
Internet Explorer: Targeted Representation Learning on the Open Web

Alexander C. Li * 1 Ellis Brown * 1 Alexei A. Efros 2 Deepak Pathak 1

Abstract
Modern vision models typically rely on fine-
tuning general-purpose models pre-trained on
large, static datasets. These general-purpose mod-
els only capture the knowledge within their pre-
training datasets, which are tiny, out-of-date snap-
shots of the Internet—where billions of images
are uploaded each day. We suggest an alternate
approach: rather than hoping our static datasets
transfer to our desired tasks after large-scale pre-
training, we propose dynamically utilizing the
Internet to quickly train a small-scale model that
does extremely well on the task at hand. Our ap-
proach, called Internet Explorer, explores the web
in a self-supervised manner to progressively find
relevant examples that improve performance on
a desired target dataset. It cycles between search-
ing for images on the Internet with text queries,
self-supervised training on downloaded images,
determining which images were useful, and pri-
oritizing what to search for next. We evaluate In-
ternet Explorer across several datasets and show
that it outperforms or matches CLIP oracle perfor-
mance by using just a single GPU desktop to ac-
tively query the Internet for 30–40 hours. Results,
visualizations, videos, and code on our website:
internet-explorer-ssl.github.io/

1. Introduction
Suppose you have a small dataset and need to train a model
for some task, say classification. A pipeline that has be-
come standard today is to download the latest pre-trained
deep network and fine-tune it on your own small dataset.
This pre-trained model used to be ImageNet-based (Deng
et al., 2009; He et al., 2016) and now would probably be
CLIP (Radford et al., 2021). The implicit goal set by the
community for such pre-trained models is that they should

*Equal contribution 1Carnegie Mellon University 2University of
California, Berkeley. Correspondence to: Alexander Li <alexan-
derli@cmu.edu>, Ellis Brown <ellisbrown@cmu.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

static dataset

pre-train
once

fine-tune

model

Standard Pre-Training Setting

Internet

focus on
knowledge gaps

learn from
new datamodel

Our Setting: Continually Explore the Internet

target dataset

target dataset

Figure 1. Given unlabeled data for a target task, our approach,
Internet Explorer, searches the Internet to progressively find more
and more relevant training data via self-supervised exploration.

transfer well to any kind of downstream task not known in
advance. This has led to a race to build ultra-large-scale
models in terms of computation, model size, and dataset
size. But is this goal of building an “omniscient” pre-trained
model that can work on any future downstream task even
feasible? Perhaps not, as our world is continually chang-
ing. Although the size of the pretraining datasets has grown
from 1.2M (Deng et al., 2009) to 5B (Schuhmann et al.,
2022) images, what has not changed at all is their nature:
these datasets are curated and, more importantly, static. For
instance, the portion of ImageNet curated before 2007 has
no idea what an iPhone is. Furthermore, although a few
hundred million images represent a staggering quantity of
visual data, they are minuscule compared to the entire Inter-
net, where billions of new photos are uploaded every day.
Thus, current static datasets, however big they become, fail
to capture the richness and dynamic nature of the data avail-
able on the Internet. Moreover, as our static datasets grow,
they require increasingly inaccessible amounts of compute.

In this paper, we rethink the idea of generic large-scale
pretraining and propose an alternate paradigm: train a small-
scale but up-to-date model geared towards the specific down-
stream task of interest. To do so, we look beyond static
datasets and treat the Internet itself as a dynamic, open-
ended dataset. Unlike conventional datasets, which are

1

https://internet-explorer-ssl.github.io/
internet-explorer-ssl.github.io/

Internet Explorer: Targeted Representation Learning on the Open Web

expensive to expand and grow stale with time, the Internet
is dynamic, rich, grows automatically, and is always up to
date. Its continuously evolving nature also means we cannot
hope to ever download it or train a model, whether large or
small, on all of it.

We propose that the Internet can be treated as a special kind
of dataset—one that exists out there, ready to be queried as
needed to quickly train a customized model for a desired
task. We draw an analogy to reinforcement learning, where
even though the task is known, finding a policy that can
generate the desired behavior is non-trivial due to the high
complexity of the state space. Hence, most approaches
rely on some form of exploration to figure out what actions
the agent should take so that it quickly finds high-reward
states. Inspired by this analogy, we formulate a disembodied,
online agent we call Internet Explorer, that actively queries
standard search engines to find relevant visual data that
improve feature quality on a target dataset (see Figure 1).
The agent’s actions are text queries made to search engines,
and the observations are the data obtained from the search.

The queries made by Internet Explorer improve over time.
It cycles between searching for images on the Internet with
text queries, self-supervised training on downloaded images,
determining which images are relevant to the target dataset,
and prioritizing what to search for next (see Figure 2). We
also bootstrap Internet Explorer using existing pre-trained
models such as MoCo-v3 (He et al., 2020) and obtain a
significant boost on the target datasets.

Our setting is different from active learning (Settles, 2009),
where the goal is to selectively obtain labels for data points
from a fixed dataset. In contrast, Internet Explorer contin-
ually expands the size of its dataset and requires no labels
for training, even from the target dataset. Some prior works
have also discussed ways to leverage the Internet as an addi-
tional source of data. NELL (Carlson et al., 2010) proposed
a way to continually scrape web pages to learn new con-
cepts and relationships, which are periodically curated by
a human in the loop. NEIL (Chen et al., 2013) builds on
NELL’s dictionary to search visual data and develop visual
relationships. Both are semi-supervised methods to gather
general “common-sense” knowledge from the Internet. In
contrast, we perform an actively improving directed search
to perform well on target data, in a fully self-supervised
manner. Recent work (Jiang et al., 2021) follows a similar
setting but searches a static dataset and not the Internet.

We evaluate Internet Explorer across 7 datasets, includ-
ing 4 fine-grained datasets, PASCAL VOC, ImageNet-100,
and FMoW-WILDS. We search for relevant images using
Google; however, the method is compatible with any text-
based search engine or even a static dataset (see Section 4.5).
We compare against several strong baselines, including
CLIP, on downstream tasks. Note that CLIP acts as an

Internet Explorer Method
1. Sample Query

Learned concept distribution

BMW, sunflower, . . . , duck

GPT

2. Internet Image Search

3. Self-Supervised Training

encoder

contrastive
loss

4. Update Concept Distribution
calculate
reward

encoder

increase probability of useful concepts

BMW, sunflower, . . . , duck

target dataset

“duck”“baby” +

Figure 2. Overview of Internet Explorer. Our goal is to efficiently
search the Internet for images that improve our performance on
a target dataset. In each iteration, we first generate text queries
by combining a concept sampled from a learned distribution with
a GPT-generated descriptor (§2.2, §2.7). Next, we query search
engines with the resulting phrase and download the top 100 image
results (§2.1, 4.5). We add these images to the set of previously
downloaded images and perform self-supervised training on the
combined dataset (§2.3). Finally, we evaluate the relevance of the
new images and update our concept distribution to increase the
likelihood of similar queries if their images were similar to the
target dataset (§2.4, §2.5).

oracle for our approach because it has likely already seen all
or more queries that Internet Explorer makes. In most sce-
narios, Internet Explorer either outperforms or matches the
CLIP oracle using only a single 3090 GPU desktop machine
that runs for 30–40 hours, makes over 10K progressively
improving queries, and downloads over 1M relevant Internet
images for each target dataset.

2. Internet Explorer: An Online Agent
We focus on the problem of efficiently improving represen-
tations for some target dataset by acquiring Internet data.
We make as few assumptions as possible and assume that
we have only unlabeled training data from the target dataset.
Successful representation learning in this setting would lead
to better performance on the target dataset distribution for
standard tasks like classification and detection, and poten-
tially others where the labels are not semantic (e.g., depth
prediction or robotics). An overview of the Internet Explorer
method is depicted in Figure 2 and described in Algorithm 1.

2.1. Text-to-image Search

We discover and download images from the full breadth
of the Internet by querying text-to-image search engines,
which return images based on their captions and surround-
ing text. Text-to-image search is fast, finds diverse images
from across the Internet, and enables searches for vastly

2

Internet Explorer: Targeted Representation Learning on the Open Web

different queries simultaneously. Note that text-to-image
search is noisy and makes use of weak supervision (the
image-text pairing on webpages). Thus, we only perform
self-supervised training on the downloaded images. We use
a public codebase to query Google Images, which can down-
load the top 100 images for each query (Vasa, 2015; Clinton,
2020). We also try other search engines in Section 4.5.

2.2. Text Query Generation

As text queries are our only input interface with the Inter-
net, it is crucial that we can generate diverse queries that
correspond to a variety of visual categories. Specificity is
also important. Once a useful visual category is identified,
generating fine-grained variants of the query is necessary
to obtain data for all visual variations in the category. We
construct queries by combining two components:

1. Concepts specify semantic categories such as people,
places, or objects.

2. Descriptors are modifiers that generate variations in
appearance.

We draw our concepts from the WordNet hierarchy (Miller,
1995), which consists of 146,347 noun lemmas. Not all of
these lemmas are visual, but the vocabulary still covers an
incredible range of topics (see examples in Appendix C.1).
To generate a text query, we first sample a concept from
a learned distribution over our vocabulary. This discrete
distribution is defined by our estimates of how relevant each
concept in the vocabulary is at the current time (see Section
2.4 for details on estimating rewards and Section 2.7 for the
distribution). Given a sampled concept, we can generate a
descriptor by prompting a GPT-J language model (Wang &
Komatsuzaki, 2021) with examples of descriptor-concept
pairs (details in Appendix C.2). Finally, as shown in Step 1
of Figure 2, we concatenate the concept and descriptor. If
our concept is “duck” and the GPT-generated descriptor is
“baby,” our search engine query is “baby duck.”

2.3. Self-supervised Training

We use self-supervised learning (SSL) to learn useful rep-
resentations from the unlabeled images that we download
from the Internet. Internet Explorer is compatible with
any SSL algorithm that uses images or image-text pairs,
including contrastive (He et al., 2020; Chen et al., 2020),
non-contrastive (Grill et al., 2020; Zbontar et al., 2021;
Bardes et al., 2021; Caron et al., 2021), masking-based (Bao
et al., 2021; He et al., 2022), or multimodal (Radford et al.,
2021) approaches. For speed and stability reasons, we use
the MoCo-v3 algorithm (Chen et al., 2021), which trains
encoders fq and fk on augmentations (x1, x2) of the same
image to output vectors q = fq(x1) and k = fk(x2). fq is

trained to minimize the InfoNCE loss (Oord et al., 2018):

Lq = − log
exp(q · k+/τ)

exp(q · k+/τ) +∑
k− exp(q · k−/τ) (1)

k+ corresponds to fk’s output on the other augmentation of
the image used to compute q, and the set of negative exam-
ples {k−} corresponds to fk’s output on other images in the
batch. The temperature τ is set to 1 by default. fk consists
of a base encoder, a projection MLP, and a prediction head,
whereas fq is the exponential moving average of the base
encoder and projection MLP from fk. By training q and k+

to be similar across image augmentations, MoCo-v3 encour-
ages the network to learn high-level semantic features.

Before turning to the Internet, we initialize a ResNet-50
model (He et al., 2016) using a MoCo-v3 checkpoint trained
offline for 100 epochs on ImageNet and then fine-tuned on
the target dataset. Without using labels, we select the best
starting checkpoint by early stopping on the SSL loss, which
highly correlates with target accuracy (Li et al., 2022). In
each iteration of our method, we use MoCo-v3 to fine-tune
our encoder on a mixture of newly downloaded, previously
downloaded, and target dataset images.

2.4. Image Relevance Reward

We want to rank newly downloaded images by how much
they improve our features for the target dataset. This allows
us to (a) prioritize taking gradient steps on useful images,
and (b) understand what to search for in subsequent itera-
tions. Unfortunately, it is challenging to directly measure
the effect of an individual training example on performance.
Numerous techniques have been proposed (Koh & Liang,
2017; Feldman & Zhang, 2020; Paul et al., 2021; Ilyas et al.,
2022), but they all require extensive and repeated training
on new images to estimate their impact.

Instead of trying to precisely measure what is learned from
each image, we use its similarity to the target dataset as
a proxy for being relevant to training. We rank the down-
loaded images by their similarity in representation space to
the target dataset images; those most similar to the target
dataset induce larger contrastive loss since each exp(q · k−)
term in the denominator of Eq. 1 is larger when the nega-
tive examples {k−} are closer to q. These “hard negatives”
(Robinson et al., 2020; Schroff et al., 2015; Oh Song et al.,
2016; Harwood et al., 2017; Wu et al., 2017; Ge, 2018) yield
larger and more informative gradients and should result in
the biggest improvement in representation quality. Thus,
overloading notation for k, we compute the reward for a
particular image as its representation’s average cosine simi-
larity to its k closest neighbors in the target dataset. Given
an image encoder fk : RH×W×3 → Rd, an unlabeled target
dataset D = {xi}Ni=1, and a new image y to evaluate, the

3

Internet Explorer: Targeted Representation Learning on the Open Web

Algorithm 1 Internet Explorer

1: Input: target dataset D, SSL algorithm A, search en-
gine SE, encoder f : RH×W×3 → Rd, image reward
function r, vocabulary V = {ci}Ci=1, # concepts/itr M ,
query results/search Q, GPT-based concept → de-
scriptor function GPTDesc, concept distribution func-
tion CalcProb

2: Initialize replay buffer B ← ∅
3: Initialize concept distribution p = Uniform{1, C}
4: for iteration = 1, 2, . . . do
5: for i = 1, . . . ,M do
6: Sample concept ci ∼ p(V) (§2.2)
7: Sample descriptor di ← GPTDesc(ci) (§C.2)
8: Image search {Iij}Qj=1 ← SE(di + ci, Q) (§2.1)
9: Calc. reward rci ← 1

Q

∑Q
j=1 r(f,D, Iij) (§2.4)

10: end for
11: Bnew = {I1j }Qj=1 ∪ · · · ∪ {IMj }Qj=1

12: SSL training: A(f,D ∪ B ∪ Bnew) (§2.3)
13: Add to buffer: B ← B ∪ Top50%(Bnew, r)
14: Predict all concept rewards rconcept from {rci} (§2.5)
15: Update concept dist p← CalcProb(rconcept) (§2.7)
16: end for

reward is calculated:

r(fk,D, y) = max
I⊂{1,...,N};

|I|=k

1

k

∑
i∈I

Scos(fk(xi), fk(y)) (2)

where Scos is the cosine similarity. A previous metric for
identifying relevant data (Jiang et al., 2021) used k = 1
nearest neighbors, but we found that this was too noisy and
allowed high rewards for outlier target images to distract
our search. We instead use k = 15 to improve the accuracy
of our relevance estimation. In Section 4.6, we compare our
reward to alternatives and explore their failure modes. This
reward is used for two purposes: determining which of the
downloaded images to train on and, subsequently, which
concepts would be useful to search for next.

Which images to train on. Many newly downloaded im-
ages are not worth training on, since they come from un-
related queries or are noisy results from the search engine.
Thus, at the end of each iteration, we rank the newly down-
loaded images by their reward and save the top 50% to a
replay buffer that we maintain across iterations. In subse-
quent iterations, we continue training on this filtered data.

Determining which concepts are useful. When we
search for a concept and get back Q image results {Ii}Qi=1,
we take the average of the top 10 image-level rewards
ri = r(fk,D, Ii) and use that as a concept-level score. This
gives us an accurate measure of the relevance of a particular
query and reduces the impact of noisy search results.

2.5. Estimating Reward for Unseen Concepts

Since our vocabulary contains hundreds of thousands of
concepts, it is inefficient to search to test whether a query
yields relevant images. Luckily, we can estimate the quality
of a query by using the observed rewards of the queries used
so far. Humans can do this effortlessly due to our under-
standing of what each concept means. To us, it is obvious
that if querying “golden retriever” yielded useful images
for this dataset, then “labrador retriever” probably should
as well. To give our method the same understanding of con-
cept meaning, we embed our 146,347 WordNet concepts
into a 384-dimensional space using a pre-trained sentence
similarity model (Reimers & Gurevych, 2019). We provide
relevant context about concepts to the text embedding model
using the following template:

{lemma} ({hypernym}): {definition}.

For example,

Chihuahua (toy dog): an old breed

of tiny short-haired dog with

protruding eyes from Mexico held

to antedate Aztec civilization.

We use Gaussian process regression (GPR) (Williams &
Rasmussen, 1995) over the text embeddings {ei} to predict
the concept-level reward r(ei) for untried concepts. GPR
models the function outputs for any set of inputs {r(ei)}
as jointly Gaussian random variables. The covariance of
any two variables r(ei) and r(ej) is determined by the
kernel k(ei, ej), which we set as the default RBF kernel
k(ei, ej) = exp(

−∥ei−ej∥2

2). Given the observed rewards
for concepts Robs = {r(ei)}, GPR calculates the posterior
distribution over the rewards for an unobserved concept
e′, P (r(e′)|{r(ei)} = Robs). Given that the joint distri-
bution P ({r(ei)}, r(e′)) is Gaussian, the posterior is also
Gaussian with mean µ(e′) and variance σ(e′)2. The local-
ity provided by the RBF kernel enables reasonable reward
predictions, and having a distribution over rewards instead
of a point estimate allows us to explore potentially good
concepts. We encourage exploration by setting the score of
unobserved concepts to µ(ei) + σ(ei).

2.6. Provable speedup in relevant query identification

Only a small subset of our vocabulary of n concepts is
relevant to the target dataset. We assume that the relevant
concepts are partitioned into c disjoint clusters of size s, with
cs ≪ n. We want to discover every relevant concept by
sampling concepts uniformly at random (with replacement)
to test. We assume that sampling a concept conclusively
tells us whether it is relevant. Furthermore, we assume that
we could optionally use an algorithm (e.g., Gaussian process
regression) that, if we have sampled a relevant concept, tells

4

Internet Explorer: Targeted Representation Learning on the Open Web

100 101 102 103 104 105

10−5

10−3
Pr

ob
ab

ili
ty

Scale, softmax
Scale, softmax, tier

100 101 102 103 104 105

Sorted Concept Index (log scale)

0.0

0.5

1.0

C
um

ul
at

iv
e

Pr
ob

.

Figure 3. Learned concept sampling distribution. Given esti-
mated scores for each of the 146, 347 concepts, we need to choose
how often to sample each one in order to balance exploration and
exploitation. Top: we scale our scores to a desired temperature,
then take the softmax to obtain a distribution over concepts. Fi-
nally, we create tiers so that the top 250 concepts have 80% of the
probability mass, and the next 750 have 10%. This ensures that we
sample enough from the top 1,000 concepts while still exploring
other concepts with lower scores. Bottom: the top 1000 concepts
are only sampled a tiny fraction of the time without tiering.

us that all concepts in its cluster are also relevant. Then,
Lemma 2.1 shows that the Gaussian process drastically
reduces the time required to identify all relevant concepts.

Lemma 2.1. Let Tbase be the expected time to identify
every relevant concept without the GPR, and TGPR be the
expected time when exploiting the additional knowledge
from the GPR. Then, Tbase = nHc·s, TGPR = nHc

s , and
the speedup from GPR is Tbase

TGPR
≈ s log s.

The proof is in Appendix D. For our vocabulary and target
datasets, s ≈ 100. This shows that a predictive model like
GPR is crucial for quickly identifying all useful concepts.

2.7. Query sampling distribution

Once we have estimates for the quality of each concept,
how do we determine what to search for next? We face
the age-old dilemma of exploration versus exploitation: we
need to sample the top concepts frequently enough to get
relevant training data for SSL, while at the same time, we
need sufficient exploration of promising untried concepts.

We use a sampling-based approach based on Boltzmann
exploration (Sutton, 1991). Boltzmann exploration sam-
ples based on a scaled softmax distribution p(ci) ∝
exp(r(ci)/τ), where τ is the temperature scaling. How-
ever, with a large vocabulary (action space) of 146, 347
concepts, it becomes difficult to tune τ so that we sam-
ple the top concepts frequently enough without being too
skewed. Thus, we define a “tiering function” to adjust the
probability mass in specified intervals of our distribution.
Given a sorted discrete probability distribution p, interval

boundaries T0 = 0 < T1 < · · · < Tn, and interval masses
∆0, . . . ,∆n−1 such that

∑
i ∆i = 1, tiering computes a

new distribution:

ptier
i = ∆j

pi∑Tj+1

k=Tj
pk

for j s.t. Tj ≤ i < Tj+1 (3)

ptier is a new distribution such that
∑Tj+1

k=Tj
ptier = ∆j . We

use T0 = 0, T1 = 250, T2 = 1,000, T3 = 146,347, ∆0 =
0.8, ∆1 = 0.1, and ∆2 = 0.1. Simply put: we give the
highest-ranked 250 concepts 80% of the probability mass,
the next 750 concepts 10%, and all remaining concepts 10%.
Figure 3 shows that tiering the scaled softmax distribution
samples frequently enough from the top concepts while a
vanilla scaled softmax distribution does not.

3. Experimental Setting
3.1. Self-supervised Exploration

We assume that we have an unlabeled target dataset of im-
ages for which we would like to learn useful visual features.
We compare three methods:

1. Random: sample concepts uniformly from the vocab.
2. Ours: sample concepts from our learned distribution.
3. Ours++: additionally use GPT-generated descriptors.

3.2. Label Set-guided Exploration

We may sometimes know the set of labels for our task (e.g.,
“golden retriever,” etc.) even if we do not have image-label
pairs. Knowing the label set greatly accelerates learning on
the Internet, because it acts as a strong prior on what could
be useful. Using our text similarity model, we reduce the
size of the vocabulary by selecting the top 10% (14,635 con-
cepts) with the largest average top-k similarity to the label
set in text embedding space. We set k to a third of the size of
the label set to reduce the impact of outliers. Reducing the
size of the vocabulary strengthens our baselines by ensuring
that they only search for potentially useful concepts. We
compare 4 methods:

1. Labels: only search for labels.
2. Labels + relevant: search for labels half of the time,

and random concepts from the pruned vocabulary the
other half of the time.

3. Ours: sample labels half of the time and sample from
our learned concept distribution the other half.

4. Ours++: additionally use GPT-generated descriptors.

We call this setting “label set-guided,” since we have addi-
tional supervision in the form of the label set.

3.3. Datasets and Metrics

We evaluate Internet Explorer on 4 popular small-scale
fine-grained classification datasets: Birdsnap (Berg et al.,

5

Internet Explorer: Targeted Representation Learning on the Open Web

Target dataset: Pets

Iteration 0 Iteration 1 Iteration 3 Iteration 6 Iteration 10 Iteration 15

Figure 4. Progression of downloaded images across training. Top: samples of Oxford-IIIT Pets images. Bottom: samples of images
queried by Internet Explorer across iterations. As it learns, it makes queries that are progressively more relevant to the target dataset.

0 20 40
Iteration

25

30

k-
N

N
V

al
A

cc
ur

ac
y

(%
) Birdsnap

0 20 40
Iteration

90

95

Flowers

0 20 40
Iteration

70

72

74
Food

0 20
Iteration

70

80

Pets

0 10 20
Iteration

55

60

65

VOC2007

Ours++ Ours Random

Figure 5. Learning curves in self-supervised setting. We show how k-NN validation accuracy improves across iterations on each target
dataset. Without using any labels, Internet Explorer identifies and focuses on relevant concepts for each target dataset. This allows it to
find more useful data than the baseline that searches for random concepts. Adding GPT-generated descriptors (Ours++) further improves
performance by enabling Internet Explorer to generate diverse views of useful concepts.

2014), Flowers-102 (Nilsback & Zisserman, 2008), Food101
(Bossard et al., 2014), and Oxford-IIT Pets (Parkhi et al.,
2012). These small datasets consist of 2,040 to 75,750
training examples, making them ideal for testing whether
Internet Explorer can efficiently find relevant useful data.
We also evaluate on PASCAL VOC 2007 (Cls) (Evering-
ham et al., 2010), a coarse-grained multi-label classification
task, and ImageNet-100 (Tian et al., 2020). Finally, we try
FMoW (Christie et al., 2018), a satellite domain classifi-
cation task. We compare the representation quality of our
model w.r.t. its target dataset using two metrics: k-nearest
neighbors (k-NN) accuracy and linear probe accuracy.

4. Results and Analysis
4.1. Self-supervised Results

Figure 5 shows how Internet Explorer improves the k-NN
accuracy more efficiently than sampling queries uniformly
at random from the concept vocabulary. In fact, random
sampling occasionally decreases accuracy, likely due to

the fact that Internet images can generally be unsuitable
for pre-training due to issues such as watermarks, images
containing text, and overly photogenic images (Mezuman
& Weiss, 2012; Chen & Gupta, 2015). Table 1 shows that
our method significantly improves on the starting MoCo-v3
(ImageNet + target) checkpoint and can outperform a CLIP
(Radford et al., 2021) model of the same size while using
much less compute and data. This is impressive as CLIP can
be considered an oracle since its training set contains up to
20k Bing image search results for each WordNet lemma (in
addition to other queries). Using GPT-generated descriptors
in “Ours++” also significantly improves performance by
enabling Internet Explorer to generate diverse views of the
most useful concepts.

4.2. Self-supervised Exploration Behavior

Figure 6 shows the progression of Internet Explorer
(Ours++) behavior on the Pets dataset in the self-supervised
setting. Since Pets consists of cat and dog breeds, to analyze
the results, we use the WordNet hierarchy to divide concepts

6

Internet Explorer: Targeted Representation Learning on the Open Web

Model Birdsnap Flowers Food Pets VOC2007 IN100 FMoW⋆ Images GPU hrs.

Fixed dataset, lang. supervision
CLIP ResNet-50 (oracle) 57.1 96.0 86.4 88.4 86.7 89.3 44.9 400× 106 4,000

Fixed dataset, self-supervised
MoCo-v3 (ImageNet pre-train) 26.8 83.2 70.5 79.6 − − 40.8 1.2× 106 72
MoCo-v3 (ImageNet + target) 39.9 94.6 78.3 85.3 58.0† 84.7† 52.5 1.2× 106 72 + 12

No label set information
Random exploration 39.6 (−0.3) 95.3 (+0.7) 77.0 (−1.3) 85.6 (+0.3) 70.2 (+12.2) 85.7 (+1.0) 54.3 (+1.8) 2.2× 106 84 + 40
Ours 43.4 (+3.5) 97.1 (+2.5) 80.5 (+2.2) 86.8 (+1.5) 68.5 (+10.5) 86.2 (+1.5) − − 2.2× 106 84 + 40
Ours++ 54.4 (+14.5) 98.4 (+3.8) 82.2 (+3.9) 89.6 (+4.3) 80.1 (+22.1) 86.4 (+1.7) 54.1 (+1.6) 2.2× 106 84 + 40

Use label set information
Search labels only 47.1 (+7.2) 96.3 (+1.7) 80.9 (+2.6) 85.7 (+0.4) 61.8 (+3.8) 85.7 (+1.0) 53.5 (+1.0) 2.2× 106 84 + 40
Labels + relevant terms 49.9 (+10.0) 98.0 (+3.4) 81.2 (+2.9) 87.0 (+1.7) 67.5 (+9.5) 86.3 (+1.6) 54.1 (+1.6) 2.2× 106 84 + 40
Ours 52.0 (+12.1) 97.6 (+3.0) 81.2 (+2.9) 87.3 (+2.0) 70.3 (+14.3) 86.4 (+1.7) – – 2.2× 106 84 + 40
Ours++ 62.8 (+22.9) 99.1 (+4.5) 84.6 (+6.3) 90.8 (+5.5) 79.6 (+21.6) 86.7 (+2.0) 54.5 (+2.0) 2.2× 106 84 + 40

Table 1. Linear probing accuracy. Our method significantly improves the starting checkpoint performance in just 40 additional hours of
training. We show the performance change from the starting MoCo-v3 (ImageNet + target) initialization in green/red. CLIP numbers
correspond to linear probe (which is higher than its zero-shot accuracy). Internet Explorer reaches or often surpasses CLIP (oracle with 2x
params) performance on each dataset while using 2.5% as much compute and 0.5% as much data. †For VOC2007 and IN100, we do not
do ImageNet pre-training because ImageNet is too similar and obscures the effect. ⋆For FMoW-WILDS, we use a hand-crafted list of
domain-specific descriptors common to all models (see Appendix C.8 for more details).

0 5 10 15

0.5

0.6

0.7

A
vg

E
st

im
at

ed
R

ew
ar

d

Cats
Dogs
Other felines
Other canines
Other
First cat
First dog

0 5 10 15
Iteration

0.00

0.25

0.50

0.75

1.00

Pr
ob

ab
ili

ty
pe

rC
at

eg
or

y

Cats
Dogs
Other felines
Other canines
Other

Figure 6. Self-supervised concept discovery on Pets dataset.
When targeting the Pets dataset, self-supervised Internet Explorer
quickly estimates high reward for concepts from the cat category
(82 concepts) and dog category (246 concepts). It is also able
to identify felines that are not cats (e.g., tiger) and canines that
are not dogs (e.g., wolf), although it gives them lower reward on
average. Finding these categories is especially challenging since
they comprise only 460/146,347 = 0.3% of the vocabulary.

in our vocabulary into 5 meaningful categories: cats, dogs,
non-cat felines (e.g., lion), non-dog canines (e.g., wolf), and
other. This categorization is only done for this post hoc
analysis and is not provided during training. Figure 6 (top)
shows that Internet Explorer rapidly identifies the roughly
0.3% of concepts that are useful for Pets. During the first
two iterations, the average estimated reward for each cat-
egory is roughly the same. However, after the first dog
concept is searched in iteration #2, the estimated reward
and probability mass for dogs and other canines rapidly
increases. The same happens for cats after the first cat is

searched in iteration #4. Interestingly, while “other felines”
and “other canines” have higher average reward than the
“other” category, they still have much lower reward than cats
and dogs. This indicates that our model understands that
other felines and canines (mostly large, wild predators) are
only moderately relevant for house pet cats and dogs.

Figure 4 shows how Internet Explorer downloads progres-
sively more useful images over time. It shows 8 random
images that were downloaded in iteration #0, #1, #3, #6,
#10, and #15 in the self-supervised setting. Iteration #0
contains mostly useless data, like graphics or screenshots,
but Pets-relevant images already make up most of the down-
loads by iteration #3. Appendix E shows that Internet
Explorer identifies useful images shockingly quickly across
every dataset, without any knowledge of their label sets.

4.3. Label Set-guided Results

Internet Explorer significantly outperforms the stronger
baselines in the label set-guided setting where we addition-
ally have knowledge of the label set. Searching for the label
set continuously provides useful data and helps us rapidly
identify other useful concepts. Together with the diversity
promoted by GPT descriptors, Ours++ outperforms CLIP
in 4/7 datasets and approaches its performance in the other
3, using just 2.5% of the time and 0.5% the data.

4.4. Domain dataset results

To test if Internet Explorer is effective when the target
dataset contains very specific domain knowledge, we ap-
plied it to FMoW-WILDS (Christie et al., 2018)—a popu-
lar satellite imaging domain dataset—by hand-designing a
dozen search prompts that help induce satellite image re-
sults (details in Appendix C.8). Even though the WordNet

7

Internet Explorer: Targeted Representation Learning on the Open Web

0 25 50
Iteration

30

40

k-
N

N
V

al
A

cc
ur

ac
y

(%
) Birdsnap

0 10 20
Iteration

90

95

Flowers

0 10 20
Iteration

72

74

76
Food

0 20 40
Iteration

70

80

Pets

0 10
Iteration

55

60

65

VOC2007

Ours++ Ours Labels Labels + relevant

Figure 7. Learning curves in label set-guided setting. Using knowledge of the label set improves the performance of all methods.

vocabulary is not particularly suited for this dataset, Internet
Explorer still improves the LP accuracy by 2 percentage
points (see Table 1). Notably, all of our methods dramati-
cally outperform CLIP here, likely because the distribution
of satellite data is very different than the data used to train
CLIP. This demonstrates the wide flexibility of our method
to be applied to arbitrary domains.

4.5. Learning from other sources of data

We primarily obtain images by querying Google Images,
but Internet Explorer is compatible with any text-to-image
search engine. To measure the effect of the choice of search
engine, we also test Internet Explorer with the Flickr photo
search API and a custom search engine we built on top of
a subset of LAION-5B (Schuhmann et al., 2022). LAION-
5B consists of noisy web-scraped (text, image) pairs, and
our custom LAION search engine searches using approx-
imate nearest neighbors in text embedding space. Thus,
it tests whether Internet Explorer can still improve even
when the search engine has little inductive bias. We dis-
cuss more details in Appendix A. Table 2 shows that Inter-
net Explorer consistently improves over time, regardless of
the search engine we use. Google consistently does best,
followed by Flickr, then LAION (which has the smallest
pool of images to draw from). Using Internet Explorer to
search LAION-5B consistently performs better than random
exploration—indicating that Internet Explorer is effective
even for selecting data from a static dataset.

4.6. Effect of image reward type

We run an ablation on the type of image relevance re-
ward. Instead of calculating the image reward based on
the average similarity to the k = 15 nearest neighbors
in representation space (as in Section 2.3), we also try
using k = 1 or the MoCo contrastive loss as the re-
ward. Table 3 compares these three metrics in the label
set-guided setting and shows that k = 15 does best. We
explain this result by qualitatively comparing the behavior
of various metrics on Food101 in Figure 8. The MoCo
loss does not identify relevant concepts, instead prefer-

15-NN
similarity:

MoCo loss:

1-NN
similarity:

1-NN in
Pets dataset:

breakfast
burrito

edamame chocolate
mousse

hamburgerLabel:

Figure 8. Most preferable images under different rewards. We
show the top 5 downloaded images ranked by 3 possible image
rewards for adversarial Food101 examples. MoCo loss encourages
noisy out-of-distribution images; 15-NN (ours) prefers a wide
variety of food images, whereas outliers in the Food dataset throw
off 1-NN, causing it to reward black images, text, and zebras.

ring images that are difficult to align across augmentations.

Reward Type Food

MoCo loss 81.2
1-NN sim 83.2
15-NN sim (ours) 84.6

Table 3. Ablation on type of im-
age reward. MoCo loss does not
identify relevant concepts, and 1-
NN is sensitive to outlier images.

Representation similarity
with k = 1 also fails, as it
prefers images of zebras
and text because these
images are highly similar
to a few outlier images in
Food101. Our proposed
reward with k = 15 elim-
inates the influence of
outliers and avoids this
problem.

4.7. Comparison to image-to-image search

An alternate approach to finding relevant Internet data is
to use image-to-image search: for each image in the target
dataset, directly retrieve images that are visually similar.

Scientific and practical issues Image-to-image search
relies on using strong visual representations from pretrained
models in order to identify similar images. This defeats the

8

Internet Explorer: Targeted Representation Learning on the Open Web

Model Flowers Food Pets

Google Flickr LAION Google Flickr LAION Google Flickr LAION

Fixed dataset
MoCo-v3 (IN) 83.2 83.2 83.2 70.5 70.5 70.5 79.6 79.6 79.6
MoCo-v3 (IN + target) 94.6 94.6 94.6 78.3 78.3 78.3 85.3 85.3 85.3

Undirected search
Random exploration 95.3 95.2 94.8 77.0 80.0 80.2 85.6 84.4 85.1

Internet Explorer
Ours++ (no label set) 98.4 98.1 94.6 81.2 80.3 80.9 87.3 88.4 85.9
Ours++ (with label set) 99.1 99.0 95.8 84.6 81.9 81.0 90.8 89.1 86.7

Table 2. Linear probe accuracy with other search engines. Internet Explorer improves its performance using any search engine,
including Flickr and our custom text-based LAION search engine.

primary purpose of Internet Explorer: learning useful repre-
sentations when none exist beforehand (e.g., a new iPhone
is released that is out-of-distribution for existing vision mod-
els). Text-based search avoids this issue because it makes
use of additional supervision, in the form of the caption and
surrounding text, that makes it easier to consistently index
new images. Image-to-image search is additionally quite
expensive, as it relies on paid APIs that can cost thousands
of dollars per experiment.

Comparison to text-based search Regardless of the con-
cerns above, we do a controlled comparison between Inter-
net Explorer and image-based search over LAION-5B. For
each image in a target training set, we compute its CLIP
ViT-L/14 representation and find its N nearest neighbors in
LAION-5B. We choose N so that we download a total of 1
million new images, which matches how many images Inter-
net Explorer downloads. We then train a MoCo-v3 model on
a 1:1 mix of the target dataset and the downloaded images
with the exact same hyperparameters (e.g., learning rate,
number of steps, etc) as Internet Explorer. Interestingly, Ta-
ble 4 shows that the image-to-image approach consistently
learns worse features than Internet Explorer, despite taking
advantage of strong, pretrained vision features from CLIP.
We hypothesize that image-to-image search finds images
that are too similar to the target images, resulting in less
additional information that was not already present in the tar-
get dataset. In contrast, using text (concepts and descriptors)
as an intermediate bottleneck encourages Internet Explorer
to download novel images that generalize along useful axes.

5. Related Work
Many papers use self-supervised or weakly-supervised
learning on large-scale static datasets collected from the
Internet, such as YFCC-100M (Thomee et al., 2015),
Instagram-1B (Mahajan et al., 2018), or LAION-5B (Schuh-
mann et al., 2022). However, these are usually impractically
expensive since they attempt to train on all of the data, not
just the subset relevant for a target dataset. Another line of

Flowers Pets VOC2007

Image-to-image 96.6 81.6 67.8
Internet Explorer (ours) 98.8 87.0 76.1

Table 4. k-NN accuracy across search methods. Image-to-image
search uses CLIP ViT-L/14 vision features to acquire the nearest
neighbors of each target dataset image. Despite using strong pre-
trained features and the same source data (LAION-5B), number
of downloaded images, and other hyperparameters as Internet Ex-
plorer, the image-to-image approach learns worse features.

work continuously interacts with the Internet to find useful
data, instead of using fixed-size scrapings. NELL (Carlson
et al., 2010; Mitchell et al., 2018) extracts text from web
pages to form beliefs, and NEIL (Chen et al., 2013) uses
images downloaded from Google Image Search to learn
visual concepts. However, both methods are undirected (i.e.,
they do not modify their exploration behavior to prioritize
specific data), which means that learning proceeds slowly.
Kamath et al. (2022) improves a visual question-answering
model using a set of predetermined Bing queries. In contrast
to these works, Internet Explorer uses targeted exploration
on the Internet to find data for self-supervised training.

6. Conclusion
We show that interactively exploring the Internet is an effi-
cient source of highly relevant training data—if one knows
how to search for it. In just 30–40 hours of training on a sin-
gle GPU, Internet Explorer either significantly outperforms
or closely matches the performance of compute-heavy ora-
cle models like CLIP (Radford et al., 2021) trained on static
datasets, as well as strong baselines that search the Internet
in an undirected manner.

Acknowledgements We thank Russell Mendonca for help-
ful discussions and Shivam Duggal, Mihir Prabhudesai,
Sheng-Yu Wang, Jason Y. Zhang, and Rishi Veerapaneni for
paper feedback. AL is supported by the NSF GRFP, grants
DGE1745016 and DGE2140739. This work is supported by
NSF IIS-2024594 and ONR MURI N00014-22-1-2773.

9

Internet Explorer: Targeted Representation Learning on the Open Web

References
Bao, H., Dong, L., and Wei, F. Beit: Bert pre-training of

image transformers. arXiv preprint arXiv:2106.08254,
2021.

Bardes, A., Ponce, J., and LeCun, Y. Vicreg: Variance-
invariance-covariance regularization for self-supervised
learning. arXiv preprint arXiv:2105.04906, 2021.

Berg, T., Liu, J., Woo Lee, S., Alexander, M. L., Jacobs,
D. W., and Belhumeur, P. N. Birdsnap: Large-scale fine-
grained visual categorization of birds. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 2011–2018, 2014.

Bossard, L., Guillaumin, M., and Gool, L. V. Food-101–
mining discriminative components with random forests.
In European conference on computer vision, pp. 446–461.
Springer, 2014.

Buchner, J. imagehash (fork). https://github.com/
JohannesBuchner/imagehash, 2021.

Carlson, A., Betteridge, J., Kisiel, B., Settles, B., Hruschka,
E. R., and Mitchell, T. M. Toward an architecture for
never-ending language learning. In Twenty-Fourth AAAI
conference on artificial intelligence, 2010.

Caron, M., Touvron, H., Misra, I., Jégou, H., Mairal, J.,
Bojanowski, P., and Joulin, A. Emerging properties in
self-supervised vision transformers. In Proceedings of
the IEEE/CVF International Conference on Computer
Vision, pp. 9650–9660, 2021.

Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. A
simple framework for contrastive learning of visual rep-
resentations. preprint arXiv:2002.05709, 2020.

Chen, X. and Gupta, A. Webly supervised learning of
convolutional networks. In Proceedings of the IEEE
international conference on computer vision, pp. 1431–
1439, 2015.

Chen, X., Shrivastava, A., and Gupta, A. Neil: Extracting
visual knowledge from web data. In Proceedings of the
IEEE international conference on computer vision, pp.
1409–1416, 2013.

Chen, X., Xie, S., and He, K. An empirical study of training
self-supervised vision transformers. In Proceedings of
the IEEE/CVF International Conference on Computer
Vision, pp. 9640–9649, 2021.

Christie, G., Fendley, N., Wilson, J., and Mukherjee, R.
Functional map of the world. In CVPR, 2018.

Clinton, J. Google images download (fork).
https://github.com/Joeclinton1/
google-images-download, 2020.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei,
L. Imagenet: A large-scale hierarchical image database.
In 2009 IEEE conference on computer vision and pattern
recognition, pp. 248–255. Ieee, 2009.

Everingham, M., Van Gool, L., Williams, C. K., Winn, J.,
and Zisserman, A. The pascal visual object classes (voc)
challenge. IJCV, 2010.

Feldman, V. and Zhang, C. What neural networks mem-
orize and why: Discovering the long tail via influence
estimation. Advances in Neural Information Processing
Systems, 33:2881–2891, 2020.

Ge, W. Deep metric learning with hierarchical triplet loss.
In Proceedings of the European Conference on Computer
Vision (ECCV), pp. 269–285, 2018.

Grill, J.-B., Strub, F., Altché, F., Tallec, C., Richemond,
P. H., Buchatskaya, E., Doersch, C., Pires, B. A., Guo,
Z. D., Azar, M. G., Piot, B., Kavukcuoglu, K., Munos,
R., and Valko, M. Bootstrap your own latent: A new
approach to self-supervised learning. In NeurIPS, 2020.

Harwood, B., Kumar BG, V., Carneiro, G., Reid, I., and
Drummond, T. Smart mining for deep metric learning.
In Proceedings of the IEEE International Conference on
Computer Vision, pp. 2821–2829, 2017.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. In CVPR, 2016.

He, K., Fan, H., Wu, Y., Xie, S., and Girshick, R. Mo-
mentum contrast for unsupervised visual representation
learning. In CVPR, 2020.

He, K., Chen, X., Xie, S., Li, Y., Dollár, P., and Girshick,
R. Masked autoencoders are scalable vision learners. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 16000–16009, 2022.

Ilyas, A., Park, S. M., Engstrom, L., Leclerc, G., and Madry,
A. Datamodels: Predicting predictions from training data.
arXiv preprint arXiv:2202.00622, 2022.

Jiang, Z., Chen, T., Chen, T., and Wang, Z. Improving
contrastive learning on imbalanced data via open-world
sampling. Advances in Neural Information Processing
Systems, 34:5997–6009, 2021.

Johnson, J., Douze, M., and Jégou, H. Billion-scale similar-
ity search with GPUs. IEEE Transactions on Big Data, 7
(3):535–547, 2019.

Kamath, A., Clark, C., Gupta, T., Kolve, E., Hoiem, D.,
and Kembhavi, A. Webly supervised concept expan-
sion for general purpose vision models. arXiv preprint
arXiv:2202.02317, 2022.

10

https://github.com/JohannesBuchner/imagehash
https://github.com/JohannesBuchner/imagehash
https://github.com/Joeclinton1/google-images-download
https://github.com/Joeclinton1/google-images-download

Internet Explorer: Targeted Representation Learning on the Open Web

Koh, P. W. and Liang, P. Understanding black-box predic-
tions via influence functions. In International conference
on machine learning, pp. 1885–1894. PMLR, 2017.

Li, A. C., Efros, A. A., and Pathak, D. Understanding
collapse in non-contrastive siamese representation learn-
ing. In European Conference on Computer Vision, pp.
490–505. Springer, 2022.

Mahajan, D., Girshick, R., Ramanathan, V., He, K., Paluri,
M., Li, Y., Bharambe, A., and van der Maaten, L. Explor-
ing the limits of weakly supervised pretraining. In ECCV,
2018.

Mezuman, E. and Weiss, Y. Learning about canonical views
from internet image collections. Advances in neural in-
formation processing systems, 25, 2012.

Miller, G. A. Wordnet: a lexical database for english. Com-
munications of the ACM, 38(11):39–41, 1995.

Mitchell, T., Cohen, W., Hruschka, E., Talukdar, P., Yang,
B., Betteridge, J., Carlson, A., Dalvi, B., Gardner, M.,
Kisiel, B., et al. Never-ending learning. Communications
of the ACM, 61(5):103–115, 2018.

Nilsback, M.-E. and Zisserman, A. Automated flower clas-
sification over a large number of classes. In 2008 Sixth
Indian Conference on Computer Vision, Graphics & Im-
age Processing, 2008.

Oh Song, H., Xiang, Y., Jegelka, S., and Savarese, S. Deep
metric learning via lifted structured feature embedding. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 4004–4012, 2016.

Oord, A. v. d., Li, Y., and Vinyals, O. Representation
learning with contrastive predictive coding. preprint
arXiv:1807.03748, 2018.

Parkhi, O. M., Vedaldi, A., Zisserman, A., and Jawahar, C.
Cats and dogs. In 2012 IEEE conference on computer
vision and pattern recognition, pp. 3498–3505. IEEE,
2012.

Paul, M., Ganguli, S., and Dziugaite, G. K. Deep learning on
a data diet: Finding important examples early in training.
Advances in Neural Information Processing Systems, 34:
20596–20607, 2021.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G.,
Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J.,
et al. Learning transferable visual models from natural
language supervision. In International Conference on
Machine Learning, pp. 8748–8763. PMLR, 2021.

Reimers, N. and Gurevych, I. Sentence-bert: Sentence
embeddings using siamese bert-networks. arXiv preprint
arXiv:1908.10084, 2019.

Robinson, J., Chuang, C.-Y., Sra, S., and Jegelka, S. Con-
trastive learning with hard negative samples. arXiv
preprint arXiv:2010.04592, 2020.

Schroff, F., Kalenichenko, D., and Philbin, J. Facenet: A
unified embedding for face recognition and clustering. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 815–823, 2015.

Schuhmann, C., Beaumont, R., Vencu, R., Gordon, C.,
Wightman, R., Cherti, M., Coombes, T., Katta, A., Mullis,
C., Wortsman, M., et al. Laion-5b: An open large-scale
dataset for training next generation image-text models.
arXiv preprint arXiv:2210.08402, 2022.

Settles, B. Active learning literature survey. 2009.

Sutton, R. S. Dyna, an integrated architecture for learning,
planning, and reacting. ACM Sigart Bulletin, 2(4):160–
163, 1991.

Thomee, B., Shamma, D. A., Friedland, G., Elizalde, B.,
Ni, K., Poland, D., Borth, D., and Li, L.-J. Yfcc100m:
The new data in multimedia research. arXiv preprint
arXiv:1503.01817, 2015.

Tian, Y., Krishnan, D., and Isola, P. Contrastive multiview
coding. In Computer Vision–ECCV 2020: 16th European
Conference, Glasgow, UK, August 23–28, 2020, Proceed-
ings, Part XI 16, pp. 776–794. Springer, 2020.

Vasa, H. Google images download. https://github.
com/hardikvasa/google-images-download,
2015.

Wang, B. and Komatsuzaki, A. GPT-J-6B: A
6 Billion Parameter Autoregressive Language
Model. https://github.com/kingoflolz/
mesh-transformer-jax, May 2021.

Williams, C. and Rasmussen, C. Gaussian processes for
regression. Advances in neural information processing
systems, 8, 1995.

Wu, C.-Y., Manmatha, R., Smola, A. J., and Krahenbuhl, P.
Sampling matters in deep embedding learning. In Pro-
ceedings of the IEEE international conference on com-
puter vision, pp. 2840–2848, 2017.

You, Y., Gitman, I., and Ginsburg, B. Large batch training
of convolutional networks. preprint arXiv:1708.03888,
2017.

Zbontar, J., Jing, L., Misra, I., LeCun, Y., and Deny, S.
Barlow twins: Self-supervised learning via redundancy
reduction. arXiv preprint arXiv:2103.03230, 2021.

11

https://github.com/hardikvasa/google-images-download
https://github.com/hardikvasa/google-images-download
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax

Internet Explorer: Targeted Representation Learning on the Open Web

Appendix

A. Learning from other sources of data
 sunflowerShow me:

Figure 9. Our custom LAION-5B search engine.
We build a custom text-to-image search engine that
finds images within the LAION-5B dataset by doing
nearest neighbor search in text embedding space.
This uses no image features whatsoever.

Google Images is an exceptionally useful data source for Internet Explorer.
It offers access to a large portion of the Internet’s images, and it ranks
images using weak supervision from the image caption, surrounding
text, click rates, image features, incoming and outgoing hyperlinks, and
other signals. This extra supervision is helpful and should be utilized.
Nonetheless, we show that Internet Explorer is agnostic to the choice of
text-to-image search engine and can still rapidly improve even when the
data source is much noisier.

To test Internet Explorer in the most minimal setting, we build a custom
search engine that finds images solely using their accompanying text—
without using any pre-trained visual features whatsoever. We use the
LAION-5B dataset (Schuhmann et al., 2022), which consists of >5B
noisy image-caption pairs. We filter the dataset to only include images
of at least 5122 pixels with English captions. This leaves us with about
600M text-image pairs. To find image results for a query, we find the 100
captions closest to the query in text representation space, then return the
associated images. We use a pre-trained text embedding model (Reimers
& Gurevych, 2019) to compute 384-dimensional text embeddings for each caption. Then, we use Faiss (Johnson et al., 2019)
to compute a fast, approximate nearest-neighbors lookup index. Querying our custom search engine finds 100 image results
in less than a second. Figure 9 shows that our search engine is reasonably accurate, even without using any image features.

We also test Flickr’s photo search API as another text-to-image search engine, in addition to Google Images and LAION.
Figure 11 shows that each data source has its own tendencies. For the “spaghetti bolognese” query, Google Images is
biased (Mezuman & Weiss, 2012; Chen & Gupta, 2015) towards brightly-lit, photogenic images that typically come from
food blogs. Flickr mainly consists of amateur home photos, so it returns a messier variety of images that perhaps better
capture the real world. LAION images come from web crawling, without any ranking, so they additionally contain many
graphics with text overlays. The same image can also frequently show up in the LAION results multiple times, as a result of
being posted on multiple separate pages.

Figure 10 and Table 2 (main paper) show that Internet Explorer still improves over time, even when the data comes from
LAION or Flickr. Internet Explorer tends to perform better with Flickr than with LAION, which makes sense. Flickr indexes
far more images, as our custom LAION search engine only uses 600M images, so it can return more of the useful photos
that Internet Explorer queries for. Flickr is also slightly better at understanding descriptors, although both Flickr and LAION
tend to be thrown off by specific or odd descriptors. Nevertheless, Internet Explorer significantly improves the starting
model in less than a day of searching and training even with noisy search results and no hyperparameter tuning. Overall,
these results prove that Internet Explorer can effectively utilize any window into the Internet’s vast ocean of image data.

0 5 10 15 20
Iteration

90.0

92.5

95.0

97.5

k-
N

N
V

al
A

cc
ur

ac
y

(%
)

Flowers

0 5 10 15 20
Iteration

72

73

Food

0 10 20 30
Iteration

78

80

82

Pets

LAION (no label set) LAION (w/ label set) Flickr (no label set) Flickr (w/ label set)

Figure 10. Learning from Flickr and LAION-5B. Even with the noisy search results returned by Flickr and LAION, Internet Explorer
still continuously improves performance.

12

Internet Explorer: Targeted Representation Learning on the Open Web

Food101 dataset: “Spaghetti Bolognese”

Google Images: “Spaghetti Bolognese”

Flickr: “Spaghetti Bolognese”

LAION-5B: “Spaghetti Bolognese”

Figure 11. Comparison of different search engines. We show images for the “spaghetti bolognese” class in the Food101 dataset, as well
as 20 search results for “spaghetti bolognese” from Google Images, Flickr, and LAION5B. Google images are typically well-lit, aesthetic
food blog pictures. In comparison, Flickr images are messier, darker, and capture a wider variety of real-world conditions. LAION-5B
images lie somewhere in the middle, but contain text overlays much more frequently. Duplicate image results are also common.

13

Internet Explorer: Targeted Representation Learning on the Open Web

Birdsnap Flowers Food Pets VOC2007

Target test set size 1849 6142 25246 3663 4952

No exploration
Target training set overlap 1 (0.05%) 5 (0.01%) 34 (0.13%) 21 (0.57%) 0 (0.00%)

Internet Explorer
Ours++ (no label set) 28 (+1.46%) 11 (+0.01%) 35 (+0.00%) 26 (+0.14%) 1 (+0.02%)
Ours++ (with label set) 57 (+3.03%) 27 (+0.36%) 35 (+0.00%) 43 (+0.60%) 1 (+0.02%)

Table 5. Number of leaked test set images. We use image hashing to compute the fraction of test images present in the set of images
downloaded by Internet Explorer. Surprisingly, the training/validation sets of these datasets already leak a small fraction of the test
sets—Pets is the most egregious, with 0.57% test leakage. For each dataset, we show the test set size, the number of leaked test images,
and the percentage of the test set that this represents in blue. For each version of our method, we show the total number of leaked images
that the model had access to, and the percentage increase this represents over the training set’s leakage in blue. Leakage numbers for our
methods include this train-test leakage, since our methods also train on the target dataset’s training set. Internet Explorer only finds a tiny
fraction of test set images online, and it only uses them for self-supervised training, so there is no label leakage. Internet Explorer’s large
increase in accuracy cannot be explained by test set leakage, so its performance gains must come through better feature learning and
generalization.

B. Are we finding the entire test set online?
One may be concerned that Internet Explorer improves performance mainly by finding a significant portion of the test
set images online. We address this concern by checking how much test data Internet Explorer has downloaded. We use
difference hashing (dHash) (Buchner, 2021) to compute hashes for the target dataset’s training set, its test set, and the ≈ 106

images that Internet Explorer has downloaded. We compare hashes to determine how many test images were leaked, and
we report the number of collisions in Table 5. Across all five datasets, Internet Explorer finds very few test images. On
Birdsnap, Internet Explorer finds 56 additional test set images that were not leaked in the training set, which is roughly
3% of the test set. On the other datasets, the amount leaked ranges from 0.003% to 0.6% of the test set. Additionally, we
only perform image-based self-supervised training on downloaded images, so it is much harder for our model to cheat with
the leaked images. Overall, given that Internet Explorer outperforms its starting checkpoint by between 5 to 30 percentage
points, we conclude that its performance cannot be explained by cheating.

In fact, we view it as a positive that Internet Explorer finds some test set images, because it serves as confirmation that it is
learning to search for relevant images—and the most relevant images possible would be those from the dataset itself! But
beyond test set images, Internet Explorer finds a lot of internet images that are very relevant to the dataset. We visualize the
top-10 most similar downloaded images for 5 randomly selected test set images from multiple datasets in Figures 12 to 16.
We use CLIP ViT-L/14 to compute the representations of the test set images, as well as the downloaded images. We then
find the top-10 most similar online images given a test set image (from the downloaded images using Ours++ (with label
set)). We see that Internet Explorer finds several images that are very similar but not identical to the test set images.

C. Method Details
C.1. WordNet Lemmas

We draw our concepts from the WordNet hierarchy (Miller, 1995), which consists of 146,347 noun lemmas. For reference,
here are 32 randomly sampled concepts:

"resolution", "lodgment", "phycobilin", "acidosis", "widening", "human
face", "family Crassulaceae", "sail", "Ipomoea imperialis", "Davis",
"prothrombin", "cease", "marsh clematis", "major power", "chump change",
"madcap", "junky", "pere david’s deer", "make-up", "genus Rumex", "gape",
"Brachychiton populneus", "bell morel", "wain", "friendly", "Principe",
"bottle green", "glycerol trimargarate", "water-shield", "San Joaquin
River", "woodsman", "pin".

14

Internet Explorer: Targeted Representation Learning on the Open Web

Test Img. Ranked Nearest Neighbors in Downloaded Images

Oxford-IIIT Pets

Figure 12. Top-10 most similar online images to Pets101

Test Img. Ranked Nearest Neighbors in Downloaded Images

Food101

Figure 13. Top-10 most similar online images to Food101

15

Internet Explorer: Targeted Representation Learning on the Open Web

Test Img. Ranked Nearest Neighbors in Downloaded Images

Oxford Flowers 102

Figure 14. Top-10 most similar online images to Flowers102

Test Img. Ranked Nearest Neighbors in Downloaded Images

VOC2007

Figure 15. Top-10 most similar online images to PASCAL VOC2007

16

Internet Explorer: Targeted Representation Learning on the Open Web

Test Img. Ranked Nearest Neighbors in Downloaded Images

ImageNet-100

Figure 16. Top-10 most similar online images to IN100

C.2. GPT-J Descriptor Prompting

We use GPT-J-6B (Wang & Komatsuzaki, 2021), a free, open-source autoregressive language model, to generate useful
descriptors for a given concept. We use the following prompt template:

"What are some words that describe the quality of ‘{concept}’?

The {concept} is frail.

The {concept} is red.

The {concept} is humongous.

The {concept} is tall.

The {concept} is"

We sample completions with a temperature of 0.9 and a max length of 100 tokens. We truncate the completion after the first
comma, period, underscore, or newline character (including the special character). If the truncated completion is degenerate
and contains a duplicate of the concept, we resample another completion. After successfully sampling a descriptor, we
prepend it to the concept and use the resulting phrase as our search query.

For reference, here are 32 randomly sampled descriptors for “labrador retriever”:

"a good-looking dog", "very gentle", "a", "brown", "lovable", "a
strong runner", "a male or a female", "sturdy", "agile", "a strong",
"beautiful", "a male", "kind", "long-haired", "a male or a female", "a
good-looking dog", "gentle", "medium", "loyal", "very gentle", "blue-eyed",
"sturdy", "blue-eyed", "a retriever", "kind", "loyal", "large", "brown",
"good-natured", "gentle", "large", "small".

C.3. Concept Vocabulary Size

As stated in Section 2.2, our vocabulary comprises the 146,347 noun lemmas in the WordNet hierarchy. Thus, in all our
experiments, Internet Explorer only searches for WordNet terms (plus the class names, if we have knowledge of the label

17

Internet Explorer: Targeted Representation Learning on the Open Web

Dataset Category

Oxford Flowers102 Flower
Oxford IIIT Pets Pet
Food101 Food
Birdsnap Bird
VOC2007 Object

Table 6. Target Dataset “Category”.

set). We found that this worked quite well for these standard benchmarks. Note that expanding the vocabulary (e.g., adding
technical terms relevant to a specific topic) can easily be done by adding those terms to the list of possible concepts. One
easy extension would be to add page titles and frequent unigrams and bigrams from Wikipedia, as was done to generate the
CLIP training set (Radford et al., 2021). Doing so would expand our vocabulary to roughly 500,000 total concepts.

C.4. Query Model Details

Temperature for concept distribution After estimating scores r(ci) for each concept ci, we do a temperature-scaled
softmax, followed by the tiering operation described in Section 2.6. We compute the temperature τ such that

SMR =
maxi r(ci)−mini r(ci)

τ
(4)

where the “softmax range” SMR ∈ R is the desired gap between the largest and smallest scores after temperature scaling.
After the softmax p(ci) ∝ exp(r(ci)/τ), the softmax range determines the likelihood ratio of most likely concept to least
likely concept:

maxi p(ci)

mini p(ci)
=

maxi exp(r(ci)/τ)

mini exp(r(ci)/τ)
(5)

= exp

(
maxi r(ci)−mini r(ci)

τ

)
(6)

= exp(SMR) (7)

Thus, SMR is an easy way to specify the relative likelihood of the highest and lowest scoring concepts and achieve a desired
exploration-exploitation balance.

Label set-guided vocabulary To reduce our search space in the label set-guided setting, in which we know the English
names of the classes a priori, we generate a subset of the WordNet vocabulary that contains only the top-10% most
semantically-relevant concepts to each target dataset. We use a pre-trained text embedding model (Reimers & Gurevych,
2019) to generate 384-dimensional embeddings for each concept in WordNet, using the same template described in Section
2.5 of the main paper:

{lemma} ({hypernym}): {definition}.

To generate a similar embedding for concepts in target datasets, we use the summary from Wikipedia in place of the
definition and the “category” of the target dataset (shown in Table 6) in place of the hypernym:

{label} ({category}): {summary}.

After generating the embeddings for each concept in the target dataset, we find the k-NN distance for each WordNet concept
to the target dataset embeddings, where k is chosen to be 1/3 the size of the class label set. We then rank the concepts in
WordNet by the distance and take the closest 10% of terms as our subset. This subset is used for all methods in the label
set-guided setting, including the random exploration methods.

C.5. Training Details

In each iteration, we download roughly 25k candidate images, since we download up to 100 images for each of the 256
queries. Given this set C of candidate images, we sample PCR× |C| images from the union of the replay buffer B and the

18

Internet Explorer: Targeted Representation Learning on the Open Web

Hyperparameter Value

Architecture Resnet-50 (He et al., 2016)
Optimizer LARS (You et al., 2017)
Batch size 224
Learning rate 0.8× 224

256
Learning rate schedule constant
MoCo momentum 0.9985
RandomResizedCrop min crop area 0.2
Queries per iteration 256
Requested images per query 100
Min images per query 10
Softmax range (SMR) 3
PCR 2
Epochs per iteration 10

Table 7. Internet Explorer hyperparameters.

target dataset training images D. PCR (past data to candidate data ratio) is a scalar value that determines how much old data
vs new data to train on at every iteration. We set PCR = 2 for all experiments. We perform 10 epochs of training over the
union of the new candidate data and the sampled replay buffer and target dataset images.

C.6. Hyperparameters

Table 7 shows our hyperparameter values, which are shared across datasets. We perform minimal hyperparameter tuning
and copy most of the values from the MoCo-v3 (Chen et al., 2021) ResNet-50 configuration. Our code has been released
at https://github.com/internet-explorer-ssl/internet-explorer, which we hope will clarify any
remaining implementation details and make it easy for the community to reproduce and build on our work.

C.7. Image Licenses

Internet Explorer uses images that were indexed by a web crawler (Google Images and LAION) or uploaded to Flickr. The
images and their rights belong to their respective owners; we use, download, and train on them under fair use guidelines for
research.

C.8. FMoW-WILDS Training Details

Each query to a search engine is randomly prepended with one of the below “descriptors.” This list was selected by taking
some random concepts and trying (via trial & error) search queries that seemed most likely to return satellite-view results.
The below list is the result of this trial-and-error process. Note that GPT-J is not used to generate descriptors for this dataset.

FMoW Descriptors:

"a centered satellite photo of", "a satellite photo of", "a google earth
photo of", "satellite view of", "high resolution satellite", "high
resolution satellite imagery of", "aerial satellite", "aerial satellite
view", "aerial satellite view of", "satellite imagery, centered photo
of", "satellite imagery, photo of", "military highest resolution satellite
imagery of", "NASA imagery of", "geo high resolution satellite", "land
cover satellite image of", "european satellite close up aerial image of",
"super high resolution highest resolution satellite imagery",

D. Proof of Lemma 2.1
Here, we prove Lemma 2.1 from Section 2.6, which we repeat below:

19

https://github.com/internet-explorer-ssl/internet-explorer
https://github.com/internet-explorer-ssl/internet-explorer

Internet Explorer: Targeted Representation Learning on the Open Web

Lemma 2.1. Let Tbase be the expected time to identify every relevant concept without the GPR, and TGPR be the expected
time when exploiting the additional knowledge from the GPR. Then, Tbase = nHc·s, TGPR = nHc

s , and the speedup from
GPR is Tbase

TGPR
≈ s log s.

Proof. This problem is a variant of the coupon collector problem. Let’s first compute Tbase as the sum of expected times ti
to identify the next relevant concept.

Tbase =

cs∑
i=1

ti (8)

=

cs∑
i=1

1

pi
(9)

=

cs∑
i=1

n

cs+ 1− i
(10)

= n

cs∑
i=1

1

cs+ 1− i
(11)

= nHcs (12)

where Hcs is the csth harmonic number. Similarly, we can compute TGPR as the sum of expected times ti to identify the
next relevant cluster.

TGPR =

c∑
i=1

ti (13)

=

c∑
i=1

1

pi
(14)

=

c∑
i=1

n

s(c+ 1− i)
(15)

=
n

s

c∑
i=1

1

c+ 1− i
(16)

=
nHc

s
(17)

The speedup is then Tbase

TGPR
= sHcs

Hc
≈ s log s.

We find that in practical settings (e.g., the Pets example analyzed in Figure 6), we can accurately predict how many samples
are required to discover all useful concepts. If the vocabulary size is n ≈ 150,000, the number of clusters is about c = 2
(one for cats and one for dogs), and the size of each cluster is about 150, then TGPR = 1500, which roughly matches the 9
iterations ×256 queries/iteration = 1792 queries it took to discover both cats and dogs in the Pets dataset.

E. Progression of downloaded images
Just as Figure 4 in the main paper showed how Internet Explorer progressively discovers useful data when targeting the Pets
dataset, Figures 17 to 20 show the progression of downloaded images when targeting Birdsnap, Flowers, Food, and VOC
respectively. Note that this analysis is in the self-supervised setting, where Internet Explorer has no knowledge of the label
set. Thus, it is quite surprising that Internet Explorer is able to identify relevant images in so few iterations.

20

Internet Explorer: Targeted Representation Learning on the Open Web

Target dataset: Birdsnap

Iteration 0 Iteration 1 Iteration 3 Iteration 6 Iteration 10 Iteration 15

Figure 17. Progression of downloaded Birdsnap images. This corresponds to Ours++ without using label set information.

Target dataset: Flowers

Iteration 0 Iteration 1 Iteration 3 Iteration 6 Iteration 10 Iteration 15

Figure 18. Progression of downloaded Flowers images. This corresponds to Ours++ without using label set information.

21

Internet Explorer: Targeted Representation Learning on the Open Web

Target dataset: Food

Iteration 0 Iteration 1 Iteration 3 Iteration 6 Iteration 10 Iteration 15

Figure 19. Progression of downloaded Food images. This corresponds to Ours++ without using label set information.

Target dataset: VOC2007

Iteration 0 Iteration 1 Iteration 3 Iteration 6 Iteration 10 Iteration 15

Figure 20. Progression of downloaded VOC2007 images. This corresponds to Ours++ without using label set information.

22

