et al., 2020) and include
more details in Appendix F.2 and G.6.

7



Offline Reinforcement Learning with Closed-Form Policy Improvement Operators

Table 4: Ablation studies of our Method on the Gym-MuJoCo domain. Again we report the mean and standard deviation of
10 seeds, and each seed evaluates for 100 episodes. Our IMG outperforms baselines by a significant margin. At the same
time, the SGD-based method Rev. KL Reg exhibits substantial performance variations, demonstrating the importance of a
stable policy improvement operator.

Dataset SG-EBCQ MG-EBCQ SG-Rev. KL Reg MG-Rev. KL Reg ISG IMG

Cheetah-M-v2 53.3± 0.2 51.5± 0.2 47.1± 0.2 47.0± 0.2 51.1± 0.1 52.1± 0.3
Hopper-M-v2 86.8± 5.2 82.5± 1.9 70.3± 7.0 76.3± 6.9 75.6± 3.7 86.8± 4.0
Walker2d-M-v2 85.2± 5.1 85.2± 2.1 82.4± 1.0 82.8± 1.8 88.1± 1.1 88.3± 1.6

Cheetah-M-R-v2 43.5± 0.6 43.0± 0.3 44.3± 0.4 44.4± 0.5 42.8± 0.4 44.5± 0.4
Hopper-M-R-v2 88.5± 12.2 83.6± 10.3 99.7± 1.0 99.4± 2.1 87.7± 8.7 93.6± 7.9
Walker2d-M-R-v2 75.4± 4.6 73.1± 5.2 63.6± 28.5 69.7± 30.9 71.3± 4.4 78.2± 5.6

Cheetah-M-E-v2 81.8± 5.4 84.5± 4.6 78.9± 9.8 65.0± 10.1 91.1± 3.1 97.3± 1.8
Hopper-M-E-v2 40.0± 5.8 56.1± 6.2 76.6± 18.3 79.4± 32.6 70.3± 8.9 73.0± 10.5
Walker2d-M-E-v2 111.1± 1.8 111.1± 1.0 106.7± 4.1 107.1± 4.0 111.1± 1.1 111.9± 0.3

Total 665.5± 41.0 670.6± 31.9 669.7± 70.3 671.2± 89.1 688.9± 31.6 725.8± 32.4

Figure 2: Aggregate metrics (Agarwal et al., 2021) with 95% CIs based on results reported in Table 4. The CIs are estimated
using the percentile bootstrap with stratified sampling. Higher median, IQM, and mean scores, and lower Optimality
Gap correspond to better performance. Our IMG outperforms baselines by a significant margin based on all four metrics.
Appendix E includes additional details.

5.3. Ablation studies

We first provide a fair comparison with the other policy
improvement operators, demonstrating the effectiveness of
solving the approximated BCPO (4) and modeling the be-
havior policy as a Gaussian Mixture. Additionally, we ex-
amine the sensitivity on τ , ablate the number of Gaussian
components, and discuss the limitation by ablating the Q
network in Appendix G.2, G.3, G.4, respectively.

Effectiveness of our CFPI operators. In Table 4, we
compare our CFPI operators with two policy improvement
operators, namely, Easy BCQ (EBCQ) and Rev. KL Reg
from OneStepRL (Brandfonbrener et al., 2021). EBCQ doe
not require training either, returning a policy by selecting
an action that maximizes a learned Q̂ from Nbcq actions ran-
domly sampled from the behavior policy π̂β . Rev. KL Reg
sets D(·, ·) in (2) as the reverse KL divergence and solves
the problem via SGD, with α controlling the regularization
strength. We omit the comparison with the other learning-
based operator Exp. Weight, as Rev. KL Reg achieves the
best overall performance in OneStepRL.

For all methods, we present results with π̂β modeled by
Single Gaussian (SG-) and Gaussian Mixture (MG-). To
ensure a fair comparison, we employ the same Q̂0 and π̂β

modeled and learned in the same way as in Sec. 5.1 for all
methods. Moreover, we tune Nbcq for EBCQ, α for Rev.
KL Reg, and τ for our methods. Each method uses the
same set of HP for all datasets. As a result, the Hopper-M-E
performance of IMG reported in Table 4 is different from
Table 1. Appendix F.1 includes details on the HP tuning and
corresponding experiment results in Table 9, 10, 11 and 12.

As is shown in Table 4 and Fig. 2, our IMG clearly outper-
forms all baselines by a significant margin. The SGD-based
method Rev. KL Reg exhibits substantial performance vari-
ations, highlighting the need for designing stable policy
improvement operators in offline RL. Moreover, our CFPI
operators outperform their EBCQ counterparts, demonstrat-
ing the effectiveness of solving the approximated BCPO.

Effectiveness of Gaussian Mixture. As the three M-E
datasets are collected by an expert and medium policy, we
should recover the expert performance if we can 1) capture
the two modes of the action distribution 2) and always se-

8



Offline Reinforcement Learning with Closed-Form Policy Improvement Operators

lect action from the expert mode. In other words, we can
leverage the Q̂0 learned by SARSA to select actions from
the mean of each Gaussian component, resulting in a mode
selection algorithm (MG-MS) that selects its action by

µmode = argmaxµ̂i
Q̂0(s, µ̂i),

s.t. {µ̂i|λ̂i > ξ},
∑

i=1:N
λ̂iN (µ̂i, Σ̂i) = π̂β ,

(16)

ξ is set to filter out trivial components. Our MG-MS
achieves an expert performance on Hopper-M-E (104.2±
5.1) and Walker2d-M-E (104.1± 6.7) and matches SOTA
algorithms in Cheetah-M-E (91.3± 2.1). Appendix G.1 in-
cludes full results of MG-MS on the Gym MuJoCo domain.

6. Conclusion and Limitations
Motivated by the behavior constraint in the BCPO paradigm,
we propose CFPI operators that perform policy improve-
ment by solving an approximated BCPO in closed form.
As practical datasets are usually generated by heteroge-
neous policies, we use the Gaussian Mixture to model the
data-generating policies and overcome extra optimization
difficulties by leveraging the LogSumExp’s LB and Jensen’s
Inequality. We instantiate both one-step and iterative offline
RL algorithms with our CFPI operator and show that they
can outperform SOTA algorithms on the D4RL benchmark.

Our CFPI operators avoid the training instability incurred
by policy improvement through SGD. However, our method
still requires learning a good Q function. Specifically, our
operators rely on the gradient information provided by the
Q, and its accuracy largely impacts the effectiveness of
our policy improvement. Therefore, one promising future
direction for this work is to investigate ways to robustify the
policy improvement given a noisy Q.

Acknowledgement
Ming Yin and Yu-Xiang Wang are gratefully supported by
National Science Foundation (NSF) Awards #2007117 and
#2003257.

References
Agarwal, R., Schwarzer, M., Castro, P. S., Courville, A. C.,

and Bellemare, M. Deep reinforcement learning at the
edge of the statistical precipice. Advances in neural in-
formation processing systems, 34:29304–29320, 2021.

Bai, C., Wang, L., Yang, Z., Deng, Z., Garg, A., Liu, P.,
and Wang, Z. Pessimistic bootstrapping for uncertainty-
driven offline reinforcement learning. arXiv preprint
arXiv:2202.11566, 2022.

Berkeley, R. Rlkit: Reinforcement learning framework

and algorithms implemented in pytorch. URL https:
//github.com/rail-berkeley/rlkit.

Bishop, C. M. and Svensén, M. Bayesian hierarchical mix-
tures of experts. arXiv preprint arXiv:1212.2447, 2012.

Boyd, S., Boyd, S. P., and Vandenberghe, L. Convex opti-
mization. Cambridge university press, 2004.

Brandfonbrener, D., Whitney, W. F., Ranganath, R., and
Bruna, J. Offline rl without off-policy evaluation. arXiv
preprint arXiv:2106.08909, 2021.

Cabi, S., Colmenarejo, S. G., Novikov, A., Konyushkova,
K., Reed, S., Jeong, R., Zolna, K., Aytar, Y., Budden, D.,
Vecerik, M., et al. A framework for data-driven robotics.
arXiv preprint arXiv:1909.12200, 2019.

Callahan, J. J. Advanced calculus: a geometric view, vol-
ume 1. Springer, 2010.

Chen, J. and Jiang, N. Information-theoretic considerations
in batch reinforcement learning. In International Con-
ference on Machine Learning, pp. 1042–1051. PMLR,
2019.

Chen, L., Lu, K., Rajeswaran, A., Lee, K., Grover, A.,
Laskin, M., Abbeel, P., Srinivas, A., and Mordatch, I. De-
cision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing
systems, 34, 2021.

Ciosek, K., Vuong, Q., Loftin, R., and Hofmann, K. Better
exploration with optimistic actor-critic, 2019.

Dabney, W., Ostrovski, G., Silver, D., and Munos, R. Im-
plicit quantile networks for distributional reinforcement
learning. In International conference on machine learn-
ing, pp. 1096–1105. PMLR, 2018a.

Dabney, W., Rowland, M., Bellemare, M., and Munos, R.
Distributional reinforcement learning with quantile re-
gression. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 32, 2018b.

Duan, Y., Jia, Z., and Wang, M. Minimax-optimal off-
policy evaluation with linear function approximation. In
International Conference on Machine Learning, pp. 2701–
2709. PMLR, 2020.

Ernst, D., Geurts, P., and Wehenkel, L. Tree-based batch
mode reinforcement learning. Journal of Machine Learn-
ing Research, 6:503–556, 2005.

Fu, J., Kumar, A., Nachum, O., Tucker, G., and Levine,
S. D4rl: Datasets for deep data-driven reinforcement
learning. arXiv preprint arXiv:2004.07219, 2020.

9

https://github.com/rail-berkeley/rlkit
https://github.com/rail-berkeley/rlkit


Offline Reinforcement Learning with Closed-Form Policy Improvement Operators

Fujimoto, S. and Gu, S. S. A minimalist approach to offline
reinforcement learning. In Thirty-Fifth Conference on
Neural Information Processing Systems, 2021.

Fujimoto, S., van Hoof, H., and Meger, D. Addressing func-
tion approximation error in actor-critic methods. CoRR,
abs/1802.09477, 2018. URL http://arxiv.org/
abs/1802.09477.

Fujimoto, S., Meger, D., and Precup, D. Off-policy deep
reinforcement learning without exploration. In Interna-
tional Conference on Machine Learning, pp. 2052–2062,
2019.

Fujimoto, S., Meger, D., Precup, D., Nachum, O., and Gu,
S. S. Why should i trust you, bellman? the bellman
error is a poor replacement for value error. arXiv preprint
arXiv:2201.12417, 2022.

Ghasemipour, S. K. S., Schuurmans, D., and Gu, S. S. Emaq:
Expected-max q-learning operator for simple yet effective
offline and online rl. In International Conference on
Machine Learning, pp. 3682–3691. PMLR, 2021.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft
actor-critic: Off-policy maximum entropy deep rein-
forcement learning with a stochastic actor. CoRR,
abs/1801.01290, 2018. URL http://arxiv.org/
abs/1801.01290.

Islam, R., Henderson, P., Gomrokchi, M., and Precup,
D. Reproducibility of benchmarked deep reinforcement
learning tasks for continuous control. arXiv preprint
arXiv:1708.04133, 2017.

Janner, M., Li, Q., and Levine, S. Offline reinforcement
learning as one big sequence modeling problem. In Ad-
vances in Neural Information Processing Systems, 2021.

Jaques, N., Ghandeharioun, A., Shen, J. H., Ferguson,
C., Lapedriza, A., Jones, N., Gu, S., and Picard, R.
Way off-policy batch deep reinforcement learning of
implicit human preferences in dialog. arXiv preprint
arXiv:1907.00456, 2019.

Jin, C., Zhang, Y., Balakrishnan, S., Wainwright, M. J., and
Jordan, M. I. Local maxima in the likelihood of gaussian
mixture models: Structural results and algorithmic con-
sequences. Advances in neural information processing
systems, 29, 2016.

Jin, Y., Yang, Z., and Wang, Z. Is pessimism provably
efficient for offline rl? In International Conference on
Machine Learning, pp. 5084–5096. PMLR, 2021.

Jordan, M. I. and Jacobs, R. A. Hierarchical mixtures of
experts and the em algorithm. Neural computation, 6(2):
181–214, 1994.

Kakade, S. and Langford, J. Approximately optimal ap-
proximate reinforcement learning. In In Proc. 19th In-
ternational Conference on Machine Learning. Citeseer,
2002.

Kakade, S. M. On the sample complexity of reinforcement
learning. University of London, University College Lon-
don (United Kingdom), 2003.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Kingma, D. P. and Welling, M. Auto-encoding variational
bayes. arXiv preprint arXiv:1312.6114, 2013.

Konda, V. and Tsitsiklis, J. Actor-critic algorithms. Ad-
vances in neural information processing systems, 12,
1999.

Kostrikov, I., Nair, A., and Levine, S. Offline reinforce-
ment learning with implicit q-learning. arXiv preprint
arXiv:2110.06169, 2021.

Kumar, A., Fu, J., Soh, M., Tucker, G., and Levine, S.
Stabilizing off-policy q-learning via bootstrapping error
reduction. Advances in Neural Information Processing
Systems, 32, 2019.

Kumar, A., Zhou, A., Tucker, G., and Levine, S. Conserva-
tive q-learning for offline reinforcement learning. arXiv
preprint arXiv:2006.04779, 2020.

Lange, S., Gabel, T., and Riedmiller, M. Batch reinforce-
ment learning. In Reinforcement learning, pp. 45–73.
Springer, 2012.

Le, H., Voloshin, C., and Yue, Y. Batch policy learning un-
der constraints. In International Conference on Machine
Learning, pp. 3703–3712. PMLR, 2019.

Levine, S., Kumar, A., Tucker, G., and Fu, J. Offline rein-
forcement learning: Tutorial, review, and perspectives on
open problems. arXiv preprint arXiv:2005.01643, 2020.

Li, J., Vuong, Q., Liu, S., Liu, M., Ciosek, K., Christensen,
H., and Su, H. Multi-task batch reinforcement learning
with metric learning. Advances in Neural Information
Processing Systems, 33:6197–6210, 2020.

Li, L., Walsh, T. J., and Littman, M. L. Towards a unified
theory of state abstraction for mdps. ISAIM, 4(5):9, 2006.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez,
T., Tassa, Y., Silver, D., and Wierstra, D. Continuous
control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971, 2015.

10

http://arxiv.org/abs/1802.09477
http://arxiv.org/abs/1802.09477
http://arxiv.org/abs/1801.01290
http://arxiv.org/abs/1801.01290


Offline Reinforcement Learning with Closed-Form Policy Improvement Operators

Lyu, J., Ma, X., Li, X., and Lu, Z. Mildly conservative
q-learning for offline reinforcement learning. In Oh,
A. H., Agarwal, A., Belgrave, D., and Cho, K. (eds.),
Advances in Neural Information Processing Systems,
2022. URL https://openreview.net/forum?
id=VYYf6S67pQc.

Ma, X., Xia, L., Zhou, Z., Yang, J., and Zhao, Q. Dsac:
Distributional soft actor critic for risk-sensitive reinforce-
ment learning. arXiv preprint arXiv:2004.14547, 2020.

Metelli, A. M., Papini, M., Faccio, F., and Restelli, M.
Policy optimization via importance sampling. Advances
in Neural Information Processing Systems, 31, 2018.

Metelli, A. M., Papini, M., Montali, N., and Restelli, M.
Importance sampling techniques for policy optimization.
The Journal of Machine Learning Research, 21(1):5552–
5626, 2020.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidje-
land, A. K., Ostrovski, G., et al. Human-level control
through deep reinforcement learning. nature, 518(7540):
529–533, 2015.

Müller, A. Integral probability metrics and their generating
classes of functions. Advances in Applied Probability, 29
(2):429–443, 1997.

Parisotto, E., Ba, J., and Salakhutdinov, R. Actor-mimic:
Deep multitask and transfer reinforcement learning.
CoRR, abs/1511.06342, 2015.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., et al. Pytorch: An imperative style, high-performance
deep learning library. Advances in neural information
processing systems, 32, 2019.

Peng, X. B., Kumar, A., Zhang, G., and Levine, S.
Advantage-weighted regression: Simple and scalable
off-policy reinforcement learning. arXiv preprint
arXiv:1910.00177, 2019.

Perkins, T. and Precup, D. A convergent form of approx-
imate policy iteration. Advances in neural information
processing systems, 15, 2002.

Sallab, A. E., Abdou, M., Perot, E., and Yogamani, S. Deep
reinforcement learning framework for autonomous driv-
ing. Electronic Imaging, 2017(19):70–76, 2017.

Schulman, J., Levine, S., Moritz, P., Jordan, M. I., and
Abbeel, P. Trust region policy optimization. CoRR,
abs/1502.05477, 2015. URL http://arxiv.org/
abs/1502.05477.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
CoRR, abs/1707.06347, 2017. URL http://arxiv.
org/abs/1707.06347.

Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., and
Riedmiller, M. Deterministic policy gradient algorithms.
In International conference on machine learning, pp. 387–
395. PMLR, 2014.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An
introduction. MIT press, 2018.

Tang, Y., Valko, M., and Munos, R. Taylor expansion policy
optimization. In International Conference on Machine
Learning, pp. 9397–9406. PMLR, 2020.

Vuong, Q., Kumar, A., Levine, S., and Chebotar, Y. Dasco:
Dual-generator adversarial support constrained offline
reinforcement learning. In Koyejo, S., Mohamed, S.,
Agarwal, A., Belgrave, D., Cho, K., and Oh, A. (eds.),
Advances in Neural Information Processing Systems, vol-
ume 35, pp. 38937–38949. Curran Associates, Inc., 2022.

Wu, J., Wu, H., Qiu, Z., Wang, J., and Long, M. Sup-
ported policy optimization for offline reinforcement learn-
ing. In Oh, A. H., Agarwal, A., Belgrave, D., and Cho,
K. (eds.), Advances in Neural Information Processing
Systems, 2022. URL https://openreview.net/
forum?id=KCXQ5HoM-fy.

Wu, Y., Tucker, G., and Nachum, O. Behavior regu-
larized offline reinforcement learning. arXiv preprint
arXiv:1911.11361, 2019.

Xu, L., Jordan, M., and Hinton, G. E. An alternative model
for mixtures of experts. Advances in neural information
processing systems, 7, 1994.

Yang, R., Bai, C., Ma, X., Wang, Z., Zhang, C., and Han,
L. RORL: Robust offline reinforcement learning via
conservative smoothing. In Oh, A. H., Agarwal, A.,
Belgrave, D., and Cho, K. (eds.), Advances in Neural
Information Processing Systems, 2022. URL https:
//openreview.net/forum?id=_QzJJGH_KE.

Yin, M. and Wang, Y.-X. Asymptotically efficient off-policy
evaluation for tabular reinforcement learning. In Interna-
tional Conference on Artificial Intelligence and Statistics,
pp. 3948–3958. PMLR, 2020.

Yin, M., Duan, Y., Wang, M., and Wang, Y.-X. Near-optimal
offline reinforcement learning with linear representation:
Leveraging variance information with pessimism. Inter-
national Conference on Learning Representations, 2022.

Yu, T., Thomas, G., Yu, L., Ermon, S., Zou, J. Y., Levine, S.,
Finn, C., and Ma, T. Mopo: Model-based offline policy

11

https://openreview.net/forum?id=VYYf6S67pQc
https://openreview.net/forum?id=VYYf6S67pQc
http://arxiv.org/abs/1502.05477
http://arxiv.org/abs/1502.05477
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
https://openreview.net/forum?id=KCXQ5HoM-fy
https://openreview.net/forum?id=KCXQ5HoM-fy
https://openreview.net/forum?id=_QzJJGH_KE
https://openreview.net/forum?id=_QzJJGH_KE


Offline Reinforcement Learning with Closed-Form Policy Improvement Operators

optimization. Advances in Neural Information Processing
Systems, 33:14129–14142, 2020.

Yu, T., Kumar, A., Rafailov, R., Rajeswaran, A., Levine, S.,
and Finn, C. Combo: Conservative offline model-based
policy optimization. Advances in Neural Information
Processing Systems, 34, 2021.

Zhang, R., Zhang, X., Ni, C., and Wang, M. Off-policy
fitted q-evaluation with differentiable function approxi-
mators: Z-estimation and inference theory. International
Conference on Machine Learning, 2022.

Zou, S., Xu, T., and Liang, Y. Finite-sample analysis for
sarsa with linear function approximation. Advances in
neural information processing systems, 32, 2019.

12



Offline Reinforcement Learning with Closed-Form Policy Improvement Operators

Appendix

Outline of the Appendix
• Appendix A presents the missing proofs for Proposition 3.1, 3.2, 3.3 and Theorem 3.2 in the main paper.

• Appendix B justify one HP setting for Equation 15.

• Appendix C discusses how to instantiate multi-step and iterative algorithms from our algorithm template Algorithm 1.

• Appendix D provides the derivation of a new CFPI operator that can work with both deterministic and VAE policy.

• Appendix E conducts a reliable evaluation to demonstrate the statistical significance of our methods and address
statistical uncertainty.

• Appendix F gives experiment details, HP settings and corresponding experiment results.

• Appendix G provides additional ablation studies and experiment results.

• Appendix H includes additional related work and discusses the relationship between our method and prior literature
that leverage the Taylor expansion approach.

Our experiments are conducted on various types of 8GPUs machines. Different machines may have different GPU types,
such as NVIDIA GA100 and TU102. Training a behavior policy for 500K gradient steps takes around 40 minutes, while
training a Q network for 500K gradient steps takes around 50 minutes.

13



Offline Reinforcement Learning with Closed-Form Policy Improvement Operators

A. Proofs and Theoretical Results
A.1. Proof of Proposition 3.1

Proposition 3.1. The optimization problem (5) has a closed-form solution that is given by

µsg(τ) = µβ +

√
2 log τ Σβ [∇aQ(s, a)]a=µβ∥∥∥[∇aQ(s, a)]a=µβ

∥∥∥
Σβ

, where δ =
1

2
log det(2πΣβ) + log τ (17)

Proof. The optimization problem (5) can be converted into the QCLP

max
µ

µT [∇aQ(s, a)]a=µβ
, s.t.

1

2
(µ− µβ)

TΣ−1
β (µ− µβ) ≤ δ − 1

2
log det(2πΣβ) (18)

Following a similar procedure as is in OAC (Ciosek et al., 2019), we first derive the Lagrangian below:

L = µT [∇aQ(s, a)]a=µβ
− η

(
1

2
(µ− µβ)

TΣ−1
β (µ− µβ)− δ +

1

2
log det(2πΣβ)

)
(19)

Taking the derivatives w.r.t µ, we get

∇µL = [∇aQ(s, a)]a=µβ
− ηΣ−1

β (µ− µβ) (20)

By setting ∇µL = 0, we get

µ = µβ +
1

η
Σβ [∇aQ(s, a)]a=µβ

(21)

To satisfy the the KKT conditions (Boyd et al., 2004), we have η > 0 and

(µ− µβ)
TΣ−1

β (µ− µβ) = 2δ − log det(2πΣβ) (22)

Finally with (21) and (22), we get

η =

√√√√ [∇aQ(s, a)]
T
a=µβ

Σβ [∇aQ(s, a)]a=µβ

2δ − log det(2πΣβ)
(23)

By setting δ = 1
2 log det(2πΣβ) + log τ and plugging (23) to (21), we obtain the final solution as

µsg(τ) = µβ +

√
2 log τ Σβ [∇aQ(s, a)]a=µβ√

[∇aQ(s, a)]
T
a=µβ

Σβ [∇aQ(s, a)]a=µβ

,

= µβ +

√
2 log τ Σβ [∇aQ(s, a)]a=µβ∥∥∥[∇aQ(s, a)]a=µβ

∥∥∥
Σβ

(24)

which completes the proof.

14



Offline Reinforcement Learning with Closed-Form Policy Improvement Operators

A.2. Proof of Proposition 3.2

Proposition 3.2. By applying the first inequality of Lemma 3.1 to the constraint of (10), we can derive an optimization
problem that lower bounds (10)

max
µ

µT [∇aQ(s, a)]a=aβ

s.t. max
i

{
−1

2
(µ− µi)

TΣ−1
i (µ− µi)−

1

2
log det(2πΣi) + log λi

}
≥ −δ,

(25)

and the closed-form solution to (11) is given by

µlse(τ) = argmax
µi(δ)

µi
T [∇aQ(s, a)]a=µi

, s.t. δ =
1

2
min
i
{log λi det(2πΣi)}+ log τ

where µi(δ) = µi +
κiΣi [∇aQ(s, a)]a=µi∥∥∥[∇aQ(s, a)]a=µi

∥∥∥
Σi

, and κi =
√
2(δ + log λi)− log det(2πΣi).

(26)

Proof. Recall that the Gaussian Mixture behavior policy is constructed by

πβ =

N∑
i=1

λiN (µi,Σi), (27)

We first divide the optimization problem (25) into N sub-problems, with each sub-problem i given by

max
µ

µT [∇aQ(s, a)]a=aβ

s.t. − 1

2
(µ− µi)

TΣ−1
i (µ− µi)−

1

2
log det(2πΣi) + log λi ≥ −δ,

(28)

which is equivalent to solving problem (5) for each Gaussian component with an additional constant term log λi, and thus
has a unique closed-form solution.

Define the maximizer for each sub-problem i as µi(δ), though µi(δ) does not always exist. Whenever − 1
2 log det(2πΣi) +

log λi < −δ, there will be no µ satisfying the constraint as 1
2 (µ − µi)

TΣ−1
i (µ − µi) is always greater than 0. We thus

set µi(δ) to be None in this case. Next, we will show that there does not exist any µ̆ /∈ {µi(δ)|i = 1 . . . N}, s.t., µ̆ is the
maximizer of (25). We can show this by contradiction. Suppose there exists a µ̆ /∈ {µi(δ)|i = 1 . . . N} maximizing (25),
there exists at least one j ∈ {1, . . . , N} s.t.

−1

2
(µ̆− µj)

TΣ−1
j (µ̆− µj)−

1

2
log det(2πΣj) + log λj ≥ −δ. (29)

Since µ̆ is the maximizer of (25), it should also be maximizer of the sub-problem j. However, the maximizer for sub-problem
j is given by µj(δ) ̸= µ̆, contradicting with the fact that µ̆ is the maximizer of the sub-problem j. Therefore, the optimal
solution to (25) has to be given by

argmaxµi
µi

T [∇aQ(s, a)]a=aβ
where µi ∈ {µi(δ)|i = 1 . . . N} (30)

To solve each sub-problem i, it is natural to set aβ = µi, which reformulate the sub-problem i as below

max
µ

µT [∇aQ(s, a)]a=µi

s.t.
1

2
(µ− µi)

TΣ−1
i (µ− µi) ≤ δ − 1

2
log det(2πΣi) + log λi,

(31)

Note that problem (31) is also a QCLP similar to the problem (5). Therefore, we can derive its solution by following similar
procedures as in Appendix A.1, resulting in

µi(δ) = µi +
κiΣi [∇aQ(s, a)]a=µi∥∥∥[∇aQ(s, a)]a=µi

∥∥∥
Σi

, where κi =
√
2(δ + log λi)− log det(2πΣi). (32)

We complete the proof by further setting δ = 1
2 mini {log λi det(2πΣi)}+ log τ .

15



Offline Reinforcement Learning with Closed-Form Policy Improvement Operators

A.3. Proof of Proposition 3.3

Proposition 3.3. By applying the second inequality of Lemma 3.1 to the constraint of (10), we can derive an optimization
problem that lower bounds (10)

max
µ

µT [∇aQ(s, a)]a=aβ

s.t.
N∑
i=1

λi

(
−1

2
log det(2πΣi)−

1

2
(µ− µi)

TΣ−1
i (µ− µi)

)
≥ −δ

(33)

and the closed-form solution to (13) is given by

µjensen(τ) = µ+
κiΣ[∇aQ(s, a)]a=µ∥∥∥[∇aQ(s, a)]a=µ

∥∥∥
Σ

, where κi =

√√√√2 log τ −
N∑
i=1

λiµT
i Σ

−1
i µi + µTΣ

−1
µ ,

Σ =

(
N∑
i=1

λiΣ
−1
i

)−1

, µ = Σ

(
N∑
i=1

λiΣ
−1
i µi

)
, δ = log τ +

1

2

N∑
i=1

λi log det(2πΣi)

(34)

Proof. Note that problem (33) is also a QCLP. Before deciding the value of aβ , we first derive its Lagrangian with a general
aβ below

L = µT [∇aQ(s, a)]a=aβ
− η

(
N∑
i=1

λi

(
1

2
log det(2πΣi) +

1

2
(µ− µi)

TΣ−1
i (µ− µi)

)
− δ

)
(35)

Taking the derivatives w.r.t µ, we get

∇µL = [∇aQ(s, a)]a=aβ
− η

(
N∑
i=1

λi

(
Σ−1

i (µ− µi)
))

(36)

By setting ∇µL = 0, we get

µ =

(
N∑
i=1

λiΣ
−1
i

)−1( N∑
i=1

λiΣ
−1
i µi

)
+

1

η

(
N∑
i=1

λiΣ
−1
i

)
[∇aQ(s, a)]a=aβ

= µ+
1

η
Σ [∇aQ(s, a)]a=aβ

,

where Σ =

(
N∑
i=1

λiΣ
−1
i

)−1

, µ = Σ

(
N∑
i=1

λiΣ
−1
i µi

)
,

(37)

Equation 37 shows that the final solution to the problem (33) will be a shift from the pseudo-mean µ. Therefore, setting
aβ = µ becomes a natural choice.

Furthermore, by satisfying the KKT conditions, we have η > 0 and

N∑
i=1

λi (µ− µi)
T
Σ−1

i (µ− µi) = 2δ −
N∑
i=1

λi log det(2πΣi) (38)

Plugging (33) into (38) gives the equation below

N∑
i=1

λi

(
µ+

1

η
Σ [∇aQ(s, a)]a=µ − µi

)T

Σ−1
i

(
µ+

1

η
Σ [∇aQ(s, a)]a=µ − µi

)

= 2δ −
N∑
i=1

λi log det(2πΣi).

(39)

16



Offline Reinforcement Learning with Closed-Form Policy Improvement Operators

The LHS of (39) can be reformulated as

N∑
i=1

λi

(
µ+

1

η
Σ [∇aQ(s, a)]a=µ − µi

)T

Σ−1
i

(
µ+

1

η
Σ [∇aQ(s, a)]a=µ − µi

)

=
1

η2

N∑
i=1

λi

(
Σ [∇aQ(s, a)]a=µ

)T
Σ−1

i

(
Σ [∇aQ(s, a)]a=µ

)
+

2

η

N∑
i=1

λi

(
Σ [∇aQ(s, a)]a=µ

)T
Σ−1

i

(
µ− µi

)
+

N∑
i=1

λi (µ− µi)
T
Σ−1

i (µ− µi)

. (40)

We note that the second line of (40)’s RHS can be reduced to

2

η

N∑
i=1

λi

(
Σ [∇aQ(s, a)]a=µ

)T
Σ−1

i

(
µ− µi

)
=

2

η

(
Σ [∇aQ(s, a)]a=µ

)T (( N∑
i=1

λiΣ
−1
i

)
µ−

N∑
i=1

λiΣ
−1
i µi

)

=
2

η

(
Σ [∇aQ(s, a)]a=µ

)T (
Σ

−1
µ− Σ

−1

(
Σ

N∑
i=1

λiΣ
−1
i µi

))

=
2

η

(
Σ [∇aQ(s, a)]a=µ

)T (
Σ

−1
µ− Σ

−1
µ
)

= 0

. (41)

Therefore, (40) can be further reformulated as

N∑
i=1

λi

(
µ+

1

η
Σ [∇aQ(s, a)]a=µ − µi

)T

Σ−1
i

(
µ+

1

η
Σ [∇aQ(s, a)]a=µ − µi

)

=
1

η2

N∑
i=1

λi

(
Σ [∇aQ(s, a)]a=µ

)T
Σ−1

i

(
Σ [∇aQ(s, a)]a=µ

)
+

N∑
i=1

λi (µ− µi)
T
Σ−1

i (µ− µi)

=
1

η2

(
Σ [∇aQ(s, a)]a=µ

)T ( N∑
i=1

λiΣ
−1
i

)(
Σ [∇aQ(s, a)]a=µ

)
+

N∑
i=1

λi (µ− µi)
T
Σ−1

i (µ− µi)

=
1

η2

(
Σ [∇aQ(s, a)]a=µ

)T
Σ

−1
(
Σ [∇aQ(s, a)]a=µ

)
+

N∑
i=1

λi (µ− µi)
T
Σ−1

i (µ− µi)

=
1

η2
[∇aQ(s, a)]

T
a=µ Σ [∇aQ(s, a)]a=µ +

N∑
i=1

λi (µ− µi)
T
Σ−1

i (µ− µi)

. (42)

17



Offline Reinforcement Learning with Closed-Form Policy Improvement Operators

To this point, (39) can be reformulated as

1

η2
[∇aQ(s, a)]

T
a=µ Σ [∇aQ(s, a)]a=µ +

N∑
i=1

λi (µ− µi)
T
Σ−1

i (µ− µi)

= 2δ −
N∑
i=1

λi log det(2πΣi)

(43)

We can thus express η as below

η =

√√√√ [∇aQ(s, a)]
T
a=µ Σ [∇aQ(s, a)]a=µ

2δ −
∑N

i=1 λi log det(2πΣi)−
∑N

i=1 λi (µ− µi)
T
Σ−1

i (µ− µi)
(44)

By setting δ = 1
2

∑N
i=1 λi log det(2πΣi) + log τ , we have

η =

√√√√ [∇aQ(s, a)]
T
a=µ Σ [∇aQ(s, a)]a=µ

2 log τ −
∑N

i=1 λi (µ− µi)
T
Σ−1

i (µ− µi)

=

√√√√ [∇aQ(s, a)]
T
a=µ Σ [∇aQ(s, a)]a=µ

2 log τ −
∑N

i=1 λiµ
TΣ−1

i µ+ 2µT
∑N

i=1 λiΣ
−1
i µi −

∑N
i=1 λiµT

i Σ
−1
i µi

=

√√√√ [∇aQ(s, a)]
T
a=µ Σ [∇aQ(s, a)]a=µ

2 log τ −
∑N

i=1 µ
TΣ

−1
µ+ 2µTΣ

−1
µ−

∑N
i=1 λiµT

i Σ
−1
i µi

=

√√√√ [∇aQ(s, a)]
T
a=µ Σ [∇aQ(s, a)]a=µ

2 log τ + µTΣ
−1

µ−
∑N

i=1 λiµT
i Σ

−1
i µi

. (45)

Finally, plugging (45) into (37), with aβ = µ, we have

µjensen(τ) = µ+

√√√√2 log τ −
∑N

i=1 λiµT
i Σ

−1
i µi + µTΣ

−1
µ

[∇aQ(s, a)]
T
a=µΣ[∇aQ(s, a)]a=µ

Σ[∇aQ(s, a)]a=µ

= µ+
κiΣ[∇aQ(s, a)]a=µ∥∥∥[∇aQ(s, a)]a=µ

∥∥∥
Σ

, where κi =

√√√√2 log τ −
N∑
i=1

λiµT
i Σ

−1
i µi + µTΣ

−1
µ ,

(46)

which completes the proof.

18



Offline Reinforcement Learning with Closed-Form Policy Improvement Operators

A.4. Proof of Theorem 3.2

In this section, we prove the safe policy improvement presented in Section 3.3. Algorithm 1 follows the approximate policy
iteration (API) (Perkins & Precup, 2002) by iterating over the policy evaluation (E step, Line 4) and policy improvement
(I step, Line 5). Therefore, to verify E provides the improvement, we need to first show policy evaluation Q̂t is accurate.
In particular, we focus on the SARSA updates (Line 2), which is a form of on-policy Fitted Q-Iteration (Sutton & Barto,
2018). Fortunately, it is known that FQI is statistically efficient (e.g. (Chen & Jiang, 2019)) under the mild condition for the
function approximation class. Its linear counterpart, least-square value iteration, is also shown to be efficient for offline
reinforcement learning (Jin et al., 2021; Yin et al., 2022). Recently, (Zou et al., 2019) shows the finite sample convergence
guarantee for SARSA under the standard the mean square error loss.

Next, to show the performance improvement, we leverage the performance difference lemma to show our algorithm achieves
the desired goal.

Lemma A.1 (Performance Difference Lemma). For any policy π, π′, it holds that

J(π)− J(π′) =
1

1− γ
Es∼dπ

[
Ea∼π(·|s)A

π′
(s, a)

]
,

where Aπ(s, a) = Qπ(s, a)− V π(s) is the advantage function.

Similar to (Kumar et al., 2020), we focus on the discrete case where the number of states |S| and actions |A| are finite
(note in the continuous case, the D(s, a) would be 0 for most locations, and thus the bound becomes less interesting). The
adaptation to the continuous space can leverage standard techniques like state abstraction (Li et al., 2006) and covering
arguments.

Next, we define the learning coefficient Cγ,δ of SARSA as

|Q̂π̂β (s, a)−Qπ̂β (s, a)| ≤ Cγ,δ√
D(s, a)

, ∀s, a ∈ S ×A.

Define the first-order approximation error as

Q̄π̂β (s, a) := (a− aβ)
T
[
∇aQ̂

π̂β (s, a)
]
a=aβ

+ Q̂π̂β (s, aβ),

then the approximation error is defined as:

CCFPI(s, a) := |Q̄π̂β (s, a)− Q̂π̂β (s, a)| =
∣∣∣∣(a− aβ)

T
[
∇aQ̂

π̂β (s, a)
]
a=aβ

+ Q̂π̂β (s, aβ)− Q̂π̂β (s, a)

∣∣∣∣ .
Under the constraint D (π(· | s), π̂β(· | s)) ≤ δ (4) (or equivalently action a is close to aβ), the first-order approximation
provides a good estimation for the Q̂πβ .

Theorem A.2 (Restatement of Theorem 3.2). Assume the state and action spaces are discrete. Let π̂1 be the policy obtained
after the CFPI update (Line 2 of Algorithm 1). Then with probability 1− δ,

J(π̂1)− J(π̂β) ≥
1

1− γ
Es∼dπ̂1

[
Q̄π̂β (s, π̂1(s))− Q̄π̂β (s, π̂β(s))

]
− 2

1− γ
Es∼dπ̂1Ea∼π̂1(·|s)

[
Cγ,δ√
D(s, a)

+ CCFPI(s, a)

]
:= ζ.

Similar results can be derived for multi-step and iterative algorithms by defining π̂0 = π̂β . With probability 1− δ,

J(π̂T )− J(π̂β) =

T∑
t=1

J(π̂t)− J(π̂t−1) ≥
T∑

t=1

ζ(t),

where D(s, a) denotes number of samples at s, a, the learning coefficient of SARSA is defined as Cγ,δ =

maxs0,a0

√
2 ln(12SA/δ) ·

√∑∞
h=0

∑
s,a γ

2h · µπ̂β

h (s, a|s0, a0)2 Var [V π̂β (s′) | s, a] with µπ
h(s, a|s0, a0) := Pπ(sh =

19



Offline Reinforcement Learning with Closed-Form Policy Improvement Operators

s, ah = a, |s0 = s, a0 = a), and CCFPI(s, a) denotes the error from the first-order approximation (3), (4) using CFPI, i.e.

CCFPI(s, a) :=

∣∣∣∣(a− aβ)
T
[
∇aQ̂

π̂β (s, a)
]
a=aβ

+ Q̂π̂β (s, aβ)− Q̂π̂β (s, a)

∣∣∣∣. Note that when a = aβ , CCFPI(s, a) = 0.

proof of Theorem 3.2. We focus on the first update, which is from π̂b to π̂1. According to the Sarsa update, we have
|Q̂π̂β (s, a)−Qπ̂β (s, a)| ≤ Cγ,δ√

D(s,a)
, ∀s, a ∈ S ×A with probability 1− δ and this is due to previous on-policy evaluation

result (e.g. (Zou et al., 2019)). Also denote π̂1 := argmaxπ Q̄
π̂β .

By Lemma A.1,

J(π̂1)− J(π̂β) =
1

1− γ
Es∼dπ̂1

[
Ea∼π̂1(·|s)A

π̂β (s, a)
]

=
1

1− γ
Es∼dπ̂1

[
Ea∼π̂1(·|s)[Q

π̂β (s, a)− V π̂β (s)]
]

=
1

1− γ
Es∼dπ̂1

[
Ea∼π̂1(·|s)[Q

π̂β (s, a)−Qπ̂β (s, π̂β(s))]
]

≥ 1

1− γ
Es∼dπ̂1

[
Ea∼π̂1(·|s)[Q̂

π̂β (s, a)− Q̂π̂β (s, π̂β(s))]
]
− 2

1− γ
Es∼dπ̂1Ea∼π̂1(·|s)

[
Cγ,δ√
D(s, a)

]

≥ 1

1− γ
Es∼dπ̂1

[
Q̄π̂β (s, π̂1(s))− Q̄π̂β (s, π̂β(s))

]
− 2

1− γ
Es∼dπ̂1Ea∼π̂1(·|s)

[
Cγ,δ√
D(s, a)

+ CCFPI(s, a)

]
:=ζ(1)

where the first inequality uses |Q̂π̂β (s, a)−Qπ̂β (s, a)| ≤ Cγ,δ√
D(s,a)

and the last inequality uses π̂1 := argmaxπ Q̄
π̂β . Here

Cγ,δ = max
s0,a0

√
2 ln(12SA/δ) ·

√√√√ ∞∑
h=0

∑
s,a

γ2h · µπ̂β

h (s, a|s0, a0)Var [V π̂β (s′) | s, a]

Similarly, if the number of iteration t > 1, then Denote

C
(t)
γ,δ := max

s0,a0

√
2 ln(12SA/δ) ·

√√√√ ∞∑
h=0

∑
s,a

γ2h ·
µπ̂t

h (s, a|s0, a0)2

µ
π̂t−1

h (s, a|s0, a0)
Var [V π̂t (s′) | s, a],

then we have with probability 1− δ, by the Corollary 1 of (Duan et al., 2020), the OPE estimation follows

|Q̂π̂β (s, a)−Qπ̂β (s, a)| ≤
C

(t)
γ,δ√
D(s, a)

and

J(π̂t)− J(π̂t−1) ≥
1

1− γ
Es∼dπ̂t

[
Q̄π̂t−1(s, π̂t(s))− Q̄π̂t−1(s, π̂t−1(s))

]
− 2

1− γ
Es∼dπ̂tEa∼π̂t(·|s)

[
C

(t)
γ,δ√
D(s, a)

+ CCFPI(s, a)

]
:= ζ(t),

then for multi-step iterative algorithm, by a union bound, we have with probability 1− δ

J(π̂T )− J(π̂β) =

T∑
t=1

J(π̂t)− J(π̂t−1) ≥
T∑

t=1

ζ(t).

20



Offline Reinforcement Learning with Closed-Form Policy Improvement Operators

On the learning coefficient of SARSA. The learning of SARSA is known to be statistically efficient from existing off-policy
evaluation (OPE) literature, for instance (Duan et al., 2020; Yin & Wang, 2020). This is due to the on-policy SARSA scheme
is just a special case of OPE task by choosing π = π̂β .

Concretely, we can translate the finite sample error bound in Corollary 1 of (Duan et al., 2020) to the infinite horizon
discounted setting as: for any initial state,action s0, a0, with probability 1− δ,

|Q̂π̂β (s0, a0)−Qπ̂β (s0, a0)| ≤
1√

D(s0, a0)

√
2 ln(12/δ) ·

√√√√ ∞∑
h=0

∑
s,a

γ2h · µπ̂β

h (s, a|s0, a0)Var [V π̂β (s′) | s, a]

Note the original statement in (Duan et al., 2020) is for vπ̂β − v̂π̂β , here we conduct the version for Q̂π̂β −Qπ̂β instead and
this can be readily obtained by fixing the initial state action s0, a0 for vπ. As a result, by a union bound (over S, A) it is
valid to define

Cγ,δ = max
s0,a0

√
2 ln(12SA/δ) ·

√√√√ ∞∑
h=0

∑
s,a

γ2h · µπ̂β

h (s, a|s0, a0)Var [V π̂β (s′) | s, a]

and this makes sure the statistical guarantee in Theorem 3.2 follows through.

Similarly, for the multi-step case, the OPE estimator hold with the corresponding coefficient

C
(t)
γ,δ := max

s0,a0

√
2 ln(12SA/δ) ·

√√√√ ∞∑
h=0

∑
s,a

γ2h ·
µπ̂t

h (s, a|s0, a0)2

µ
π̂t−1

h (s, a|s0, a0)
Var [V π̂t (s′) | s, a].

Lastly, even the assumption on the state-action space to be finite is not essential for Theorem 3.2 since, for more general
function approximations, recent literature for OPE (Zhang et al., 2022) shows SARSA update in Algorithm 1 is still
statistically efficient.

21



Offline Reinforcement Learning with Closed-Form Policy Improvement Operators

B. Detailed Procedures to obtain Equation 15
We first highlight that we set the HP δ differently for Proposition 3.2 and 3.3. With the same τ , we generate the two different
δ for the two different settings. Specifically,

δlse(τ) = log τ +min
i

{
1

2
log det(2πΣi)− log λi

}
, (Proposition 3.2)

δjensen(τ) = log τ +
1

2

N∑
i=1

λi log det(2πΣi), (Proposition 3.3)
(47)

We next provide intuition for the design choices (47). Recall that the Gaussian Mixture behavior policy is constructed by

πβ =

N∑
i=1

λiN (µi,Σi). (48)

With the mixture weights λi=1...N , we define the scaled probability π̆i(a) of the i-th Gaussian component evaluated at a

π̆i(µi) = λiπi(a) = λi det(2πΣi)
− 1

2 exp{−1

2
(a− µi)

TΣ−1
i (a− µi)}, (49)

where πi(a) = N (a;µi,Σi) denotes the probability of the i-th Gaussian component evaluated at a. Therefore, we can have
log π̆i(µi) = log λi − 1

2 log det(2πΣi), which implies that

δlse(τ) = log τ +min
i

{
1

2
log det(2πΣi)− log λi

}
= −

(
max

i

{
log λi −

1

2
log det(2πΣi)

}
− log τ

)
= −max

i

{
log

1

τ
π̆i(µi)

}
.

. (50)

By setting δlse(τ) in this way, µj = µj(δlse(τ)) will satisfy the following condition whenever µj is a valid solution to the
sub-problem j (28) due to the KKT conditions, ∀j ∈ {1, . . . , N}.

− 1

2
(µj − µj)

TΣ−1
j (µj − µj)−

1

2
log det(2πΣj) + log λj = −δlse(τ)

⇐⇒ log π̆j(µj) = max
i

{
log

1

τ
π̆i(µi)

}
⇐⇒ π̆j(µj) =

1

τ
max

i
{π̆i(µi)}

(51)

To elaborate the design of δjensen(τ), we first recall that the constraint of problem (13) is given by

N∑
i=1

λi

(
−1

2
log det(2πΣi)−

1

2
(µ− µi)

TΣ−1
i (µ− µi)

)
≥ −δjensen(τ). (52)

Note that the LHS of (52) is a concave function w.r.t µ. Thus, we can obtain its maximum by setting its derivatives (53) to
zero

∇µ

(
N∑
i=1

λi

(
−1

2
log det(2πΣi)−

1

2
(µ− µi)

TΣ−1
i (µ− µi)

))

=−
N∑
i=1

λiΣ
−1
i (µ− µi) = −Σ

−1
µ+Σ

−1
µ

. (53)

Interestingly, we can find that the solution is given by µ = µ. Plugging µ = µ into the LHS of (52), we can obtain its
maximum as below

− 1

2

N∑
i=1

λi log det(2πΣi)−
1

2

N∑
i=1

λi(µ− µi)
TΣ−1

i (µ− µi)

≤
N∑
i=1

λi

(
−1

2
log det(2πΣi)

)
=

N∑
i=1

λi log πi(µi)

(54)

22



Offline Reinforcement Learning with Closed-Form Policy Improvement Operators

The inequality holds as the covariance matrix Σi is a positive semi-definite matrix for i ∈ {1 . . . N}. Therefore, our choice
of δjensen(τ) can be interpreted as

δjensen(τ) = log τ +
1

2

N∑
i=1

λi log det(2πΣi) = −(
N∑
i=1

λi log πi(µi)− log τ) (55)

23



Offline Reinforcement Learning with Closed-Form Policy Improvement Operators

Algorithm 2 Iterative IMG

1: Input: Learned behavior policy π̂β , Q network parameters ϕ1, ϕ2, target Q network parameters ϕtarg,1, ϕtarg,2, dataset
D, parameter τ

2: repeat
3: Randomly sample a batch of transitions, B = {(s, a, r, s′, d)} from D
4: Compute target actions

a′(s′) = clip
(
IMG(π̂β , Q̂; τ)(s′) + clip(ϵ,−c, c), aLow, aHigh

)
,

where Q̂ = min(Qϕ1 , Qϕ2), and ϵ ∼ N (0, σ)

5: Compute targets
y(r, s′, d) = r + γ(1− d) min

i=1,2
Qϕtarg,i(s

′, a′(s′))

6: Update Q-functions by one step of gradient descent using

∇ϕi

1

|B|
∑

(s,a,r,s′,d)∼B

(Qϕi
(s, a)− y(r, s′, d))

2 for i = 1, 2

7: Update target networks with

ϕtarg,i ← ρϕtarg,i + (1− ρ)ϕi for i = 1, 2

8: until convergence
9: Output: IMG(π̂β , Q̂; τ)

C. Multi-step and iterative algorithms
By setting T > 0, we can derive multi-step and iterative algorithms. Thanks to the tractability of our CFPI operators ISG
and IMG, we can always perform the policy improvement step in-closed form. Therefore, there is no significant gap between
multi-step and iterative algorithms with our CFPI operators. One can differentiate our multi-step and iterative algorithms by
whether an algorithm trains the policy evaluation step E(Q̂t−1, π̂t,D) to convergence or not.

As for the policy evaluation operator E , the fitted Q evaluation (Ernst et al., 2005; Le et al., 2019; Fujimoto et al., 2022) with
a target network (Mnih et al., 2015) has been demonstrated to be an effective and successful paradigm to perform policy
evaluation (Kumar et al., 2019; Fujimoto & Gu, 2021; Haarnoja et al., 2018; Lillicrap et al., 2015; Fujimoto et al., 2018) in
deep (offline) RL. When instantiating a multi-step or iterative algorithm from Algorithm 1, one can also consider the other
policy evaluation operators by incorporating more optimization techniques.

In the rest of this section, we will instantiate an iterative algorithm with our CFPI operators performing the policy
improvement step and evaluate its effectiveness on the challenging AntMaze domains.

C.1. Iterative algorithm with our CFPI operators

In Sec. 5.1, we instantiate an iterative algorithm Iterative IMG with our CFPI operator IMG. Algorithm 2 presents the
corresponding pseudo-codes that learn a set of Q-function networks for simplicity. Without loss of generality, we can easily
generalize the algorithm to learn the action-value distribution Z(s, a) as is defined in (58).

For each task, we learn a Gaussian Mixture behavior policy π̂β with behavior cloning. Similar to Sec. 5.1, we employed the
IQN (Dabney et al., 2018a) architecture to model the Q-value network for its better generalizability. As our CFPI operator
IMG returns a deterministic policy, we follow the TD3 (Fujimoto et al., 2018) to perform policy smoothing by adding noise
to the action a′(s′) in Line 4. After convergence, Algorithm 2 outputs an improved policy IMG(π̂β , Q̂; τ).

Table 5 compares our Iterative IMG with SOTA algorithms on the AntMaze domain. The performance for all baseline
methods is directly reported from the IQL paper (Kostrikov et al., 2021). Our method outperforms all baseline methods on
on 5 out of 6 tasks and obtaining the best overall performance. The training curves are shown in Fig. 3 with the HP settings

24



Offline Reinforcement Learning with Closed-Form Policy Improvement Operators

Table 5: Comparison between our iterative algorithm and SOTA methods on the AntMaze domain of D4RL. We report the
mean and standard deviation across 5 seeds for our methods. Our Iterative IMG outperforms all baselines on 5 out of 6 tasks
and obtaining the best overall performance, demonstrating the effectiveness of our CFPI operator when instantiating an
iterative algorithm.

Dataset BC DT Onestep RL TD3+BC CQL IQL Iterative IMG

antmaze-umaze-v0 54.6 59.2 64.3 78.6 74.0 87.5 90.2± 3.9
antmaze-umaze-diverse-v0 45.6 49.3 60.7 71.4 84.0 62.2 58.6± 15.2
antmaze-medium-play-v0 0.0 0.0 0.3 10.6 61.2 71.2 75.2± 6.9
antmaze-medium-diverse-v0 0.0 0.7 0.0 3.0 53.7 70.0 72.2± 7.3
antmaze-large-play-v0 0.0 0.0 0.0 0.2 15.8 39.6 51.4± 7.7
antmaze-large-diverse-v0 0.0 1.0 0.0 0.0 14.9 47.5 52.4± 10.9

Total 100.2 112.2 125.3 163.8 303.6 378.0 400.0± 52.0

detailed in Table 6. We did not perform much HP tuning, and thus one should expect a performance improvement after
conducting fine-grained HP tuning.

Figure 3: Iterative IMG training results on AntMaze. Shaded area denotes one standard deviation.

25



Offline Reinforcement Learning with Closed-Form Policy Improvement Operators

Hyperparameter Value

Shared HP Optimizer Adam (Kingma & Ba, 2014)
Normalize states False
activation function ReLU
Mini-batch size 256

Gaussian components (N ) 8
Number of gradient steps 500K
Policy architecture MLP

MG-BC Policy learning rate 1e-4
Policy hidden layers 3
Policy hidden dim 256
Threshold ξ in (16) 0.05

Number of gradient steps 1M
Critic architecture IQN (Dabney et al., 2018a)
Critic hidden dim 256
Critic hidden layers 3
Critic learning rate 3e-4

Iterative IMG Number of quantiles Nq 8
Number of cosine basis elements 64
Discount factor 0.99
Target update rate 5e-3
Target update period 1
log τ 1.5

Table 6: Hyperparameters for our Iterative IMG.

D. CFPI beyond Gaussian policies
In the main paper, we mainly discuss the scenario when the behavior policy πβ is from the Gaussian family and develop two
CFPI operators. However, our methods can also work with a non-Gaussian πβ . Next, we derive a new CFPI operator IDET
that can work with deterministic πβ . We then show that IDET can also be leveraged to improve a general stochastic policy
πβ without knowing its actual expression, as long as we can sample from it.

D.1. Deterministic behavior policy

When modeling both π = µ and πβ = µβ as deterministic policies, we can derive the following BCPO from the problem (4)
by setting D(·, ·) as the mean squared error.

max
µ

µT [∇aQ(s, a)]a=µβ
, s.t.

1

2
∥µ− µβ∥2 ≤ δ. (56)

Problem (56) has a similar form as the problem (18). We can thus obtain its closed-form solution µ = µdet(δ) as below

µdet(δ) = µβ +

√
2δ

∥ [∇aQ(s, a)]a=µβ
∥
[∇aQ(s, a)]a=µβ

. (57)

Therefore, we can derive a new CFPI operator IDET(πβ , Q; δ) that returns a policy with action selected by (57).

We further note that the problem (56) can be seen as a linear approximation of the objectives used in TD3 + BC (Fujimoto &
Gu, 2021).

D.2. Beyond deterministic behavior policy

Though we assume πβ to be a deterministic policy during the derivation of IDET, we can indeed leverage IDET to tackle the
more general case when we can only sample from πβ without knowing its actual expression.

26



Offline Reinforcement Learning with Closed-Form Policy Improvement Operators

Algorithm 3 Policy improvement of IDET with a stochastic πβ

Input: State s, stochastic policy πβ , value function Q̂, δ, number of candidate actions to sample M
1: Sample candidate actions {a1, . . . , aM} from πβ

2: Obtain the EBCQ policy πEBCQ with action selected by πEBCQ(s) = argmaxm=1...M Q̂(s, am)

3: Return IDET(πEBCQ, Q̂; δ) by calculating (57)

Table 7: IDET results on the Gym-MuJoCo domain. We report the mean and standard deviation 5 seeds and each seed
evaluates for 100 episodes.

Dataset DET-BC VAE-BC VAE-EBCQ IDET with πdet IDET with πvae

Walker2d-Medium-v2 71.2± 2.0 70.6± 3.0 70.6± 3.4 79.5± 12.9 86.5± 6.3

Walker2d-Medium-Replay-v2 19.5± 12.6 19.4± 2.9 33.5± 7.3 57.1± 11.6 62.6± 7.1

Walker2d-Medium-Expert-v2 74.4± 0.4 74.9± 7.6 82.7± 11.9 111.2± 1.8 111.1± 0.9

Algorithm 3 details the procedures to perform the policy improvement step for a stochastic behavior policy πβ . We first
obtain its EBCQ policy πEBCQ in Line 1-2. As πEBCQ is deterministic, we further plug it in IDET in Line 3 to return an
improved policy.

D.3. Experiment results

To evaluate the performance of IDET, we first learn two behavior policies with two different models. Specifically, we model
πdet with a three-layer MLP that outputs a deterministic policy and πvae with the Variational auto-encoder (VAE) (Kingma &
Welling, 2013) from BCQ (Fujimoto et al., 2019). Moreover, we reused the same value function Q̂0 as in Section 5.1. We
present the results in Table 7. DET-BC and VAE denote the performance of πdet and πvae, respectively. VAE-EBCQ denotes
the EBCQ performance of πvae with M = 50 candidate actions. Since πdet is deterministic, its EBCQ performance is the
same as DET-BC. As for our two methods, we set δ = 0.1 for all datasets. We can observe that both our IDET with πdet
and IDET with πvae largely improve over the baseline methods. Moreover, IDET with πvae outperforms VAE-EBCQ by a
significant margins on all three datasets, demonstrating the effectiveness of our CFPI operator.

Indeed, our method benefits from an accurate and expressive behavior policy, as IDET with πvae achieves a higher average
performance compared to IDET with πdet, while maintaining a lower standard deviation on all three datasets.

We also note that we did not spend too much effort optimizing the HP, e.g., the VAE architectures, learning rates, and the
value of τ .

27



Offline Reinforcement Learning with Closed-Form Policy Improvement Operators

E. Reliable evaluation to address the statistical uncertainty

Figure 4: Comparison between our methods and baselines using reliable evaluation methods proposed in (Agarwal et al.,
2021). We re-examine the results in Table 4 on the 9 tasks from the D4RL MuJoCo Gym domain. Each metric is calculated
with a 95% CI bootstrap based on 9 tasks and 10 seeds for each task. Each seed further evaluates each method for 100
episodes. The interquartile mean (IQM) discards the top and bottom 25% data points and calculates the mean across the
remaining 50% runs. The IQM is more robust as an estimator to outliers than the mean while maintaining less variance
than the median. Higher median, IQM, mean scores, and lower Optimality Gap correspond to better performance. Our IMG
outperforms the baseline methods by a significant margin based on all four metrics.

Figure 5: Performance profiles (score distributions) for all methods on the 9 tasks from the D4RL MuJoCo Gym domain.
The average score is calculated by averaging all runs within one task. Each task contains 10 seeds, and each seed evaluates
for 100 episodes. Shaded area denotes 95% confidence bands based on percentile bootstrap and stratified sampling (Agarwal
et al., 2021). The η value where the curves intersect with the dashed horizontal line y = 0.5 corresponds to the median,
while the area under the performance curves corresponds to the mean.

To demonstrate the superiority of our methods over the baselines and provide reliable evaluation results, we follow the
evaluation protocols proposed in (Agarwal et al., 2021) to re-examine the results in Table 4. Specifically, we adopt the
evaluation methods for all methods with Ntasks ×Nseeds runs in total.

Moreover, we obtain the performance profile of each method, revealing its score distribution and variability. In particular,
the score distribution shows the fraction of runs above a certain threshold η and is given by

F̂ (η) = F̂ (η;x1:Ntasks,1:Nseeds) =
1

Ntasks

Ntasks∑
m=1

1

Nseeds

Nseeds∑
n=1

1 [xm,n ≥ η]

Evaluation results in Fig. 4 and Fig. 5 demonstrate that our IMG outperforms the baseline methods by a significant margin
based on all four reliable metrics.

28



Offline Reinforcement Learning with Closed-Form Policy Improvement Operators

F. Hyper-parameter settings and training details
For all methods we proposed in Table 1, Table 3, and Table 4, we obtain the mean and standard deviation of each method
across 10 seeds. Each seed contains individual training process and evaluates the policy for 100 episodes.

F.1. HP and training details for methods in Table 1 and Table 4

Table 8 includes the HP of methods evaluated on the Gym-MuJoCo domain. We use the Adam (Kingma & Ba, 2014)
optimizer for all learning algorithms and normalize the states in each dataset following the practice of TD3+BC (Fujimoto &
Gu, 2021). Note that our one-step offline RL algorithms presented in Table 1 (Our IMG) and Table 4 (IMG, ISG, MG-EBCQ,
SG-EBCQ, MG-MS) require learning a behavior policy and the value function Q̂0. Therefore, we will first describe
the detailed procedures for learning Single Gaussian (SG-BC) and Gaussian Mixture (MG-BC) behavior policies. We
next describe our SARSA-style training procedures to estimate Q̂0. Finally, we will present the details for each one-step
algorithm.

Hyperparameter Value

Shared HP Optimizer Adam (Kingma & Ba, 2014)
Normalize states True
Policy architecture MLP
Policy learning rate 1e-4
Policy hidden layers 3
Policy hidden dim 256
Policy activation function ReLU
Threshold ξ in (16) 0.05

Gaussian components (N ) 4
Number of gradient steps 500K

MG-BC Mini-batch size 256

Number of gradient steps 500K
SG-BC Mini-batch size 512

Number of gradient steps Table 16
Critic architecture IQN (Dabney et al., 2018a)
Critic hidden dim 256
Critic hidden layers 3
Critic activation function ReLU

SARSA Number of quantiles Nq 8
Number of cosine basis elements 64
Discount factor 0.99
Target update rate 5e-3
Target update period 1

Our IMG (Table 1) log τ 0 for Hopper-M-E;
0.5 for the others

IMG & ISG(Table 4) log τ 0.5 for all tasks

MG-EBCQ Number of candidate actions Nbcq 5
SG-EBCQ Number of candidate actions Nbcq 10

MG-Rev. KL Reg α 3.0
& SG-Rev. KL Reg Number of gradient steps 100K

Table 8: Hyperparameters for our methods in Table 1 and Table 4.

MG-BC. We parameterize the policy as a 3-layer MLP, which outputs the tanh of a Gaussian Mixture with N = 4 Gaussian
components. For each Gaussian component, we learn the state-dependent diagonal covariance matrix. While existing

29



Offline Reinforcement Learning with Closed-Form Policy Improvement Operators

methods suggest learning Gaussian Mixture via expectation maximization (Jordan & Jacobs, 1994; Xu et al., 1994; Jin
et al., 2016) or variational Bayes (Bishop & Svensén, 2012), we empirically find that directly minimizing the negative
log-likelihood of actions sampled from the offline datasets achieves satisfactory performance, as is shown in Table 1. We
train the policy for 500K gradient steps. We emphasize that we do not aim to propose a better algorithm for learning a
Gaussian Mixture behavior policy. Instead, future work may use a more advanced algorithm to capture the underlying
behavior policy better.

SG-BC. We parameterize the policy as a 3-layer MLP, which outputs the tanh of a Single Gaussian with the state-dependent
diagonal covariance matrix (Fu et al., 2020; Haarnoja et al., 2018). We train the policy for 500K gradient steps.

SARSA. We parameterize the value function with the IQN (Dabney et al., 2018a) architecture and train it to model the
distribution Zβ : S × A → Z of the behavior return via quantile regression, where Z is the action-value distributional
space (Ma et al., 2020) defined as

Z = {Z : S ×A →P(R) | E [|Z(s, a)|p] <∞,∀(s, a), p ≥ 1} . (58)

We define the CDF function of Zβ as FZβ (z) = Pr(Zβ < z), leading to the quantile function (Müller, 1997) F−1
Zβ (ρ) :=

inf{z ∈ R : ρ ≤ FZβ (z)} as the inverse CDF function, where ρ denotes the quantile fraction. We further denote
Zβ
ρ = F−1

Zβ (ρ) to ease the notation.

To obtain Zβ , we leverage the empirical distributional bellman operator T̂ β
D : Z → Z defined as

T̂ β
DZ(s, a) :

D
= r + γZ (s′, a′) | (s, a, r, s′, a′) ∼ D, (59)

where A :
D
= B implies the random variables A and B are governed by the same distribution. We note that T̂ β

D helps to
construct a Huber quantile regression loss (Dabney et al., 2018a; Ma et al., 2020; Dabney et al., 2018b), and we can finally
learn Zβ by minimizing the quantile regression loss following a similar procedures as in (Ma et al., 2020).

To achieve the goal, we approximate Zβ by Nq quantile fractions {ρi ∈ [0, 1] | i = 0 . . . Nq} with ρ0 = 0, ρNq = 1 and
ρi < ρj ,∀i < j. We further denote ρ̂i = (ρi + ρi+1)/2, and use random sampling (Dabney et al., 2018a) to generate the
quantile fractions. By further parameterizing Zβ

ρ (s, a) as Ẑβ
ρ (s, a; θ) with parameter θ, we can derive the loss function

JZ(θ) as

JZ(θ) = E(s,a,r,s′,a′)∼D

Nq−1∑
i=0

Nq−1∑
j=0

(ρi+1 − ρi) lρ̂j (δij)

 ,

where δij = δij (s, a, r, s
′, a′) = r + γZρ̂i

(
s′, a′; θ̄

)
− Zρ̂j

(s, a; θ)

and lρ (δij) = |ρ− I {δij < 0}| L (δij) , with L (δij) =

{
1
2δ

2
ij , if |δij | ≤ 1

|δij | − 1
2 , otherwise.

. (60)

θ̄ is the parameter of the target network (Lillicrap et al., 2015) given by the Polyak averaging of θ. We refer interested
readers to (Dabney et al., 2018a; Ma et al., 2020) for further details.

The training procedures above returns Ẑβ
ρ ,∀ρ ∈ [0, 1]. With the learned Ẑβ

ρ , our one-step methods presented in Table 1
and Table 4 extract the value function by setting Q̂0 = Eρ[Ẑ

β
ρ ] = Q̂β as the expectation of Ẑβ

ρ , which is equivalent to the
conventional action-value function Q̂β . Specifically, we use N = 32 fixed quantile fractions with ρi = i/N, i = 0 . . . N .
Given a state-action pair (s, a), we calculate Q̂0(s, a) = Q̂β(s, a) as

Q̂0(s, a) = Q̂β(s, a) =
1

N

N∑
i=1

Ẑβ
ρ̂i
(s, a), ρ̂i =

ρi + ρi−1

2
. (61)

Since our methods still need to query out-of-buffer action values during rollout, we employed the conventional double
Q-learning (Fujimoto et al., 2018) technique to prevent potential overestimation without clipping. Specifically, we initialize
Q̂1

0 and Q̂2
0 differently and train them to minimize (60). With the learned Q̂1

0 and Q̂2
0, we set the value of Q̂0(s, a) as

Q̂0(s, a) = min
k=1,2

Q̂k
0(s, a) (62)

30



Offline Reinforcement Learning with Closed-Form Policy Improvement Operators

Table 9: HP search for MG-EBCQ. We report the mean and std of 10 seeds, and each seed evaluates for 100 episodes.

Dataset Nbcq = 2 Nbcq = 5 Nbcq = 10 Nbcq = 20 Nbcq = 50 Nbcq = 100

Cheetah-M-v2 47.2± 0.3 51.5± 0.2 53.3± 0.3 54.4± 0.3 55.3± 0.4 55.8± 0.4
Hopper-M-v2 63.3± 2.3 82.5± 1.9 88.3± 4.6 90.8± 6.9 92.1± 7.6 91.3± 9.4
Walker2d-M-v2 78.6± 1.4 85.2± 2.1 81.0± 6.3 73.4± 11.0 67.6± 14.8 62.7± 15.8

Cheetah-M-R-v2 38.8± 0.6 43.0± 0.3 44.2± 0.3 44.7± 0.5 44.8± 0.8 44.6± 0.8
Hopper-M-R-v2 58.4± 6.9 83.6± 10.3 82.8± 14.9 82.3± 15.9 77.5± 17.7 76.0± 16.7
Walker2d-M-R-v2 55.1± 3.4 73.1± 5.2 75.6± 5.3 77.6± 5.4 78.0± 5.6 78.5± 4.5

Cheetah-M-E-v2 75.2± 3.2 84.5± 4.6 82.7± 5.2 77.6± 7.3 73.4± 6.4 68.8± 5.9
Hopper-M-E-v2 73.6± 7.5 56.1± 6.2 44.9± 4.6 37.3± 3.6 29.8± 2.9 25.3± 3.3
Walker2d-M-E-v2 107.1± 1.8 111.1± 1.0 111.4± 1.5 111.4± 2.5 109.6± 4.0 107.2± 6.0
Total 597.2± 27.4 670.6± 31.9 664.1± 43.1 649.5± 53.5 628.0± 60.2 610.2± 62.9

Table 10: HP search for SG-EBCQ. We report the mean and std of 10 seeds, and each seed evaluates for 100 episodes.

Dataset Nbcq = 2 Nbcq = 5 Nbcq = 10 Nbcq = 20 Nbcq = 50 Nbcq = 100

Cheetah-M-v2 47.1± 0.2 51.5± 0.1 53.3± 0.2 54.4± 0.3 55.3± 0.3 55.8± 0.4
Hopper-M-v2 60.7± 2.4 78.6± 4.0 86.8± 5.2 89.1± 7.7 89.8± 8.8 89.8± 9.8
Walker2d-M-v2 78.5± 2.8 86.9± 1.8 85.2± 5.1 81.5± 9.3 76.6± 11.8 72.4± 13.8

Cheetah-M-R-v2 37.8± 0.7 42.3± 0.6 43.5± 0.6 44.3± 0.7 44.1± 1.1 43.6± 0.9
Hopper-M-R-v2 58.7± 5.8 85.2± 9.0 88.5± 12.2 89.1± 11.7 83.9± 15.0 82.1± 16.1
Walker2d-M-R-v2 54.0± 7.2 72.2± 5.2 75.4± 4.6 77.7± 4.8 77.5± 5.8 74.9± 6.2

Cheetah-M-E-v2 71.8± 2.2 81.9± 4.8 81.8± 5.4 77.6± 6.9 71.5± 7.5 68.2± 6.5
Hopper-M-E-v2 66.4± 4.8 49.8± 6.2 40.0± 5.8 34.9± 6.2 29.0± 5.7 25.2± 4.8
Walker2d-M-E-v2 106.6± 1.6 111.0± 0.9 111.1± 1.8 110.0± 3.7 107.2± 7.8 106.0± 9.0
Total 581.6± 27.7 659.4± 32.7 665.5± 41.0 658.7± 51.3 634.7± 63.9 618.1± 67.5

for every (s, a) pair. Note that the double Q-learning technique is only used during policy evaluation.

As for deciding the number of gradient steps, we detail our procedures in Appendix G.5. And the number of gradient steps
for each dataset can be found in Table 16.

Our IMG (Table 1). Recall that our CFPI operator IMG(π̂β , Q̂0; τ) requires to learn a Gaussian Mixture behavior pol-
icy π̂β and a value function Q̂0. We train π̂β and Q̂0 according to the procedures listed in MG-BC and SARSA, re-
spectively. By following the practice of (Brandfonbrener et al., 2021; Fu et al., 2020), we perform a grid search on
log τ ∈ {0, 0.5, 1.0, 1.5, 2.0} using 3 seeds. We note that we manually reduce IMG to MG-MS when log τ = 0 by only
considering the mean of each non-trivial Gaussian component. Our results show that setting log τ = 0.5 achieves the best
overall performance while Hopper-M-E requires an extremely small log τ to perform well as is shown in Appendix G.2.
Therefore, we decide to set log τ = 0 for Hopper-M-E and log τ = 0.5 for the other 8 datasets. We then obtain the results
for the other 7 seeds with these HP settings and report the results on the 10 seeds in total.

IMG (Table 4) & ISG (Table 4). Different from the results in Table 1, we use the same log τ = 0.5 for all datasets including
Hopper-M-E to obtain the performance of IMG in Table 4. In this way, we aim to understand the effectiveness of each
component of our methods better. To fairly compare IMG and ISG, we tune the τ for ISG in a similar way by performing a
grid search on log τ ∈ {0.5, 1.0, 1.5, 2.0} with 3 seeds and finally set log τ = 0.5 for all datasets. We then obtain the results
for the other 7 seeds and report the results with 10 seeds in total.

MG-EBCQ & SG-EBCQ. We tune the number of candidate actions Nbcq from the same range {2, 5, 10, 20, 50, 100} as is
in (Brandfonbrener et al., 2021). For each Nbcq, we obtain its average performance for all tasks across 10 seeds and select
the best performing Nbcq for each method. We separately tune the Nbcq for MG-EBCQ and SG-EBCQ. As a result, we set
Nbcq = 5 for MG-EBCQ and Nbcq = 10 for SG-EBCQ. Moreover, we highlight that MG-EBCQ (SG-EBCQ) uses the
same behavior policy and value function as is in IMG (ISG). We include the full hyper-parameter search results in Table 9
and Table 10.

MG-Rev. KL Reg & SG-Rev. KL Reg. We tune the regularization strength α from the same range
{0.03, 0.1, 0.3, 1.0, 3.0, 10.0} as is in (Brandfonbrener et al., 2021). For each α, we obtain its average performance
for all tasks across 10 seeds and select the best performing α for each method. We separately tune the α for MG-Rev. KL

31



Offline Reinforcement Learning with Closed-Form Policy Improvement Operators

Table 11: HP search for MG-Rev. KL Reg. We report the mean and std of 10 seeds, and each seed evaluates for 100
episodes.

Dataset α = 0.03 α = 0.1 α = 0.3 α = 1.0 α = 3.0 α = 10.0

Cheetah-M-v2 58.3± 1.1 58.1± 1.2 55.6± 0.5 50.6± 0.3 47.0± 0.2 44.5± 0.2
Hopper-M-v2 14.4± 13.6 41.0± 31.0 89.4± 22.2 99.7± 1.1 76.3± 6.9 58.5± 4.0
Walker2d-M-v2 5.8± 4.8 18.4± 21.9 34.2± 27.3 82.2± 7.8 82.8± 1.8 76.9± 2.0

Cheetah-M-R-v2 46.7± 1.8 47.5± 1.6 48.1± 0.7 46.4± 0.6 44.4± 0.5 43.1± 0.4
Hopper-M-R-v2 70.9± 33.8 86.6± 26.3 103.1± 0.8 101.4± 1.1 99.4± 2.1 77.6± 17.2
Walker2d-M-R-v2 73.7± 28.8 65.4± 33.8 64.0± 39.9 65.4± 35.8 69.7± 30.9 57.7± 22.8

Cheetah-M-E-v2 0.4± 2.2 1.2± 1.9 4.0± 1.9 25.0± 6.3 65.0± 10.1 86.2± 7.1
Hopper-M-E-v2 2.6± 1.7 16.2± 7.9 22.5± 10.7 57.4± 23.6 79.4± 32.6 86.8± 15.7
Walker2d-M-E-v2 10.4± 15.3 25.5± 38.1 93.5± 34.5 109.8± 0.6 107.1± 4.0 97.4± 7.0
Total 283.2± 103.0 359.9± 163.5 514.3± 138.5 637.8± 77.2 671.2± 89.1 628.6± 76.4

Table 12: HP search for SG-Rev. KL Reg. We report the mean and std of 10 seeds, and each seed evaluates for 100 episodes.

Dataset α = 0.03 α = 0.1 α = 0.3 α = 1.0 α = 3.0 α = 10.0

Cheetah-M-v2 58.6± 1.3 57.9± 0.8 55.2± 0.5 50.7± 0.5 47.1± 0.2 44.5± 0.3
Hopper-M-v2 18.7± 15.6 40.2± 24.7 83.2± 19.6 98.8± 2.0 70.3± 7.0 57.2± 4.6
Walker2d-M-v2 5.6± 3.5 26.2± 27.1 37.0± 27.6 83.3± 7.5 82.4± 1.0 77.1± 1.2

Cheetah-M-R-v2 46.1± 3.6 47.8± 1.3 47.8± 0.8 46.0± 0.5 44.3± 0.4 42.5± 0.6
Hopper-M-R-v2 77.4± 19.1 60.8± 27.7 92.0± 21.9 100.7± 1.0 99.7± 1.0 70.3± 19.2
Walker2d-M-R-v2 59.5± 31.3 72.7± 38.8 75.7± 30.4 75.1± 25.3 63.6± 28.5 59.7± 21.5

Cheetah-M-E-v2 1.1± 3.2 3.4± 3.4 7.1± 4.3 38.9± 18.4 78.9± 9.8 89.1± 4.0
Hopper-M-E-v2 5.5± 4.0 20.1± 8.6 24.8± 7.9 43.8± 23.6 76.6± 18.3 67.7± 30.6
Walker2d-M-E-v2 1.7± 3.7 13.4± 33.5 83.2± 37.5 109.9± 0.7 106.7± 4.1 96.8± 7.6
Total 274.0± 85.3 342.6± 165.9 505.9± 150.5 647.2± 79.5 669.7± 70.3 604.9± 89.5

Reg & SG-Rev. KL Reg, although α = 3.0 achieves the best overall performance in both methods. Moreover, we highlight
that MG-Rev. KL Reg (SG-Rev. KL Reg) uses the same behavior policy and value function as is in IMG (ISG). We
include the full hyper-parameter search results in Table 11 and Table 12.

32



Offline Reinforcement Learning with Closed-Form Policy Improvement Operators

F.2. HP and training details for methods in Table 3

Hyperparameter Value

Shared HP Normalize states False

Optimizer Adam (Kingma & Ba, 2014)
Number of gradient steps 1M
Mini-batch size 256
Policy learning rate 3e-4
Policy hidden dim 256
Policy hidden layers 2

IQL HP Policy activation function ReLU
Critic architecture MLP
Critic learning rate 3e-4
Critic hidden dim 256
Critic hidden layers 2
Critic activation function ReLU
Target update rate 5e-3
Target update period 1
quantile 0.9
temperature 10.0

ISG(πIQL, QIQL) log τ selected from {0.1, 0.2, 2.0}

Table 13: Hyperparameters for methods in Table 3

Table 13 includes the HP for experiments in Sec. 5.2. The of IQL. We use the same HP for the IQL training as is reported in
the IQL paper. We obtain the IQL policy πIQL and QIQL by training for 1M gradient steps using the PyTorch Implementation
from RLkit (Berkeley), a widely used RL library. We emphasize that we follow the authors’ exact training and evaluation
protocol. We include the training curves for all tasks from the AntMaze domain in Appendix G.6.

Note that IQL (Kostrikov et al., 2021) reported inconsistent offline experiment results on AntMaze in its paper’s Table 1,
Table 2, Table 5, and Table 6 2. We suspect that these results are obtained from different sets of random seeds. In Appendix
G.6, we present all these results in Table 17.

To obtain the performance for ISG(πIQL, QIQL), we follow the practice of (Brandfonbrener et al., 2021; Fu et al., 2020) and
perform a grid search on log τ ∈ {0.1, 0.2, 2.0} using 3 seeds for each dataset. We then evaluate the best choice for each
dataset by obtaining corresponding results on the other 7 seeds. We finally report the results with 10 seeds in total.

2Link to the IQL paper. IQL’s Table 5 & 6 are presented in the supplementary material.

33

https://openreview.net/pdf?id=68n2s9ZJWF8
http://www.overleaf.com


Offline Reinforcement Learning with Closed-Form Policy Improvement Operators

G. Additional Experiments
G.1. Complete experiment results for MG-MS

Table 14 provides the results of MG-MS on the 9 tasks from the MuJoCo Gym domain in compensation for the results in
Sec. 5.3.

Table 14: Results of MG-MS on the MuJoCo Gym domain. We report the mean and standard deviation across 10 seeds, and
each seed evaluates for 100 episodes.

Dataset MG-MS (16)

Cheetah-M-v2 43.6± 0.2
Hopper-M-v2 55.3± 6.3
Walker2d-M-v2 73.6± 2.2

Cheetah-M-R-v2 42.4± 0.4
Hopper-M-R-v2 61.5± 15.1
Walker2d-M-R-v2 65.0± 10.4

Cheetah-M-E-v2 91.3± 2.1
Hopper-M-E-v2 104.2± 5.1
Walker2d-M-E-v2 104.1± 6.7

Total 641.1± 48.5

34



Offline Reinforcement Learning with Closed-Form Policy Improvement Operators

G.2. Complete experiment results on the effect of the HP τ

Fig. 6 presents additional results in compensation for the results in Sec. 5.3. We note that Hopper-Medium-Expert-v2
requires a much smaller log τ than the other tasks to perform well.

Figure 6: Performance of IMG with varying log τ . The other HP can be found in Table 8. Each variant averages returns over
10 seeds, and each seed contains 100 evaluation episodes. The shaded area denotes bootstrapped 95% CI.

35



Offline Reinforcement Learning with Closed-Form Policy Improvement Operators

G.3. Ablation study on the number Gaussian components

In this section, we explore whether increasing the number of Gaussian components will result in a performance boost. We
use the same settings as in Table 1 except modeling π̂β with 8 Gaussian instead of 4. We hypothesize the performance gain
should most likely happen on the three Medium-Replay datasets, as these datasets are collected by diverse policies. However,
Table 15 shows that simply increasing the number of Gaussian components from 4 to 8 hardly results in a performance boost,
as increasing the number of Gaussian components will induce extra optimization difficulties during behavior cloning (Jin
et al., 2016).

Table 15: Comparison between setting the number of Gaussian components to 4 and 8 for our IMG on the three Medium-
Replay datasets. We report the mean and standard deviation across 10 seeds, and each seed evaluates for 100 episodes.

Dataset 4 components (Table 1) 8 components

Cheetah-M-R-v2 44.5± 0.4 44.3± 0.3
Hopper-M-R-v2 93.6± 7.9 90.6± 11.6
Walker2d-M-R-v2 78.2± 5.6 79.4± 4.5

36



Offline Reinforcement Learning with Closed-Form Policy Improvement Operators

G.4. Modeling the value network with conventional MLP

Figure 7: Performance of IMG with varying ensemble sizes. Each variant averages returns over 8 seeds, and each seed
contains 100 evaluation episode. Each Q-value network is modeled by a 3-layer MLP. The shaded area denotes bootstrapped
95% CI.

Figure 8: Performance of IMG with varying ensemble sizes on Walker2d-Medium-Replay-v2. Each variant aggregates
returns over 8 seeds, and each seed evaluates for 100 episodes. Each Q-value network is modeled by a 3-layer MLP. With
lower ensemble size, the performance exhibits large variance across different episodes.

Our experiments in Sec. 5.1 rely on learning a Q value function with the IQN (Dabney et al., 2018a) architecture. In this
section, we examine the effectiveness of our CFPI operator IMG when working with an ensemble of conventional MLP
Q-value networks with varying ensemble sizes M .

Each Q-value network Q̂MLP
θk

uses ReLU activation and is parameterized with θk, including 3 hidden layers of width 256.
We train each Q̂MLP

θk
by minimizing the bellman error below

L(θk) = E(s,a,r,s′,a′)∼D

[
r + γQ̂MLP(s′, a′; θ̄k)− Q̂MLP(s, a; θk)

]
, (63)

where θ̄k is the parameter of a target network given by the Polyak averaging of θ. We set Q̂MLP(s, a; θk) = Q̂MLP
θk

(s, a). We

37



Offline Reinforcement Learning with Closed-Form Policy Improvement Operators

further note that Equation 62 can be reformulated as

Q̂0(s, a) = min
k=1,2

Q̂k
0(s, a) =

1

2
|Q̂1

0(s, a) + Q̂2
0(s, a)| −

1

2
|Q̂1

0(s, a)− Q̂2
0(s, a)|

= µ̂Q(s, a)− σ̂Q(s, a),

(64)

where µ̂Q and σ̂Q calculate the mean and standard deviation of Q value (Ciosek et al., 2019). In the case with an ensemble
of Q, we obtain Q̂0(s, a) by generalizing (64) as below

Q̂0(s, a) = µ̂MLP
Q −

√√√√ 1

M

M∑
k=1

(
Q̂MLP(s, a; θk)− µ̂MLP

Q

)2
,

where µ̂MLP
Q =

1

M

M∑
k=1

Q̂MLP(s, a; θk).

(65)

Other than the Q-value network, we applied the same setting as IMG in Table 4. Fig. 7 presents the results with different
ensemble sizes, showing that the performance generally increases with the ensemble size. Such a phenomenon illustrates a
limitation of our CFPI operator IMG, as it heavily relies on accurate gradient information∇a[Q̂0(s, a)]a=aβ

.

A large ensemble of Q is more likely to provide accurate gradient information, thus leading to better performance. In
contrast, a small ensemble size provides noisy gradient information, resulting in high variance across different rollout, as is
shown in Fig. 8.

38



Offline Reinforcement Learning with Closed-Form Policy Improvement Operators

G.5. How to decide the number of gradient steps for SARSA training?

Figure 9: Lval on each dataset from the Gym-MuJoCo domain. We can observe that the model overfits to the training set
when training for too may gradient steps. Each figure averages the validation loss over 2 folds with the same training seed.
The shaded area denotes one standard deviation.

Deciding the number of gradient steps is a non-trivial problem in offline RL. While we use a fixed number of gradient
steps for behavior cloning, we design a rigorous procedure to decide the gradient steps for SARSA training, inspired by the
success of k-fold validation.

In our preliminary experiments, we first train a Q̂β
all using all data from each dataset for 2M gradient steps. We model the

Q̂β
all(s, a) as a 3-layer MLP and train following Appendix G.4. By training in this way, we treat Q̂β

all(s, a) as the ground
truth Qβ(s, a) for all (s, a) sampled the dataset D. Next, we randomly split the dataset with the ratio 95/5 to create the
trainining set Dtrain validation set Dval. We then train a new Q̂β the SARSA training on Dtrain. Therefore, we can define the
validation loss as

Lval = E(s,a)∼Dval ||Q̂
β
all(s, a)− Q̂β(s, a)||2 (66)

Fig. 9 presents the Lval on each dataset from the Gym-MuJoCo domain. We can clearly observe that Q̂β generally overfits
the Dtrain when training for too many gradient steps. We evaluate over two folds with one seed. Therefore, we can decide the

39



Offline Reinforcement Learning with Closed-Form Policy Improvement Operators

Table 16: Gradient steps for the SARSA training

Dataset Gradient steps (K)

HalfCheetah-Medium-v2 200
Hopper-Medium-v2 400
Walker2d-Medium-v2 700

HalfCheetah-Medium-Replay-v2 1500
Hopper-Medium-Replay-v2 300
Walker2d-Medium-Replay-v2 1100

HalfCheetah-Medium-Expert-v2 400
Hopper-Medium-Expert-v2 400
Walker2d-Medium-Expert-v2 400

gradient steps of each dataset for the SARSA training according to the results in Fig. 9 as listed in Table 16.

40



Offline Reinforcement Learning with Closed-Form Policy Improvement Operators

G.6. Our reproduced IQL training curves

We use the PyTorch (Paszke et al., 2019) Implementation of IQL from RLkit (Berkeley) to obtain its policy πIQL and value
function QIQL. We do not use the official implementation3 open-sourced by the authors because our CFPI operators are also
based on PyTorch. Fig. 10 presents our reproduced training curves of IQL on the 6 datasets from the AntMaze domain.

We note that the IQL paper4 does not report consistent results in their paper for the offline experiment performance on the
AntMaze, as is shown in Table 17. We suspect that these results are obtained from different sets of random seeds. Therefore,
we can conclude that our reproduced results match the results reported in the IQL paper. We believe our reproduction results
of IQL are reasonable, even if we do not use the official implementation open-sourced by the authors.

Figure 10: IQL offline training results on AntMaze. Shaded area denotes one standard deviation.

Table 17: Offline experiment results on AntMaze reported in different tables from the IQL paper

Dataset Table 1 & 6 Table 2 Table 5

antmaze-u-v0 87.5± 2.6 88.0 86.7
antmaze-u-d-v0 62.2± 13.8 67.0 75.0

antmaze-m-p-v0 71.2± 7.3 69.0 72.0
antmaze-m-d-v0 70.0± 10.9 71.8 68.3

antmaze-l-p-v0 39.6± 5.8 36.8 25.5
antmaze-l-d-v0 47.5± 9.5 42.2 42.6

Total 378.0± 49.9 374.8 370.1

3https://github.com/ikostrikov/implicit_q_learning
4Link to the IQL paper. IQL’s Table 5 & 6 are presented in the supplementary material.

41

https://github.com/ikostrikov/implicit_q_learning
https://openreview.net/pdf?id=68n2s9ZJWF8
http://www.overleaf.com


Offline Reinforcement Learning with Closed-Form Policy Improvement Operators

G.7. Improve the policy learned by CQL

In this section, we show that our CFPI operators can also improve the policy learned by CQL (Kumar et al., 2020) on the
MuJoCo Gym Domain. We first obtain the CQL policy πCQL and QCQL by training for 1M gradient steps using the official
CQL implementation5. We obtain an improved policy ISG(πCQL, QCQL; τ) that slightly outperforms πCQL overall, as shown
in Table 18. For all 6 tasks, we set log τ = 0.1.

Table 18: Improving the policy learned by IQL with our CFPI operator ISG

Dataset πCQL (1M) ISG(πCQL, QCQL)

HalfCheetah-Medium-v2 45.5± 0.3 47.1± 1.5
Hopper-Medium-v2 65.4± 3.5 70.1± 4.9
Walker2d-Medium-v2 81.4± 0.6 81.6± 1.1

HalfCheetah-Medium-Replay-v2 44.6± 0.5 45.9± 1.7
Hopper-Medium-Replay-v2 95.2± 2.0 94.6± 1.6
Walker2d-Medium-Replay-v2 80.1± 2.6 78.8± 3.2

Total 412.2± 9.4 418.2± 13.9

5https://github.com/aviralkumar2907/CQL

42



Offline Reinforcement Learning with Closed-Form Policy Improvement Operators

H. Additional related work
H.1. Detailed comparison with OAC

While Equation 6 yields the same action as the mean of the single Gaussian exploration policy in OAC’s Proposition 1, it
is crucial to note that Equation (6) only provides the closed-form solution for our ISG, which assumes a single Gaussian
baseline policy πb. As we discussed in the main paper, the single Gaussian assumption of πb often fails to capture the full
complexity and multimodality of the underlying action distribution of offline datasets, which motivates the development of
our IMG. In contrast, OAC exclusively addresses a single Gaussian baseline policy.

When generalizing πb from a single Gaussian to a Gaussian Mixture, the optimization problem (5) transforms into the
optimization problem (10), resulting in a non-convex constraint that breaks the tractability. Consequently, we must address
the additional optimization challenges. Our approach involves utilizing inequalities in Lemma 3.1, ultimately leading to our
CFPI operator IMG, which can handle both single-mode and multimodal πb. Experiment results indicate that the one-step
algorithm instantiated by our IMG significantly outperforms the single Gaussian version, ISG, and other baselines, as shown
in Table 4 and Figure 2.

Moreover, our proposed CFPI operator can be incorporated into an iterative algorithm (shown in Table 1) that solves the
policy improvement step in each training iteration and updates the critics with the TD target constructed from the actions
chosen by the policy improved through our IMG. In contrast, OAC only utilizes the exploration policy from their Proposition
1 to gather new transitions from the environment and does not use the actions generated by the exploration policy to construct
the TD target for the critic training. This further highlights the novelty of our proposed method.

In summary, while there are certainly similarities between our ISG and OAC’s Proposition 1, we contend that our proposed
CFPI operator IMG a significant advancement, particularly in its capability to accommodate both single-mode and multimodal
behavior policies.

H.2. Connection with prior works that leveraged the Taylor expansion to RL

There has been a history of leveraging the Taylor expansion to construct efficient RL algorithms. (Kakade & Langford,
2002) proposed the conservative policy iteration that optimizes a mixture of policies towards its policy objective’s lower
bound, which is constructed by performing first-order Taylor expansion on the mixture coefficient. Later, SOTA deep RL
algorithms TRPO (Schulman et al., 2015) and PPO (Schulman et al., 2017) extend the results to work with trust region
policy constraints and learn a stochastic policy parameterized by a neural network. More recently, (Tang et al., 2020)
developed a second-order Taylor expansion approach under similar online RL settings.

At a high level, both our works and previous methods propose to create a surrogate of the original policy objective by
leveraging the Taylor expansion approach. However, our motivation to use Taylor expansion is fundamentally different
from the previous works (Kakade & Langford, 2002; Schulman et al., 2015; 2017; Tang et al., 2020), which leverage the
Taylor expansion to construct a lower bound of the policy objective so that optimizing towards the lower bound translates
into guaranteed policy improvement. However, these methods do not result in a closed-form solution to the policy and still
require iterative policy updates.

On the other hand, our method leverages the Taylor expansion to construct a linear approximation of the policy objective,
enabling the derivation of a closed-form solution to the policy improvement step and thus avoiding performing policy
improvement via SGD. We highlight that our closed-form policy update cannot be possible without directly optimizing the
parameter of the policy distribution. In particular, the parameter should belong to the action space. We note that this is a
significant conceptual difference between our method and previous works.

Specifically, PDL (Kakade & Langford, 2002) parameterizes the mixture coefficient of a mixture policy as θ. TRPO (Schul-
man et al., 2015) and PPO (Schulman et al., 2017) set θ as the parameter of a neural network that outputs the parameters
of a Gaussian distribution. In contrast, our methods learn deterministic policy π(s) = Dirac(θ(s)) and directly optimize
the parameter θ(s). We aim to learn a greedy π by solving θ(s) = argmaxa Q(s, a). However, obtaining a greedy π in
continuous control is problematic (Silver et al., 2014). Given the requirement of limited distribution shift in the offline RL,
we thus leverage the first-order Taylor expansion to relax the problem into a more tractable form

θ(s) = argmax
a

Q̄(s, a; aβ), s.t. − log πβ(a|s) ≤ δ, (67)

where Q̄ is defined in Equation 3. By modeling πβ as a Single Gaussian or Gaussian Mixture, we further transform the

43



Offline Reinforcement Learning with Closed-Form Policy Improvement Operators

problem into a QCLP and thus derive the closed-form solution.

Finally, we note that both the trust region methods TRPO and PPO and our methods constrain the divergence between the
learned policy and behavior policy. However, the behavior policy always remains unchanged in our offline RL settings. As
TRPO and PPO are designed for the online RL tasks, the updated policy will be used to collect new data and becomes the
new behavior policy in future training iteration.

44


