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Abstract
Best Arm Identification (BAI) is a general online
pure exploration framework to identify optimal
decisions among candidates via sequential inter-
actions. We pioneer the Optimal Arms identifi-
cation with Knapsacks (OAK) problem, which
extends the BAI setting to model the resource
consumption. We present a novel OAK algorithm
and prove the upper bound of our algorithm by
exploring the relationship between selecting op-
timal actions and the structure of the feasible re-
gion. Our analysis introduces a new complexity
measure, which builds a bridge between the OAK
setting and bandits with knapsacks problem. We
establish the instance-dependent lower bound for
the OAK problem based on the new complexity
measure. Our results show that the proposed algo-
rithm achieves a near-optimal probability bound
for the OAK problem. In addition, we demon-
strate that our algorithm recovers or improves the
state-of-the-art upper bounds for several special
cases, including the simple OAK setting and some
classical pure exploration problems.

1. Introduction
Multi-armed bandits exemplify the exploration-exploitation
trade-off framework in online decision-making problems.
The decision-maker selects arms (actions, options, deci-
sions) sequentially and learns from the rewards to maximize
the expected cumulative rewards over a number of trials.
Many applications need to identify the best action over the
candidates, and the rewards or loss during the exploration is
ignored, which is defined as the best arm identification (BAI)
problem (Audibert et al., 2010). For example, in a medical
trial problem with m candidate ingredients and T patients
that can be admitted to the medical trial (the exploration
phase is limited by a fixed budget T ), the decision-maker
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would like to identify the best ingredient to minimize harm
to the patients or maximize the medical therapeutic effect.
A series of efforts have been made to solve variants of BAI
problems (Xu et al., 2020; Katz-Samuels & Jamieson, 2020;
Zhang & Ong, 2021; Zhong et al., 2021).

The bandits with knapsacks (BwK) framework was intro-
duced by (Badanidiyuru et al., 2013) to deal with a more
general and realistic setting that takes the resource consump-
tion into consideration. In the BwK setting, the optimal
fixed distribution over arms may outperform the arm with
the highest expected reward. The support of optimal distribu-
tion is composed of the arms with optimal ‘bang-per-buck,’
i.e., reward per unit of resource consumption, thus there are
multiple ‘optimal arms’ (Badanidiyuru et al., 2013). Ex-
isting works focus on maximizing the accumulated reward
under the resource constraints by finding the optimal fixed
distribution (Badanidiyuru et al., 2013; Agrawal & Devanur,
2014).

In this paper, we consider a common situation in which
the decision-maker needs to identify all optimal arms with
the knapsack constraints, and define it as the optimal arms
identification (OAK) problem. In the OAK setting, there
exists a fixed set of arms and the hard constrained capacity
for each resource; each arm is associated with an unknown
reward distribution and an unknown consumption distribu-
tion. During the exploration, the decision-maker chooses
an arm in each round and only observes a scalar-valued
reward independently sampled from the reward distribution
and a resource consumption vector independently sampled
from the consumption distribution. Once one or more re-
source budget constraint is violated then the exploration
stops. The decision-maker aims to maximize the probability
of identifying all optimal arms with the resource knapsacks.

The OAK problem encompasses a wide range of applica-
tions due to the presence of resource constraints in pure
exploration decision problems. For example, during the
medical testing phase, the selection of ingredients may be
constrained by the supply and monetary cost of each com-
ponent, and the decision-maker would like to identify the
ingredients that minimize harm to the patients or maxi-
mize the medical therapeutic effect. Similarly, the dynamic
pricing problem involves sellers who face limited supply
and aim to determine the optimal policy for maximizing
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expected revenue. In the dynamic procurement problem,
algorithms are designed to purchase items or services while
adhering to budgetary and other constraints.

The knowledge of optimal arms, which is not limited to pure
exploration settings, is also valuable for addressing the as-
sociated regret minimization BwK problem. Previous work
demonstrates that even with sufficient exploration about the
optimal solution of LP to converge on an LP-perfect distri-
bution while avoiding obviously suboptimal strategies, an
O(
√
T ) gap with the optimum remains necessary (Badani-

diyuru et al., 2013). In contrast, subsequent studies present
tighter regret upper bounds with the known optimal arms
set (Flajolet & Jaillet, 2015; Li et al., 2021). For instance,
(Li et al., 2021) prove the O(d4/b2) regret upper bound,
omitting other problem-dependent parameters, which does
not depend on T .

The OAK problem raises several challenges for designing
and analyzing algorithms. One challenge is the unknown
number of optimal arms, which necessitate that the algo-
rithm explores the structure of the feasible region. Another
one is to estimate the fixed optimal distribution, as with the
BwK problem. The expected per-round reward is no longer
a reliable estimate of the arm’s value. Each pull of any
arm may influence the decision-maker’s estimated optimal
distribution and lead to a different result. The algorithm
needs to search over all possible distributions. And the
large search space of possible distribution exacerbates the
difficulty of the problem. This differs from the overwhelm-
ing majority of previous pure exploration bandits settings.
Therefore, the design and analysis of algorithms require new
technical tools for characterizing the complexity of the new
exploration problem.

1.1. Our contributions

We pioneer the OAK setting under knapsacks constraints
in this paper. First, we propose a BASEOAK learning al-
gorithm based on the quarter reject/accept strategy. The
analysis of our algorithm depends on our observation of the
relationship between selecting optimal arms (point aspect)
and the structure of the feasible domain (global aspect). We
develop a new complexity measure based on this observa-
tion. Our analysis shows the ‘successive elimination-style’
algorithm places excessive emphasis on point aspect and
veers widely from the optimal distribution.

Then, we develop a FULLOAK algorithm based on
BASEOAK that strikes a balance between converging to the
optimal distribution and exploring the optimality of arms.
We upper bound the probability that the algorithm makes
mistakes based on the new complexity measure. We es-
tablish the instance-dependent lower bound for the OAK
problem. The analysis shows that FULLOAK is close to
optimum - the lower bound matches the error probability in

the exponential term up to a constant factor.

Last, We further investigate some special cases of OAK
setting. We study the simple OAK setting for the case that
influence from selections of different arms could be avoided.
For the simple OAK problem, we present a near-optimal al-
gorithm BASEOAK− based on BASEOAK. We demonstrate
that BASEOAK− recovers or improves the state-of-the-art
upper bounds for many classical pure exploration problems,
including the BAI problem, top-K best arms identification
problem, and multi-bandits best arms identification prob-
lem.

2. Problem Setup and Technical Preliminaries
In this paper, we use bold fonts to represent vectors and
matrices. For a matrix C, we use Cj,· and C·,i to denote
the j-th row vector and the i-th column vector, respectively.
For a set X , we use |X | to denote its cardinality.

2.1. Problem setup

We formally define the OAK problem below. Given T
rounds, m arms and d types of resources being consumed,
they are indexed by [T ] = 1, 2, . . . , T , [m] = 1, 2, . . . ,m,
and [d] = 1, 2, . . . , d, respectively. Each arm is asso-
ciated with an unknown reward distribution and an un-
known consumption distribution. In each round t, the al-
gorithm plays an arm i(t) ∈ [m], then observes a scalar-
valued reward r(t) ∈ [0, 1] and a resource consump-
tion vector c(t) ∈ [0, 1]d, which are independently sam-
pled from the reward/consumption distribution. The j-
th component of c(t) represents consumption of resource
j. There are some fixed unknown reward expected vec-
tor µ = (µ1, . . . , µm)⊤ ∈ [0, 1]m and consumption ex-
pected matrix C = (C·,1, . . . ,C·,m) ∈ [0, 1]d×m such that
E[r(t)|i(t)] = µi(t) and E[c(t)|i(t)] = C·,i(t).

We use B to denote the hard resource constraint vector. For
each resource j, there is a pre-specified knapsack Bj rep-
resenting the maximum amount constraint of consumption
over all time horizons. Once one or more resource budget
constraint is violated then the exploration stops. We say the
constraints are uniform if Bj = B for all resource j ∈ [d].
And any OAK instance can be reduced to one with uniform
constraints B = minj∈[d] Bj . For notation simplicity, we
focus on the uniform OAK setting with knapsack B. Let
b = B/T denote the expected per-round resource constraint.
Besides, we assume that the 1-st resource is the ‘time’ re-
source and each arm deterministically consumes 1 unit of it
whenever it is picked. We assume the 1-st arm is the ‘null’
arm that can be played with no reward and only consumes
the time resource. These assumptions are standard form
in BwK literature (Badanidiyuru et al., 2013; Agrawal &
Devanur, 2014; Li et al., 2021).

2



Optimal Arms Identification with Knapsacks

For a problem instance, we say one arm i is an optimal
arm if it would be selected by the optimal dynamic policy
in expectation. We give a more precise definition in the
linear relaxation part below. The OAK algorithm aims to
maximize the probability that correctly identifies all optimal
arms with the fixed resource constraint. Formally, let X ∗

denote the index set of all optimal arms. The algorithm
has to output an arm set O ⊆ [m] once any constraint is
violated (includes the time resource). The algorithm tries to
maximize P[O = X ∗].

2.2. Linear relaxation

The OAK problem can be relaxed to the following linear
program

max µ⊤x,

s.t. Cx ≤ b,

x ≥ 0.

(1)

The x is the decision vector and xi corresponds to the prob-
ability to select arm i ∈ [m]. The LP (1) always has feasible
solutions because of the existence of null arms. Let OPTLP
and x∗ denote the optimal value and optimal solution of
(1), respectively. One arm i ∈ [m] is an optimal arm if the
corresponding variable is basic variable in x∗, i.e. x∗

i > 0.

Formally, let X ∗ := {i|x∗
i > 0, i ∈ [m]} and X ′ :=

{i|x∗
i = 0, i ∈ [m]} denote the index set of optimal basic

variables and non-basic variables of x∗, respectively. Then
each arm i ∈ X ∗ is optimal arm and each arm i ∈ X ′ is
sub-optimal arm. Similarly, let Y∗ := {j|b− (x∗)⊤Cj,· =
0, j ∈ [d]} and Y ′ := {j|b − (x∗)⊤Cj,· > 0, j ∈ [d]}
denote the index set of active constraints and non-active con-
strains of (1). Then each constraint j ∈ Y∗ is an active con-
straint and each constraint j ∈ Y ′ is a non-active constraint.
Notice that we always have |X ∗| = |Y∗| ≤ min{m, d}.
Assumption 2.1. The LP (1) has a unique optimal solution.
Moreover, the optimal solution is non-degenerate.

This assumption is a standard one in LP’s literature, and
any LP can satisfy this assumption with an arbitrarily small
perturbation (Megiddo & Chandrasekaran, 1989; Li et al.,
2021). The dual problem of (1) is

min b⊤w,

s.t. C⊤w ≥ µ,

w ≥ 0.

(2)

Let w∗ denote the optimal solution of it. Notice that for each
non-active constraint j ∈ Y ′, there is a non-basic variable
w∗

j = 0.

Then we introduce the sub-optimality measure and opti-
mality measure we use in this paper. To measure the sub-
optimality, we use the absolute value of reduced cost/profit
Ri := (w∗)⊤C·,i − µi, i ∈ [m] in LP literature and can be

regarded as the cost/profit obtained for increasing a variable
by a small amount. Notice that we have Ri∗ = 0 for each
optimal arm i∗ ∈ X ∗ and Ri′ > 0 for each sub-optimal arm
i′ ∈ X ′. To measure the optimality, consider the following
linear program

max µ⊤x,

s.t. Cx ≤ b,

x ≥ 0, xi = 0.

(3)

Let OPT−i
LP denote the optimal value of it, which adds a

new constraint xi = 0 for one arm i ∈ [m] compared with
(1). Then define the value Gi := OPTLP − OPT−i

LP , which
shows the reward gap caused by one arm’s deletion. Under
Assumption 2.1, we have Gi′ = 0 for each sub-optimal arm
i′ ∈ X ′ and Gi∗ > 0 for each optimal arm i∗ ∈ X ∗.

3. BaseOAK Algorithm and Complexity
Measure

This section introduces the intuition and specification of the
BASEOAK algorithm (shown in Algorithm 1). We also intro-
duce the new complexity measure. Based on this measure,
we upper bound the probability that the algorithm makes
mistakes.

3.1. BaseOAK algorithm

The algorithm splits the budget B evenly into ⌈log4/3 m⌉−1
phases and chooses the worst/best quarter of surviving arms
to reject/accept at the end of each phase. An arm will be
included in the final output if accepted during the time
horizon, and an arm will be excluded if rejected at the end
of one phase. The stop condition of BASEOAK is implied in
the design of the number of phases and quarter elimination.
They guarantee that BASEOAK does not exceed the budget
B and each arm is accepted or rejected before BASEOAK
ends.

We describe the procedure of the algorithm below. The
algorithm maintains three arm sets: the accept arm set X ∗

p ,
the reject arm set X ′

p, and the active arm set Xp. The ac-
cept/reject arm set includes all accepted/rejected arms before
phase p, and the active arm set includes all remaining arms.

During phase p, the algorithm pulls all surviving arms n(p)
times, where the definition of n(p) is given in Algorithm 1.
Let s(p) denote the times of one surviving arm has been se-
lected until the end of phase p, i.e., s(p) =

∑p
k=0 n(k). Let

µ̄(p) and C̄(p) denote the empirical mean estimator until
the end of phase p for µ and C, respectively. Let ri(l) and
Cj,i(l) denote the reward and j-th resource consumption
observed of the l-th pull for the arm i. Formally,

µ̄i(p) =
1

s(p)

s(p)∑
l=1

ri(l), C̄j,i(p) =
1

s(p)

s(p)∑
l=1

Cj,i(l).
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Algorithm 1 BaseOAK Algorithm (BASEOAK)
Input: resource constraint B, number of arms
m

1: X0 ← [m], X ′
0 ← ∅, X ∗

0 ← ∅
2: for p = 0, . . . , ⌈log4/3 m⌉ − 1 do
3: Pull each arm i ∈ Xp ∪ X ∗

p for

n(p) =

⌊
B

|Xp ∪ X ∗
p |⌈log4/3 m⌉

⌋

times
4: Compute the empirical estimator of R̄i and Ḡi for

each arm i ∈ Xp

5: if more basic variables in x̄∗(p) then
6: X ∗

p+1 ← X ∗
p ∪ { the set of ⌈|Xp|/4⌉ optimal arms

in Xp with the largest Ḡi}
7: else
8: X ′

p+1 ← X ′
p ∪ { the set of ⌈|Xp|/4⌉ sub-optimal

arms in Xp with the largest R̄i}
9: end if

10: Xp+1 ← X0\(X ′
p+1 ∪ X ∗

p+1)
11: end for
12: Output X ∗

⌈log4/3 m⌉

At the end of each phase p, with the empirical estimator
µ̄(p) and C̄(p), compute

max µ̄⊤x,

s.t. C̄x ≤ b,

x ≥ 0.

(4)

Let x̄∗(p) and w̄∗ denote the optimal solution of it and
the dual problem, respectively. In the meantime, we com-
pute the the empirical estimator of R̄i and Ḡi for each
surviving i ∈ Xp ∪ X ∗

p with µ̄(p) and C̄(p). We have
R̄i = (w̄∗)⊤C̄·,i − µ̄i, i ∈ [m]. Similarly, consider the
following LP

max µ̄⊤x,

s.t. C̄x ≤ b,

x ≥ 0, xi = 0.

Let OPT
−i

LP denote the optimal value of it, we have Ḡi =

µ̄⊤x̄∗(p)− OPT
−i

LP .

If there are more basic variables (corresponding to the opti-
mal arms) in x̄∗(p), the algorithm chooses a quarter of arms
with the largest Ḡi from the active arm set Xp to accept and
adds them into the accept arm set X ∗

p+1. Conversely, the
algorithm chooses a quarter of arms with largest R̄i from the
active arm set Xp to reject and adds them into the reject arm
set X ′

p+1. Maybe there are some arms with the same R̄i /Ḡi

such that it is difficult to decide which arm to reject/accept.

We use a random strategy in this case, i.e., select a random
arm to reject/accept until a quarter of the arms are elimi-
nated. At the end of the last phase, the algorithm outputs all
arms accepted during the whole time horizons.

The algorithm cannot be simplified to just eliminate and
return the active set. It is important to maintain the active
arm set and reject arm set simultaneously to make sure that
each arm will be rejected/accepted only once during the
game.

3.2. Complexity measure

We introduce the complexity measure used in our work.
Let D = {x ∈ Rm|Cx ≤ b,x ≥ 0} denote the feasible
domain of (1). Notice that D is a convex polyhedron. Let
B denote the set of all vertexes (are also extreme points)
of the convex polyhedron. We say x ∈ D is a vertex if
(∀λ ∈ (0, 1),u,v ∈ D)[x = λu + (1 − λ)v ⇒ u = v].
We use x(k) to denote the k-th optimal vertex, i.e.,

µ⊤x∗ = µ⊤x(1) ≥ µ⊤x(2) . . .

≥ µ⊤x(k) ≥ . . . ≥ µ⊤x(|B|).

Under Assumption 2.1, the number of extreme points is no
less than m. We define the vertex gap ∆i as

∆i = µ⊤x∗ − µ⊤x(i), i ∈ [m].

Our analysis relies on the following complexity measure:

H := max
i̸=1

i

∆2
i

, i ∈ [m],

which is a generalization of the complexity measure for BAI.
Note that the complexity measure captures the reduced cost
of sub-optimal arm and the influence caused by that one
of the optimal arm is not allowed to use simultaneously,
and builds a bridge between point aspect (sub-optimality
of arms) and global aspect (the feasible domain of latent
structures of a problem instance, which could be induced
from the BwK domain). We provide a formal description
below.

Theorem 3.1. For any optimal arms identification or ban-
dits with knapsack problem instance, we have R(i) ≥ ∆i+1√

2
and G(i) ≥ ∆i+1.

Proof Sketch. Let dq denote the edge direction vector from
x∗ leading to the adjacent extreme points x(q) correspond-
ing to the increase of the sub-optimal variable q ∈ X ′.
We use x(q) to denote the q-th optimal adjacent vertex, i.e.
µ⊤x∗ > µ⊤x(1) ≥ . . . ≥ µ⊤x(q) ≥ . . . , q ∈ X ′. We
define the adjacent gap ∆(q) := µ⊤x∗ − µ⊤x(q), q ∈ X ′.
Then we consider the relationship between ∆(q) and R(q).
We rearrange w∗ = (w∗

B |w∗
N )⊤, where the basis vector
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w∗
B ∈ R|Y∗| includes all basic variables and the non-basis

vector w∗
N = (0, . . . , 0)⊤. Let dqi denote the i-th element

of dq . Define αq := mini∈X∗

{
x∗
i

−dqi

}
. We have

∆(q) = −αqµ
⊤dq = −αq(µq −

(
w∗

B)
⊤Q·,q

)
= −αq(µq −

(
w∗)⊤C·,q

)
= αqR(q)

From the geometry of linear programming, αq is the dis-
tance between the vertex x∗ and x(q). And the distance of
the polyhedron (i.e. the feasible domain of (1)) is not more
than
√
2. From the definition of vertex gap and adjacent gap,

we have ∆q+1 ≤ ∆(q). Combine the two facts together, we
obtain R(i) ≥ ∆i+1√

2
.

Then consider LP (3), notice that the feasible domain of
(3) is a subset of D and the optimal extreme point of (3) is
also a vertex of D. The feasible domain of (3) is nonempty
because of the existence of the null arm. Under assumption
2.1, different LP (3) with different absent optimal arms have
different vertex. Based on the definition of vertex gap, we
could conclude that G(i) ≥ ∆i+1.

The details of the proof are provided in Appendix A.

3.3. Theoretical result

Theorem 3.2. For the OAK problem, Algorithm 1 makes
errors with probability at most

O

(
md logm · exp

(
− b4B

90Hmax(|X ∗|, logm)

))
.

Proof Sketch. Notice that the total pulls of BASEOAK is
at most B and ci,j(t) ≤ 1 for all arm i and resource j
during one round t, the algorithm will never exceed the
consumption knapsack.

First, we argue that at the end of each phase, the optimal
value of (4) is always close to OPTLP. At the end of phase
p, with probability at least 1− 2md · exp

(
−2δ2ps(p)

)
), we

have

µ̄⊤x̄∗(p) ≥
(
1− δp

b

)
OPTLP − δp,

µ̄⊤x̄∗(p) ≤
(
1 +

δp
b

)
(OPTLP −∆2) + δp.

Then based on the analysis of the gap between the optimal
solution of the dual form of (4) and w∗, we could bound the
probability that R̄i∗(p) > R̄i′(p) is at most

2md · exp

(
−2
(
b∆2

8
+

b2Ri′

8

)2

s(p)

)
.

And the probability that Ḡi∗(p) < Ḡi′(p) is at most

2md · exp
(
−2b2G2

i∗

9
s(p)

)
.

For all arms in Xp, let Pp and P̄p denote the set of optimal
arms for (1) and (4), Qp and Q̄p denote the set of sub-
optimal arms for (1) and (4). Let S∗

p denote the 1
16 |Xp| arms

with smallest Gi and S′
p denote the 1

16 |Xp| arms with largest
Ri, respectively. Define

Φ∗
p := max

i∈Pp\S∗
p

exp

(
−2b2G2

i

9
s(p)

)
,

Φ′
p := max

i∈Qp\S′
p

exp

(
−2
(
b∆2

8
+

b2Ri

8

)2

s(p)

)
.

Let us start with the case that Q̄p > P̄p. Consider the
number of arms in Q̄p ∩ (Pp\S∗

p) , then

E[|Q̄p ∩ (Pp\S∗
p)|] =

∑
i∈Pp\S∗

p

P[Ḡi(p) < Ḡi′(p)]

≤
∑

i∈Pp\S∗
p

2md · exp
(
−2b2G2

i∗

9
s(p)

)
≤ 2md · |Pp\S∗

p | · Φ∗
p.

Then we apply Markov’s inequality and obtain

P[|Q̄p ∩ (Pp\S∗
p)| >

1

8
|Q̄p|] ≤ 16md ·

|Pp\S∗
p |

|Q̄p|
Φ∗

p.

We could bound the cardinality of the set Q̄p∩Qp with high
probability

P[|Q̄p ∩Qp| >
3

4
|Q̄p|] ≥ 1− 16md ·

|Pp\S∗
p |

|Q̄p|
Φ∗

p.

Based on this event, let i∗p denote the eliminated optimal
arm in phase p. Consider the the number of arms in (Q̄p ∩
Qp)\S′

p with larger R̄x than that of the eliminated optimal
arm and let N ′

p denote it, then

E[N ′
p] =

∑
i∈(Q̄p∩Qp)\S′

p

P[R̄i∗p
(p) < R̄i(p)]

≤
∑

i∈(Q̄p∩Qp)\S′
p

2md · exp

(
−
(
b∆2

4
√
2
+

b2Ri

4
√
2

)2

s(p)

)

By applying Markov’s inequality, we obtain

P[N ′
p >

1

6
|Q̄p ∩Qp|] ≤

6E[N ′
p]

|Q̄p ∩Qp|
.

We obtain that the probability that there is at least one elim-
inated optimal arms is at most 32md · Φ∗

p + 12md · Φ′
p.

Similarly, the probability that at least one sub-optimal arm
is added to X ∗

p is at most 32md ·Φ′
p+12md ·Φ∗

p. The pulls
for each arm in Xp before phase t+ 1 satisfy

s(p) ≥ B

log4/3 m

p∑
k=0

1

|Xp + X ∗
p |

≥ B

log4/3 m

p∑
k=0

min

(
2

|Xp|
,

2

|X ∗
p |

)
.
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Algorithm 2 FullOAK Algorithm (FULLOAK)
Input: resource constraint B, number of arms
m

1: Pull each arm once
2: while time horizon is less than T/3 and the consump-

tion of any resource is less than B/3 do
3: for t = 1, 2, . . . ,m do
4: Solve the linear program (5) and let xt denote the

solution for it
5: Choose an arm to ‘pull’ as an independent sample

from the distribution xt

6: end for
7: end while
8: Obtain the estimate of the optimal distribution xT/3.
9: X0 ← [m], X ′

0 ← ∅, X ∗
0 ← ∅

10: for p = 0, . . . , ⌈log4/3 m⌉ − 1 do
11: Pull each arm i ∈ Xp for

n(p) =

⌊
B

2|Xp ∪ X ∗
p |⌈log4/3 m⌉

⌋

times
12: Compute the empirical estimator of R̄i and Ḡi for

each arm i ∈ Xp

13: if more basic variables in x̄∗(p) then
14: X ∗

p+1 ← X ∗
p ∪ { the set of ⌈|Xp|/4⌉ optimal arms

in Xp with the largest Ḡi}
15: else
16: X ′

p+1 ← X ′
p ∪ { the set of ⌈|Xp|/4⌉ sub-optimal

arms in Xp with the largest R̄i}
17: end if
18: Xp+1 ← X0\(X ′

p+1 ∪ X ∗
p+1)

19: end for
20: Output X ∗

⌈log4/3 m⌉

Combine them together, then we complete the proof. The
details of the proof are provided in Appendix B.

4. FullOAK Algorithm and Lower Bound
This section develops an algorithm, called FULLOAK
(shown in Algorithm 2), that solves the OAK problem based
on some intuitions of BASEOAK. We provide the introduc-
tion, the main idea, and theoretical analysis of the algorithm.
Moreover, we provide an instance-dependent lower bound
for the OAK problem.

4.1. FullOAK algorithm

Notice that the theoretical analysis of BASEOAK show the
dependence on |X ∗| that the learning strategy makes mis-
takes for the OAK problem. The main reason is that an

accurate estimator of the fixed optimal distribution suffices
to guarantee algorithms with low error probability. However,
BASEOAK does uniform exploration between all surviving
arm during one phase, which veer widely from the optimal
distribution. This also makes BASEOAK cannot delete any
optimal arm during the game, so the exploration ability is
limited. The dependence could be avoided if the algorithm
obtains an accurate estimator before the reject/accept phase.
Based on these analyses, we present the FULLOAK algo-
rithm. There are two steps: the first step derived from the
UCB family of algorithms and aims to converge the optimal
solution of (1); the second step based on BASEOAK, the
difference is that FULLOAK will delete all accept arms from
the surviving arms set at the end of each phase. We provide
the specification of the first step below.

Let ni(t) denote the number of pulls of arm i before round
t + 1. Let µU (t) and CL(t) denote the upper confidence
bound reward vector and lower confidence bound consump-
tion matrix until round t, respectively. Formally,

µU
i (t) := proj[0,1] (µ̄i(t) + 2frad(µ̄i(t), ni(t) + 1)) ,

CL
j,i(t) := proj[0,1]

(
C̄i,j(t)− 2frad(C̄i,j(t), ni(t) + 1)

)
,

where proj[0,1] is a project function from real number to
interval [0, 1] and frad(v, n) =

√
γv
n + γ

n , γ > 0 is a confi-
dence radius function. Then after the selection of round t,
consider the following linear program

max (µU (t))⊤x

s.t. CL(t)x ≤ (1− ϵ)b.

x ≥ 0

(5)

The algorithm solves this linear program and selects arm
according to the optimal solution of it for each round
during the first step. Let ni(T/3) denote the pulls for
arm i during the first phase. Then we obtain xT/3 with
(xT/3)i =

ni(T/3)∑
i ni(T/3) .

4.2. Theoretical result

The following theorem expresses the error bound for FUL-
LOAK.
Theorem 4.1. For the OAK problem, with ϵ =√

3 log(mdT )m
B + 3 log(mdT )m log T

B , Algorithm 2 makes er-
rors with probability at most

O

(
mdT · exp

(
− αb2B

H logm

))
,

where α is a constant.

Proof sketch. The upper confidence bound of the expected
reward µU (T/3) and lower confidence bound of the ex-
pected consumption CL(T/3) satisfy the following proper-
ties:

6
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(1) with probability at least 1− 2mdT · exp(−Ω(γ)),

|(µU (T/3))⊤xT/3 − OPTLP|

≤ O

(√
γm · OPTLP

T
+

γmd

T
+

OPTLP

B

√
γmd · b

T

)
.

(2) with probability at least 1− 2mdT · exp(−Ω(γ)),

T/3∑
t=1

∣∣∣(CL(t))⊤xt − ct

∣∣∣
≤
(
1−O

(√
γm

B
+

γm log T

B

))
B1

3
.

Notice that the consumption during the second step is at
most B

2 , so the consumption of FULLOAK will less than 5B
6

with high probability.

For the second step, at the end of phase p, for any opti-
mal arm i∗ ∈ X ∗ and any sub-optimal arm i′ ∈ X ′, the
probability that R̄i∗(p) > R̄i′(p) is at most

2md · exp
(
−α1 · b2R2

i′s(p)
)

for some constant α1. And the probability that Ḡi∗(p) <
Ḡi′(p) is at most

2md · exp
(
−2b2G2

i∗

9
s(p)

)
.

Similar to the proof of Theorem 3.2, we bound the prob-
ability that the algorithm makes mistakes by ignoring the
1
16 |Xp| arms with the smallest Gi and the 1

16 |Xp| arms with
largest Ri of the active arms set, then we complete the proof.
The details of the proof are provided in Appendix C.

4.3. Lower bound

We provide an instance-dependent lower bound. Our anal-
ysis ensures that any bandit strategy nevertheless makes a
mistake for some OAK problem instances.

Theorem 4.2. For some OAK problem instances, consider
any bandits algorithm that output an arm set O ⊆ [m] at
the end of the T -th round, it holds that

P(O ≠ X ∗) ≥ Ω

(
exp

(
− βb2B

H logm

))
,

where β is a constant.

Proof. We provide the core constructions below and give
the detailed proof in Appendix D.

Let (pw)2≤w≤W ∈ [1/4, 1/2) be (W−1) real numbers and
let p1 = 1/2. And we define the quantities lw := 1/2− pw.
Assume m is an exact multiple of W . Then we define

µi :=
1

2
− lw

2⌊(m−i)/W⌋ , w = (i mod W ), i ∈ [m].

Let πi denote the Bernoulli distribution of mean µi and π′
i

denote the Bernoulli distribution of mean 1− µi.

Consider W problem instances with time horizon T , m
arms, d types of resources being consumed, and knapsack
b = W/m for each type of resource. To ease the reading,
assume T is a power of 2, W ≥ Ω(

√
m), and d > m/W .

Let w = (i mod W ), for the u-th problem instance, the i-th
arm xu

i is associated with the reward distribution πu
i ,

πu
i := πi1{w ̸= u}+ π′

i1{w = u}, u ∈ [W ], i ∈ [m].

The consumption vector cui satisfies (cui )1 = (cui )d =
(cui )w = 1, and (cui )j = 0 for all j ̸= 1, j ̸= w, j ̸= d.

5. Special Cases
In this section, we investigate some special cases of the
OAK problem, including simple OAK problem and some
classical pure exploration problems.

5.1. Simple OAK problem

The upper and lower bounds show the dependence on |X ∗|
that BASEOAK makes mistakes for the general OAK prob-
lem. The dependence could be avoided for some simple
OAK problems. We say if the deletion of any optimal arm
does not change Ri and Gi of any other arm, then the OAK
problem is a simple OAK problem. We provide some ex-
amples of simple OAK problem in Sec. 5.2. For the simple
OAK problem, we present BASEOAK− (Algorithm 3) based
on BASEOAK: the algorithm eliminates the accepted arms
from the active arm set at the end of each accept phase.

Theorem 5.1. For the simple OAK problem, Algorithm 3
makes errors with probability at most

O

(
m2 · exp

(
− κT

H logm

))
,

where κ is a constant.

We provide the specification of Algorithm 3 and the proof
details of Theorem 5.1 in Appendix E.1.

5.2. Pure exploration problems

Example 5.2 (Best arm identification). The best arm identi-
fication problem can be modeled by the OAK problem with
one resource (time resource) and one optimal arm. For the
BAI problem, Algorithm 3 makes errors with probability at
most

O

(
logm · exp

(
− κT

H logm

))
,

where κ is a constant.

Notice that for the BAI problem, our complexity measure H
is same as the complexity measure introduced in (Audibert
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Figure 1. The results obtained in different environments.

et al., 2010). The result recovers the tight lower bound
(Carpentier & Locatelli, 2016) up to a logarithmic factor and
recovers the state-of-the-art upper bound in (Karnin et al.,
2013). We provide the details of the proof in Appendix E.2.

Example 5.3 (TopK and MB problem). For any K ∈ [m],
the TopK problem can be modeled by the simple OAK prob-
lem with d = 2 and |X ∗| = K. The consumption vector
for each arm is deterministic (b, b/K)⊤. Note that the
number of optimal arms K is known to the learner. Let
P = {X (1), . . . ,X (K)} be a partition of [m]. The MB prob-
lem with P can be modeled by the simple OAK problem with
d = K + 1 and |X ∗| = K. The deterministic consumption
vector C·,i for each arm i ∈ X (k), k ∈ [K] is deterministic
with (C1,i = b, Ck,i = b/|X (k)|, Cj,i = 0)[j ̸= 1, j ̸= k].
Note that the number of optimal arms K and the partition
P are known to the learner. For the TopK problem or the
MB problem with K partitions, Algorithm 3 makes errors
with probability at most

O

(
m · exp

(
− κT

H logm

))
,

where κ is a constant.

Notice that the multiplicative factor in Example 5.3 is O(m)
while the previous upper bound is O(m2) for the TopK and
MB in the fixed budget setting (Bubeck et al., 2013; Chen
et al., 2014). We provide the proof in Appendix E.2.

6. Numerical Evaluations
We consider a specific instance in which there are four
arms (m = 4), three types of resources (d = 3), the ex-
pected per-round resource constraint of 0 < b ≤ 1, and
a parameter 0 < ϵ ≤ b. The unknown reward vector is
r = (0.5, 0.5 − ϵ, 0.5, 0.5), and the unknown expected re-
source consumption is represented by the matrix:

C =

0.5 0.5 0 0
0 0 0.5 0.5 + ϵ
b b b b

 .

We begin by considering the case where the knapsack
b = 0.2 and the gap ϵ = 0.01. Among the available arms,
the ones with indices 1 and 3 are optimal, while the rest

are sub-optimal. To evaluate the performance of different
algorithms, we compare the probability of outputting the
index set containing all optimal arms. All results are the
averages over 100 runs.

Note that the traditional regret minimization algorithms
are not suitable for handling the OAK setting. This can
be attributed to the fact that these algorithms rely on the
“optimism under uncertainty” principle and the associated
confidence radius is often too large to explore the entire
latent structure adequately. Consequently, the selection
probability for “not too bad” arms remains high even when
the game is ending. To compare our algorithms with tradi-
tional strategies, we propose a modification to the UcbBwK
algorithm (Babaioff et al., 2015) that makes it more suitable
for the OAK task. Specifically, we modify the algorithm to
compute the LP based on the mean estimator after the last
round and output optimal arms based on the solution. We
refer to this new algorithm as “MeanBwK.” The algorithm
maintain a distribution D(t) over arms to select arms dur-
ing the times horizons, and we assume that the algorithms
identify optimal arms based on the distribution of the last
round, i.e., an arm i is considered optimal if and only if
D(τ)

i > 10−3, where τ is the index of the last round before
the algorithms stop.

The results (accuracy) obtained in different environments
are summarized in Figure 1. Figure 1(a) provides results for
different time horizons. It is noteworthy that our algorithms
outperform MeanBwK due to their new designs tailored
specifically for the OAK setting. To further evaluate the
performance of our algorithms, we vary the value of ϵ while
keeping b = 0.2 and T = 2 × 104 fixed, and present the
results in Figure 1(b). Note that for smaller ϵ, algorithms are
more susceptible to errors. We also investigate the impact of
different values of b on the performance of our algorithms.
We conduct experiments with ϵ = 0.01 and T = 2 × 104

fixed, while also modifying the consumption to ensure that
there are at least two optimal arms. The results of these
experiments are presented in Figure 1(c). Based on the
results, we observe that smaller values of b make it more
challenging for the algorithms to identify all optimal arms,
even with a longer time horizon, which is consistent with

8
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our theoretical analysis. The code for algorithms could
be available at https://github.com/ShaoangLi/
OAK-problem.git.

7. Related Work
7.1. Pure exploration problems

The best arm identification with the fixed budget setting
was introduced by (Audibert et al., 2010). Subsequent work
(Karnin et al., 2013; Carpentier & Locatelli, 2016; Chen
et al., 2017c) establish the upper bound and lower bound
of BAI, respectively. There are some extensions of BAI
including top-K best arms identification (Kalyanakrishnan
et al., 2012; Bubeck et al., 2013; Chen et al., 2017a;b; Réda
et al., 2021; Zhou & Tian, 2022), θ-threshold arms identi-
fication (Locatelli et al., 2016; Mukherjee et al., 2017; Xu
et al., 2020), ϵ-best arm identification (Kano et al., 2019;
Katz-Samuels & Jamieson, 2020), multi-bandits best arms
identification (Gabillon et al., 2011; Bubeck et al., 2013),
and other variants (Abbasi-Yadkori et al., 2018; Rizk et al.,
2021; Zhang & Ong, 2021; Zhong et al., 2021; Barrier et al.,
2022; Wang et al., 2022). The Feasible Arms Identification
(FAI) setting (Katz-Samuels & Scott, 2018; 2019) aims to
identify all feasible (distribution have means belonging to
the polyhedron) arms and top-K feasible arms, respectively,
while the decision-maker aims to identify all optimal arms
in the OAK problem. There are several fundamental dif-
ferences between the OAK setting and the Feasible Arms
Identification problem: (1) the expected reward vector µ is
unknown for the OAK setting but known for the FAI setting;
(2) the leaner has to consider infinite possible candidate
distributions satisfy Cx ≤ b (consumption matrix C is
unknown) for the OAK setting while only needs to consider
finite m distributions satisfy xi ∈ D (feasible domain D is
known) for the FAI setting.

7.2. Bandits with knapsacks

Another line relevant to this paper is bandits with knap-
sacks. The regret minimization setting of stochastic BwK
was first introduced and optimally solved in (Badanidiyuru
et al., 2013) to encompass application domains the learner
be limited by the resource constraints. Subsequent work
provide a UCB-based algorithm for BwK problem (Agrawal
& Devanur, 2014) and a ‘black-box reduction’ from ban-
dits to BwK (Immorlica et al., 2019). They all achieve
near-optimal worst-case regret. Some work (Flajolet &
Jaillet, 2015; Sankararaman & Slivkins, 2021; Ren et al.,
2021; Li et al., 2021) study the problem-dependent regret
of BwK. There are some other versions of BwK including
budgeted bandits (Tran-Thanh et al., 2010; 2012; Ding et al.,
2013; Cayci et al., 2020; Das et al., 2022), contextual ban-
dits with knapsacks (Badanidiyuru et al., 2014; Agrawal
& Devanur, 2016; Agrawal et al., 2016; Sivakumar et al.,

2022; Li & Stoltz, 2022), combinatorial semi-bandits with
knapsacks (Sankararaman & Slivkins, 2018), adversarial
bandits with knapsacks (Immorlica et al., 2019; Kesselheim
& Singla, 2020; Castiglioni et al., 2022), other variants (Liu
et al., 2022b;a; Kumar & Kleinberg, 2022), and applications
(Badanidiyuru et al., 2012; Babaioff et al., 2015; Li et al.,
2022). The regret minimization setting aims to trade off
exploration and exploitation while the OAK setting is the
pure-exploration framework. As a result, the two settings
require different techniques for proving lower and upper
bounds.

To achieve near-optimal instance-dependent regret for BwK,
(Li et al., 2021) provide an algorithm (phase I of Algorithm
1) from the primal-dual perspective that can identify the
optimal arm set. However, the exploration setting is differ-
ent and this primal-dual algorithm cannot handle the OAK
task due to two fundamental reasons. First, the theoretical
result of the primal-dual algorithm (phase I) is based on the
assumption that the algorithm will not exceed the resource
constraint, while the OAK problem is motivated by pure
exploration with resource consumption and hard knapsacks
during the learning process. Second, the stopping condi-
tion of the primal-dual algorithm depends on the pre-set
confidence radius due to the “optimism under uncertainty”
strategy. With a fixed pre-set confidence radius and the un-
known hardness of the problem instance, the stopping time
of the primal-dual algorithm is unpredictable.

8. Conclusion
We consider the optimal arms identification with knap-
sacks problem, which extends the best arm identification
by considering resource consumption. We present a novel,
parameter-free algorithm that returns optimal arms with
high probability. We propose a new complexity measure
for the OAK problem, which builds a bridge between the
OAK and BwK problem. We provide the error upper and
lower bounds for the general OAK problem based on the
new complexity measure. We further investigate some spe-
cial cases and the results show that the proposed algorithm
recovers or improves the state-of-the-art upper bounds for
some classical pure exploration problems.
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A. Analysis of Complexity Measure (Theorem 3.1)
After removing all non-active constraints of (1), we can get a standard form LP. Formally, base on the matrix C, by arranging
the |X ∗| basic columns and |Y∗| active rows next to each other, we obtain a |Y∗| × |X ∗| optimal basis matrix corresponding
to x∗ and let P denote the basis matrix. Similarly, by arranging the |X ′| non-basic columns and |Y∗| active rows next to
each other, we obtain a |Y∗| × |X ′| non-basis matrix and let Q denote it. Then we could construct a matrix A := [P |Q]
with |X ∗| linearly independent columns (rows). We use b∗ to denote the vector (b, . . . , b)⊤ ∈ (0, 1]|X

∗|. Then the standard
form LP is

max µ⊤x,

s.t. Ax = b∗,x ≥ 0.
(6)

It is oblivious that (1) and (6) have same feasible domain D, optimal solution x∗, and optimal value OPTLP. The dual
problem of (6) is

min (b∗)⊤w,

s.t. A⊤w ≥ µ,w ≥ 0.

And w∗
B is the optimal solution of it. We define a new m×m square matrix:

M :=

[
P Q
0 I

]
.

We use I to denote the identity matrix. We also get the inverse of M :

M−1 :=

[
P−1 −P−1Q
0 I

]
.

Define a m dimension vector
dq := (M−1)·,q, q ∈ X ′.

Notice that x∗ is the optimal extreme point in D. Under the Assumption 2.1, there are |X ′| neighbors of x∗. And dq is the
edge direction from x∗ leading to the adjacent extreme points x(q) corresponding to the increase of the sub-optimal variable
q ∈ X ′. We use x(q) to denote the q-th optimal adjacent vertex, i.e.,

µ⊤x∗ > µ⊤x(1) ≥ . . . ≥ µ⊤x(q) ≥ . . . , q ∈ X ′.

We define the adjacent gap ∆(q) as
∆(q) = µ⊤x∗ − µ⊤x(q), q ∈ X ′.

Then consider the relationship between ∆(q) and R(q). Let dqi denote the i-th element of dq . Define

αq = min
i∈X∗

{
x∗
i

−dqi

}
,

we have
∆(q) = −αqµ

⊤dq = −αq(µq −
(
w∗

B)
⊤Q·,q

)
= −αq(µq −

(
w∗)⊤C·,q

)
= αqR(q).

From the geometry of linear programming, αq is the distance between the vertex x∗ and x(q). The distance of the polyhedron
(i.e., the feasible domain of (1)) will be not more than

√
2. From the definition of vertex gap and adjacent gap, we have

∆q+1 ≤ ∆(q). Combine the two facts together, we obtain R(i) ≥ ∆i+1√
2

.

Then consider LP (3), notice that the feasible domain of (3) is a subset of D and the optimal extreme point of (3) is also a
vertex of D. The feasible domain of (3) is nonempty because of the existence of null arms. Under Assumption 2.1, different
LP (3) with different absent optimal arms have different vertex. Based on the definition of vertex gap, we could conclude
that G(i) ≥ ∆i+1.

B. Analysis of Algorithm 1 (Theorem 3.2)
In this section, we analyze the probability bound of Algorithm 1 and prove Theorem 3.2.
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B.1. Main lemmas

Lemma B.1. At the end of phase p, for the optimal value of (4), if the algorithm makes no errors before the beginning of
phase p, with probability at least 1− 2md · exp

(
−2δ2ps(p)

)
), we have

µ̄⊤x̄∗(p) ≥
(
1− δp

b

)
OPTLP − δp.

Proof. According to the Hoeffding’s inequality, with probability at least 1− 2md · exp
(
−2δ2ps(p)

)
, for all optimal arms i∗

and all active constraints j∗ in (1) and (4), we have

max(µi∗ − δp, 0) ≤ µ̄i∗(p) ≤ min(1, µi∗ + δp),

max(Cj∗,i∗ − δp, 0) ≤ C̄j∗,i∗(p) ≤ min(1, Cj∗,i∗ + δp).

Under this event, consider the following linear program

max µ⊤x,

s.t. x⊤C⊤
j,· ≤ b− δp,∀j ∈ [d],

x ≥ 0.

Let x∗(bL) and OPTLP(b
L) denote the optimal solution and optimal value of it, respectively. According to (Agrawal &

Devanur, 2014), we have

OPTLP(b
L) ≥

(
1− δp

b

)
OPTLP.

Then we show that x∗(bL) is also a feasible solution for LP (µ̄, C̄) of phase p. Consider the j-th resource

m∑
i=1

C̄j,ix
∗
i (b

L)

=

m∑
i=1

(C̄j,i − Cj,i)x
∗
i (b

L) +

m∑
i=1

Cj,ix
∗
i (b

L)

≤ max
i∈[m]

(
C̄j,i − Cj,i

)
+ (b− δp)

≤ b.

With this feasibility, we have
µ̄⊤x∗(bL)

= µ⊤x∗(bL)−
(
µ⊤x∗(bL)− µ̄⊤x∗(bL)

)
≥ OPTLP(b

L)−
∥∥µ⊤ − µ̄⊤∥∥

∞ ·
∥∥∥x∗(bL)

∥∥∥
1

≥
(
1− δp

b

)
OPTLP − δp.

Then we get

µ̄⊤x̄∗(p) ≥ µ̄⊤x∗(bL) ≥
(
1− δp

b

)
OPTLP − δp.

Lemma B.2. At the end of phase p, for the optimal value of (4), if one of optimal arms is not active in x̄∗(p), with
probability at least 1− 2md · exp

(
−2δ2ps(p)

)
), we have

µ̄⊤x̄∗(p) ≤
(
1 +

δp
b

)
(OPTLP −∆2) + δp.
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Proof. According to Theorem 3.1, for any arm i ∈ [m], we have

OPT−i
LP ≤ OPTLP −∆2. (7)

According to the Hoeffding’s inequality, with probability at least 1− 2md · exp
(
−2δ2ps(p)

)
, for all optimal arms i∗ and all

active constraints j∗ in (1) and (4), we have

max(µi∗ − δp, 0) ≤ µ̄i∗(p) ≤ min(1, µi∗ + δp),

max(Cj∗,i∗ − δp, 0) ≤ C̄j∗,i∗(p) ≤ min(1, Cj∗,i∗ + δp).

Under this event, assume one of the optimal arm i∗ ∈ X ∗ is eliminated in round t. Consider the following linear program

max µ⊤x,

s.t. x⊤C⊤
j,· ≤ b+ δp,∀j ∈ [d],

x ≥ 0, xi∗ = 0.

(8)

Let x−i∗(bU ) and OPTi∗

LP(b
U ) denote the optimal solution and optimal value of it, respectively. According to (Agrawal &

Devanur, 2014), we have

OPTi∗

LP ≥
b

b+ δp
OPTi∗

LP(b
U ).

Combine it with Theorem 3.1, we get

OPTi∗

LP(b
U ) ≤

(
1 +

δp
b

)
(OPTLP −∆2) .

Then we show that x̄∗(p) is also a feasible solution for (8) of phase p. Consider the j-th resource

m∑
i=1

Cj,ix̄
∗
i (p)

=

m∑
i=1

(Cj,i − C̄j,i)x̄
∗
i (p) +

m∑
i=1

C̄j,ix̄
∗
i (p)

≤ max
i∈[m]

(
Cj,i − C̄j,i

)
+ b

≤ b+ δp.

With this feasibility, we have
µ̄⊤x̄∗(p)

= µ⊤x̄∗(p) +
(
µ̄⊤x̄∗(p)− µ⊤x̄∗(p)

)
≤ OPTi∗

LP(b
U ) +

∥∥µ̄⊤ − µ⊤∥∥
∞ · ∥x̄

∗(p)∥1

≤
(
1 +

δp
b

)
(OPTLP −∆2) + δp.

Then we complete the proof.

Lemma B.3. At the end of phase p, for any optimal arm i∗ ∈ X ∗ and any active sub-optimal arm i′ ∈ X ′ ∩ Xp, the
probability that R̄i∗(p) > R̄i′(p) is at most

2md · exp

(
−2
(
b∆2

8
+

b2Ri′

8

)2

s(p)

)
.

Proof. Consider the dual form
min b⊤w,

s.t. C̄
⊤
w ≥ µ̄,w ≥ 0.
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Let w̄∗(p) denote the optimal solution of it, according to Lemma B.1 and B.2, we have(
1− δp

b

)
b⊤w∗ − δp ≤ b⊤w̄∗(p) ≤

(
1 +

δp
b

)(
b⊤w∗ −∆2

)
+ δp.

Then we get
d∑

j=1

(w̄∗(p))j −
d∑

j=1

w∗
j ≥ −

δp
b

1 +

d∑
j=1

w∗
j

 ,

d∑
j=1

(w̄∗(p))j −
d∑

j=1

w∗
j ≤

δp
b

 d∑
j=1

w∗
j −

∆2

b

+
δp −∆2

b
.

(9)

Consider the Ri of i∗ and i′

Ri∗ = (w∗)⊤Ci∗ − µi∗ ≤ 0,

R̄i∗ = (w̄∗(p))⊤C̄i∗ − µ̄i∗ > 0,

R̄i′ = (w̄∗(p))⊤C̄i′ − µ̄i′ < R̄i∗ .

(10)

From (9) and (10), we have

d∑
j=1

(w̄∗(p))jC̄j,i∗ − µ̄i∗

≤
d∑

j=1

(w̄∗(p))j (Cj,i∗ + δp)− (µi∗ − δp)

=

d∑
j=1

w∗
j (Cj,i∗ + δp)−

 d∑
j=1

w∗
j (Cj,i∗ + δp)−

d∑
j=1

(w̄∗(p))j (Cj,i∗ + δp)

− (µi∗ − δp)

≤
d∑

j=1

w∗
j (Cj,i∗ + δp) +

δp
b

 d∑
j=1

w∗
j −

∆2

b

+
δp −∆2

b
− (µi∗ − δp)

≤
(
δp +

δp
b

)1 +

d∑
j=1

w∗
j

− ∆2

b
− δp∆2

b2
.

And
d∑

j=1

(w̄∗(p))jC̄j,i′ − µ̄i′

≥
d∑

j=1

(w̄∗(p))j(Cj,i′ − δp)− (µi′ + δp)

=

d∑
j=1

w∗
j (Cj,i′ − δp)−

 d∑
j=1

w∗
j (Cj,i∗ − δp)−

d∑
j=1

(w̄∗(p))j (Cj,i∗ − δp)

− (µi′ + δp)

≥
d∑

j=1

w∗
j (Cj,i′ − δp)−

δp
b

1 +

d∑
j=1

w∗
j

− (µi′ + δp)

≥ Ri′ −
(
δp +

δp
b

)1 +

d∑
j=1

w∗
j

 .
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According to the Strong duality theorem, we have

d∑
j=1

w∗
j =

1

b

m∑
i=1

µix
∗
i =

1

b
OPTLP ≤

1

b
.

From the Hoeffding’s inequality, Lemma B.1 and B.2, we have

P[R̄i∗(p) > R̄i′(p)]

≤ P

∆2

b
+

δp∆2

b2
+Ri′ < 2

(
δp +

δp
b

)1 +

d∑
j=1

w∗
j


≤ P

[
∆2

b
+Ri′ < 2δp

(
1 +

1

b

)2
]

≤ 2md · exp

(
−2
(
b∆2

8
+

b2Ri′

8

)2

s(p)

)
.

Then we complete the proof.

Lemma B.4. During phase p, for any optimal arm i∗ ∈ X ∗ and any active sub-optimal arm i′ ∈ X ′ ∩ Xp, the probability
that Ḡi∗(p) < Ḡi′(p) is at most

2md · exp
(
−2b2G2

i∗

9
s(p)

)
.

Proof. During phase p, for each arm i ∈ [m], consider the linear programming

max µ̄⊤x,

s.t. C̄x ≤ b,

x ≥ 0, xi = 0.

Let OPT
−i

LP denote the optimal value of it. According to Lemma B.1 and the proof of Lemma B.2, with probability at least
1− 2|P̄p ∪ Pp ∪ X ∗

p |2 · exp
(
−2δ2ps(p)

)
, we have

OPT
−i′

LP ≥
(
1− δp

b

)
OPTLP − δp,

OPT
−i∗

LP ≤
(
1 +

δp
b

)
(OPTLP −Gi∗) + δp.

Then we have
P[Ḡi∗(p) < Ḡi′(p)]

≤ P
[(

1 +
δp
b

)
(OPTLP −Gi∗) + δp ≥

(
1− δp

b

)
OPTLP − δp

]
≤ P

[(
1 +

2(OPTLP −Gi∗)

b

)
δp ≥ Gi∗

]
≤ 2md · exp

(
−2b2G2

i∗

9
s(p)

)
.

B.2. Proof of Theorem 3.2

For all arms in Xp, let Pp and P̄p denote the set of optimal arms for (1) and (4), Qp and Q̄p denote the set of sub-optimal
arms for (1) and (4), respectively. Consider the first phase p such that there is at least one eliminated optimal arm or one
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sub-optimal arm is added to X ∗
p . Let S∗

p denote the 1
16 |Xp| arms with smallest Gi and S′

p denote the 1
16 |Xp| arms with

largest Ri, respectively. Define

Φ∗
p := max

i∈Pp\S∗
p

exp

(
−2b2G2

i

9
s(p)

)
,

Φ′
p := max

i∈Qp\S′
p

exp

(
−2
(
b∆2

8
+

b2Ri

8

)2

s(p)

)
.

Consider the case that Q̄p > P̄p. Consider the number of arms in Q̄p ∩ (Pp\S∗
p) , then

E[|Q̄p ∩ (Pp\S∗
p)|] =

∑
i∈Pp\S∗

p

P[Ḡi(p) < Ḡi′(p)]

≤
∑

i∈Pp\S∗
p

2md · exp
(
−2b2G2

i∗

9
s(p)

)
≤ 2md · |Pp\S∗

p | · Φ∗
p.

Then we apply Markov’s inequality

P[|Q̄p ∩ (Pp\S∗
p)| >

1

8
|Q̄p|]

≤
8E[|Q̄p ∩ (Pp\S∗

p)]

|Q̄p|

≤ 16md ·
|Pp\S∗

p |
|Q̄p|

Φ∗
p.

(11)

Then we have

P[|Q̄p ∩Qp| >
3

4
|Q̄p|] ≥ 1− 16md ·

|Pp\S∗
p |

|Q̄p|
Φ∗

p. (12)

Based on this event, let i∗p denote the eliminated optimal arm in phase p. Consider the the number of arms in (Q̄p ∩Qp)\S′
p

with larger R̄x than that of the eliminated optimal arm and let N ′
p denote it, then

E[N ′
p] =

∑
i∈(Q̄p∩Qp)\S′

p

P[R̄i∗p
(p) < R̄i(p)]

≤
∑

i∈(Q̄p∩Qp)\S′
p

2md · exp

(
−2
(
b∆2

8
+

b2Ri

8

)2

s(p)

)

≤ 2md · |(Q̄p ∩Qp)\S′
p| · max

i∈(Q̄p∩Qp)\S′
p

exp

(
−2
(
b∆2

8
+

b2Ri

8

)2

s(p)

)
.

Then we apply Markov’s inequality

P[N ′
p >

1

6
|Q̄p ∩Qp|] ≤

6E[N ′
p]

|Q̄p ∩Qp|

≤ 12md · max
i∈(Q̄p∩Qp)\S′

p

exp

(
−2
(
b∆2

8
+

b2Ri

8

)2

s(p)

)
.

Then we obtain that the probability that there is at least one eliminated optimal arms is at most

32md · Φ∗
p + 12md · Φ′

p.
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Consider the case that P̄p > Q̄p. Similarly, we have

P[|P̄p ∩ (Qp\S′
p)| >

1

8
|P̄p|]

≤
8E[|P̄p ∩ (Qp\S′

p)]

|P̄p|

≤ 16md ·
|Qp\S′

p|
|P̄p|

Φ′
p,

(13)

and

P[|P̄p ∩ Pp| >
3

4
|P̄p|] ≥ 1− 16md ·

|Qp\S′
p|

|P̄p|
Φ′

p. (14)

Let i′t denote the added sub-optimal arm in phase p. Consider the the number of arms in (P̄p ∩ Pp)\S∗
p with smaller Ḡx

than that of the sub-optimal arm i′ and let N∗
t denote it, then

E[N∗
t ] =

∑
i∈(P̄p∩Pp)\S∗

p

P[Ḡi(p) < Ḡi′(p)]

≤
∑

i∈(P̄p∩Pp)\S∗
p

2md · exp
(
−2b2G2

i

9
s(p)

)

≤ 2md · |P̄p ∩ Pp| · max
i∈(P̄p∩Pp)\S∗

p

exp

(
−2b2G2

i

9
s(p)

)
.

Then we apply Markov’s inequality

P[N∗
t >

1

6
|P̄p ∩ Pp|]

≤
6E[N ′

p]

|P̄p ∩ Pp|

≤ 12|P̄p ∪ Pp ∪ X ∗
p |2 · max

i∈(P̄p∩Pp)\S∗
p

exp

(
−2b2G2

i

9
s(p)

)
.

Then the probability that at least one sub-optimal arm is added to X ∗
p is at most

32md · Φ′
p + 12md · Φ∗

p.

In conclude, the probability that the algorithm makes mistakes in round t is at most

32md · (Φ′
p +Φ∗

p). (15)

Next, we analyse the algorithm to bound the probability of making mistakes over all rounds. Clearly, the algorithm does not
exceed the budget B.

Consider the pulls for each arm in Xp before phase p+ 1

s(p) ≥ B

log4/3 m

p∑
k=0

1

|Xp + X ∗
p |

≥ B

log4/3 m

p∑
k=0

min

(
2

|Xp|
,

2

|X ∗
p |

)
.
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Let ip = m
16

(
3
4

)p
, then we have

Φ∗
p = max

i∈Pp\S∗
p

exp

(
−2b2G2

i

9
s(p)

)
≤ exp

(
−
2b2∆2

ip

9
s(p)

)

≤ exp

(
−
4b2∆2

ip

9

(p+ 1)B

|X ∗
p | log4/3 m

)
+ exp

(
−
4b2∆2

ip

9

B

m log4/3 m

(
4

3

)t
)

= exp

(
−
4b2∆2

ip

9ip

ip(p+ 1)B

|X ∗
p | log4/3 m

)
+ exp

(
−
4b2∆2

ip

9ip

B

16 log4/3 m

)

≤ exp

(
−4b2

9H

B

|X ∗|

)
+ exp

(
−4b2

9H

B

16 log4/3 m

)
,

(16)

and

Φ′
p = max

i∈Qp\S′
p

exp

(
−2
(
b∆2

8
+

b2Ri

8

)2

s(p)

)

≤ exp

(
−2
(
b∆2

8
+

b2∆ip

8
√
2

)2

s(p)

)

≤ exp

(
−2
(
b∆2

8
+

b2∆ip

8
√
2

)2
(p+ 1)B

|X ∗
p | log4/3 m

)
+ exp

(
−4
(
b∆2

8
+

b2∆ip

8
√
2

)2
1

ip

B

16 log4/3 m

)

≤ exp

(
−4b4

9H

B

|X ∗|

)
+ exp

(
−4b4

9H

B

16 log4/3 m

)
.

(17)

Combine (15), (16), (17) together, then we complete the proof of Theorem 3.2.

Last, we analyse the algorithm’s behavior. Consider the case that Qp > 2Pp, according to (12) (which does not rely on

Q̄p > P̄p), with probability at least 1− 16md · |Pp\S∗
p |

|Q̄p|
Φ∗

p, we have

|P̄p| = |P̄p ∩Qp|+ |P̄p ∩ Pp|
= |Qp| − |Q̄p ∩Qp|+ |Pp| − |Q̄p ∩ Pp|

<
3

2
|Qp| − |Q̄p|

≤ |Q̄p|.

Similarly, consider the case that Pp > 2Qp, according to (14), with probability at least 1− 16md · |Qp\S′
p|

|P̄p|
Φ′

p, we have

|Q̄p| = |Q̄p ∩Qp|+ |Q̄p ∩ Pp| <
3

2
|Pp| − |P̄p| ≤ |P̄p|.

C. Analysis of Algorithm 2
Our proof based on the following concentration inequality.

Lemma C.1 ((Kleinberg et al., 2008; Babaioff et al., 2015)). Consider some distribution with values in [0, 1], let v and v̄ be
the expectation and average of n independent samples x1, x2, . . . , xn from this distribution, respectively. Then for each
γ > 0,

P[|v − v̄| ≤ frad(v̄, n) ≤ 3frad(v, n)] ≥ 1− exp(−Ω(γ)), (18)

where frad(v, n) =
√

γv
n + γ

n . More generally, equation (18) holds if v = 1
n

∑n
t=1 E[xt|x1, . . . , xt−1].
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We first prove the clean event that the upper confidence bound of the expected reward µU (T/3) and lower confidence bound
of the expected consumption CL(T/3)satisfy the following properties:

(1) with probability at least 1− 2mdT · exp(−Ω(γ)),

|(µU (T/3))⊤xT/3 − OPTLP| ≤ O

(√
γm · OPTLP

T
+

γmd

T
+

OPTLP

B

√
γmd · b

T

)
.

(2) with probability at least 1− 2mdT · exp(−Ω(γ)),

T/3∑
t=1

∣∣∣(CL(t))⊤xt − ct

∣∣∣ ≤ (1−O

(√
γm

B
+

γm log T

B

))
B1

3
.

The proof is standard and similar to Lemma 7.4 in (Badanidiyuru et al., 2013) and the theoretical analysis in Appendix B.3
for the UCB algorithm for BwK (Agrawal & Devanur, 2014). We provide the details for completeness. Let v̂ denote the
empirical average of n samples, with probability at least 1− exp(−Ω(γ)), we have

|v̂ − v̄| ≤ n

n+ 1
· frad(v̂, n) +

v̄

n+ 1

≤ frad(v̂, n+ 1) +
v̄

n+ 1

≤ 2frad(v̂, n+ 1).

By take a union bound, with probability 1−mT · exp(−Ω(γ)), we have∣∣∣∣∣∣ 3T
T/3∑
t=1

(r(t)− µi(t))

∣∣∣∣∣∣ ≤ O

frad

 3

T

T/3∑
t=1

(µU (t))i(t),
T

3

 ,

∣∣∣∣∣∣(µU (T/3))⊤xT/3 −
3

T

T/3∑
t=1

(µU (t))i(t)

∣∣∣∣∣∣ ≤ O

frad

 3

T

T/3∑
t=1

(µU (t))i(t),
T

3

 .

(19)

According to (Badanidiyuru et al., 2013), for any two vectors a,n ∈ Rm
+ , the following inequality always hold:

m∑
i=1

frad(ai, ni)ni ≤
√
γm(a · n) + γm

Therefore, ∣∣∣∣∣∣
T/3∑
t=1

(µi(t) − (µU (t))i(t))

∣∣∣∣∣∣ ≤ O

(∑
t

frad(µi(t), ni(t)(t) + 1)

)

≤ O

(∑
i

(ni(t)(T/3) + 1)frad(µi(t), ni(t)(T/3) + 1)

)

≤ O


√√√√γm

(∑
i

µi(ni(t)(T/3) + 1)

)
+ γm


≤ O


√√√√γm

(∑
t

µit

)
+ γm


≤ O


√√√√γm

(∑
t

(µU (t))i(t)

)
+ γm



(20)
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Combine (19) and (20) together, we obtain√√√√T/3∑
t=1

(µU (t))i(t) ≤

√√√√T/3∑
t=1

r(t) +O(
√
γm),

and ∣∣∣∣∣∣(µU (T/3))⊤xT/3 −
3

T

T/3∑
t=1

r(t)

∣∣∣∣∣∣ ≤ O

√γm(
∑
t

r(t)) + γm

 . (21)

Similarly, we could also prove that with probability 1−mdT · exp(−Ω(γ)), we have

T/3∑
t=1

∣∣∣(CL(t))⊤xt − ct

∣∣∣ ≤ O
(√

γmB + γm
)
1. (22)

Combine (21) and (22) with the following inequality

3

T

T/3∑
t=1

r(t) ≥ (1− ϵ)OPTLP

and substituting the specification of ϵ and γ = O(log(mdT )), we obtain the desired inequalities. Notice that the consumption
during the second step is at most B

2 , so the consumption of FULLOAK will less than 5B
6 with high probability. Define

Ψ :=

(√
γm · OPTLP

T
+

γmd

T
+

OPTLP

B

√
γmd · b

T

)
.

Then we prove the following lemma.

Lemma C.2. At the end of phase p, for any optimal arm i∗ ∈ X ∗ and any sub-optimal arm i′ ∈ X ′, the probability that
R̄i∗(p) > R̄i′(p) is at most

2md · exp
(
−α1 · b2R2

i′s(p)
)
.

for some constant α1.

Proof. Consider the dual form
min b⊤w,

s.t. C̄
⊤
w ≥ µ̄,w ≥ 0.

Let w̄∗(p) denote the optimal solution of it, we have

|b⊤w̄∗(p)− b⊤w| ≤ O(Ψ).

Then we get
d∑

j=1

(w̄∗(p))j −
d∑

j=1

w∗
j ≥ −

1

b
O(Ψ),

d∑
j=1

(w̄∗(p))j −
d∑

j=1

w∗
j ≤

1

b
O(Ψ).

(23)

Consider Ri of optimal arm i∗ and suboptimal i′

Ri∗ = (w∗)⊤Ci∗ − µi∗ ≤ 0,

R̄i∗ = (w̄∗(p))⊤C̄i∗ − µ̄i∗ > 0,

R̄i′ = (w̄∗(p))⊤C̄i′ − µ̄i′ < R̄i∗ .

(24)
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From (23) and (24), we have

d∑
j=1

(w̄∗(p))jC̄j,i∗ − µ̄i∗

≤
d∑

j=1

(w̄∗(p))j (Cj,i∗ + 3frad(Cj,i∗ , s
∗(p)))− (µi∗ − 3frad(µi∗ , s

∗(p)))

=

d∑
j=1

w∗
j (Cj,i∗ + 3frad(Cj,i∗ , s

∗(p)))−

[
d∑

j=1

w∗
j (Cj,i∗ + 3frad(Cj,i∗ , s

∗(p)))

−
d∑

j=1

(w̄∗(p))j (Cj,i∗ + 3frad(Cj,i∗ , s
∗(p)))

]
− (µi∗ − 3frad(µi∗ , s

∗(p)))

≤
d∑

j=1

w∗
j (Cj,i∗ + 3frad(Cj,i∗ , s

∗(p))) +
1

b
O(Ψ)− (µi∗ − 3frad(µi∗ , s

∗(p)))

≤3frad(Cj,i∗ , s
∗(p))

1 +

d∑
j=1

w∗
j

+
1

b
O(Ψ).

And
d∑

j=1

(w̄∗(p))jC̄j,i′ − µ̄i′

≥
d∑

j=1

(w̄∗(p))j(Cj,i′ − 3frad(Cj,i′ , s
′(p)))− (µi′ + 3frad(µi′ , s

′(p)))

=

d∑
j=1

w∗
j (Cj,i′ − 3frad(Cj,i′ , s

′(p)))−

[
d∑

j=1

w∗
j (Cj,i∗ − 3frad(Cj,i′ , s

′(p)))

−
d∑

j=1

(w̄∗(p))j (Cj,i∗ − 3frad(Cj,i′ , s
′(p)))

]
− (µi′ + 3frad(µi′ , s

′(p)))

≥
d∑

j=1

w∗
j (Cj,i′ − 3frad(Cj,i′ , s

′(p)))− 1

b
O(Ψ)− (µi′ + 3frad(µi′ , s

′(p)))

≥Ri′ − 3frad(Cj,i′ , s
′(p))

1 +

d∑
j=1

w∗
j

− 1

b
O(Ψ).

According to the Strong duality theorem, we have

d∑
j=1

w∗
j =

1

b

m∑
i=1

µix
∗
i =

1

b
OPTLP ≤

1

b
.

Then we have
P[R̄i∗(p) > R̄i′(p)]

≤ P
[
Ri′ < 3 (frad(Cj,i∗ , s

∗(p)) + 3frad(Cj,i′ , s
′(p)))

(
1 +

1

b

)
+

1

b
O(Ψ)

]
≤ P

[
Ri′ <

1

b
O (Ψ + frad(1, s(p)))

]
.

Notice that we have frad(1, s(p)) = Ω(Ψ). Combine them together, then we complete the proof.
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According to Lemma B.4, for any optimal arm i∗ ∈ X ∗ and any active sub-optimal arm i′ ∈ X ′ ∩ Xp, the probability that
Ḡi∗(p) < Ḡi′(p) is at most

2md · exp
(
−2b2G2

i∗

9
s(p)

)
during phase p. Similar to the proof of Theorem 3.2, we bound the probability that the algorithm makes mistakes by ignoring
the 1

16 |Xp| arms with the smallest Gi and the 1
16 |Xp| arms with largest Ri of the active arms set. For all arms in Xp, let Pp

and P̄p denote the set of optimal arms for (1) and (4), Qp and Q̄p denote the set of sub-optimal arms for (1) and (4). Let S∗
p

denote the 1
16 |Xp| arms with smallest Gi and S′

p denote the 1
16 |Xp| arms with largest Ri, respectively. Define

Φ∗
p := max

i∈Pp\S∗
p

exp

(
−2b2G2

i

9
s(p)

)
,

Φ′
p := max

i∈Qp\S′
p

exp
(
−α1 · b2R2

i′s(p)
)
.

We obtain that the probability that there is at least one eliminated optimal arms is at most

32md · Φ∗
p + 12md · Φ′

p.

Similarly, the probability that at least one sub-optimal arm is added to X ∗
p is at most

32md · Φ′
p + 12md · Φ∗

p.

Notice that FULLOAK will delete all accept arms from the surviving arms set at the end of each phase, the pulls for each
arm in Xp before phase t+ 1 satisfy

s(p) ≥ B

log4/3 m

p∑
k=0

1

|Xp|

Let ip = m
16

(
3
4

)p
, then we have

Φ∗
p = max

i∈Pp\S∗
p

exp

(
−2b2G2

i

9
s(p)

)
≤ exp

(
−
2b2∆2

ip

9
s(p)

)

≤ exp

(
−
4b2∆2

ip

9

B

m log4/3 m

(
4

3

)p
)

= exp

(
−
4b2∆2

ip

9ip

B

16 log4/3 m

)

≤ exp

(
−4b2

9H

B

16 log4/3 m

)
Similarly, we have

Φ′
p = max

i∈Qp\S′
p

exp
(
−α1 · b2R2

i′s(p)
)
≤ exp

(
− α2b

2B

H logm

)
,

where α2 is a constant. Combine them together, then we complete the proof.

The proof is similar to Lemma 7.4 in (Badanidiyuru et al., 2013) and the theoretical analysis in Appendix B.3 for the UCB
algorithm for BwK (Agrawal & Devanur, 2014).

D. Analysis of Lower Bound (Theorem 4.2)
Let (pw)2≤w≤W ∈ [1/4, 1/2) be (W − 1) real numbers and let p1 = 1/2. And we define the quantities lw := 1/2− pw.
Assume m is an exact multiple of W . Then we define

µi :=
1

2
− lw

2⌊(m−i)/W⌋ , w = (i mod W ), i ∈ [m].
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Let πi denote the Bernoulli distribution of mean µi and π′
i denote the Bernoulli distribution of mean 1− µi.

Consider W problem instances with time horizon T , m arms, d types of resources being consumed, and knapsack
b = W/m for each type of resource. To ease the reading, assume T is a power of 2, W ≥ Ω(

√
m), and d > m/W . Let

w = (i mod W ), for the u-th problem instance, the i-th arm xu
i is associated with the reward distribution πu

i ,

πu
i := πi1{w ̸= u}+ π′

i1{w = u}, u ∈ [W ], i ∈ [m].

The consumption vector cui satisfies (cui )1 = (cui )d = (cui )w = 1, and (cui )j = 0 for all j ̸= 1, j ̸= w, j ̸= d. Then there
are |X ∗| = m/W = 1/b optimal arms and their indexes satisfy (i mod W ) = u. For the hardness measure of the u-th
problem instance H(u), we have

H(u) = max
i∈[m]

i

∆2
i,u

≤ b · 2 1
b+1

∑
w ̸=u

(lw + lu)
−2,

where ∆i,u is the vertex gap of the i-th arm for u-th instance.

Consider any algorithm A and let (Tk)1≤k≤|X∗| denote the number of samples by A on arms from index (k− 1) ·W + 1 to
k ·W . These quantities are random but satisfy

∑
1≤k≤|X∗| Tk = B. We have

P(O ≠ X ∗) ≥
∑
i∈X∗

P(i /∈ O)

≥
∑

1≤k≤|X∗|

exp

(
− β1Tk

2m−k · log(W )
∑

w ̸=u(lw + lu)−2

)

≥ exp

(
− β2bB

2
1
b−1 log(W )

∑
w ̸=u(lw + lu)−2

)

≥ exp

(
− β2b

2 · 2 1
b+1B

2
1
b−1H(u) log(W )

)
≥ exp

(
− 2β2b

2B

H(u) logm

)
,

where β1, β2 are some constants. The second inequality comes from Theorem 2 of (Carpentier & Locatelli, 2016). Then we
complete the proof.

E. Analysis of Special Cases
E.1. Simple OAK Problem

In this section, we provide the specification of BASEOAK− and prove Theorem 5.1.

The algorithm (shown in Algorithm 3) also splits the budget evenly into phases and chooses the worst/best quarter of
surviving arms to reject/accept at the end of each phase. The difference is that the Algorithm 3 eliminates the accepted arms
from the active arm set at the end of each accept phase.

We provide the proof of Theorem 5.1 below. Again, the probability that the algorithm makes mistakes in phase p is at most

32|P̄p ∪ Pp|2 · (Φ′
p +Φ∗

p). (25)

And the algorithm does not exceed the budget T .

Consider the pulls for each arm in Xp before phase p+ 1

s(p) ≥ T

log4/3 m

p∑
k=0

1

|Xp|
.
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Algorithm 3 BASEOAK−

Input: rounds T , number of arms m
1: X0 ← [m], X ′

0 ← ∅, X ∗
0 ← ∅

2: for p = 0, . . . , ⌈log4/3 m⌉ − 1 do
3: Pull each arm i ∈ Xp for

n(p) =

⌊
T

|Xp|⌈log4/3 m⌉

⌋
times

4: Compute the empirical estimator of the reduced gap R̄i and deletion gap Ḡi for each arm i ∈ Xp

5: if more basic variables in x̄∗(p) then
6: X ∗

p+1 ← X ∗
p ∪ { the set of ⌈|Xp|/4⌉ optimal arms in Xp with the largest Ḡi}

7: else
8: X ′

p+1 ← X ′
p ∪ { the set of ⌈|Xp|/4⌉ sub-optimal arms in Xp with the largest R̄i}

9: end if
10: Xp+1 ← X0\(X ′

p+1 ∪ X ∗
p+1)

11: end for
12: Output X ∗

⌈log4/3 m⌉

Let ip = m
16

(
3
4

)p
, then we have

Φ∗
p = max

i∈Pp\S∗
p

exp

(
−2b2G2

i

9
s(p)

)
≤ exp

(
−
2b2∆2

ip

9
s(p)

)

≤ exp

(
−
4b2∆2

ip

9

T

m log4/3 m

(
4

3

)p
)

= exp

(
−
4b2∆2

ip

9ip

T

16 log4/3 m

)

≤ exp

(
−4b2

9H

T

16 log4/3 m

)
,

(26)

and

Φ′
p = max

i∈Qp\S′
p

exp

(
−2
(
b∆2

8
+

b2Ri

8

)2

s(p)

)

≤ exp

(
−2
(
b∆2

8
+

b2∆ip

8
√
2

)2

s(p)

)

≤ exp

(
−4
(
b∆2

8
+

b2∆ip

8
√
2

)2
1

ip

T

16 log4/3 m

)

≤ exp

(
−4b4

9H

T

16 log4/3 m

)
.

(27)

For all rounds t, we have |P̄p ∪ Pp| ≤
(
3
4

)p
m. Combine (25), (26), (27) together, then we complete the proof.

E.2. Pure Exploration Problems

In this section, we prove the results in Example 5.2 and 5.3.

For the BAI problem, there is one optimal arm i∗. According to the proof of Lemma B.3, assume the optimal arm i∗ is not
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eliminated at the end of phase p. For the optimal arm i∗ and any active sub-optimal arm i′ ∈ X ′ ∩ Xp, the probability that
R̄i∗(p) > R̄i′(p) is at most

O

(
exp

(
−2
(
b∆2

8
+

b2Ri′

8

)2

s(p)

))
.

According to the proof of Theorem 3.2, the probability that the algorithm makes mistakes in round p is at most

32(Φ′
p +Φ∗

p).

By equation (26), (27), and a union bound, we complete the proof of the result in Example 5.2.

For the TopK and MB problem, due to the deterministic resource consumption, the probability that the algorithm makes
mistakes in round p is at most

32|P̄p ∪ Pp| · (Φ′
p +Φ∗

p).

For all rounds p, we have |P̄p ∪ Pp| ≤
(
3
4

)p
m. By equation (26), (27), and a union bound, we obtain the result in Example

5.3.
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