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Abstract
We study how to train personalized models for dif-
ferent tasks on decentralized devices with limited
local data. We propose “Structured Cooperative
Learning (SCooL)”, in which a cooperation graph
across devices is generated by a graphical model
prior to automatically coordinate mutual learning
between devices. By choosing graphical models
enforcing different structures, we can derive a rich
class of existing and novel decentralized learning
algorithms via variational inference. In particular,
we show three instantiations of SCooL that adopt
Dirac distribution, stochastic block model (SBM),
and attention as the prior generating cooperation
graphs. These EM-type algorithms alternate be-
tween updating the cooperation graph and cooper-
ative learning of local models. They can automat-
ically capture the cross-task correlations among
devices by only monitoring their model updating
in order to optimize the cooperation graph. We
evaluate SCooL and compare it with existing de-
centralized learning methods on an extensive set
of benchmarks, on which SCooL always achieves
the highest accuracy of personalized models and
significantly outperforms other baselines on com-
munication efficiency. Our code is available at
https://github.com/ShuangtongLi/SCooL.

1. Introduction
Decentralized learning of personalized models (DLPM) is
an emerging problem in a broad range of applications, in
which multiple clients target different yet relevant tasks but
no central server is available to coordinate or align their
learning. A practical challenge is that each single client may
not have sufficient data to train a model for its own task
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Figure 1. SCooL framework. Left: SCooL optimizes a K × K
cooperation graph Y together with K personalized models θ1:K
for K tasks, which transfer knowledge across the K clients via
decentralized learning. Right: SCooL’s probabilistic model. Y
is generated from a graphical model prior while θi or data Di per
client is generated based on Y . We discuss configurations (cases
in Section 3.2) of the probabilistic model and derive EM-type
algorithms (Section 3.3) that alternately updates Y and θ1:K .

and thus has to cooperate with others by sharing knowledge,
i.e., through cooperative learning. However, it is usually
difficult for a client in the decentralized learning setting to
decide when to cooperate with which clients in order to
achieve the greatest improvement on its own task, especially
when the personal tasks and local data cannot be shared
across clients. Moreover, frequently communicating with
all other clients is usually inefficient or infeasible. Hence,
it is critical to find a sparse cooperation graph only relating
clients whose cooperative learning is able to bring critical
improvement to their personalization performance. Since
the local models are kept being updated, it is also neces-
sary to accordingly adjust the graph to be adaptive to such
changes in the training process.

Structural learning of a cooperation graph on the fly with de-
centralized learning of local models is an open challenge and
can be prone to high variance caused by client heterogeneity
and local data deficiency. Inspired Bayesian methods and
their priors, we propose “Structured Cooperative Learning
(SCooL)”. SCooL applies a probabilistic graphical model
(PGM) as a structured prior enforcing certain structures
such as clusters when generating the cooperation graph. By
combining such a graphical model prior with the expressive
power of neural networks on learning local tasks, we are
able to develop a general framework for DLPM, from which

1

https://github.com/ShuangtongLi/SCooL


Structured Cooperative Learning with Graphical Model Priors

we can derive a rich class of novel algorithms associated
with different structured priors. In particular, we propose a
probabilistic model to generate the cooperation graph and
local models (Fig. 1 Right). Variational inference on this
probabilistic model produces an approximate Maximum-A-
Posteriori (MAP) estimation, which leads to an EM-type
algorithm that alternately updates the cooperation graph and
local models (Fig. 1 Left).

We discuss several designs or configurations of the key com-
ponents in the generative model and a general variational
inference framework to derive EM algorithms for the model.
For instance, we apply three different graphical model priors
to generate the cooperation graph in the model and follow
SCooL framework to derive three decentralized learning
algorithms. While the Dirac Delta prior leads to an existing
algorithm, i.e., D-PSGD (Lian et al., 2017), the other two
priors, i.e., stochastic block model (SBM) and attention,
lead to two novel algorithms (SCooL-SBM and SCooL-
Attention) that assume different structures and correlation
among the local tasks. These two structural priors accelerate
the convergence to a sparse cooperation graph (Fig. 4-5),
which can accurately identify the relevant tasks/clients and
significantly save the communication cost (Fig. 7).

In experiments on several decentralized learning bench-
marks created from three datasets using two different
schemes to draw non-IID tasks, SCooL outperforms
SOTA decentralized and federated learning approaches
on personalization performance (Table 2) and compu-
tational/communication efficiency (Fig. 3). We further
investigate the capability of SCooL on recovering the
cooperation graph pre-defined to draw non-IID tasks. The
results explain how SCooL captures the task correlations to
coordinate cooperation among relevant tasks and improve
their own personalization performance.

2. Related work
Federated learning (FL) (McMahan et al., 2017) Both
empirical (Hsieh et al., 2020) and theoretical (Karimireddy
et al., 2020) studies find that the performance of FL de-
grades in non-IID settings when the data distributions (e.g.,
tasks) over devices are heterogeneous. Several strategies
have been studied to address the non-IID challenge: modi-
fying the model aggregation (Lin et al., 2020; Fraboni et al.,
2021; Chen & Chao, 2021; Wang et al., 2020; Balakrishnan
et al., 2022), regularizing the local objectives with proximal
terms (Acar et al., 2021; Li et al., 2018). or alleviating catas-
trophic forgetting in local training (Xu et al., 2022). These
methods focus on improving the global model training to be
more robust to non-IID distributions they can be sub-optimal
for training personalized models for local tasks. Recent
works study to improve the personalization performance in
non-IID FL via: (1) trading-off between the global model

and local personalization (Li et al., 2021a; T. Dinh et al.,
2020); (2) clustering of local clients (Sattler et al., 2020;
Ghosh et al., 2020; Xie et al., 2021; Long et al., 2022); (3)
personalizing some layers of local models (Li et al., 2021b;
Liang et al., 2020; Collins et al., 2021; Oh et al., 2022;
Zhang et al., 2023); (4) knowledge distillation (Zhu et al.,
2021; Afonin & Karimireddy, 2022); (5) training the global
model as an initialization (Fallah et al., 2020) or a genera-
tor (Shamsian et al., 2021) of local models; (6) using per-
sonalized prototypes (Tan et al., 2022a;b); (7) masking local
updates (Dai et al., 2022); or (8) learning the collaboration
graph (Chen et al., 2022). Most of them focus on adjusting
the interactions between the global model and local per-
sonalized models. In contrast to DLPM (our problem), FL
assumes a global server so direct communication among per-
sonalized models is not fully explored. Although clustering
structures have be studied for FL, structure priors of cross-
client cooperation graphs has not been thoroughly discussed.

Decentralized learning (DL) Earlier works in this field
combine the gossip-averaging (Blot et al., 2016) with SGD.
Under topology assumptions such as doubly stochastic
mixing-weights (Jiang et al., 2017), all local models can
be proved to converge to a “consensus model” (Lian et al.,
2017) after iterating peer-to-peer communication. Although
they show promising performance in the IID setting, (Hsieh
et al., 2020) points out that they suffer from severe per-
formance degeneration in non-IID settings. To tackle this
problem, recent works attemp to improve the model update
schemes or model structures, e.g., modifying the SGD mo-
mentum term (Lin et al., 2021), replacing batch normaliza-
tion with layer normalization (Hsieh et al., 2020), updating
on clustered local models (Khawatmi et al., 2017), or mod-
ifying model update direction for personalized tasks (Es-
fandiari et al., 2021). Another line of works directly stud-
ies the effects of communication topology on consensus
rates (Huang et al., 2022; Yuan et al., 2022; Song et al.,
2022; Vogels et al., 2022). Comparing to DLPM, these
methods still focus on achieving a global consensus model
rather than optimizing personalized models for local tasks.
In addition, comparing to the cooperation graph in SCooL,
their mixing weights are usually pre-defined instead of auto-
matically optimized for local tasks. SPDB (Lu et al., 2022)
learns a shared backbone with personalized heads for local
tasks. However, sharing the same backbone across all tasks
might be sub-optimal and they do not optimize the mixing
weights for peer-to-peer cooperation.

3. Probabilistic Cooperative Learning
3.1. Probabilistic Modeling with Cooperation Graph

We study a probabilistic model whose posterior probability
of local models θ1:K given local data D1:K is defined by
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P (θ1:K |D1:K) ∝ P (θ1:K , D1:K)

=

∫
P (D1:K |θ1:K , Y )P (θ1:K , Y )dY.

(1)

The cooperative learning of θ1:K aims to maximize the
posterior. Different from conventional decentralized
learning methods like D-PSGD which fixes the cooperation
graph or mixing weights, we explicitly optimize the
cooperation graph Y for more effective cooperation among
decentralized models maximizing P (D1:K |θ1:K , Y ). The
posterior in Eq. (1) is decomposed into two parts: the joint
prior of θ1:K and Y , and the joint likelihood of D1:K given
θ1:K and Y . By assuming different structures of the two
parts (case 1.1-1.2 and case 2.1-2.3) and applying different
priors P (Y ) for Y , we achieve a general framework
from which we can derive a rich class of decentralized
cooperative learning algorithms.

3.2. Configurations of Joint Likelihood and Prior

In the following, we will discuss several possible configura-
tions of the general probabilistic model in Eq. (1).

Joint Likelihood P (D1:K |θ1:K , Y ) Maximizing this
joint likelihood optimizes both models θ and the cooper-
ation graph Y to fit the datasets D1:K . In a trivial case with
Y fixed, it reduces to classical decentralized learning. In
contrast, the joint likelihood allows us to choose a coopera-
tion graph Y determining the data distributions of clients:

case 1.1 P (D1:K |θ1:K) : when Y is pre-defined without
affecting the data distribution, the joint likelihood can be
designed as a simple product of likelihoods over all clients.

P (D1:K |θ1:K) =

K∏
i=1

P (Di|θi) (2)

case 1.2 P (D1:K |θ1:K , Y ) enables us to optimize the co-
operation graph to coordinate the training of multiple local
models. For example, the following joint likelihood model
leads to a multi-task learning objective:

P (D1:K |θ1:K , Y ) =

K∏
i=1

P (D1:K |θi, Y )

=

k∏
i=1

(
P (Di|θi)

∏
j ̸=i,Yij=1

P (Dj |θi)
)
. (3)

This objective leads to a personalized model θi learned from
multiple sources of data D1:K and Y provides the mixing
weights for different sources: Yij = 1 encourage a coop-
eration between client-i and client-j so the learning of θi
can benefit from learning an additional task on Dj ; while
Yij = 0 indicates that learning task-j’s dataDj hardly bring
improvement to θi on task-i. Joint Priors of Personalized

Models and Cooperation Graph P (θ1:K , Y ) can be pa-
rameterized in three different forms by presuming different
dependencies of models and cooperation graphs:

case 2.1 : P (θ1:K |Y )P (Y ), θ1:K is derived from Y .

case 2.2 : P (Y |θ1:K)P (θ1:K), θ1:K determines Y .
case 2.3 : P (θ1:K)P (Y ), θ1:K is independent to Y .

By choosing a joint prior from case 2.1-2.3 and combining
it with a joint likelihood chosen from case 1.1-1.2, we are
able to create a rich family of probabilistic models that
relate local models through their cooperation graph. In
particular, the cooperation graph Y can guide the cross-
client cooperation by relating either different clients’ data
(case 1.2) or their models (case 2.1-2.2). Practical designs
of likelihood and prior need to consider the feasibility and
efficiency of inference.

The generation of cooperation graph Y in the probabilistic
model plays an important role in determining knowledge
transfer across clients in cooperative learning. As shown
in Section 4, if clients’ tasks have a clustering structure
and the clients belonging to the same cluster have a higher
probability to cooperate, we can choose a stochastic block
model (SBM) P (Y ) as the prior to generating Y ; if we
encourage the cooperation between clients with similar tasks
or models, we can generate Yij via P (Yij |θi, θj) according
to the similarity between θi and θj , which can be captured
by an “attention prior” that will be introduced later.

3.3. Variational Inference of Cooperation Graph &
Cooperative Learning of Personalized Models

Maximizing the posterior in Eq. (1) requires an integral
on latent variable Y , which may not have a closed form
or is expensive to compute by sampling methods. Hence,
we choose to use variational inference with mean field
approximation (Jordan et al., 1999) to derive an EM
algorithm that alternately updates the cooperation graph
and local models using efficient closed-form updating
rules. Despite possible differences in the concrete forms of
likelihood and prior, the derived EM algorithm for different
probabilistic models shares the same general form below.

For observations X (e.g., X = D1:K), the set of all latent
variables Z (e.g., Z ⊇ Y ), and the set of all model parame-
ters Φ (e.g., Φ ⊇ θ1:K), the posterior is lower bounded by

log p(X|Φ) = log

∫
p(X,Z|Φ)dZ

≥
∫
q(Z) log

p(X,Z|Φ)
q(Z)

dZ := H(q,Φ).

(4)

EM algorithm aims to maximize L(q,Φ) by iterating be-
tween the following E-step and M-step:
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E-step finds distribution q to maximize the lower bound:

q ← argmax
q

H(q,Φ). (5)

However, directly optimizing q is usually intractable. Hence,
we resort to mean-field theory that approximates q(Z) by a
product distribution with variational parameter βi for each
latent variable Zi, i.e.,

qβ(Z) =
∏
i

qi(Zi|βi). (6)
Then the E-step reduces to:

β ← argmax
β

H(qβ ,Φ). (7)

For SCooL, its E-step has a closed-form solution F (·) to
the variational parameters w of the cooperation graph Y so
its E-step has the form of

wij ← F

(
logP (Dj |θi), β,Φ

)
∀i, j ∈ [K].

Update other variational parameters in {β}\{wij}.
(8)

M-step optimizes parameters Φ given the updated q, i.e.,

Φ← argmax
Φ

H(q,Φ). (9)

For SCooL, its M-step applies gradient descent to optimize
the local models θ1:K .

θi ← θi − η1
(∑

j ̸=i

wij∇L(Dj ; θi) +∇L(Di; θi) +G(β,Φ)

)
.

Update other observable variables {Φ}\{θi}, (10)

where L(D; θ) is the loss of model θ computed on dataset
D and G(β,Φ) is a term that only depends on β and Φ.

Remarks: In E-step shown in Eq. (8), SCooL updates wij

based on the “cross-client loss” logP (Dj |θi) that evaluates
the personalized model θi of client-i on the dataset Dj of
client-j. Intuitively, a higher log-likelihood logP (Dj |θi)
implies that the tasks on client-i and client-j are similar so
θi can be improved by learning from θj via a larger wij (or
Yij) in the cooperation graph. In M-Step shown in Eq. (10),
SCooL trains each personalized model θi by not only us-
ing its own gradient ∇L(Di; θi) but also aggregating the
gradients∇L(Dj ; θi) computed on other clients with mix-
ing weights wij from the cooperation graph. This encour-
ages cooperative learning among clients with similar tasks.
In Appendix C.1, we discuss a practical approximation to
∇L(Dj ; θi) that avoids data sharing between clients and
saves communication cost without degrading cooperative
learning performance.

Therefore, by iterating between E-step and M-step for
SCooL, we optimize the cooperation graph to be adaptive
to the local training progress on clients and their latest per-
sonalized models, which are then updated via cooperative
learning among relevant clients on the optimized graph.

4. Graphical Model Priors for Cooperation
Graph & Three Instantiations of SCooL

Algorithm 1: Structured Cooperative Learning

1 Input {Di}Ki=1, S, T
2 Output θ1:K
3 Initialize personalized models θ1:K , latent

variational parameters β, observable variables Φ
4 for t = 0→ T do
5 for client i = 1→ K in parallel do
6 E-step:

7 wij ← F

(
logP (Dj |θi), β,Φ

)
.

8 Update {β}\{wij}.
9 Examples:

10 SCooL-SBM: Eq. (18)-(20)

11 SCooL-attention: Eq. (29)
12 M-step:
13 for local SGD step m = 0 : s do

14 θi ← θi − η1
(
∇L(Di; θi)+

15
∑

j ̸=i wij∇L(Dj ; θi) +G(β,Φ)

)
.

16 end
17 Update {Φ}\{θi}.
18 Examples:
19 SCooL-SBM: Eq. (22)-(24)

20 SCooL-attention: Eq. (30)-(31)
21 end
22 end

In this section, we derive three instantiations of SCooL al-
gorithms associated with three graphical model priors P (Y )
used to generate the cooperation graph Y in the probabilis-
tic model. We first show that D-PSGD (Lian et al., 2017)
can be derived as a special case of SCooL when applying
a Dirac Delta prior to Y . We then derive SCooL-SBM
and SCooL-attention that respectively use stochastic block
model (SBM) and an “attention prior” to generate a struc-
tured Y . The probabilistic models for these three SCooL
examples are shown in Fig.2.

4.1. Dirac Delta Prior Leads to D-PSGD

We choose prior P (Y ) as a simple Dirac Delta distribution
and define P (θ|Y ) as a manifold prior (Belkin et al., 2006)
based on the pairwise distance between local models:

Y ∼ δ(w) (11)

P (θ1:K |Y ) ∝ exp(−λ
2

∑
1≤i,j≤K

Yij ||θi − θj ||2) (12)

P (D1:K |θ1:K) ∝
K∏
i=1

P (Di|θi). (13)
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Figure 2. Probabilistic models used in SCooL examples.

We then choose case 1.1 as the likelihood and case 2.1 as
the prior. Hence, maximizing posterior or MAP is:

argmax
θ1:K

logP (θ1:K |D1:K)

= argmin
θ1:K

K∑
i=1

L(Di; θi) +
λ

2

∑
i,j

wij ||θi − θj ||2. (14)

The above MAP can be addressed by gradient descent:

θi ← θi − α
(
∇θL(Di; θi) +

λ

2

K∑
j=1

(wij + wji)(θi − θj)
)

1⃝
= θi − α

(
∇θL(Di; θi) + λ

K∑
j=1

wij(θi − θj)
)

2⃝
= θi − α∇θL(Di; θ)− αλ

(
θi −

K∑
j=1

wijθj

)
, (15)

where 1⃝ holds because we enforcewij = wji, and 2⃝ holds
due to the constraint

∑K
j=1 wij = 1.

Taking λ = 1
α , we finally obtain the update rule as:

θi ←
K∑
j=1

wijθj − α∇θL(Di; θi) (16)

Hence, it exactly reconstruct the D-PSGD (Lian et al., 2017)
algorithm (See Appendix B for details of D-PSGD).

4.2. SCooL-SBM with Stochastic Block Model Prior

In cooperative learning, we can assume a clustering structure
of clients such that the clients belonging to the same com-
munity benefit more from their cooperation. This structure
can be captured by stochastic block model (SBM) (Hol-
land et al., 1983), which is used as the prior generating the
cooperation graph in SCooL. In particular,

• For each client i ∈ [K]:

– Draw an M -dimensional membership probability
distribution as a vector π⃗i ∼ Dirichlet(α⃗).

– Draw membership label z⃗i ∼ Multinomial(π⃗i).

• For each pair of clients (i, j) ∈ [K]× [K]:

– Sample Yij ∼ Bernoulli(z⃗ T
i B z⃗j) that deter-

mines the cooperation between client pair (i, j).

Hence, the marginal distribution of Y under SBM is:

P (Y |α⃗, B) =

∫
P (Y, π⃗1:K , Z⃗1:K |α⃗, B)d(π⃗1:K , Z⃗1:K).

We assume Gaussian priors for personalized models:

P (θ1:K) ∝ exp(−λ
2

∑
i

||θi||2). (17)

SCooL-SBM: Since the generation of Y does not depend
on θ, we can consider the joint prior in case 2.3. We further
choose case 1.2 as the likelihood. The EM algorithm for
SCooL-SBM can be derived as the following (details are
given in Appendix D).

• E-step updates w, γ, and Ω, which are the vari-
aiontal parameters of latent variables Y , π, and z,
respectively.

wij ← Sigmoid
(
logP (Dj |θi) +

∑
g,h

Ω⃗igΩ⃗jh log

B(g, h)−
∑
g,h

Ω⃗igΩ⃗jh log(1−B(g, h))

)
(18)

γig ← Ω⃗ig + α⃗g (19)

Ω⃗i· ←Softmax
(∑

j

wij

∑
h

Ω⃗jh logB(·, h)+

∑
j

wji

∑
h

Ω⃗jh logB(h, ·) (20)

+ ψ(γi·)− ψ

(∑
g

γig

)
+

∑
j

(1− wij)
∑
h

Ω⃗jh log(1−B(·, h))+

∑
j

(1− wji)
∑
h

Ω⃗jh log(1−B(h, ·))
)
(21)
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• M-step updates the model parameters θi, α⃗i, and B.

θi ← θi − η1
(
∇θiL(Di; θi)+∑

j ̸=i

wij∇θiL(Dj ; θi) + λθi

) (22)

α⃗i ← α⃗i + η2

(∑
g

(
ψ(γgi)− ψ(

∑
k

γgk)

)
−

K
∑
g

ψ(α⃗g) +Kψ

(∑
k

α⃗k

))
(23)

B(i, j)←
∑

g,h wghΩ⃗giΩ⃗hj∑
g,h Ω⃗giΩ⃗hj

(24)

4.3. SCooL-attention with Attention Prior

Instead of assuming a clustering structure, we can train
an attention mechanism to determine whether every two
clients can benefit from their cooperation. In the probabilis-
tic model of SCooL, we can develop an attention prior to
generate the cooperation graph. Specifically, we compute
the attention between between θi and θj using a learnable
metric f(·, ·), i.e.,

pij =
exp(f(θi, θj))∑
l exp(f(θi, θℓ))

, (25)

In dot-product attention, f(θi, θj) is the inner product be-
tween the representations of θi and θj produced by a learn-
able encoder E(·;ϕ), e.g., the representation of θi is com-

puted as E(θ
t+ 1

2
i − θ0i ;ϕ). We compute the difference

θ
t+ 1

2
i − θ0i in order to weaken the impact of initialization θ0i

and focus on the model update produced by gradient descent
in the past training rounds. Hence,

f(θi, θj) = ⟨E(θ
t+ 1

2
i − θ0i ;ϕ), E(θ

t+ 1
2

j − θ0j ;ϕ)⟩. (26)

Each row of Y is a one-hot vector drawn from a categor-
ical distribution defined by the attention scores between
personalized models, i.e.,

Y⃗i ∼ Categorical(pi1, pi2, ..., piK), ∀ i ∈ [K] (27)

In SCooL-attention’s probabilistic model, we also use Gaus-
sian as the prior for personalized models:

P (θ1:K) ∝ exp(−λ
2

∑
i

||θi||2), (28)

SCooL-attention Hence, the above defines a joint prior
in the form of case 2.2. We further adopt the likelihood in
case 1.2. The EM algorithm for SCooL-attention can then
be derived as the following (details given in Appendix E).

• E-step updates the variational parameters w of cooper-
ation graph Y , i.e.,

wi· ← Softmax
(
logP (D·|θi) + log pi·

)
(29)

• M-step upates the model parameters θi and ϕ, i.e.,

θi ← θi − η1
(
∇θiL(Di; θi) +

∑
j ̸=i

wij∇θiL(Dj ; θi)+

λθi −
∑
ij

wij∇θi log pij

)
(30)

ϕ← ϕ+ η2∇ϕ

(∑
ij

wij log pij

)
(31)

5. Experiments
Table 1. The parameters of both non-IID (McMahan et al., 2017)
and non-IID SBM experimental setup.

Dataset M K N model

CIFAR-10 10 100 2 two-layer CNN
CIFAR-100 100 100 10 two-layer CNN
MiniImageNet 100 100 10 four-layer CNN

5.1. Experimental Setup

To test the personalization performances of SCooL models,
we draw classification tasks from two non-IID settings:

• Non-IID SBM: a simpler non-IID setting. Given
a dataset of M classes, the totally K clients can
be divided into several groups. Clients within the
same group are allocated with the same subset of N
classes, while clients from different groups do not have
any shared classes. This task assignment distribution
among clients can be described by a SBM model with
an uniform membership prior α.

• Non-IID (McMahan et al., 2017): A more challeng-
ing non-IID setting used in FedAvg (McMahan et al.,
2017), where we randomly assign N classes of data
to every client from totally M classes. Different from
non-IID SBM setting, no pair of clients is ensured to
share the same classes and data distribution.

We evaluate SCooL-SBM and SCooL-attention and com-
pare them with several FL/DL baselines on three datasets:
CIFAR-10 (Krizhevsky et al., 2009), CIFAR-100, and
MiniImageNet (Ravi & Larochelle, 2017), each having
50,000 training images and 10,000 test images. In Table 3,
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we list the parameters for the two non-IID settings. Fol-
lowing the evaluation setting for personalized models in
previous non-IID DL works (Liang et al., 2020; Zhang et al.,
2021), we evaluate each local model on all available test
samples belonging to the classes in its local task. We run
every experiment using five different random seeds and re-
port their average test accuracy. We choose local models to
be the two-layer CNN adopted in FedAvg (McMahan et al.,
2017) for CIFAR-10/100 and the four-layer CNN adopted in
MAML (Finn et al., 2017) for MiniImageNet. Since Batch-
Norm (BN) may have a detrimental effect on DL (Hsieh
et al., 2020), we replace all the BN layers (Ioffe & Szegedy,
2015) with group-norm layers (Wu & He, 2018). The im-
plementation details of SCooL-SBM and SCooL-attention
are given in Appendix C.1.

Baselines We compare our methods with a diverse set
of baselines from federated learning (FL) and decentral-
ized learning (DL) literature, as well as a local SGD only
baseline without any model aggregation across clients. FL
baselines include FedAvg (McMahan et al., 2017) (the most
widely studied FL method), Ditto (Li et al., 2021a) achiev-
ing fairness and robustness via a trade-off between the global
model and local objectives, and FOMO (Zhang et al., 2021)
applying adaptive mixing weights to combine neighbors’
models for updating personalized models. DL baselines in-
clude D-PSGD (Lian et al., 2017) with fixed mixing weights
and topology, CGA (Esfandiari et al., 2021) with a fixed
topology but adaptive mixing weights for removing the con-
flict of cross-client gradients, SPDB (Lu et al., 2022) with a
shared backbone network but personalized heads for clients’
local tasks, meta-L2C (Li et al., 2022) learning mixing
weights to aggregate clients’ gradients, and Dada (Zant-
edeschi et al., 2020) training local models with weighted reg-
ularization to the pairwise distance between local models.

We run each baseline for 100 (communication) rounds or
equally 500 local epochs if > 100 rounds are needed, the
same as our methods, except FedAvg which needs more (i.e.,
> 1000) epochs to converge. For fair comparisons, we keep
their communication cost per client and local epochs in each
round to be no smaller than that of our methods. For FL
baselines, the communication happens between the global
server and clients, so we randomly select 10% clients for ag-
gregation and apply 5 local epochs per client in each round.
For DL baselines, we let every client communicate with
∼10% clients in every round. we evaluate them in two set-
tings, i.e., one local SGD step per round and 5 local epochs
per round. We evaluate each baseline DL method on mul-
tiple types of communication topology and report the best
performance. More details are provided in Appendix C.2.

Training hyperparameters In all methods’ local model
training, we use SGD with learning rate of 0.01, weight
decay of 5 × 10−4, and batch size of 10. We follow the
hyperparameter values proposed in the baselines’ papers

except the learning rate, which is a constant tuned/selected
from [0.01, 0.05, 0.1] for the best validation accuracy.
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Figure 3. Test accuracy and training loss vs. total local epochs
on CIFAR-10. SCooL-SBM and SCooL-attention converge faster
to better test/training performance than FL/DL baselines. FedAvg
requires > 1000 epochs to converge and is not included.

5.2. Experimental Results

Test accuracy and convergence Table 2 reports the test
accuracy of all the 100 clients’ models on their assigned
non-IID tasks (mean±std over all clients). SCooL-SBM
and SCooL-attention outperform FL/DL baselines by
a large margin on all the three datasets. Moreover,
SCooL-attention’s prior can capture the pairwise similarity
between clients in the non-IID setting so it outperforms
SCooL-SBM. On the other hand, in the non-IID SBM
setting, SCooL-SBM outperforms SCooL-attention since
SCooL-SBM’s prior is a better model of the SBM generated
cooperation graph. In Fig. 3, we compare the convergence
of test accuracy and training loss for all methods in the
non-IID setting, where SCooL-SBM and SCooL-attention
converge faster than others.
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Table 2. Test accuracy (mean±std) of 100 local models for non-IID tasks. SCooL-SBM and SCooL-attention outperform FL/DL baselines.

Methodology Algorithm non-IID (McMahan et al., 2017) non-IID SBM
CIFAR-10 CIFAR-100 MiniImageNet CIFAR-10 CIFAR-100 MiniImageNet

Local only Local SGD only 87.5±7.02 55.47±5.20 41.59±7.71 87.41±4.21 55.37±3.48 38.54±7.94

Federated
FedAvg 70.65±10.64 40.15±7.25 34.26±6.01 71.59±12.85 39.89±11.42 38.87±9.72
FOMO 88.72±5.41 52.44±5.09 44.56±4.31 90.30±2.67 67.31±4.81 42.72±2.23
Ditto 87.32±6.42 54.28±5.31 42.73±5.19 88.13±7.43 54.34±5.42 42.16±5.46

Decentralized

D-PSGD(s=1 step) 83.01±7.34 40.56±6.94 30.26±5.75 85.20±4.05 48.15±4.77 37.43±3.59
D-PSGD(s=5 epochs) 75.89±6.65 35.03±4.83 28.41±5.18 77.33±5.79 32.17±5.07 37.69±3.02
CGA(s=1 step) 65.65±12.66 30.81±10.79 27.65±11.78 69.93±5.34 36.91±7.58 25.54±1.95
CGA(s=5 epochs) diverge diverge diverge diverge diverge diverge
SPDB(s=1 step) 82.36±7.14 54.29±6.15 39.17±3.93 81.75±7.07 55.71±6.02 38.49±5.12
SPDB(s=5 epochs) 81.15±7.06 53.23±7.48 35.93±5.05 81.25±6.07 53.08±4.01 35.86±4.03
Dada 85.65±6.36 57.61±5.45 37.81±7.15 88.89±3.47 64.62±4.77 41.68±3.91
meta-L2C 92.10±4.71 58.28±3.09 48.80±4.17 91.84±2.40 71.64±2.89 49.95±1.97

SCooL(Ours) SCooL-SBM 91.37±5.03 58.76±4.30 48.69±5.21 94.14±2.28 72.27±2.59 51.86±1.64
SCooL-attention 92.21±5.15 59.47±4.95 49.53±3.29 93.98±3.85 72.03±2.71 51.69±2.80
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Figure 4. Cooperation graph weights w by SCooL-SBM and
SCooL-attention applied to the non-IID SBM setting. Both
SCooL-SBM and SCooL-attention capture the ground-truth task
similarity even in earlier training states, while the cooperation
graphs of SCooL-SBM converge faster in non-IID SBM setting.
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Figure 5. Cooperation graph weights w for 100 clients by SCooL-
SBM and SCooL-attention applied to non-IID setting (McMahan
et al., 2017). Both SCooL-SBM and SCooL-attention generate
sparse cooperation graphs after a few rounds. SCooL-attention’s
cooperation graph converge faster than SCooL-SBM.

Learned cooperation graphs In Fig. 4a-4b, we report
how the cooperation graphs produced by SCooL-SBM and
SCooL-attention over communication rounds for non-IID
SBM setting. Both methods capture the true task relation-
ships after only a few training rounds. The faster conver-
gence of SCooL-SBM indicates that SCooL-SBM’s prior is
a better model capturing the SBM cooperation graph struc-
ture. In Fig. 5a-5b, we report the learned mixing weights
in the non-IID setting. Both algorithms can quickly learn
a sparse cooperation graph very early, which significantly
reduces the communication cost for later-stage training. In
this setting, SCooL-attention is better and faster than SCooL-
SBM on capturing the peer-to-peer correlations.

In addition, we conduct a quantitative evaluation to the
learned cooperation graphs by comparing the mixing
weights w with the ground truth w∗ used to draw the non-
IID tasks. In the ground truth w∗, w∗ij = 1 for two clients
i and j sharing the same data distribution and w∗ij = 0 oth-
erwise. We normalize each row in w∗ so entries in each
row sum up to one. Fig. 6a shows that the mixing weights
in SCooL-SBM converge faster to the ground-truth than
SCooL-attention and achieve a similar L1 error because
SCooL with SBM prior can better capture SBM-generated
graph structures in the non-IID SBM setting. In Fig. 6b,
SCooL-attention is faster on finding a more accurate cooper-
ation graph due to its attention prior modeling peer-to-peer
similarity in the non-IID setting.

Communication cost/budget The communication cost
is often a bottleneck of DL so a sparse topology is usually
preferred in practice. In Fig. 7, we evaluate the personal-
ization performance of SCooL-SBM, SCooL-attention, and
D-PSGD under different communication budgets. Both of
our methods achieve almost the same accuracy under differ-
ent budgets while D-PSGD’s performs much poorer and its
accuracy highly depends on an increased budget. In contrast,
SCooL only requires communication to 2% neighbours on
average to achieve a much higher test accuracy.
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(a) Non-IID SBM setting.
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Figure 6. Mixing weights L1 distance to ground-truth Y in the
first 20 training rounds out of totally 100 rounds, (a) for non-IID
SBM setting, (b) for non-IID (McMahan et al., 2017) setting. Both
SCooL-SBM and SCooL-attention finally converge to generate
more precise mixing weights. SCooL-SBM adapts mixing weights
faster on non-IID SBM setting, while SCooL-attention adapts
faster and converges to lower L1 error in non-IID setting.
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Figure 7. SCooL-SBM and SCooL-attention are robust to commu-
nication cost/budget changes. We evaluate each method for every
client communicating with 2%, 5%, 8%, or 10% of other clients.

6. Conclusion
We propose a probabilistic modeling scheme“Structured
Cooperative Learning (SCooL)” for decentralized learning
of personalized models. SCooL improves the cooperative
learning of personalized models across clients by alternately
optimizing a cooperation graph Y and the personalized
models. We introduce three instantiations of SCooL that
adopt different graphical model priors to generate Y . They
leverage the structural prior among clients to capture an
accurate cooperation graph that improves each local model
by its neighbors’ models. We empirically demonstrate the
advantages of SCooL over SOTA Federated/Decentralized
Learning methods on personalization performance and com-
munication efficiency in different non-IID settings. SCooL
is a general framework for efficient knowledge sharing be-
tween decentralized agents on a network. It combines the
strengths of both the neural networks on local data fitting
and graphical models on capturing the cooperation graph
structure, leading to interpretable and efficient decentralized
learning algorithms with learnable cooperation. In the fu-
ture work, we are going to study SCooL for partial-model
personalization and other non-classification tasks.
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A. Notations

Table 3. Notations used in this paper.

Notation Description

θi Personalized model on the i’th client
Di Dataset for the i’th client
Y cooperation graph
Φ Observable variables set
Z Latent variables set
β Variational parameters of latent variables Z
w Variational parameter of cooperation graph Y
πi Prior membership distribution of client-i in SBM model
αi Parameter for Dirichlet distribution of πi
zi Membership indicator for client-i in SBM model
B Pairwise correlations of memberships in SBM model
γ Variational parameter of π
Ω Variational parameter of z
ϕ Learnable neural network parameters for attention prior

B. D-PSGD algorithm

Algorithm 1 D-PSGD

Require: initial point x0,i = x0, step length γ, weight matrix w, and number of iterations T
for t = 0 to T − 1 do

Randomly sample ζt,i from local data of the i-th client
Compute a local stochastic gradient based on ζt,i and current optimization variable xt,i : ∇Fi(xt,i; ζt,i)
Compute the neighborhood weighted average by fetching optimization variables from neighbors: xt+ 1

2 ,i
=∑K

j=1 wijxt,j
Update the local optimization variable xt+1,i ← xt+ 1

2 ,i
− γ∇Fi(xt,i; ζt,i)

end for
Output: 1

K

∑K
i=1 xT,i

C. Experimental Details
C.1. Implementation Details of SCooL-SBM and SCooL-attention

We apply a lightweight fully connected network of two layers with output dimensions (10, 5) as the encoder network ϕ
in SCooL-attention. We use Adam (Kingma & Ba, 2014) with learning rate of 0.1 and weight decay of 0.01 to train both
SCooL-SBM and SCooL-attention. We apply Algorithm 1 and train all the local models for T=100 rounds with 5 epochs of
local SGD per round. To achieve a sparse topology, we sort the learned wi∗ for each client, and remove 90% neighbors with
the smallest wij for each client after 10 rounds.

The update rule of (22) and (30) requires local model θi to calculate gradients on other clients’ dataset θj . When local data
is not allowed to share across clients, we can follow a “cross-gradient” fashion: sending model θi to client-j, who then
computes gradient on its own data and then sends ∇L(Dj ; θi) back to client-i. However, this method requires twice the
communication cost of classical decentralized learning algorithms such as D-PSGD. To avoid such cross gradient terms, we
can approximate∇L(Dj ; θi) using∇L(Dj ; θj) according to first-order Taylor expansion:

L(θi;Dj) = L(θj ;Dj) +∇L(θj ;Dj)(θi − θj) +O(||θi − θj ||2) (32)

When θi and θj are close to each other, i.e., O(||θi − θj ||2) is small, we can ignore the second-order term and get an
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approximation with small approximation error, i.e.,

∇θiL(θi;Dj) ≈ ∇θjL(θj ;Dj). (33)
In practice, if we initialize all personalized models from the same point, clients with similar or the same tasks tend to have
similar optimization paths and thus their models’ distance can be upper bounded. For clients with distinct tasks, the learned
wij tends to be close to zero so the approximation error does not result in a notable difference in the model updates in
M-step. In experiments, we find that the mixing weights converge quickly and precisely capture task relationships among
clients. As shown in Table 2, this approximation already achieves promising personalization performances.

In practice, the training loss of logP (Dj |θi) in equation (18)(29) can vary in magnitude in different training stages, causing
the learned w ”over-smooth” or ”over-sharp” in certain epochs due to the nature of Sigmoid/ Sofrmax. To tackle this issue,
we use Sigmoid/ Softmax with temperature factor. The temperature factor is kept fixed during the whole training phase and
selected as a hyperparameter.

C.2. Details of Decentralized Learning Baselines

We train our SCooL models with a communication period of 5 epochs. Since the DL baselines, i.e. D-PSGD, CGA, SPDB,
are originally proposed to only run one local SGD step per round on a single mini-batch, we evaluate them with two
settings, i.e., one local step per round and 5 local epochs per round, and we apply more rounds for the former to match the
total local epochs (i.e., 500 epochs) of other methods. To match the communication cost of our methods, we extend the
ring and bipartite topology used in previous DL works (Esfandiari et al., 2021) to increase the number of neighbors for
each client. Specifically, we study (1) a “group-ring” topology that connects two clients i and j if |i − j| ≤ (K−K0)

2 or
K − |i− j| ≤ (K−K0)

2 ; and (2) a generalized bipartite topology that randomly partitions all clients into two groups and then
connect each client in a group to 10 clients randomly drawn from the other group. In our experiments, they both outperform
their original versions with fewer neighbors and communications. Hence, in the following, we always report the best result
among all the four types of topology for each DL baseline.

D. SCooL-SBM derivation

P (θ1:K |D1:K) ∝ P (θ1:K , D1:K)

=

∫
P (D1:K |θ1:K , Y )P (θ1:K |Y )P (Y )dY

(34)

with
P (θ1:K , Y ) = P (θ1:K)P (Y )

P (Y ) =

∫
P (Y, π⃗1:K , Z⃗1:K |α⃗, B)d(π⃗1:K , Z⃗1:K)

P (θ1:K) ∝ exp(−λ
2

∑
i

||θi||2)

P (D1:K |θ1:K , Y ) =

K∏
i=1

P (D1:K |θi, Y ) =

k∏
i=1

(
P (Di|θi)

∏
j ̸=i,Yij=1

P (Dj |θi)
)

(35)

D.0.1. OBJECTIVE

Modelling P (Y ) as SBM:

• For each client i ∈ [K]:

– Draw a M dimensional membership vector π⃗i ∼ Dirichlet(α⃗).
– Draw membership indicator z⃗i ∼ Multinomial(π⃗i).

• For each pair of clients (i, j) ∈ K ×K:

– Sample the value of their interaction, Yij ∼ Bernoulli(z⃗ T
i B z⃗j).
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Under the SBM, the marginal distribution of Y is:

P (Y |α⃗, B) =

∫
P (Y, π⃗1:K , Z⃗1:K |α⃗, B)d(π⃗1:K , Z⃗1:K)

=

∫ (∏
ij

P (Yij |z⃗i, z⃗j , B)
∏
i

P (π⃗i|α⃗i)P (z⃗i|π⃗i)
)
d(π⃗1:K , Z⃗1:K)

(36)

Our final objective is:

P (θ1:K |D1:K) ∝ P (θ1:K , D1:K)

=

∫
P (D1:K |θ1:K , Y )P (θ1:K)P (Y )dY

=

∫ k∏
i=1

(
P (Di|θi)

∏
j ̸=i,Yij=1

P (Dj |θi)
)
exp(−λ

2

∑
i

||θi||2)(∏
ij

P (Yij |z⃗i, z⃗j , B)
∏
i

P (π⃗i|α⃗i)P (z⃗i|π⃗i)
)
d(π⃗1:K , Z⃗1:K , Y )

(37)

D.0.2. OPTIMIZATION

ELBO Rewrite R1 = (π⃗1:K , Z⃗1:K , Y ), R2 = (D1:K), R3 = (θ1:K , α⃗, B).

logP (R2, R3) = log

∫
P (R1, R2, R3)dR1

= log

∫
q(R1)

P (R1, R2, R3)

q(R1)
dR1

≥
∫
q(R1) log

P (R1, R2, R3)

q(R1)
dR1

= Eq logP (R1, R2, R3)− log q(R1) =: L(q,R3)

(38)

In E step this lower bound is maximized w.r.t q, and in M step, this lower bound is maximized w.r.t R3. Optimal q for E step
is posterior probability:

q(t) = P (R1|R2, R
(t−1)
3 )

= P (π⃗1:K , Z⃗1:K , Y |D1:K , θ
(t−1)
1:K , α⃗(t−1), B(t−1))

(39)

Mean-field approximation With mean field approximation,

q∆(π⃗1:K , Z⃗1:K , Y |γ1:K , Ω⃗, w)

=
∏
i

q1(πi|γi)q2(z⃗i|Ω⃗i, 1)
∏
ij

q3(Yij |wij)
(40)

where q1 is a Dirichlet, q2 is a multinomial, q3 is a Bernoulli, and ∆ = (γ1:K , Ω⃗, w) represent the set of free variational
parameters need to be estimated in the approximate distribution.

With mean-field approximation, the expectaion of the lower bound can be calculated:
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L∆ := Eq logP (R1, R2, R3)− log q(R1)

=Eq

[
log

k∏
i=1

(
P (Di|θi)

∏
j ̸=i,Yij=1

P (Dj |θi)
)
exp(−λ

2

∑
i

||θi||2)(∏
ij

P (Yij |z⃗i, z⃗j , B)
∏
i

P (π⃗i|α⃗i)P (z⃗i|π⃗i)
)
−

log
∏
i

q1(πi|γi)q2(z⃗i|Ω⃗i, 1)
∏
ij

q3(Yij |wij)

]

=Eq

[
k∑

i=1

(
logP (Di|θi) +

∑
j ̸=i

Yij logP (Dj |θi)
)
− λ

2

∑
i

||θi||2

+
∑
i,j

Yij log
∑
g,h

z⃗i,gB(g, h)z⃗j,h +
∑
i,j

(1− Yij) log(1−
∑
g,h

z⃗i,gB(g, h)z⃗j,h)

+
∑
i

∑
g

z⃗i,g log π⃗i,g

+
∑
i

∑
g

(αi,g − 1) log π⃗i,g −
∑
i

∑
g

log Γ(α⃗i,g) +
∑
i

log Γ(
∑
g

α⃗i,g)

−
∑
i

∑
g

(γi,g − 1) log π⃗i,g +
∑
i

∑
g

log Γ(γi,g)−
∑
i

log Γ(
∑
g

γi,g)

−
∑
i

∑
g

z⃗i,g log Ω⃗i,g

−
∑
i,j

Yij logwij −
∑
i,j

(1− Yij) log(1− wij)

]

=

k∑
i=1

(
logP (Di|θi) +

∑
j ̸=i

wij logP (Dj |θi)
)
− λ

2

∑
i

||θi||2

+
∑
i,j

wij

∑
g,h

Ω⃗i,gΩ⃗j,h logB(g, h) +
∑
i,j

(1− wij)
∑
g,h

Ω⃗i,gΩ⃗j,h log(1−B(g, h))

+
∑
i

∑
g

Ω⃗i,g

(
ψ(γi,g)− ψ(

∑
k

γi,k)

)
+
∑
i

∑
g

(α⃗g − 1)

(
ψ(γi,g)− ψ(

∑
k

γi,k)

)
−
∑
i

∑
g

log Γ(α⃗g) +
∑
i

log Γ(
∑
g

α⃗g)

−
∑
i

∑
g

(γi,g − 1)

(
ψ(γi,g)− ψ(

∑
k

γi,k)

)
+
∑
i

∑
g

log Γ(γi,g)−
∑
i

log Γ(
∑
g

γi,g)

−
∑
i

∑
g

Ω⃗i,g log Ω⃗i,g

−
∑
i,j

wij logwij −
∑
i,j

(1− wij) log(1− wij)

(41)

, where ψ(x) is the digamma function defined as the logarithmic derivative of the gamma function: ψ(x) = d log Γ(x)
dx .

E step Maximizing equation (F.0.2) w.r.t. variational parameters ∆ = (w, γ1:K , Ω⃗→, Ω⃗←).
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• wij : Setting∇wL∆ = 0:

logP (Dj |θi) +
∑
g,h

Ω⃗i,gΩ⃗j,h logB(g, h)

−
∑
g,h

Ω⃗i,gΩ⃗j,h log(1−B(g, h))− 1− logwij + 1 + log(1− wij) = 0
(42)

Denote
ŵij = logP (Dj |θi) +

∑
g,h

Ω⃗i,gΩ⃗j,h logB(g, h)

−
∑
g,h

Ω⃗i,gΩ⃗j,h log(1−B(g, h))
(43)

, then

w∗ij =
1

1 + exp(−ŵij)
= sigmoid(ŵij) (44)

• γ1:K : Setting∇γi,g
L∆ = 0:(

Ω⃗i,g + α⃗g − γi,g
)
ψ

′
(γi,g)−

∑
t

(
Ω⃗i,t + α⃗t − γi,t

)
ψ

′
(
∑
k

γi,k) = 0 (45)

Therefore,
γ∗i,g = Ω⃗i,g + α⃗g (46)

• Ω⃗i: Adding Lagrange multipliers into L∆, and setting∇Ω⃗i,k

(
L∆ +

∑
i λi(

∑
h Ω⃗i,h − 1)

)
= 0:

∑
j

wij

∑
h

Ω⃗j,h logB(k, h) +
∑
j

wji

∑
h

Ω⃗j,h logB(h, k)

∑
j

(1− wij)
∑
h

Ω⃗j,h log(1−B(k, h)) +
∑
j

(1− wji)
∑
h

Ω⃗j,h log(1−B(h, k))

+ ψ(γi,k)− ψ(
∑
g

γi,g)− 1− log Ω⃗i,k + λi = 0

(47)

Therefore,

Ω⃗∗i,k ∝ exp

(∑
j

wij

∑
h

Ω⃗j,h logB(k, h) +
∑
j

wji

∑
h

Ω⃗j,h logB(h, k)

∑
j

(1− wij)
∑
h

Ω⃗j,h log(1−B(k, h)) +
∑
j

(1− wji)
∑
h

Ω⃗j,h log(1−B(h, k))

+ ψ(γi,k)− ψ(
∑
g

γi,g)

) (48)

We normalize Ω⃗∗i,k to satisfy
∑

k Ω⃗
∗
i,k = 1.

M step We maximize the lower bound w.r.t. θ1:K , α⃗, B.

• θ1:K : Using stochastic gradient ascent method,

θi ← θi + η1∇θiL∆

= θi − η1
(
∇θiL(Di; θi) +

∑
j ̸=i

wij∇θiL(Dj ; θi) + λθi

)
(49)

• α⃗: Using gradient ascent method,

α⃗g ← α⃗g + η2

(∑
i

(
ψ(γi,g)− ψ(

∑
k

γi,k)

)
−K

∑
g

ψ(α⃗g) +Kψ(
∑
k

α⃗k)

)
(50)
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• B: Setting∇B(g,h)L∆ = 0:

∑
i,j

wijΩ⃗i,gΩ⃗j,h
1

B(g, h)
−
∑
i,j

(1− wij)Ω⃗i,gΩ⃗j,h
1

1−B(g, h)
= 0 (51)

Therefore,

B(g, h)∗ =

∑
i,j wijΩ⃗i,gΩ⃗j,h∑

i,j Ω⃗i,gΩ⃗j,h

(52)

E. SCooL-attention derivation

(Yi is a one-hot vector for client i, drawn from categorical distribution.)

pij(ϕ, θ) = softmax(f(θi;ϕ)T f(θj ;ϕ))

Y⃗i ∼ Categorical(pi1(ϕ, θ), pi2(ϕ, θ), ..., pik(ϕ, θ))

P (Y |θ) =
∏
ij

pij(ϕ, θ)
Yij

P (θ1:K) ∝ exp(−λ
2

∑
i

||θi||2)

P (D1:K |θ1:K , Y ) =

K∏
i=1

P (D1:K |θi, Y ) =

k∏
i=1

(
P (Di|θi)

∏
j ̸=i,Yij=1

P (Dj |θi)
)

(53)

E.1. Objective

Our final objective is:

P (θ1:K |D1:K) ∝ P (θ1:K , D1:K)

=

∫
P (D1:K |θ1:K , Y )P (θ1:K)P (Y |θ1:K)dY

=

∫ k∏
i=1

(
P (Di|θi)

∏
j ̸=i,Yij=1

P (Dj |θi)
)
exp(−λ

2

∑
i

||θi||2)
∏
ij

pij(ϕ, θ)
YijdY

(54)

E.2. Optimization

ELBO By Jensen’s inequality,

logP (θ1:K , D1:K) = log

∫
P (θ1:K , D1:K , Y )dY

= log

∫
q(Y )

P (θ1:K , D1:K , Y )

q(Y )
dY

≥
∫
q(Y ) log

P (θ1:K , D1:K , Y )

q(Y )
dY

= Eq logP (θ1:K , D1:K , Y ))− log q(Y ) =: L∆

(55)

In E step this lower bound is maximized w.r.t q, and in M step, this lower bound is maximized w.r.t R3. Optimal q for E step
is posterior probability:

q(t) = P (Y |θ(t−1)1:K ) (56)

Mean-field approximation With mean field approximation,

q∆(Y ) =
∏
i

q∆(Y⃗i) = Categorical(pi1, pi2, ..., piK) (57)

With mean-field approximation, the expectaion of the lower bound can be calculated:
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L∆ := Eq logP (θ1:K , D1:K , Y )− log q(Y )

=Eq

[
log

k∏
i=1

(
P (Di|θi)

∏
j ̸=i,Yij=1

P (Dj |θi)
)
exp(−λ

2

∑
i

||θi||2)

∏
ij

pij(ϕ, θ)
Yij − log

∏
ij

w
Yij

ij

]

=Eq

[ k∑
i=1

(
logP (Di|θi) +

∑
j ̸=i

Yij logP (Dj |θi)
)
− λ

2

∑
i

||θi||2

+
∑
ij

Yij log pij(ϕ, θ)−
∑
ij

Yij logwij

]

=

k∑
i=1

(
logP (Di|θi) +

∑
j ̸=i

wij logP (Dj |θi)
)
− λ

2

∑
i

||θi||2

+
∑
ij

wij log pij(ϕ, θ)−
∑
ij

wij logwij

(58)

E step

• wij : Setting∇wij
L∆ = 0:

logP (Dj |θi) + log pij(ϕ, θ)− 1− logwij = 0 (59)

Then,

w∗ij ∝ exp
(
logP (Dj |θi) + log pij(ϕ, θ)

)
(60)

We need to further normalize wij to satisfy
∑

j wij = 1, i.e. wij =
w∗

ij∑
j w∗

ij
.

M step

• θ1:K : We use stochastic gradient descent to optimize it:

θi ← θi + η1∇θiL∆

= θi − η1
(
∇θiL(Di; θi) +

∑
j ̸=i

wij∇θiL(Dj ; θi) + λθi −
∑
ij

wij∇θi log pij(ϕ, θ)

= θi − η1
(
∇θiL(Di; θi) +

∑
j ̸=i

wij∇θiL(Dj ; θi) + λθi

+
∑
ij

∇θicross-entropy(w⃗i, p⃗i(ϕ, θ))

)
(61)

• ϕ: We use stochastic gradient descent to optimize it:

ϕ← ϕ+ η2∇ϕL∆

= ϕ+ η2∇ϕ

(∑
ij

wij log pij(ϕ)

)
= ϕ− η2

∑
i

∇ϕcross-entropy(w⃗i, p⃗i(ϕ, θ))

(62)

F. SCooL-MMSBM
We present an additional instantiation of SCooL framework, which we use mixed membership stochastic blockmodels
(MMSBM) as the prior, allowing each user to simultaneously cooperate with multiple groups of users with different
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probability, thereby capturing more complex cooperation between users’ tasks.

P (θ1:K |D1:K) ∝ P (θ1:K , D1:K)

=

∫
P (D1:K |θ1:K , Y )P (θ1:K |Y )P (Y )dY

(63)

with
P (θ1:K , Y ) = P (θ1:K)P (Y )

P (Y ) =

∫
P (Y, π⃗1:K , Z→, Z←|α⃗, B)d(π⃗1:K , Z→, Z←)

P (θ1:K) ∝ exp(−λ
2

∑
i

||θi||2)

P (D1:K |θ1:K , Y ) =

K∏
i=1

P (D1:K |θi, Y ) =

k∏
i=1

(
P (Di|θi)

∏
j ̸=i,Yij=1

P (Dj |θi)
)

(64)

F.0.1. OBJECTIVE

Modelling P (Y ) as MMSBM:

• For each agent i ∈ K:

– Draw a M dimensional mixed membership vector π⃗i ∼ Dirichlet(α⃗).

• For each pair of agents (i, j) ∈ K ×K:

– Draw membership indicator for the initiator, z⃗i→j ∼ Multinomial(π⃗i).

– Draw membership indicator for the receiver, z⃗i←j ∼ Multinomial(π⃗j).

– Sample the value of their interaction, Yij ∼ Bernoulli(z⃗ T
i→jB z⃗i←j).

Under the MMSBM, the marginal distribution of Y is:

P (Y |α⃗, B) =

∫
P (Y, π⃗1:K , Z→, Z←|α⃗, B)d(π⃗1:K , Z→, Z←)

=

∫ (∏
ij

P (Yij |z⃗i→j , z⃗i←j , B)P (z⃗i→j |π⃗i)P (z⃗i←j |π⃗j)

∏
i

P (π⃗i|α⃗i)

)
d(π⃗1:K , Z→, Z←)

(65)

Our final objective is:

P (θ1:K |D1:K) ∝ P (θ1:K , D1:K)

=

∫
P (D1:K |θ1:K , Y )P (θ1:K)P (Y )dY

=

∫ k∏
i=1

(
P (Di|θi)

∏
j ̸=i,Yij=1

P (Dj |θi)
)
exp(−λ

2

∑
i

||θi||2)(∏
ij

P (Yij |z⃗i→j , z⃗i←j , B)P (z⃗i→j |π⃗i)P (z⃗i←j |π⃗j)
∏
i

P (π⃗i|α⃗i)

)
d(π⃗1:K , Z→, Z←, Y )

(66)
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F.0.2. OPTIMIZATION

ELBO Rewrite R1 = (Y, π⃗1:K , Z→, Z←), R2 = (D1:K), R3 = (θ1:K , α⃗, B).

logP (R2, R3) = log

∫
P (R1, R2, R3)dR1

= log

∫
q(R1)

P (R1, R2, R3)

q(R1)
dR1

≥
∫
q(R1) log

P (R1, R2, R3)

q(R1)
dR1

= Eq logP (R1, R2, R3)− log q(R1) =: L(q,R3)

(67)

In E step this lower bound is maximized w.r.t q, and in M step, this lower bound is maximized w.r.t R3. Optimal q for E step
is posterior probability:

q(t) = P (R1|R2, R
(t−1)
3 )

= P (Y, π⃗1:K , Z→, Z←|D1:K , θ
(t−1)
1:K , α⃗(t−1), B(t−1))

(68)

Mean-field approximation With mean field approximation,

q∆(Y, π⃗1:K , Z→, Z←|w, γ1:K , ϕ⃗→, ϕ⃗←)

=
∏
i

q1(πi|γi)
∏
i,j

q2(z⃗i→j |ϕ⃗i→j , 1)q2(z⃗i←j |ϕ⃗i←j , 1)
∏
ij

q3(Yij |wij)
(69)

where q1 is a Dirichlet, q2 is a multinomial, q3 is a Bernoulli, and ∆ = (w, γ1:K , ϕ⃗→, ϕ⃗←) represent the set of free
variational parameters need to be estimated in the approximate distribution.

With mean-field approximation, the expectaion of the lower bound can be calculated:

L∆ := Eq logP (R1, R2, R3)− log q(R1)

=Eq

[
log

k∏
i=1

(
P (Di|θi)

∏
j ̸=i,Yij=1

P (Dj |θi)
)
exp(−λ

2

∑
i

||θi||2)(∏
ij

P (Yij |z⃗i→j , z⃗i←j , B)P (z⃗i→j |π⃗i)P (z⃗i←j |π⃗j)
∏
i

P (π⃗i|α⃗i)

)
−
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log
∏
i

q1(πi|γi)
∏
i,j

q2(z⃗i→j |ϕ⃗i→j , 1)q2(z⃗i←j |ϕ⃗i←j , 1)
∏
ij

q3(Yij |wij)

]

=Eq

[
k∑

i=1

(
logP (Di|θi) +

∑
j ̸=i

Yij logP (Dj |θi)
)
− λ

2

∑
i

||θi||2

+
∑
i,j

Yij log
∑
g,h

z⃗i→j,gB(g, h)z⃗i←j,h +
∑
i,j

(1− Yij) log(1−
∑
g,h

z⃗i→j,gB(g, h)z⃗i←j,h)

+
∑
i,j

∑
g

z⃗i→j,g log π⃗i,g +
∑
i,j

∑
g

z⃗i←j,g log π⃗j,g

+
∑
i

∑
g

(αi,g − 1) log π⃗i,g −
∑
i

∑
g

log Γ(α⃗i,g) +
∑
i

log Γ(
∑
g

α⃗i,g)

−
∑
i

∑
g

(γi,g − 1) log π⃗i,g +
∑
i

∑
g

log Γ(γi,g)−
∑
i

log Γ(
∑
g

γi,g)

−
∑
i,j

∑
g

z⃗i→j,g log ϕ⃗i→j,g −
∑
i,j

∑
g

z⃗i←j,g log ϕ⃗i←j,g

−
∑
i,j

Yij logwij −
∑
i,j

(1− Yij) log(1− wij)

]

=

k∑
i=1

(
logP (Di|θi) +

∑
j ̸=i

wij logP (Dj |θi)
)
− λ

2

∑
i

||θi||2

+
∑
i,j

wij

∑
g,h

ϕ⃗i→j,gϕ⃗i←j,h logB(g, h) +
∑
i,j

(1− wij)
∑
g,h

ϕ⃗i→j,gϕ⃗i←j,h log(1−B(g, h))

+
∑
i,j

∑
g

ϕ⃗i→j,g

(
ψ(γi,g)− ψ(

∑
k

γi,k)

)
+
∑
i,j

∑
g

ϕ⃗i←j,g

(
ψ(γj,g)− ψ(

∑
k

γj,k)

)

+
∑
i

∑
g

(α⃗g − 1)

(
ψ(γi,g)− ψ(

∑
k

γi,k)

)
−
∑
i

∑
g

log Γ(α⃗g) +
∑
i

log Γ(
∑
g

α⃗g)

−
∑
i

∑
g

(γi,g − 1)

(
ψ(γi,g)− ψ(

∑
k

γi,k)

)
+
∑
i

∑
g

log Γ(γi,g)−
∑
i

log Γ(
∑
g

γi,g)

−
∑
i,j

∑
g

ϕ⃗i→j,g log ϕ⃗i→j,g −
∑
i,j

∑
g

ϕ⃗i←j,g log ϕ⃗i←j,g

−
∑
i,j

wij logwij −
∑
i,j

(1− wij) log(1− wij)

, where ψ(x) is the digamma function defined as the logarithmic derivative of the gamma function: ψ(x) = d log Γ(x)
dx .

E step Maximizing equation F.0.2 w.r.t. variational parameters ∆ = (w, γ1:K , ϕ⃗→, ϕ⃗←).

• wij : Setting∇wL∆ = 0:

logP (Dj |θi) +
∑
g,h

ϕ⃗i→j,gϕ⃗i←j,h logB(g, h)

−
∑
g,h

ϕ⃗i→j,gϕ⃗i←j,h log(1−B(g, h))− 1− logwij + 1 + log(1− wij) = 0
(70)
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Denote
ŵij = logP (Dj |θi) +

∑
g,h

ϕ⃗i→j,gϕ⃗i←j,h logB(g, h)

−
∑
g,h

ϕ⃗i→j,gϕ⃗i←j,h log(1−B(g, h))
(71)

, then

w∗ij =
1

1 + exp(−ŵij)
= sigmoid(ŵij) (72)

• γ1:K : Setting∇γi,g
L∆ = 0:

∑
j

ϕ⃗i→j,g

(
ψ

′
(γi,g)− ψ

′
(
∑
k

γi,k)

)
+
∑
j

ϕ⃗j←i,g

(
ψ

′
(γi,g)− ψ

′
(
∑
k

γi,k)

)

+ (α⃗g − 1)

(
ψ

′
(γi,g)− ψ

′
(
∑
k

γi,k)

)
−
(
ψ(γi,g)− ψ(

∑
k

γi,k)

)
− (γi,g − 1)

(
ψ

′
(γi,g)− ψ

′
(
∑
k

γi,k)

)
+ ψ(γi,g)− ψ(

∑
k

γi,k) = 0

(∑
j

ϕ⃗i→j,g +
∑
j

ϕ⃗j←i,g + α⃗g − γi,g
)(

ψ
′
(γi,g)− ψ

′
(
∑
k

γi,k)

)
= 0

(73)

Therefore,
γ∗i,g = α⃗g +

∑
j

ϕ⃗i→j,g +
∑
j

ϕ⃗j←i,g (74)

• ϕ⃗i→j : Adding Lagrange multipliers into L∆, and setting ∇ϕ⃗i→j,k

(
L∆ +

∑
i,j λij(

∑
h ϕ⃗i→j,h − 1)

)
= 0:

wij

∑
h

ϕ⃗i←j,h logB(g, h) + (1− wij)
∑
h

ϕ⃗i←j,h log(1−B(g, h))

+ ψ(γi,k)− ψ(
∑
g

γi,g)− 1− log ϕ⃗i→j,k + λij = 0
(75)

Therefore,

ϕ⃗∗i→j,k ∝ exp

(
wij

∑
h

ϕ⃗i←j,h logB(k, h)+

(1− wij)
∑
h

ϕ⃗i←j,h log(1−B(k, h)) + ψ(γi,k)− ψ(
∑
g

γi,g)

) (76)

We normalize ϕ⃗∗i→j,k to satisfy
∑

k ϕ⃗
∗
i→j,k = 1.

• ϕ⃗i←j : Following similar derivations as ϕ⃗i→j , we get:

ϕ⃗∗i←j,h ∝ exp

(
wij

∑
g

ϕ⃗i→j,g logB(g, h)+

(1− wij)
∑
g

ϕ⃗i→j,g log(1−B(g, h)) + ψ(γj,h)− ψ(
∑
g

γj,g)

) (77)

We normalize ϕ⃗∗i←j,h to satisfy
∑

h ϕ⃗
∗
i←j,h = 1.
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M step We maximize the lower bound w.r.t. θ1:K , α⃗, B.

• θ1:K : Using stochastic gradient ascent method,

θi ← θi + η1∇θiL∆

= θi − η1
(
∇θiL(Di; θi) +

∑
j ̸=i

wij∇θiL(Dj ; θi) + λθi

)
(78)

• α⃗: Using gradient ascent method,

α⃗g ← α⃗g + η2

(∑
i

(
ψ(γi,g)− ψ(

∑
k

γi,k)

)
−K

∑
g

ψ(α⃗g) +Kψ(
∑
k

α⃗k)

)
(79)

• B: Setting ∇B(g,h)L∆ = 0:∑
i,j

wij ϕ⃗i→j,gϕ⃗i←j,h
1

B(g, h)
−
∑
i,j

(1− wij)ϕ⃗i→j,gϕ⃗i←j,h
1

1−B(g, h)
= 0 (80)

Therefore,

B(g, h)∗ =

∑
i,j wij ϕ⃗i→j,gϕ⃗i←j,h∑

i,j ϕ⃗i→j,gϕ⃗i←j,h

(81)
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