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Abstract
We study a class of reinforcement learning prob-
lems where the reward signals for policy learning
are generated by a discriminator that is dependent
on and jointly optimized with the policy. This
interdependence between the policy and the dis-
criminator leads to an unstable learning process
because reward signals from an immature discrim-
inator are noisy and impede policy learning, and
conversely, an under-optimized policy impedes
discriminator learning. We call this learning set-
ting Internally Rewarded Reinforcement Learning
(IRRL) as the reward is not provided directly by
the environment but internally by the discrimina-
tor. In this paper, we formally formulate IRRL
and present a class of problems that belong to
IRRL. We theoretically derive and empirically an-
alyze the effect of the reward function in IRRL
and based on these analyses propose the clipped
linear reward function. Experimental results show
that the proposed reward function can consistently
stabilize the training process by reducing the im-
pact of reward noise, which leads to faster con-
vergence and higher performance compared with
baselines in diverse tasks. 2

1. Introduction
Rewards are essential for animals and artificial agents to
learn by exploration in an environment. In the brain, reward
signals are emitted by specific neurons as a consequence
of the processing of external stimuli (Olds & Milner, 1954;
Schultz, 2015). For instance, when a child receives words
of praise from the parents as feedback for exhibiting appro-
priate behavior, the rewards obtained are contingent upon
the child’s individual understanding of the words. In some
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Figure 1: Left: The agent-environment interaction loop of
IRRL. This diagram is based on the scheme of intrinsically
motivated RL (Singh et al., 2004) with an optional path
of supervision signals, which reflects an extrinsic reward.
Right: The internal critic consists of a discriminator, which
estimates a posterior probability of correct discrimination
given sensations and supervision signals from the exter-
nal environment, and a reward function, which produces
rewards by processing the posterior probability.

cases, the child may misunderstand the praise as criticism,
thus wrongly obtaining a negative reward and impeding its
behavior learning. An elaborated view of the standard agent-
environment interaction formulation (Sutton & Barto, 1998)
of reinforcement learning (RL) demonstrates this mecha-
nism (Singh et al., 2004). This framework separates the
environment into an external environment, which provides
external stimuli (e.g., a word of praise from the parents),
and an internal environment, which is in the same organism
with the agent and contains a critic that produces reward
signals based on both external stimuli and the internal state
(cf. Fig 1 left panel).

In this work, we focus on situations where the reward is
determined by both external stimuli and the state of a sophis-
ticated and evolutionary internal environment that produces
either task-relevant rewards (Mnih et al., 2014; Ba et al.,
2015; Li et al., 2021; Rangrej et al., 2022) or task-agnostic
rewards (Gregor et al., 2017; Strouse et al., 2022), and we
use the term Internally Rewarded Reinforcement Learning
(IRRL) to refer to the learning problem in these situations
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(cf. some IRRL examples in Fig. 3).

In IRRL, the policy of the agent is trained by RL, and the
critic of the internal environment is simultaneously trained
either in a self-supervised learning (SSL) manner by directly
using the sensations from the external environment (Pathak
et al., 2017; Gregor et al., 2017; Eysenbach et al., 2019;
Strouse et al., 2022), or in a supervised learning (SL) manner
by using extra human-annotated task-relevant signals (Mnih
et al., 2014; Yu et al., 2017; Tan et al., 2020; Li et al.,
2021). The critic provides reward signals for training a pol-
icy that, in return, controls the collection of the trajectories
for the critic. These scenarios have become prevalent with
increased interest in integrating the capability of high-level
prediction and low-level control of behaviors into a single
model in the realms of attention mechanisms (Mnih et al.,
2014; Ba et al., 2015; Yu et al., 2017; Li et al., 2017; Ran-
grej et al., 2022), embodied agents (Gordon et al., 2018;
Yang et al., 2019), robotics (Lakomkin et al., 2018; Li et al.,
2021), and unsupervised RL (Gregor et al., 2017; Eysenbach
et al., 2019; Strouse et al., 2022).

The role of the critic depends on the target task. In the task
of digit recognition with hard attention (see Fig. 3a), for
example, the critic assesses the certainty of performing cor-
rect digit classification. In the unsupervised skill discovery
task (see Fig. 3b), however, the critic works as an intrinsic
motivation system to evaluate the novelty of generated skills.
The critic consists of a discriminator and a reward function,
as shown in the right panel of Fig. 1. The discriminator
estimates the posterior probability of the target label pro-
vided by supervision signals or sensations. By processing
the posterior, the reward function produces rewards for the
behavior learning of the agent.

Simultaneous optimization between the policy and the dis-
criminator in IRRL is however non-trivial because of the
unstable training loop where neither of them can learn effi-
ciently (see Fig. 2). In this work, we seek to solve this issue
by reducing the impact of reward noise, which is challenging
due to the unavailability of an oracle discriminator whose
posterior probability can reflect the information sufficiency
for discrimination. We theoretically formulate IRRL to ex-
plicitly analyze the noisy reward issue and characterize the
distribution of the noise empirically by approximating the
oracle discriminator with the discriminator of a converged
model. Based on our formulation and empirical results, we
demonstrate the effect of the reward function in reducing the
bias of the estimated reward and the variance of the reward
noise, and propose a simple yet effective reward function
that stabilizes the training process.

We present extensive experimental results on IRRL tasks
with task-relevant rewards (i.e., visual hard attention, and
robotic active vision), or tasks with task-agnostic rewards
(i.e., unsupervised skill discovery). The results suggest
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Figure 2: Simultaneous optimization between the policy
of the agent and the critic of the internal environment is
challenging because an under-optimized critic yields noisy
rewards, and in turn, an immature policy yields insufficient
observations, which leads to an unstable training loop.

that our proposed reward function consistently improves
the stability and the speed of training, and achieves better
performance than the baselines on all the tasks. In particular,
on the skill discovery task, our approach with the simple
reward function achieves the same performance as the state-
of-the-art sophisticated ensemble-based Bayesian method
by Strouse et al. (2022) but without using ensembles. We fur-
ther demonstrate that the superiority of the proposed reward
function is due to its effectiveness in noise reduction, which
is in line with our theoretical analysis. The contributions of
this paper are summarized as follows:

1. We formulate a class of RL problems as IRRL, and
formulate the inherent issues of noisy rewards that
leads to an unstable training loop in IRRL.

2. We empirically characterize the noise in the discrimina-
tor and derive the effect of the reward function in reduc-
ing the bias of the estimated reward and the variance
of the reward noise stemming from an underdeveloped
discriminator.

3. We propose a simple yet effective reward function, the
clipped linear reward function, which consistently sta-
bilizes the training process and achieves faster conver-
gence speed and higher performance on diverse IRRL
tasks.

2. Related Work
The RL process is notoriously unstable. Previous work
has studied various techniques to stabilize training, such as
reducing the bias and variance of gradient estimation for
policy gradient methods (Greensmith et al., 2004; Schulman
et al., 2015), and value estimation for value-based methods
(van Hasselt et al., 2016). As another factor impacting RL
training, reward noise that stems from various sources, e.g.,
sensors on robots, and adversarial attacks, is attracting at-
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tention because of the growing interest in applying RL to
more realistic and complicated tasks (Huang et al., 2017;
Everitt et al., 2017; Wang et al., 2020). In cases where the
noise directly resides in the reward, both policy gradient and
value-based RL methods suffer. Everitt et al. (2017) and
Wang et al. (2020) formulate RL with corrupted rewards
and partially address the issue for cases with extra knowl-
edge about the noise. Unlike the noise caused by reward
corruption, the noise in IRRL comes from a discriminator
and is subject to the learning process, so their approaches
are not directly applicable to our scenarios in terms of both
formulation and experimental emulation.

The issues of unstable training in IRRL have been mentioned
in the literature, but they have not been systematically stud-
ied. Some works (Mnih et al., 2014; Ba et al., 2015; Li
et al., 2017) ignore the impact of the unstable training loop
at the expense of the training speed and the performance of
the final model. Other works resort to elaborated training
strategies, e.g., staged training (Gordon et al., 2018; Yang
et al., 2019; Lysa et al., 2022), curriculum training (Das
et al., 2018; Li et al., 2021), imitation learning (Tan et al.,
2020; Rangrej et al., 2022), or task-specific reward shap-
ing (Deng et al., 2021). However, extra efforts such as data
collection or human ingenuity are needed in these methods.

Strouse et al. (2022) study the pessimistic exploration
problem in the context of unsupervised skill discovery
(cf. Fig. 3b) where a skill discriminator is used to gener-
ate rewards. As the skill discriminator is subject to noise,
this issue can be seen as a consequence of the unstable train-
ing loop under the framework of IRRL. Similar to our work,
they also resort to modifying the reward function. They
propose to train an ensemble of discriminators and reward
the policy with their disagreement. Experimental results
suggest that the proposed disagreement-based reward lets
the agent learn more skills through optimistic exploration.
However, this method introduces more model parameters
and hyper-parameters than baseline methods that are not
based on ensembles. In this paper, we consider the issue in
a more general context including but not limited to unsuper-
vised skill discovery, and manage the issue in a more simple
and efficient way.

3. Internally Rewarded RL
We formulate the policy learning of IRRL as a Markov
decision processM = 〈S,A, pE, ρ, r, γ〉, where, S is the
state space, A the action space, pE : S × A × S → R the
state transition probability, ρ : S → R the distribution of the
initial state, r : S × A → R the reward on each transition,
and γ ∈ (0, 1) a discount factor.

Different from conventional RL settings, where reward r
depends exclusively on the external environment, in IRRL

reward r is determined by a critic, which resides in the
internal environments and interprets the supervision signals
from the external environment to generate internal rewards
(cf. Fig. 1). Here, we assume that the external environment,
hence the observations an agent is making, is caused by a
label y sampled from a prior distribution p(y). The critic
depends on a trainable discriminator qφ parameterized with
φ. Given a trajectory τ ∈ (S ×A)n (n ∈ N is the trajectory
length) sampled from a policy πθ parameterized with θ, the
discriminator qφ(y | τ) computes the probability of the label
y being the cause of the trajectory τ .3

Many existing works, which have been studied indepen-
dently before, can be categorized as instances of IRRL. In
the following, we present three lines of existing works as
concrete examples of IRRL:

1. Hard attention. Hard attention mechanism (Mnih et al.,
2014; Ba et al., 2015; Li et al., 2017; Rangrej et al., 2022)
is essential when all available information is expensive or
unrealistic to process, e.g., scene classification for high-
resolution satellite images (Wang et al., 2019; Rangrej et al.,
2022). Fig. 3a shows the task of hard attention for digit
recognition on the Cluttered MNIST dataset (Mnih et al.,
2014).

2. Intrinsically motivated RL. In this setting, an agent is
trained using dense intrinsic rewards to explore the environ-
ment based on its curiosity about encountered states (Pathak
et al., 2017) or to discover diverse skills based on their nov-
elty (Gregor et al., 2017; Eysenbach et al., 2019; Strouse
et al., 2022). Fig. 3b shows the task of unsupervised skill
discovery in a four-room environment (Strouse et al., 2022).

3. Task-oriented active vision. This is an emerging re-
search topic with the goal of endowing embodied agents
with high-level perception and reasoning capabilities. The
agent actively changes its egocentric view to collect in-
formation for achieving downstream tasks, e.g., question
answering (Gordon et al., 2018; Deng et al., 2021; Li et al.,
2021), object recognition (Yang et al., 2019), or scene de-
scription (Tan et al., 2020). Fig. 3c shows the task of robotic
object counting in occlusion scenarios.

3.1. Optimization

In IRRL, the policy and the discriminator are optimized
simultaneously with different optimization objectives.

3To simplify notations, we use lower-case letters (e.g., y) to
both represent random variables and their realizations if the dis-
tinction is clear from the context. Similarly, we use p(y) to both
represent the distribution of y and the probability of y if the context
is clear.
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(a) Hard attention for digit recognition on
the Cluttered MNIST dataset (Mnih et al.,
2014). A small glimpse (the squares) con-
trolled by an attention policy sequentially
changes its location to collect information for
recognizing the digit. During training, the critic
is expected to produce rewards that reflect the
sufficiency of information collected by the at-
tention policy, and in turn, the policy is ex-
pected to attend to informative regions, i.e.,
pixels of the digit, to collect information for
the classifier to learn digit recognition. The
starting and stopping glimpses are represented
by yellow and red boxes respectively. The
green line indicates the positions of intermedi-
ate glimpses.

 

(b) Unsupervised skill discovery in a
four-room environment (Strouse et al.,
2022). An agent spawned at the top-left
corner is expected to learn a navigation
policy that performs distinguishable skills
without using any extrinsic rewards. In
this task, a skill is represented by the final
state of a trajectory. During training, the
agent generates a trajectory conditioned
on a randomly sampled skill label, and
a discriminator estimates the posterior
probability of the trajectory being the tar-
get skill, based on which the reward is
produced. The policy and the discrimina-
tor are optimized simultaneously.

(c) Robotic object counting in occlusion
scenarios. A humanoid robot is trained
to learn a locomotion policy to explore oc-
cluded space by rotating around the table
and to terminate exploration to achieve ef-
ficient counting of specified objects, e.g.,
small blue cube. The robot performs the
task solely based on its egocentric RGB
view. During training, the policy uses the re-
ward that is produced by a critic containing
an object counter, which is simultaneously
updated with the policy. Similar to the task
of hard attention, the reward should be able
to evaluate the information sufficiency of
observations for correct object counting.

Figure 3: Example tasks of IRRL

3.1.1. POLICY OPTIMIZATION

The optimization objective of policy learning in IRRL can
be formulated from two perspectives, which are accuracy
maximization and mutual information maximization.

Accuracy maximization. This is an intuitive formulation,
where the policy of the agent is optimized to maximize the
expectation of an accuracy-based reward

racc = 1y

[
argmax
y′∈Y

qφ(y
′ | τ)

]
, (1)

where Y is a set of possible labels and 1y[x] is an indicator
function that returns 1 if x is the target label y, 0 other-
wise. This formulation has been widely used in existing
works on hard attention (Mnih et al., 2014; Kingma & Ba,
2015; Li et al., 2017), embodied agents (Gordon et al., 2018;
Yang et al., 2019), and robotics (Lakomkin et al., 2018; Li
et al., 2021). However, an obvious disadvantage of the
accuracy-based reward is that it cannot faithfully reflect the
discriminator’s uncertainty about the observations collected
by the reinforcement learner, which makes learning slow
and leads to suboptimal performance (cf. Sec. 5). Therefore,
it will be analyzed only empirically in this paper.

Mutual information maximization. Mutual information
is commonly used to estimate the relationship between pairs
of random variables. The objective of mutual information
maximization has been utilized in the realm of unsupervised
skill discovery (Gregor et al., 2017; Eysenbach et al., 2019;
Strouse et al., 2022). We generalize it to the optimization

objective of IRRL.

Given a target label y and a trajectory τ sampled from
p(y) and πθ respectively, their mutual dependency can
be obtained by the KL-divergence of their joint distribu-
tion p(y, τ) and the product of their marginal distributions
p(y)p(τ):

I(y; τ) := DKL(p(y, τ) ‖ p(y)p(τ)) (2)
= Eτ∼πθ,y∼p(y) [log p(y | τ)− log p(y)] ,

which is also known as Shannon’s mutual information be-
tween y and τ and which reaches its maximum if the full
knowledge of y can be deduced from τ . In this equation,
p(y | τ) is the oracle posterior probability that reflects the
information sufficiency of observations for discrimination.
It can be interpreted as being generated by an oracle dis-
criminator, a conceptual term utilized for the theoretical
formulation. If p(y | τ) is known, then by defining

r∗log := log p(y | τ)− log p(y) (3)

as the reward for an RL algorithm involving πθ, one can
maximize I(y; τ), i.e., πθ generates trajectories for an opti-
mal discrimination of the target label y.

Because the oracle discriminator p(y | τ) is not available
in practice, we can replace p(y | τ) with a neural network
qφ(y | τ) with trainable parameters φ and define the reward
as

rlog = log qφ(y | τ)− log p(y), (4)

and maximize the Barber-Agakov variational lower bound
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of I(y; τ) (Barber & Agakov, 2003):

IBA(y; τ) := Eτ∼πθ,y∼p(y)[log qφ(y | τ)− log p(y)]. (5)

3.1.2. DISCRIMINATOR OPTIMIZATION

Concurrent with policy learning, the discriminator qφ(y | τ)
is trained to better approximate p(y | τ). To this end, instead
of the cross-entropy loss

−Eτ∼πθ,y∼p(y) [p(y | τ) log qφ(y | τ)] , (6)

which involves the oracle discriminator p(y | τ), a proxy
cross-entropy loss

−Eτ∼πθ,y∼p(y) log qφ(y | τ) (7)

is used in practice, which is equivalent to assuming
p(y | τ) = 1, i.e., assuming that τ contains sufficient in-
formation for deducing y with the oracle discriminator.

3.2. The Issue of Reward Noise

As the trainable discriminator qφ(y | τ) only approximates
the oracle discriminator p(y | τ), it inevitably introduces
noise εlog in the reward rlog in Eq. (4), which is given by

εlog = rlog − r?log = log qφ(y | τ)− log p(y | τ). (8)

To demonstrate the negative impact of reward noise on the
learning process (cf. Fig. 2), we conduct reward hacking
experiments, where we replace the trainable discriminator
qφ(y | τ) with a pretrained one qφ̃(y | τ) that is obtained
from a converged model to mimic the oracle discriminator
p(y | τ). The setup of the reward hacking experiment is
illustrated in Fig. 4. We choose the digit recognition task
as the target task (cf. Fig. 3a) and use the recurrent atten-
tion model (RAM) (Mnih et al., 2014) (detailed information
about this task and the model is given in Sec. 5.1 and Ap-
pendix F).

Fig. 5 shows a plot of training curves when using different
reward functions with and without reward hacking. As
shown by the gap between the training curves when using an
identical reward function with and without reward hacking,
the noise of an under-optimized discriminator influences the
training process negatively. In this paper, we aim to narrow
the gap by devising an effective reward. As we will see in
the next section, a well-designed reward is key to stabilizing
the learning process.

4. Reward Noise Moderation
In this section, we first analyze the reduction of the bias of
the estimated reward and the variance of the reward noise
and then propose a reward that alleviates the negative effect
of reward noise and stabilizes the training process.

Discriminator

Discriminator

Policy

Online-training

 

 

  

Reward hackingNormal training

Pretrained and fixed

Figure 4: Illustration of the experimental setup of reward
hacking. In normal training, the reward is produced based
on the posterior probability estimated by an online-training
discriminator φ. In training with reward hacking, the reward
stems from a pretrained and fixed discriminator φ̃. δ̃ indi-
cates the difference between a pair of posterior probabilities
estimated by φ and φ̃.
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Figure 5: RAM trained using the accuracy-based and the
logarithmic reward with and without reward hacking (RH).
A model without reward hacking is subject to more noisy
rewards and suffers from an unstable learning process, re-
sulting in slower convergence and lower accuracy.

4.1. Generalized Reward

Since the noisy reward in Eq. (4) is a transformation of the
posterior probability qφ(y | τ), it is reasonable to study
the effect of a series of transformations of qφ(y | τ) as
long as they agree on the same optimal objective. Based on
the logarithmic transformation in Eq. (4), the generalized
reward is defined as

rg = g [qφ(y | τ)]− g [p(y)] (9)

and the generalized oracle reward as

r∗g = g [p(y | τ)]− g [p(y)] , (10)

where g is an increasing function (e.g., log), such that maxi-
mizing g(·) leads to the maximization of the mutual informa-
tion I(y; τ). When selecting the appropriate function, it is
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important to consider both its ability to transmit information
and its ability to moderate noise. The former ensures that
the maximization of mutual information can be achieved
efficiently, while the latter helps to reduce the impact of
reward noise. 4

4.2. Generalized Reward Noise

To analyze the noise in the generalized reward rg we apply
the second-order Taylor approximation to the generalized
reward noise

εg := rg − r∗g = g [qφ(y | τ)]− g [p(y | τ)] (11)

at point p(y | τ). By defining

δ := qφ(y | τ)− p(y | τ) (12)

as the discriminator noise, we have as the expectation of the
reward noise (equivalently, the bias of the reward estimator)

E[εg] ≈ g′(p(y | τ))E[δ] +
1

2!
g′′(p(y | τ))E

[
δ2
]
, (13)

and as the variance of the reward noise

V[εg] ≈ (g′(p(y | τ)))2V[δ] + (
1

2!
g′′(p(y | τ)))2V

[
δ2
]

+ g′(p(y | τ))g′′(p(y | τ))Cov
[
δ, δ2

]
. (14)

Our goal is to mitigate the impact of the reward noise by min-
imizing the expectation and the variance of the noise. This
is expected to be achieved especially at the early learning
stage when the issue of the unstable training loop is severe
because both the discriminator and the policy are immature:
the trajectory collected by the policy contains little informa-
tion for discrimination, and the estimated posterior of the
discriminator cannot reflect the sufficiency of information
collected by the policy. To this end, in the following sub-
sections, we theoretically and empirically analyze Eq. (13)
and Eq. (14) and investigate reward functions.

4.3. Characterization of the Discriminator Noise

We make hypotheses regarding the distribution characteris-
tics of δ, which is necessary to analyze the expectation and
variance of the reward noise εg according to Eq. (13) and
Eq. (14). We hypothesize that the expectation of the discrim-
inator noise δ is zero, i.e., E[δ] = 0, and the distribution of
δ is symmetric.

We conduct an empirical study of the distribution of the dis-
criminator noise following the setup of the reward hacking
experiment (cf. Fig. 4). Instead of using a pretrained dis-
criminator to interfere in the training process, we visualize

4The transformation g(·) can also be motivated by the f -mutual
information objectives (see Appendix A.2).

the approximated discriminator noise δ̃ during normal train-
ing. δ̃ is the difference between the posterior probabilities
estimated by the online-training discriminator and the pre-
trained discriminator, i.e., δ̃ = qφ(y | τ)− qφ̃(y | τ) ≈ δ.

Fig. 6 demonstrates violin plots of the discriminator noise
at four training epochs (the model converges at about 1200
epochs). Each violin plot is drawn from 1000 random sam-
ples from the testing dataset. We can observe that the mean
of the noise is close to zero at different training stages, i.e.,
E[δ] ≈ 0, and the plots are almost symmetrical with respect
to the average noise except at the very beginning when the
model weights are being updated after random initialization.

We assume that the noise characteristics are generalized to
other problems of IRRL because of the shared high-level
abstraction among them (cf. Fig. 1). Characteristics of the
discriminator noise when using other reward functions are
given in Appendix B.
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Figure 6: Violin plots of the approximated discriminator
noise δ̃ in the training process of RAM, of which the policy
is trained using the logarithmic reward function (cf. Eq. (4)).
The small white bar indicates the mean of the noise. The
thick vertical line represents the interquartile range and the
thin vertical line represents the area between the upper and
lower adjacent values.

4.4. Linear Reward

Considering the impact of g(·) on the Taylor approximation
to E[εg] and V[εg] in Eq. (13) and Eq. (14), we propose a
linear reward

rlin = qφ(y | τ)− p(y), (15)

instead of the commonly applied logarithmic reward rlog, to
stabilize IRRL. The corresponding expectation and variance
of the noise are E[εlin] = E[δ] = 0 and V[εlin] = V[δ],
respectively. The linear reward enjoys lower reward bias
than the logarithmic reward, since

|E[εlog]| ≈
1

2! p2(y | τ)E[δ
2] > 0 = |E[εlin]|. (16)

Furthermore, the variance of rlin is low and stable com-
pared with the variance of logarithmic reward rlog, which
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suffers from high variance V[εlog] ≈ p−2(y | τ)V[δ] +
( 1
2! p2(y|τ) )

2V[δ2] since p(y | τ) < 1 in most cases and is
dependent on the training policy. (A detailed derivation is
given in Appendix A.1. The evaluation of various g func-
tions is given in Appendix D. )

4.5. Clipped Linear Reward

The issue of reward noise is not fully tackled by using the
linear reward. Given a target label y, it is intuitive to as-
sume that the posterior probability p(y | τ) of an oracle
discriminator should be, in most cases, equal or larger than
the prior p(y), as y is a cause of the trajectory τ . However, a
discriminator qφ may return a posterior probability qφ(y | τ)
lower than p(y), especially at the early training stage when
both the policy and the discriminator are under-optimized.

Since we expect qφ(y | τ) to be close to p(y | τ), we replace
the term qφ(y | τ) of rlin in Eq. (15) with max(qφ(y |
τ), p(y)) to integrate the prior knowledge and define

rlin := max(qφ(y | τ), p(y))− p(y)
= max(qφ(y | τ)− p(y), 0), (17)

which we call the clipped linear reward.

Similar clipping techniques are empirically found to be ben-
eficial when applied to the logarithmic reward (Strouse et al.,
2022). In this paper, we go further with an analysis of re-
ward functions from the perspective of noise moderation
and achieve better performance with the proposed reward.
The proposed clipped linear reward has a similar shape to
the rectified linear unit (ReLU) activation function (Nair
& Hinton, 2010) which preserves information about rela-
tive intensities in multiple layers of deep neural networks.
Likewise, the clipped linear reward function can robustly
preserve information that travels from an internal discrimi-
nator to the policy network.

5. Experiments
In this section, we conduct experiments to evaluate the effec-
tiveness of the proposed method on the three aforementioned
tasks in Sec. 3. We first introduce experimental setups and
baselines. Then, we compare the proposed clipped linear
function with multiple baselines including state-of-the-art
methods. Finally, we conduct reward hacking experiments
on the clipped linear reward function to visualize its capa-
bility in reducing the impact of reward noise.

5.1. Experimental Setup

Hard attention for digit recognition. We adopt the
dataset configuration of Mnih et al. (2014), and use two
basic models for this task: the recurrent attention model
(RAM) (Mnih et al., 2014) and the dynamic-time recurrent
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Figure 7: Comparison between the clipped linear reward
function ( ) with baselines, including the clipped logarith-
mic ( ) and the accuracy-based ( ) reward function, on the
task of hard attention for digit recognition using RAM and
DT-RAM. All the experiments in this paper ran over three
random seeds. Lines and shaded areas show the mean and
standard deviation over multiple runs.

attention model (DT-RAM) (Li et al., 2017). RAM performs
a fixed number of movement steps before performing the
final digit recognition, while the policy of DT-RAM learns
to terminate the exploration before reaching a maximum
number of movement steps. The performance of the agent
is evaluated using the accuracy of the digit recognition.

Unsupervised skill discovery. We use the same experi-
mental setup and basic model on the four-room environment
as in the work of the discriminator disagreement intrinsic
reward (DISDAIN) (Strouse et al., 2022). The performance
of the agent is evaluated using the number of learned skills.

Robotic object counting. The setup is based on the task
of object existence prediction (Li et al., 2021). We use their
model and train it using PPO (Schulman et al., 2017) instead
of REINFORCE for higher efficiency. The performance of
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the agent is evaluated using the accuracy of object counting.

Details of the environments and model implementations can
be found in Appendix E and F.

5.2. Baselines

We compare the proposed clipped linear reward function
with alternative reward functions. The first is the accuracy-
based reward function racc in Eq. (1). The second is the
logarithmic reward function based on Shannon’s mutual
information. Instead of using the original logarithmic re-
ward function (Eq. (4)), we use a clipped variant, i.e.,
rlog = max(log qφ(y | τ) − log p(y), 0), for fair compar-
ison with our clipped linear reward function. We found
that reward clipping generally results in similar or better
performance in our experiments, which is consistent with
the empirical finding by Strouse et al. (2022). The empir-
ical study of reward clipping is provided in Appendix C.
On the skill discovery task, we additionally compare our
reward function with the state-of-the-art DISDAIN reward
function (Strouse et al., 2022) (see Appendix G for details),
which was designed specifically to mitigate the pessimistic
exploration issue in this task.

5.3. Results

Fig. 7 shows that both RAM and DT-RAM trained using the
clipped linear reward function achieve the highest accuracy
and fastest training speed. Furthermore, the small blue
shaded areas indicate that multiple runs using the clipped
linear reward function are consistent with each other, which
suggests high stability of the training process.

Fig. 8a demonstrates that the clipped linear reward function
outperforms both the clipped logarithmic reward function
and the accuracy-based reward function by a large margin
and achieves almost the same performance as DISDAIN.
We note that the DISDAIN method depends on an ensemble
of discriminators and needs more hyper-parameters to tune,
e.g., the weight of the DISDAIN reward and the number
of ensemble members, while our method is much simpler.
Fig. 8b shows that the clipped linear reward function also
benefits the challenging robotic object counting task by
making the model converge faster and achieve the highest
final accuracy.

We can see that the clipped linear reward function gener-
ally outperforms the logarithmic and the accuracy-based
reward function. The improvement is significant on the
skill discovery task, which makes sense according to our
theoretical analysis in Sec. 4.4. Since the number of possi-
ble discrimination classes in the skill discovery task (128
classes) is much larger than that of other tasks (10 classes in
the digit recognition task, and 7 classes in the robotic object
counting task), p(y | τ) tends to be closer to zero when
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Figure 8: Comparison with baselines on the tasks of unsu-
pervised skill discovery and robotic object counting. On the
unsupervised skill discovery task, the auxiliary DISDAIN
reward ( ) is compared. Legends are shared between the
two sub-figures.

trajectory τ contains a small amount of information for dis-
crimination in the skill discovery task. Thus the expectation
and variance of the noise of the logarithmic reward func-
tion are larger, resulting in a severer unstable training issue,
while our clipped linear reward function resulting in low
expectation and variance of the reward noise still performs
well.

Interesting case studies for the digit recognition and object
counting tasks are given in Appendix H.1. An intuitive
comparison of state occupancy in the unsupervised skill
discovery task is given in Appendix H.2.

5.4. Effect of Noise Moderation

Following the experimental setup in Sec. 3.2, we conduct
reward hacking experiments using the clipped linear reward
to visualize its capability in narrowing the gap between train-
ing processes with and without reward hacking (cf. Fig. 4).
Fig. 9 shows the training curves. In order to facilitate a
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Figure 9: RAM trained using the three kinds of reward func-
tions with and without reward hacking (RH). The clipped
linear reward function achieves a much smaller gap between
the training processes with and without reward hacking.

comprehensive comparison, we incorporate training curves
when using the accuracy-based and the logarithmic reward
(cf. Fig. 5) into the figure. We can see from Fig. 9 that when
using reward hacking, all three rewards perform similarly
(see dashed lines). This suggests that the linear function
performs as well as the logarithmic function in terms of
information transmission. However, when not using reward
hacking, the training curve of the clipped linear reward is
much closer to the training curve of using reward hacking,
compared to the other two rewards. This suggests that the
advantage of the clipped linear reward function is due to the
reduction of the impact of reward noise.

6. Discussion
6.1. Interpretation from the Information-theoretic

Perspective

The linear reward function has specific meanings from an
information-theoretic perspective. It can be derived from
the optimization objective of maximizing the χ2-divergence,
one of the f -mutual information measures (Csiszár, 1972;
Esposito et al., 2020), instead of the commonly used KL-
divergence corresponding to Shannon’s mutual informa-
tion (Shannon, 1948) (cf. Eq. (2)). The derivation is pro-
vided in Appendix A.2. In recent years, f -mutual informa-
tion has been studied in many deep learning applications,
such as generative models (Nowozin et al., 2016; Gimenez
& Zou, 2022), representation learning (Lotfi-Rezaabad &
Vishwanath, 2020; Abstreiter et al., 2021), image classifi-
cation (Wei & Liu, 2021), imitation learning (Zhang et al.,
2020), etc. Wei & Liu (2021) suggested that a properly de-
fined f -divergence measure is robust with label noise in a
classification task, which is related to our finding that the χ2-
mutual information is a more robust information measure
against the inherent noise in the policy learning of IRRL

compared to Shannon’s mutual information. This leads to
interesting future work on investigating principles for se-
lecting the optimal f -mutual information measure, and the
possibility of using other f -mutual information measures
for achieving more stable IRRL.

6.2. Limitations and Future Work

This work is an early step towards stabilizing IRRL. Some
identified limitations potentially lead to interesting future
work. First, we only consider classification-based critics
but not regression-based critics. A unified guideline for
designing reward functions in both cases is appealing and
significant. Second, we stabilize the training process of
IRRL from the perspective of reducing the impact of reward
noise without explicitly considering reducing the impact of
insufficient observations (see Fig. 1). To alleviate the impact
of insufficient observations, for example, one can assess the
sufficiency of observations according to the consistency
of discriminators of an ensemble and remove or replace
the outliers. An integrated method considering both issues
should lead to a more optimal solution.

7. Conclusion
In this work, we formulate a class of RL problems with
internally rewarded RL where a policy and a discrimina-
tor functionally interact with each other and are simulta-
neously optimized. The inherent issues of noisy rewards
and insufficient observations in the training process lead to
an unstable training loop where neither the policy nor the
discriminator can learn effectively. Based on theoretical
analysis and empirical studies, we propose the clipped lin-
ear reward function to reduce the impact of reward noise.
Extensive experimental results suggest that the proposed
method can consistently stabilize the training process and
achieve faster convergence and higher performance com-
pared with baselines in diverse tasks. Additionally, we give
an interpretation of the use of the linear reward function
from the information-theoretic perspective, which suggests
interesting future work. As interest grows in integrating the
capability of high-level prediction and low-level control of
behaviors into a single model, for instance in embodied AI,
robotics, and unsupervised RL, stable and efficient training
of IRRL will be particularly relevant. We hope this work
paves the way to achieving this goal.

Acknowledgements
We gratefully acknowledge support from the China Scholar-
ship Council (CSC) and the German Research Foundation
(DFG) under project Crossmodal Learning (TRR 169).

9



Internally Rewarded Reinforcement Learning

References
Abstreiter, K., Mittal, S., Bauer, S., Schölkopf, B., and

Mehrjou, A. Diffusion-based representation learning.
arXiv preprint arXiv:2105.14257, 2021.

Ba, J., Mnih, V., and Kavukcuoglu, K. Multiple object recog-
nition with visual attention. In International Conference
on Learning Representations (ICLR), 2015.

Barber, D. and Agakov, F. Information maximization in
noisy channels: A variational approach. In Advances in
Neural Information Processing Systems (NeurIPS), pp.
201–208, 2003.

Belghazi, M. I., Baratin, A., Rajeshwar, S., Ozair, S., Ben-
gio, Y., Courville, A., and Hjelm, D. Mutual information
neural estimation. In International Conference on Ma-
chine Learning (ICML), volume 80, pp. 530–539, 2018.

Chevalier-Boisvert, M., Bahdanau, D., Lahlou, S., Willems,
L., Saharia, C., Nguyen, T. H., and Bengio, Y. BabyAI:
First steps towards grounded language learning with a hu-
man in the loop. In International Conference on Learning
Representations (ICLR), 2019.

Csiszár, I. A class of measures of informativity of obser-
vation channels. Periodica Mathematica Hungarica, 2:
191–213, 1972.

Das, A., Datta, S., Gkioxari, G., Lee, S., Parikh, D., and
Batra, D. Embodied question answering. In IEEE Con-
ference on Computer Vision and Pattern Recognition
(CVPR), pp. 1–10, 2018.

Deng, Y., Guo, D., Guo, X., Zhang, N., Liu, H., and Sun, F.
MQA: Answering the question via robotic manipulation.
In Robotics: Science and Systems (RSS), 2021.

Elsayed, G. F., Kornblith, S., and Le, Q. V. Saccader: Im-
proving accuracy of hard attention models for vision.
In Advances in Neural Information Processing Systems
(NeurIPS), pp. 700–712, 2019.

Esposito, A. R., Gastpar, M., and Issa, I. Robust general-
ization via f-mutual information. In IEEE International
Symposium on Information Theory (ISIT), pp. 2723–2728,
2020.

Everitt, T., Krakovna, V., Orseau, L., and Legg, S. Rein-
forcement learning with a corrupted reward channel. In
International Joint Conference on Artificial Intelligence
(IJCAI), pp. 4705–4713, 2017.

Eysenbach, B., Gupta, A., Ibarz, J., and Levine, S. Diversity
is all you need: Learning skills without a reward function.
In International Conference on Learning Representations
(ICLR), 2019.

Gimenez, J. R. and Zou, J. Y. A unified f-divergence
framework generalizing VAE and GAN. arXiv preprint
arXiv:2205.05214, 2022.

Gordon, D., Kembhavi, A., Rastegari, M., Redmon, J., Fox,
D., and Farhadi, A. IQA: visual question answering in in-
teractive environments. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 4089–4098,
2018.

Greensmith, E., Bartlett, P. L., and Baxter, J. Variance reduc-
tion techniques for gradient estimates in reinforcement
learning. Journal of Machine Learning Research (JMLR),
5:1471–1530, 2004.

Gregor, K., Rezende, D. J., and Wierstra, D. Variational
intrinsic control. In International Conference on Learning
Representations (ICLR Workshops), 2017.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp.
770–778, 2016.

Huang, S. H., Papernot, N., Goodfellow, I. J., Duan, Y., and
Abbeel, P. Adversarial attacks on neural network policies.
In International Conference on Learning Representations
(ICLR), 2017.

Kapturowski, S., Ostrovski, G., Quan, J., Munos, R., and
Dabney, W. Recurrent experience replay in distributed
reinforcement learning. In International Conference on
Learning Representations (ICLR), 2019.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. In International Conference on Learning
Representations (ICLR), 2015.

Kinney, J. B. and Gurinder S. Atwal. Equitability, mutual
information, and the maximal information coefficient.
Proceedings of the National Academy of Sciences (PNAS),
111(9):3354–3359, 2014.

Lakomkin, E., Zamani, M., Weber, C., Magg, S., and
Wermter, S. EmoRL: Continuous acoustic emotion clas-
sification using deep reinforcement learning. In IEEE
International Conference on Robotics and Automation
(ICRA), pp. 1–6, 2018.

Li, M., Weber, C., Kerzel, M., Lee, J. H., Zeng, Z., Liu, Z.,
and Wermter, S. Robotic occlusion reasoning for efficient
object existence prediction. In IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp.
2686–2692, 2021.

Li, Z., Yang, Y., Liu, X., Zhou, F., Wen, S., and Xu, W. Dy-
namic computational time for visual attention. In IEEE In-
ternational Conference on Computer Vision (ICCV Work-
shops), pp. 1199–1209, 2017.

10



Internally Rewarded Reinforcement Learning

Lotfi-Rezaabad, A. and Vishwanath, S. Learning represen-
tations by maximizing mutual information in variational
autoencoders. In IEEE International Symposium on In-
formation Theory (ISIT), pp. 2729–2734, 2020.

Lysa, Y., Weber, C., Becker, D., and Wermter, S. Word-
by-word generation of visual dialog using reinforcement
learning. In International Conference on Artificial Neural
Networks (ICANN), pp. 123–135, 2022.

Mnih, V., Heess, N., Graves, A., and Kavukcuoglu, K. Re-
current models of visual attention. In Advances in Neural
Information Processing Systems (NeurIPS), pp. 2204–
2212, 2014.

Nair, V. and Hinton, G. E. Rectified linear units improve
restricted Boltzmann machines. In International Confer-
ence on Machine Learning (ICML), pp. 807–814, 2010.

Nowozin, S., Cseke, B., and Tomioka, R. f-GAN: Training
generative neural samplers using variational divergence
minimization. In Advances in Neural Information Pro-
cessing Systems (NeurIPS), pp. 271–279, 2016.

Olds, J. and Milner, P. Positive reinforcement produced
by electrical stimulation of septal area and other regions
of rat brain. Journal of Comparative and Physiological
Psychology, 47(6):419, 1954.

Pathak, D., Agrawal, P., Efros, A. A., and Darrell, T.
Curiosity-driven exploration by self-supervised predic-
tion. In International Conference on Machine Learning
(ICML), volume 70, pp. 2778–2787, 2017.

Peng, J. and Williams, R. J. Incremental multi-step Q-
learning. Machine Learning, 22(1-3):283–290, 1996.

Rangrej, S. B., Srinidhi, C. L., and Clark, J. J. Consistency
driven sequential transformers attention model for par-
tially observable scenes. IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 2508–2517,
2022.

Schulman, J., Moritz, P., Levine, S., Jordan, M., and Abbeel,
P. High-dimensional continuous control using generalized
advantage estimation. In International Conference on
Learning Representations (ICLR), 2015.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Schultz, W. Neuronal reward and decision signals: From
theories to data. Physiological Reviews, 95(3):853–951,
2015.

Shannon, C. E. A mathematical theory of communication.
Bell System Technical Journal, 27(3):379–423, 1948.

Singh, S., Barto, A. G., and Chentanez, N. Intrinsically
motivated reinforcement learning. In Advances in Neural
Information Processing Systems (NeurIPS), pp. 1281–
1288, 2004.

Sønderby, S. K., Sønderby, C. K., Maaløe, L., and Winther,
O. Recurrent spatial transformer networks. arXiv preprint
arXiv:1509.05329, 2015.

Strouse, D., Baumli, K., Warde-Farley, D., Mnih, V., and
Hansen, S. Learning more skills through optimistic ex-
ploration. In International Conference on Learning Rep-
resentations (ICLR), 2022.

Sutton, R. S. and Barto, A. G. Reinforcement learning
- an introduction. Adaptive computation and machine
learning. MIT Press, 1998.

Tan, S., Liu, H., Guo, D., Zhang, X., and Sun, F. Towards
embodied scene description. In Robotics: Science and
Systems (RSS), 2020.

van Hasselt, H., Guez, A., and Silver, D. Deep reinforce-
ment learning with double Q-learning. In AAAI Confer-
ence on Artificial Intelligence, pp. 2094–2100, 2016.

Wang, J., Liu, Y., and Li, B. Reinforcement learning with
perturbed rewards. In AAAI Conference on Artificial
Intelligence, pp. 6202–6209, 2020.

Wang, Q., Liu, S., Chanussot, J., and Li, X. Scene classi-
fication with recurrent attention of VHR remote sensing
images. IEEE Transactions on Geoscience and Remote
Sensing, 57(2):1155–1167, 2019.

Wei, J. and Liu, Y. When optimizing f-divergence is robust
with label noise. In Conference on Learning Representa-
tions (ICLR), 2021.

Williams, R. J. Simple statistical gradient-following algo-
rithms for connectionist reinforcement learning. Machine
Learning, 8:229–256, 1992.

Yang, J., Ren, Z., Xu, M., Chen, X., Crandall, D. J., Parikh,
D., and Batra, D. Embodied amodal recognition: Learn-
ing to move to perceive objects. In IEEE/CVF Interna-
tional Conference on Computer Vision (ICCV), pp. 2040–
2050, 2019.

Yu, A. W., Lee, H., and Le, Q. V. Learning to skim text.
In Barzilay, R. and Kan, M. (eds.), Annual Meeting of
the Association for Computational Linguistics (ACL), pp.
1880–1890, 2017.

Zhang, X., Li, Y., Zhang, Z., and Zhang, Z. f-GAIL: Learn-
ing f-divergence for generative adversarial imitation learn-
ing. In Advances in Neural Information Processing Sys-
tems (NeurIPS), volume 33, pp. 12805–12815, 2020.

11



Internally Rewarded Reinforcement Learning

A. Proofs
A.1. Noise of the Logarithmic Reward

Based on the formulation of Eq. (13) and Eq. (14), the expectation and variance of the reward noise when using the
logarithmic reward (εlog) can be derived as follows:

E[εlog] = g′(p(y | τ))E[δ] + 1

2!
g′′(p(y | τ))E[δ2] + E[o(δ2)]

=
1

p(y | τ)E[δ]−
1

2! p2(y | τ)E[δ
2] + E[o(δ2)]

≈ − 1

2! p2(y | τ)E[δ
2],

V[εlog] = (g′(p(y | τ)))2V[δ] + (
1

2!
g′′(p(y | τ)))2V[δ2] + g′(p(y | τ))g′′(p(y | τ))Cov[δ, δ2]

+ V[o(δ2)] + 2g′(p(y | τ))Cov[δ, o(δ2)] + g′′(p(y | τ))Cov[δ2, o(δ2)]

≈ (g′(p(y | τ)))2V[δ] + (
1

2!
g′′(p(y | τ)))2V[δ2] + g′(p(y | τ))g′′(p(y | τ))Cov[δ, δ2]

≈ (g′(p(y | τ)))2V[δ] + (
1

2!
g′′(p(y | τ)))2V[δ2]

=
1

p2(y | τ)V[δ] + (
1

2! p2(y | τ) )
2V[δ2].

The variance is approximated using the fact that Cov[δ, δ2] = E[δ3]− E[δ]E][δ2] = (µ3 + 3µσ2 + γσ3)− µ(µ2 + σ2) =
2µσ2 + γσ3 ≈ 0, where σ2 = E[(δ − µ)2] is the variance, and µ = E[δ] and γ = E[( δ−µσ )3] are the mean and skewness,
which are both about zero due to the symmetry of the distribution of δ (Sec. 4.3).

A.2. Derivation of the Linear Reward Function by Maximizing the χ2-divergence

We use the optimization objective of maximizing the f -mutual information between the observation trajectory τ and the
target class y in place of the objective of Eq. (2) and obtain

If (y; τ) :=Df (p(y, τ) || p(y)p(τ))

= Eτ∼πθ,y∼p(y)F
(
p(y | τ)
p(y)

)
,

(18)

where Df (P ||Q) := Eq(x)f
(
p(x)
q(x)

)
= Ep(x)F

(
p(x)
q(x)

)
is the f -divergence of two probability distributions P and Q on X ,

with f : R+ → R being a generic convex function satisfying f(1) = 0, F (x) := f(x)/x for simplicity of expectation over
P instead of Q for later use, and p(x) and q(x) are probability density functions of P and Q respectively. By choosing
f(x) = x log x, f -divergence becomes the well-known Kullback–Leibler divergence and, correspondingly, the f -mutual
information is then Shannon’s mutual information (Shannon, 1948; Kinney & Gurinder S. Atwal, 2014; Belghazi et al.,
2018). Other typically used f -divergences and their expected mutual information over p(x, y) are listed in Table 1. When
using the χ2-divergence, i.e., f(x) = (x− 1)2, f -mutual information becomes

If (y; τ) = Eτ∼πθ,y∼p(y)
[
p(y | τ)
p(y)

− 1

]
. (19)

When y is sampled from a uniform distribution, i.e., p(y) is a constant, we have If (y; τ) = α Eτ∼πθ,y∼p(y) [p(y | τ)− p(y)],
where α = 1/p(y). Following the derivation of Eq. (3), this optimization objective induces the linear reward function in
Sec. 4.4.
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Table 1: f -mutual information and the corresponding convex functions

f -divergence f(x) If (x; y)

Kullback–Leibler x log x Ep(x,y) log p(y|x)
p(y)

χ2 (x− 1)2 Ep(x,y) p(y|x)p(y) − 1

Total Variance 1
2 |x− 1| Ep(x,y) 12

∣∣∣1− p(y)
p(y|x)

∣∣∣
Squared Hellinger (1−√x)2 Ep(x,y)

[
2− 2

√
p(y)
p(y|x)

]
Le Cam 1−x

2x+2 Ep(x,y) [p(y|x)−p(y)]
2

2p(y|x)+2p(y)

Jensen Shannon x log 2x
x+1 + log 2

x+1 Ep(x,y)
[
log 2p(y|x)

p(y|x)+p(y) +
p(y)
p(y|x) log

2p(y)
p(y|x)+p(y)

]
Reverse KL − log x Ep(x,y)

[
p(y)
p(y|x) log

p(y)
p(y|x)

]

B. Discriminator Noise Visualization
Besides the visualization of the discriminator noise when the policy is trained using the logarithmic reward (see Fig. 6), we
also visualize the discriminator noise when using the accuracy-based and the clipped linear reward in Fig. 10. We can see
that the discriminator noise when using the clipped linear reward has a smaller bias and variance.
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Figure 10: Visualization of the discriminator noise of RAM trained using the accuracy-based (cf. Eq. (1)) and the clipped
linear reward (cf. Eq. (17)).

C. Reward Clipping
We compare the performance of models trained using the logarithmic and the linear reward with and without reward clipping.
Experimental results are that the clipped logarithmic reward achieves almost the same performance on the digit recognition
task on both RAM and DT-RAM, slightly better performance on the skill discovery task (∼ 1.5 more learned skills), and
slightly worse performance (∼ 3.5% lower accuracy) on the object counting task. The clipped linear reward achieves almost
the same performance on the object counting task, slightly better performance (∼ 1% and ∼ 1.5% higher accuracy on RAM
and DT-RAM respectively) on the digit recognition task, and considerable improvement (∼ 23 more learned skills) on the
unsupervised skill discovery task (see Fig. 11). These results suggest that reward clipping is a generally beneficial technique,
which is consistent with our theoretical analysis in Sec. 4.5.

D. Evaluation of Various g Functions
We evaluate several other g functions in addition to the linear and logarithmic functions using the RAM model on the digit
recognition task. Fig. 12 illustrates the clipped generalized reward with respect to the estimated posterior probability when
using different g functions (cf. Eq. (9)). The reward is clipped at qφ(y | τ) = p(y) = 0.1 (cf. Eq. (17)). Fig. 13 shows
training curves when using different g functions. We can see that the linear function results in the best performance, and
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Figure 11: Reward clipping on the unsupervised skill discovery task.

g functions that are similar in shape to the linear function generally perform well. The logarithmic function and function
g(x) = x6 perform worse than others, which can be explained from the perspective of the requirements of g functions.
Though the logarithmic function works ideally in information transmission in theory where noise is not an issue, it suffers
from noisy rewards as discussed in Sec. 4. Function g(x) = x6, on the other hand, leads to a small bias and variance of the
estimated reward, which suggests a favorable ability in noise moderation. However, it cannot transmit information with
high fidelity. Its incompetence in information transmission can be observed from the shape of the corresponding plot in
Fig. 12, where a wide range of values, e.g., [0, 0.5], is compressed to values close to zero, leading to a substantial ignorance
of information in various observations. In contrast, the linear function achieves a trade-off between these two abilities and
exhibits the best performance among all the g functions considered.
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Figure 12: Clipped generalized reward with respect to
the estimated posterior probability.
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Figure 13: Evaluation of various g functions using the
RAM model on the digit recognition task.

E. Environments
Cluttered-MNIST We generate the Cluttered MNIST dataset by a generator provided by the code repository5 of Sønderby
et al. (2015), where we adopt the dataset configuration from Mnih et al. (2014). A Cluttered MNIST image is generated by
randomly placing an original MNIST image (28×28) and 4 randomly cropped patches (8×8) from original MNIST images
in an empty image (60×60). We generate 60k Cluttered MNIST images, of which 90% are used for training and the rest for
validation.

Four-room environment The four-room environment is adopted from Strouse et al. (2022) and is shown in Fig. 3b. There
are four rooms and 104 states. The agent is initialized at the top-left corner at each episode and can select an action from
{left, right, up, down, no-op} at each time step. The length of each trajectory is 20, by which the agent is able to reach all

5https://github.com/skaae/recurrent-spatial-transformer-code
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but one state, arising the maximum number of possible learned skills 103. The target skill label is uniformly sampled as an
integer in [0, 127] at each episode.

Object counting We create a simulation environment for the task of object counting in occlusion based on the simulation
environment provided by the code repository8 of Li et al. (2021). We use cubes of three different sizes (small, medium, and
large) in two different colors (red, and blue) as objects on the table. The goal object is one of the small or medium objects.
Each scene is initialized under the following constraints: 1) at least one large object is on the table as an abstraction; 2) the
number of other objects N is sampled from a Poisson distribution (λ = 4) and is clipped at a maximum number of 6; 3) one
of the goal objects is occluded by an object of a larger size with a probability of 80% to make occlusion happen frequently.
The number of goal objects is uniformly sampled between 0 and N . The agent is initialized in front of the table and takes as
input an egocentric RGB image with a resolution of 256×256 (cf. Fig. 3c). The agent has three discrete actions: rotate right,
rotate left, and stop. The agent circles around the table by 30 degrees with each rotation action. The maximum number of
movement steps is 6, by which the agent can move to the opposite of its initial position. We generate offline datasets for
training (100k scenes) and evaluation (1k scenes) because online occlusion checking including scene initialization in the
CoppeliaSim simulator is slow.

F. Implementation
RAM We use an existing implementation of the original RAM model6. Given an image and the coordinate of the
glimpse, a glimpse network extracts visual representations of the attended patch by an MLP. The coordinate is mapped
into representations by another MLP. The two representation vectors have the same dimensionality of 256. They are added
together to get the glimpse representations. A simple RNN as the core network recurrently processes glimpse representations
and produces hidden representations with a dimensionality of 256 at each time step. A policy network takes hidden
representations of the core network as input to predict the location of the next glimpse. When the maximum number of
movement steps is reached, a classification network takes hidden representations of the core network as input to produce the
class prediction and finalize the task. The maximum number of movement steps is 18 in our experiments. The original RAM
uses multi-resolution glimpses at each time step for achieving higher classification accuracy. The glimpse of the lowest
resolution can cover almost the entire image. This setting compromises the quality of the attention policy. To focus on policy
learning in this work, we use a single small glimpse of size 4× 4 at each time step. The idea of not using multi-resolution
glimpses has been used by Elsayed et al. (2019) for better interpretability. In our experiments, RAM models are trained
using REINFORCE (Williams, 1992) and optimized by Adam (Kingma & Ba, 2015) for 1500 epochs with a batch size of
128 and a learning rate of 3e-4.

DT-RAM The DT-RAM model used in the experiments is from our own implementation. Instead of using two separate
policy networks for location prediction and task termination respectively, which is designed for curriculum learning in the
original DT-RAM, we use an integrated policy network for both location prediction and task termination. Same as RAM,
the glimpse size is 4× 4, and the maximum number of movement steps is 18 for DT-RAM. In our experiments, DT-RAM
models are trained for 1500 epochs with the same optimization configuration as RAM models.

Model for unsupervised skill discovery The implementation of the model for unsupervised skill discovery is based on
the code repository7 of Strouse et al. (2022). In this implementation, the model uses the last state as an abstraction of
the trajectory. The model is trained using a distributed actor-learner setup similar to R2D2 (Kapturowski et al., 2019).
The Q-value targets are computed with Peng’s Q(λ) (Peng & Williams, 1996) instead of n-step double Q-learning.
Following Strouse et al. (2022), performance of the agent is evaluated using the number of learned skills

nskills = 2E[log qφ(y|τ)−log p(y)], (20)

which can be understood as the measurement of the logarithmic reward in bits.

Model for object counting The implementation of the model for robotic object counting is based on the code repository8

of Li et al. (2021). We replace the REINFORCE algorithm with PPO for more efficient training. The implementation of the

6https://github.com/kevinzakka/recurrent-visual-attention
7https://github.com/deepmind/disdain
8https://github.com/mengdi-li/robotic-occlusion-reasoning
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PPO algorithm is based on the code repository9 of Chevalier-Boisvert et al. (2019). The model consists of a pretrained and
fixed ResNet18 (He et al., 2016) to extract feature maps from its conv3 layer. The feature maps are then passed through two
CNN layers and an average pooling layer to get visual representations of dimension 256. The index of the target object is
mapped into a 10-dimensional embedding, which is called the goal representation. The visual and goal representations are
concatenated together as the input of an RNN network, which recurrently produces hidden representations at each time
step for the policy network and classification network. When the policy network selects the stop action, the classification
network is triggered to produce the prediction of the number of the target object. We train the model for 2M episodes. Five
processes are used to collect experience with a horizon of 40 steps. We train the model using Adam (Kingma & Ba, 2015)
with a learning rate of 1e-4. Other hyperparameters of PPO are the same as the original implementation9 except that we use
10 epochs of minibatch optimization and 5 parallelization processes.

G. DISDAIN
The reward of the DISDAIN method is r = rlog + λrDISDAIN, where rlog is the logarithmic reward function (cf. Eq. (4)), λ is
a weighting coefficient, and rDISDAIN is an auxiliary ensemble-based reward calculated as

rDISDAIN = H

[
1

N

N∑
i=1

qφi(y | τ)
]
− 1

N

N∑
i=1

H [qφi(y | τ)] , (21)

where N is the number of discriminators of the ensemble, and H[X] is the entropy of random variable X . The DISDAIN
reward is essentially the estimation of the epistemic uncertainty of the discriminator.

H. Additional Results
H.1. Case Study

H.1.1. HARD ATTENTION FOR DIGIT RECOGNITION

In Fig. 14, we provide cases of the DT-RAM model on the digit recognition task for intuitive comparison between the model
trained using different reward functions. All the cases are randomly sampled without any cherry-picking. We can see that
trajectories generated by the model trained using the clipped linear reward can cover sufficient information for recognizing
the digit, while trajectories generated by the model trained using the logarithmic reward function tend to be pessimistic,
e.g., trajectories in cases of digit 9 and digit 6 in the first row, digit 0 in the second row, and digit 4 in the third row. The
exploration trajectories generated by the model trained using the accuracy-based reward tend to sample less informative
areas, e.g., trajectories in cases of digit 6 in the first row, and digit 2 in the third row and second column, which may account
for its low accuracy.

H.1.2. ROBOTIC OBJECT COUNTING

Fig. 15 shows examples of the pessimistic exploration issue when using the logarithmic and the accuracy-based reward
function. The agent trained using the accuracy-based reward function chooses not to move, and the agent trained using the
logarithmic reward function terminates exploration too early to acquire sufficient information for predicting the number of
the target object. They guess the number of target objects based on insufficient observations, while the agent trained using
the clipped linear reward function learns to choose a reasonable number of movement steps to explore the environment.

H.2. State Occupancy in Unsupervised Skill Discovery

Fig. 16 demonstrates state occupancy reached using different reward functions at initialization, at the intermediate stage, and
at convergence during training. We can see that using the clipped linear reward function, the agent learns to reach all states
as using the DISDAIN reward, while the agent mainly explores the first room when using the clipped logarithmic reward
function.

9https://github.com/mila-iqia/babyai
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GT: 9  Predicted: 9 GT: 2  Predicted: 2 GT: 6  Predicted: 6

GT: 0  Predicted: 0 GT: 6  Predicted: 6 GT: 7  Predicted: 7

GT: 2  Predicted: 2

(a) Clipped linear

GT: 9  Predicted: 7 GT: 2  Predicted: 3 GT: 6  Predicted: 2

GT: 0  Predicted: 4 GT: 6  Predicted: 6 GT: 7  Predicted: 7

GT: 2  Predicted: 2

(b) Clipped logarithmic

GT: 9  Predicted: 9 GT: 2  Predicted: 6 GT: 6  Predicted: 3

GT: 0  Predicted: 9 GT: 6  Predicted: 6 GT: 7  Predicted: 7

GT: 4  Predicted: 4 GT: 2  Predicted: 0 GT: 2  Predicted: 2

(c) Accuracy-based

Figure 14: Comparison of DT-RAM models trained by different reward functions. GT: the ground-truth class; Predicted: the
predicted class. Red indicates incorrect predictions.
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clipped linear

clipped logarithmic accuracy-based

goal: cube_small_blue ground-truth label:4

4

3 3

case 1

goal: cube_small_blue ground-truth label:5case 2

5

clipped linear

clipped logarithmic

4 5

accuracy-based

goal: cube_medium_blue ground-truth label:5case 3

5

clipped linear

clipped logarithmic

4 4

accuracy-based

goal: cube_small_red ground-truth label:4case 4

clipped linear

clipped logarithmic

4

3 4

accuracy-based

Figure 15: Comparison of models trained by different reward functions on the robotic object counting task. The number
next to the arrow after a sequence of egocentric views is the number of goal objects predicted by the agent. Red numbers
indicate wrong predictions.
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(a) Clipped logarithmic

(b) DISDAIN

(c) Clipped linear

Figure 16: States reached using different reward functions. Plots depict ratios of final states reached after performing 10
trajectories per skill. The ratio is clipped between 0.001 and 0.1 for the sake of visualization. Note that the number of
iterations at convergence is different (see Fig. 8a).

19


