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Abstract
Unsupervised anomaly detection (UAD) of mul-
tivariate time series (MTS) aims to learn robust
representations of normal multivariate temporal
patterns. Existing UAD methods try to learn a
fixed set of mappings for each MTS, entailing
expensive computation and limited model adap-
tation. To address this pivotal issue, we propose
a prototype-oriented UAD (PUAD) method un-
der a probabilistic framework. Specifically, in-
stead of learning the mappings for each MTS, the
proposed PUAD views multiple MTSs as the dis-
tribution over a group of prototypes, which are
extracted to represent a diverse set of normal pat-
terns. To learn and regulate the prototypes, PUAD
introduces a reconstruction-based unsupervised
anomaly detection approach, which incorporates a
prototype-oriented optimal transport method into
a Transformer-powered probabilistic dynamical
generative framework. Leveraging meta-learned
transferable prototypes, PUAD can achieve high
model adaptation capacity for new MTSs. Experi-
ments on five public MTS datasets all verify the
effectiveness of the proposed UAD method.

1. Introduction
Modern information technology operations generate an enor-
mous amount of high-dimensional sensor data that need to
be continuously monitored. Two typical examples are con-
tent delivery network (CDN) systems (Dai et al., 2021) and
server machines in large data centers (Su et al., 2021; 2019;
Sun et al., 2021). Given the monitoring data of large-scale
systems represented as multivariate time series (MTS), one
way to discover system malfunctions is to detect the abnor-
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mal time points within the MTS, which is quite meaningful
for ensuring security and service quality and mitigating fi-
nancial losses (Xu et al., 2021). The goal of anomaly detec-
tion is to identify abnormal input data that does not conform
to the description of usual data (Cao et al., 2022). Machine
learning-based anomaly or outlier detection methods can be
broadly categorized into either supervised anomaly detec-
tion (AD) (Liu et al., 2015; Shon & Moon, 2007; Yamada
et al., 2013), or unsupervised AD (UAD) (Su et al., 2021;
2019; Zhang et al., 2019; Li et al., 2019; Xu et al., 2018a;
Audibert et al., 2020; Malhotra et al., 2016; Hundman et al.,
2018a). As anomalies are usually rare and buried within
a vast amount of normal points, not only the labeling of
anomalies is hard and expensive, but also the performance
of a supervisedly-learned AD classifier is often sub-optimal
due to severe class imbalance (Chalapathy & Chawla, 2019).
For this reason, we focus on UAD for MTS which requires
no labels for anomalies.

The basic idea of UAD for MTS is to detect anomalies by
comparing an MTS against multivariate temporal patterns,
which are extracted from previous MTSs that are deemed
normal. Over the years, many reconstruction-based UAD
methods have been developed. They first learn normal MTS
patterns and then use the reconstruction errors under these
patterns as anomaly scores. Several lines of work have been
proposed, including those based on probabilistic dynamical
models, such as GmVRNN (Dai et al., 2022) and VGCRN
(Chen et al., 2022) that have achieved superior detection
performance by considering the temporal dependence and
variability within the MTS. As demonstrated in Transformer
(Vaswani et al., 2017), the attention mechanisms have a re-
markable ability to capture long-range dependencies. Orig-
inally developed for modeling discrete sequences, Trans-
former has also been modified to detect anomalies in MTS,
where Anomaly Transformer (Xu et al., 2021) and TranAD
(Tuli et al., 2022) are two representative examples.

A key challenge for UAD in an MTS coming from a large-
scale system is that each device contained in it has its own
distinct normal mode. For example, there is a clear differ-
ence between the distribution of the server used for video
websites and the server used for shopping websites. It is thus
challenging to capture the multiple diverse normal patterns
via a fixed set of mappings. In order to better learn normal
patterns, previous methods typically model one pattern of
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MTS with an individual set of parameters, which demands
not only a massive number of parameters, when the number
of MTSs is large, but also a large amount of data to train
these parameters when adapting to new MTSs. GmVRNN
(Dai et al., 2022) tries to model diverse MTSs with a sin-
gle group of parameters by assigning latent states into the
Gaussian mixture distribution. While achieving promising
performance, it ignores the fact that a single group of param-
eters couldn’t fit all the patterns and the model needs to be
adjusted for different MTSs to achieve the best performance.

Addressing the limitations of previous works in capturing
diverse temporal dependencies within multiple MTSs and
adapting to new MTSs with few observations, we develop
a prototype-oriented UAD (PUAD) method for MTS under
a probabilistic framework, where optimal transport (OT)
(Peyré et al., 2019) is leveraged to learn the prototypes. We
show the use of prototypes in PUAD helps identify diverse
normal patterns in MTSs and adapt to new MTSs given a
few examples. Different from most previous UAD methods
that model different MTSs with different group of parame-
ters, PUAD considers the diverse normal dynamic patterns
within multiple MTSs as a group of global prototypes and
learns these prototype memories with the proposed novel
prototype-oriented OT module, inspired by (Tanwisuth et al.,
2021; Wang et al., 2022; Guo et al., 2022). Since each pro-
totype in PUAD is encouraged to capture the statistical
temporal dependency shared by multiple MTSs, which is
similar to the transfer patterns useful for all related tasks
in meta-learning (Guo et al., 2022; Vilalta & Drissi, 2002;
Zhen et al., 2020; Du et al., 2021), thus to enable PUAD to
achieve high model adaption capacity. Moreover, we also
introduce the local prototypes for newly arrived MTSs to
enhance the adaption capacity of PUAD. Finally, PUAD
incorporates the prototype-oriented OT module into a pow-
erful probabilistic dynamical generative framework for a
reconstruction-based unsupervised anomaly detection ap-
proach for MTS.

The main contributions of our work are summarized as
follows:

• We realize the learning of the diverse normal patterns
within multiple MTSs by extracting a group of proto-
types and propose a probabilistic framework named
PUAD for the anomaly detection.

• We develop a prototype-oriented OT module that lever-
ages the OT distance between the distributions to guide
the learning of the prototypes.

• We define the global and local prototypes to enhance
the capacity of PUAD in adapting the to new MTSs
with the limited observations.

• We provide extensive experimental results and compar-
isons on five datasets to demonstrate that our method

achieves the overall SOTA performance on both tradi-
tional and meta anomaly detection tasks.

2. Background
2.1. Prototype-based Methods
The motivation for the prototype-based models comes from
the cluster assumption (Grandvalet & Bengio, 2004), which
states that decision boundaries should not cross high-density
regions of the data. These models attempt to learn a pro-
totype representation for different classes of patterns. The
prototype-based model has received a lot of attention in
various fields, such as metric-based few-shot learning (Snell
et al., 2017), unsupervised domain adaptation (Tanwisuth
et al., 2021), or representation learning (Guo et al., 2021).
Recently, prototype-based methods have also been intro-
duced in computer vision anomaly detection. For exam-
ple, prototype-guided discriminative latent embedding (Lai
et al., 2021) is proposed for video anomaly detection (VAD),
which tries to learn a deep autoencoder to describe normal
event patterns with small reconstruction errors. Prototype
selection-based method for industrial machine anomaly de-
tection was introduced in Grandvalet et al. (de Paula Mon-
teiro et al., 2022), where the model input is spectrograms.
Moreover, Snell et al. (Liu et al., 2021) showed a dual proto-
types autoencoder for industrial surface inspection anomaly
detection. However, there is still no prototype-based meth-
ods for MTS modeling, although they have a unique ad-
vantage in unsupervised anomaly detection of MTS due to
their ability to represent multiple patterns and adopt to new
patterns.

2.2. Unsupervised Anomaly Detection
The procedures of unsupervised anomaly detection can be
summarized as three steps. Firstly, the pre-processing of the
original MTS data is needed so that they can be used by the
learning model for training. Specifically, the normalization
and sliding time window approaches (Dai et al., 2021) are
adopted in this work. Secondly, anomaly detection model
is trained unsupervisedly with the processed data. Then,
anomaly scores for the testing data are obtained with the
trained model and achieve detection by selecting threshold
with a defined metric. We consider two settings of unsu-
pervised anomaly detection, including: “one-for-all” (Dai
et al., 2022): the models are trained and performed on all
MTSs; “one-for-one” (Dai et al., 2021): the models are
trained and performed on each MTS individually.

2.3. Optimal Transport
Optimal Transport (OT) is a wildly used tool for quantifying
the difference between two distributions (Peyré et al., 2019).
Specifically, considering two discrete distributions as p =∑n

i=1 aiδxi and q =
∑m

j=1 bjδyj , where xi, yj ∈ Rd and
δx is the Dirac function that places a unit point mass at x.
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Figure 1. Graphical illustration of each operation of the PUAD:
(a) overall operations of PUAD; (b) generation process of x ; (c)
inference of the variational distribution of θ0 and θ1. Note that
gray circles indicate hidden variables, white circles indicate input
data and features, and yellow squares indicate prototypes. Arrows
represent the flow of data and the generation relationship.

The OT distance between p and q can be expressed as:

OT(p, q) = min
T∈Π(p,q)

⟨T,C⟩ (1)

where ⟨·, ·⟩ denotes the Frobenius dot-product,
C ∈ Rn×m

≥0 is the transport cost matrix, and
Cij = C (xi, yj). T ∈ Rn×m

>0 refers to the
doubly stochastic transport probability matrix that
Π(p, q) := {T |

∑n
i=1 Tij = bj ,

∑m
j=1 Tij = ai}, which

can be learned by minimizing OT(p, q). As the optimiza-
tion of Eq. (1) often demands a high computational cost, the
Sinkhorn algorithm for discrete OT, which is achieved by
introducing the entropic regulation H = −

∑
ij Tij lnTij ,

is commonly used in practice to reduce the computation
(Peyré et al., 2019).

2.4. Meta Anomaly Detection
Meta-learning, also known as learning to learn, is referred
to the techniques that focus on helping deep models quickly
adapt to new environments (Cao et al., 2022; Wu et al.,
2021). In our paper, we focus on the meta anomaly detection
for MTS, which is defined as the task that enables anomaly
detection methods to quickly adapt to the new arrived MTSs,
such as the new machines, new websites and so on, with
limited observations, and we aim to design a model-based
method being able to perform meta anomaly detection.

3. Methodology
In this section, we first define the anomaly detection prob-
lem solved in this paper. Then we present PUAD, which
consists of a prototype-oriented optimal transport (POT)
module to learn the prototypes for MTSs and improve it by
an OT algorithm (Peyré et al., 2019), a deep probabilistic

generative module that is guided by the prototypes which
consider the diverse temporal dependencies within multiple
MTSs for robust representations learning, and an inference
module (Zhang et al., 2018; Duan et al., 2021) based on
Transformer (Vaswani et al., 2017) to approximate the in-
tractable posterior distribution in the generative module.
Finally, we introduce the training process of PUAD.

3.1. Problem Definition
Defining an MTS as x = (x1, x2, ..., xT ) ∈ RV×T , where
T is the duration of x and xt ∈ RV denotes the V -
dimensional observation at time t. Anomaly detection on
MTS is defined as a problem that determines whether an
observation collected at a certain time xt is anomalous or
not. To solve this problem efficiently in an unsupervised
manner, we need a powerful method for learning the robust
representations of the input data.

3.2. Prototype-oriented Unsupervised Anomaly
Detection

As shown in Fig. 1, PUAD constructs a transformer-
powered probabilistic dynamical generative framework with
a prototype-oriented optimal transport method. PUAD has a
latent space that consists of three parts: θ0, θ1 and the pro-
totypes β. Inspired by hierarchical VAEs (Vahdat & Kautz,
2020; Duan et al., 2021), θ0 and θ1 are proposed to generate
multiple MSTs hierarchically, while a group of prototypes β
are designed to capture the diverse normal dynamic patterns
within multiple MTSs. Given an embedding sampled form
θ0, OT is used to index the related information represented
by prototypes to guide the generation of MTSs. There are
two kinds of prototypes included in PUAD: the global pro-
totypes contain the shared information (Dai et al., 2022)
summarized from all the history MTSs, while the local pro-
totypes consider the specific information within the new
MTS in meta anomaly detection defined below. PUAD is
a reconstruction-based anomaly detection approach, where
the generation process can be written as

p(x) =
∫
θ0

∫
θ1
p(x | θ1)p(θ1 | θ0,β)p(θ0)dθ0dθ1

3.2.1. LEARNING PROTOTYPES WITH OPTIMAL
TRANSPORT

Most existing works (Dai et al., 2022; Xu et al., 2021; Su
et al., 2019) focus on modeling one pattern of MTS with
an individual set of parameters. By contrast, we propose to
characterize the normal patterns of multiple MTSs with a
group of prototypes and refactor different MTSs by combin-
ing these prototypes. This change has several advantages.
First, the prototypes summarize various normal dynamic
patterns for different MTSs, which enables PUAD to cover
multiple MTSs with diverse characteristics by the group of
prototypes. Second, each global prototype is encouraged to
capture the statistical information shared by multiple MTSs,
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Figure 2. An overview of the framework of PUAD, which consists of a transformer based encoder, probabilistic generative model based
decoder, and a POT module in latent space. θ0 are features extracted from MTSs with the encoder, the probability transfer matrix is
acquired using the OT arithmetic from θ0 to prototypes, θ′

0 are latent representations obtained by multiplying the probability transfer
matrix and the prototypes.

which is similar to the transferable patterns useful for all re-
lated tasks extracted by meta-learning (Guo et al., 2022). So
we can adapt PUAD to meta-learning problems that adapt
to the anomaly detection of new MTSs with limited obser-
vations efficiently. Last but not least, we define a few local
prototypes independently to capture specific information for
new MTSs. And when we apply the model to a new MTS,
just a few local prototypes need to be optimized, which
doesn’t affect the summarized global prototypes and sig-
nificantly saves deployment costs. As shown in Fig. 2, we
introduce the POT module to capture different patterns and
improve the prototypes by optimization the OT loss inspired
by (Tanwisuth et al., 2021; Guo et al., 2022). POT could be
regarded as a selector to index the prototypes, both global
and local, which helps the model to handle the extreme con-
ditions that if global prototypes couldn’t fit current MTS or
local prototype didn’t work for limited data.

Given a group of global prototypes βg = [b1g, b
2
g, ..., b

Kg
g ] ∈

RKg×df and the local prototypes βl = [b1l , b
2
l , ..., b

Kl

l ] ∈
RKl×df , where the dimension of each prototype, df , is
the same as the hidden dimension after the feature en-
coder, Kg and Kl are the number of the global prototypes
and the local prototypes. The prototypes be defined as
β = [βg;βl] ∈ R(Kg+Kl)×df . To summarize the informa-
tion shared between multiple MTSs, we can represent Nj

samples on the MTS set as an empirical distribution over
Nj like (Guo et al., 2022):

Pθ0 =
∑Nj

i=1
1
Nj

δθi
0
, θi

0 ∈ Rdf (2)

where θ0 is the embedding sample from hidden variables.
The prototypes are proposed to represent the different pat-
terns over multiple MTSs, so the importance between proto-
types is equal when we try to index the suitable prototypes
to represent one concrete MTS. Hence, the distribution over
global prototypes could be defined as an empirical distribu-

tion:

Pβg =
∑Kg

i=1
1
Kg

δbi
g
, big ∈ Rdf (3)

where βg is the global prototypes. In this way, we can
acquiring the transport probability matrix M ∈ RNj×Kg

>0

from Pθ0 to Pβg by Sinkhorn algorithm (Cuturi, 2013):

M∗ = OT(Pθ0 , Pβg ) = min
M

⟨M ,C⟩ def.
=

Nj∑
i

Kl∑
j

MijCij

C ∈ RNj×Kg

≥0 is the transport cost matrix, we use
the Euclidean distance between embedding θ0 and

the prototype βg, Cij =
√

(θi0 − βj
g)2. The trans-

port probability matrix M should satisfy Π(g,h) :={
M | M1Kg

= g,M⊤1Nj
= h

}
, where g = [ 1

Kg
] and

h = [ 1
Nj

] are two probability vectors defend in Eq. 2 and
Eq. 3. OT gives us an optimal transport plan from embed-
ding Pθ0 to prototype Pβg

based on the cost matrix C, and
we could reconstruct θ0 by the transport probability M and
prototypes βg:

θ′
0 = M × βg,θ

′
0 ∈ RNj×df (4)

Compared with the original θ0, θ′
0 contains the diversity

dynamic information transmitted from the prototypes, thus
to cover various patterns of MTSs. Inspired by the existing
OT based prototype-oriented method (Guo et al., 2022; Tan-
wisuth et al., 2021), to learn the prototypes β, we adopt the
entropic constraint (Cuturi, 2013) and define the average
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OT loss for all training sets as:

LOT = min
βg

Eθ∼Fϕ(Dx)

[ Nj∑
i

Kg∑
j

MijCij

+

Nj∑
i

Kg∑
j

Mij ln(Mij)
]

= min
βg

Eθ∼Fϕ(Dx)

[
OT(Pθ0 , Pβg )

]
(5)

Fϕ(·) is the inference module that will be introduced below,
whose parameters are denoted by ϕ, Dx is the training set
which consists of normal MTS data.

So far, the global prototypes can represent the diverse nor-
mal patterns within MTSs, and they are encouraged to cap-
ture the statistical temporal dependency shared by multiple
MTSs, which is similar as the transfer patterns in meta learn-
ing, thus to possess powerful capacity in adapting to the new
MTSs. But the specific information for new MTSs may
be ignored by the global prototypes. Therefore, we further
introduce the local prototypes βl to replenish the ignored in-
formation and enhance the capacity of model adaptation. βl

is summarized from a few samples from the new MTSs first,
then βg and βl are indexed together by OT when detecting
the anomaly on the new MTSs.

3.2.2. PROTOTYPE GUIDED PROBABILISTIC
GENERATIVE MODEL

With the prototypes of POT module, we formulate a hier-
archical probabilistic generative model for reconstruction-
based unsupervised anomaly detection, as shown in Fig. 1
(a). Unlike existing hierarchical VAEs (Vahdat & Kautz,
2020; Su et al., 2019), they store the information in the neu-
ral network between the random variables. We introduce a
hierarchical probabilistic generative model that generates
data with the direction of the related information stored
in the prototypes. Formally, the generative process can be
expressed as:

θ0 ∼ N (0, 1)

θ1 ∼ N
(
Fµ

1 (θ
′
0),F

σ
1 (θ

′
0)
)

x′ ∼ N (Fµ
2 (θ1),F

σ
2 (θ1))

θ′
0 = M × βg,M = POT(θ0,βg)

(6)

Where x′ ∈ RT×V denotes the generated MTS vector for
the current time step, N (·, ·) is the Gaussian distribution
where the values in the parenthesis are the distribution coef-
ficient. Specifically, after sampling the latent representation
θ0, we incorporate the learned prototypes into θ0 to get θ′

0

by the POT module. Since the information indexed from the
prototypes represents the various normal dynamic patterns,
which improves its generation capacity for normal MTSs,
thus bringing smooth anomaly score for normal MTSs and

higher anomaly score for anomaly MTS when OT couldn’t
find the suitable prototypes, as shown in Fig 1 (b). Finally,
four nonlinearity functions Fµ

1 ,F
µ
2 ,F

σ
1 ,F

σ
2 in Eq. 7 are

introduced to generate the distribution coefficient for the θ1

and x′, and they are defined as:

Fµ
1 (θ

′
0) = f(W µ

1θ
′
0 + bµ1 ),F

σ
1 (θ

′
0) = f(W σ

1θ
′
0 + bσ1 )

Fµ
2 (θ1) = f(W µ

2θ1 + bµ2 ),F
σ
2 (θ1) = f(W σ

2θ1 + bσ2 )

We use the fully connected network as the nonlinearity func-
tion, where the weights W µ

1 ,W
σ
1 ,W

µ
2 ,W

σ
2 ∈ Rdf×df

and the bias bµ1 , b
σ
1 , b

µ
2 , b

σ
2 ∈ Rdf are learnable parameters,

and f(·) is a deterministic non-linear transition function.

3.2.3. TRANSFORMER-STRUCTURED INFERENCE
MODEL

Considering the long-term and complex temporal dependen-
cies within MTS and focusing on learning the expressive
representations, we introduce a transformer-structured in-
ference model to approximate the true posterior distribution
for θ0 and θ1, which is always intractable. The variational
distribution could be defined as:

q(θ0,θ1 | x,θ′
0) = q(θ0 | x)q(θ1 | θ′

0,x) (7)

As shown in Fig. 1 (a) and (c), a transformer (Vaswani
et al., 2017), which is widely used to process time sequence
data, is deployed to encode temporal relationships between
different time steps. For upward information transition, we
define the feature extracted from transformer as h0 and
apply a fully connected network to get the feature h1:

h0 = Transformer(x)
h1 = f(W h0h1h0 + bh0h1)

(8)

Then, given the features extracted by transformer, the infer-
ence process can be described by:

q(θ0 | x) ∼ N
(
θ0 | µ̃θ0 , diag

(
σ̃2

θ0

))
q(θ1 | θ′

0,x) ∼ N
(
θ1 | µ̃θ1 , diag

(
σ̃2

θ1

))
µ̃θ0 = Φ(h0) = f(Ṽ

µ

θ0h0 + b̃
µ

θ0)

σ̃θ0 = Φ(h0) = f(Ṽ
σ

θ0h0 + b̃
σ

θ0)

µ̃θ1 = Ψ(θ′
0,h1) = f(W̃

µ

θ1θ
′
0 + Ṽ

µ

θ1h1 + b̃
µ

θ1)

σ̃θ1 = Ψ(θ′
0,h1) = f(W̃

σ

θ1θ
′
0 + Ṽ

σ

θ1h1 + b̃
σ

θ1)

(9)

Where Φ and Ψ are two nonlinearity function that
include the learnable parameters {Ṽ

µ

θ0 , Ṽ
σ

θ0 , Ṽ
µ

θ1 , Ṽ
σ

θ1 ,

W̃
µ

θ1 , W̃
σ

θ1} ∈ Rdf×df and {b̃
µ

θ0 , b̃
σ

θ0 , b̃
µ

θ1 , b̃
σ

θ1} ∈ Rdf . In
this way, the latent variable θ0 and θ1 are inferred by com-
bining the bottom-up likelihood information (h1) and prior
information (θ′

0) from the generative distribution using the
inference network (Rezende et al., 2014).
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Algorithm 1 Upward-Downward Autoencoding Variational In-
ference for PUAD

Input: The pre-processed MTS training dataset Dx. The new
MTS dataset Dnew.
Parameter: The encoder parameters η = { Ṽ

µ

θ0 , Ṽ
σ

θ0 , Ṽ
µ

θ1 ,

Ṽ
σ

θ1 , W̃
µ

θ1 , W̃
σ

θ1 , b̃
µ

θ0 , b̃
σ

θ0 , b̃
µ

θ1 , b̃
σ

θ1 ,ϕ}; The decoder parame-
ters γ = { W µ

1 , W
σ
1 ,W

µ
2 , W

σ
2 , b

µ
1 , b

σ
1 , b

µ
2 , b

σ
2}; The global

prototypes βg and local prototypes βl, β = [βg;βl].
1: while epoch do
2: Randomly select a mini-batch {xi

1:T }Ni=1 in Dx(x1:T );
3: Inference the posterior q(θ0) and q(θ1) through Eq. 9,

reconstruct θ′
0 by βg in Eq. 4;

4: Update the parameters( η, γ, βg) by Eq. 11;
5: end while
1: while epoch do
2: Randomly select a mini-batch {xi

1:T }Ni=1 in Dnew(x1:T );
3: Inference the posterior q(θ0) and q(θ1) through Eq. 9,

reconstruct θ′
0 by β in Eq. 4;

4: Update the parameters(βl) by Eq. 11;
5: end while
6: return Parameters after training η, γ, β.

3.3. Model Training
As the definition described in Eq. 2, the optimization objec-
tive of PUAD can be achieved by maximizing the evidence
lower bound (ELBO) of the log marginal likelihood (see the
Appendix for details), which can be written as:

L = Eq(θ0),q(θ1) [log p(x | θ1)]−DKL (q(θ0 | x)∥p(θ0))

−DKL (q(θ1 | x,θ′
0) | x)∥p(θ1 | θ′

0))
(10)

Inspired by beta-VAE (Higgins et al., 2016), we introduce
three hyperparameters ρ1 > 0, ρ2 > 0 and ρ3 > 0, then
adding the KL loss gradually with ρ1, ρ2 and ρ3 increasing
from 0 to 1 during the first K training epochs. Finally, the
network parameters and the global prototypes are learned
by jointly optimizing the ELBO and OT loss in Eq. 5:

L = Eq(θ0),q(θ1) [log p(x | θ1)]

− ρ1DKL (q(θ1 | x,θ′
0) | x)∥p(θ1 | θ′

0))

− ρ2DKL (q(θ0 | x)∥p(θ0)) − ρ3LOT

(11)

In summary, optimizing the OT loss defined by the proto-
type distribution Pβ and the embedding distribution Pθ0

provides a principled and unsupervised way to encourage
the prototypes to capture the diverse normal patterns within
multiple MTSs. As shown in Algorithm 1, the model param-
eters are optimized by stochastic gradient descent through
an end-to-end way.

3.4. Anomaly Detection
Since the model is trained to learn normal patterns of MTSs,
the more an observation follows normal patterns, the more
likely it can be reconstructed well with higher confidence.
Hence, we apply the reconstruction probability of x as the
anomaly score to determine whether an observed variable is

Dataset SMD MSL PSM SMAP DND

OC-SVM 56.19 70.82 70.67 56.34 69.28
IsolationForest 53.64 66.45 83.48 55.53 71.85

LOF 46.68 61.18 70.61 57.60 72.38
Deep-SVDD 79.10 83.58 90.73 69.04 75.94

DAGMM 57.30 74.62 80.08 68.51 75.11
MMPCACD 75.02 69.95 77.29 81.73 73.57

VAR 74.08 77.90 87.13 64.83 75.24
LSTM 81.78 83.95 82.80 83.39 76.47

CL-MPPCA 79.09 80.44 71.80 72.88 75.81
ITAD 79.48 76.07 68.13 73.85 74.64

LSTM-VAE 82.30 82.62 80.96 78.10 77.02
BeatGAN 78.10 87.53 92.04 69.61 78.37

Men-SkipAE 79.77 88.61 92.57 87.67 81.03
MemAE 78.41 87.48 92.17 75.42 79.90
TSMAE 85.35 87.87 80.91 86.06 81.38

OmniAnomaly 85.22 87.67 80.83 86.92 80.90
InterFusion 86.22 86.62 83.52 89.14 81.62

THOC 84.99 89.69 89.54 90.68 82.19
PGDLE 85.03 90.39 90.37 92.02 83.11

SummerNet 92.69 92.08 94.49 92.11 81.90
GmVRNN 93.56 91.41 96.97 95.51 85.58

Anomaly Transformer 92.33 93.59 97.89 96.69 84.16
TranAD 96.05 94.94 96.97 89.15 84.54

PUAD 96.16 95.04 98.14 96.72 86.62

Table 1. F1-score results for different methods on five public
datasets and one real-world datasets. F1-score is the harmonic
mean of precision and recall. For this metric, a higher value indi-
cates a better performance, see the Appendix for more metrics.

anomalous or not (An & Cho, 2015; Su et al., 2019; 2021;
Xu et al., 2018b), and it is computed as:

St = log p(x | θ0,θ1) (12)

Observation x will be classified as anomalous if St is below
a specific threshold. From a practical point of view, we use
the Peaks-Over-Threshold (Siffer et al., 2017) approach to
help select threshold.

4. Experimental Evaluation
4.1. Experiment Setup
Dataset: Five datasets are used in our experiments, includ-
ing four public datasets: SMD (Su et al., 2019), MSL and
SMAP from NASA (Hundman et al., 2018b), PSM (Abdu-
laal et al., 2021), and one real world dataset: DND (Chen
et al., 2022). See the Appendix for details.

Implementation details: In our experiment, a three-layer
transformer with 512 dimensions of the hidden states is
implemented as the encoder. The dimension of MPL that
mapping the feature h0,h1 is 256. POT consists of 10
(Kg) global prototypes and 2 (Kl) local prototypes with
dimension 256 for all datasets. We set latent states θ0 and
θ1 has the same dimension with 512. Hyper-parameters ρ1 ,
ρ2 and ρ3 are set to 0.01 to balance the reconstruction and
KL parts for all datasets. The Adam optimizer is employed

Our implementation is publicly available at https://github.com/
BoChenGroup/PUAD
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Methods
Dataset SMD MSL SMAP

Data Number 1 5 10 20 200 1 5 10 20 200 1 5 10 20 200

Metric F1 F1 F1 F1 F1 F1 F1 F1 F1 F1 F1 F1 F1 F1 F1

Random
Initialization

DAGMM 43.11 44.16 44.87 44.02 63.38 50.66 50.52 51.36 51.45 65.15 53.38 53.26 54.89 60.16 65.68
MMPCACD 54.40 55.49 55.63 56.21 67.05 51.31 51.94 52.57 52.75 65.08 52.90 52.76 56.01 61.05 65.87

VAR 54.40 54.29 54.65 55.75 66.39 53.99 53.02 53.60 53.82 66.31 55.29 55.18 56.36 62.90 66.00
LSTM 56.17 56.68 56.87 56.89 67.76 60.58 60.62 61.29 61.37 69.59 56.73 56.57 57.58 61.98 67.74

CL-MPPCA 57.00 57.05 57.17 57.87 68.14 59.67 59.34 60.30 60.69 70.08 58.76 58.43 58.28 65.55 68.36
ITAD 56.36 56.08 56.51 56.90 66.93 62.98 62.71 63.17 63.35 69.50 62.74 62.71 63.85 66.95 68.85

LSTM-VAE 58.38 58.74 58.08 59.48 69.15 61.89 61.10 61.90 62.16 71.05 61.61 61.23 62.19 67.41 69.16
BeatGAN 61.30 61.18 61.04 62.02 68.73 63.09 63.57 64.23 65.88 74.30 61.49 61.18 61.72 66.89 71.10

OmniAnomaly 64.29 65.15 63.53 62.05 68.31 64.36 64.43 65.14 68.77 73.80 63.13 65.55 65.61 68.72 70.27
InterFusion 63.68 62.66 62.37 62.28 69.83 63.60 63.56 64.32 65.83 62.16 63.50 63.34 63.95 68.79 72.44

THOC 64.41 63.47 63.12 63.94 71.01 64.33 64.13 64.22 66.00 74.65 62.24 62.46 63.92 70.66 75.22
GmVRNN 91.03 89.51 90.01 90.78 90.34 81.68 81.15 82.12 81.59 81.22 93.47 93.41 93.01 92.21 94.12

Anomaly Transformer 64.24 65.09 71.85 76.98 81.11 65.16 64.99 68.52 70.46 77.02 63.82 66.72 67.34 71.45 78.88

Pretraining with

History MTSs

OmniAnomaly 85.40 85.42 85.78 86.19 85.83 81.12 80.58 82.13 81.86 81.64 84.28 84.71 84.61 84.97 85.49
InterFusion 84.60 84.73 84.74 84.85 85.09 82.09 81.87 82.28 82.46 83.00 86.70 86.80 87.26 87.27 87.12

THOC 86.01 86.05 86.24 86.62 86.54 81.56 81.55 81.38 82.73 82.86 88.95 89.28 88.92 88.54 88.95
GmVRNN 91.03 89.51 90.01 90.78 90.34 81.68 81.15 82.12 81.59 81.22 93.47 93.41 93.01 92.21 94.12

Anomaly Transformer 91.58 91.92 91.46 91.78 91.69 80.65 82.87 82.15 83.55 84.01 93.32 93.89 93.51 94.01 94.11

Prototypes PUAD 95.68 95.42 95.01 95.50 95.51 91.72 93.71 93.57 93.30 93.64 95.20 95.67 95.97 96.06 96.12

Table 2. Quantitative results of different methods for meta anomaly detection on three public datasets.
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Figure 3. (a) Ablation study of PUAD on four datasets. (b) Com-
parison of model parameters.

with a learning rate of 0.00002, and the batch size is set to
256. The probability p associated with the initial threshold
used in Peaks-Over-Threshold is set to 0.01 empirically. We
adopt a sliding window to obtain a set of sub-series (Shen
et al., 2020), the sliding window is with a fixed size of 20 for
all datasets. All the experiments are implemented in Pytorch
(Paszke et al., 2019) with NVIDIA RTX 3090 24GB GPU.

4.2. Main Result
4.2.1. BASELINES

We extensively compare our model with 24 baselines, includ-
ing the reconstructionbased models: InterFusion (Li et al.,
2021), BeatGAN (Zhou et al., 2019), OmniAnomaly (Su
et al., 2019), LSTM-VAE (Park et al., 2018); the density-
estimation models: DAGMM (Zong et al., 2018), MPP-
CACD (Yairi et al., 2017), LOF (Breunig et al., 2000); the
clusteringbased methods: ITAD (Shin et al., 2020), THOC
(Shen et al., 2020), Deep-SVDD (Ruff et al., 2018); the
autoregression-based models: CL-MPPCA (Tariq et al.,
2019), LSTM (Hundman et al., 2018b), VAR (Clements
& Mizon, 1991); the classic methods: OC-SVM (Tax &
Duin, 2004), IsolationForest (Liu et al., 2008); the Mem-
autoencoder-based models: Men-SkipAE (Yan et al., 2023),
MemAE (Gong et al., 2019) and TSMAE (Gao et al., 2022);

the prototype-based models: PGDLE (Lai et al., 2021) and
SummerNet (Guo et al., 2021). Anomaly Transformer (Xu
et al., 2021)and InterFusion (Li et al., 2021) are the state-
of-the-art deep models. GmVRNN (Dai et al., 2022) is a
state-of-the-art deep probability model for anomaly detec-
tion. TranAD (Tuli et al., 2022) is the latest method of
anomaly detection in our cognition. We list more descrip-
tions in the Appendix.

4.2.2. QUANTITATIVE COMPARISON

Anomay detection: To evaluate the performance of PUAD
in the typical anomaly detection setting, we consider our
model on five datasets with multiple competitive baselines.
F1-score (Dai et al., 2022) is employed as the performance
indicators. We note that GmVRNN and PUAD are one-for-
all models, while the others are one-for-one models. As
shown in Table 1, by considering stochasticity and diver-
sity within MTS, GmSVRNN achieves better performance
than other non-transformer methods. Transformer-based
methods outperform other methods for the powerful capac-
ity to modeling complex dynamics. PUAD achieves the
best F1-score among all the methods on all test datasets,
showing the effectiveness of considering diverse dynamic
patterns within multiple MTSs with prototypes and formulat-
ing transformer-powered probabilistic generative model. We
list the precision and recall performance in the Appendix.

Number of Parameters: To demonstrate the computational
efficiency of PUDA, We compare the number of model
parameters and list the results in Fig. 3 (b). As we can
see, as a one-for-all method, the number of parameters of
PUAD is much smaller than one-for-one methods, while it
can achieve higher F1-score as shown in Table 2. We also
test the time efficiency and list in the Appendix.
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Figure 4. Case study of anomaly score on SMD dataset. Regions highlighted in purple represent the groundtruth anomaly segments, read
lines refer to the threshold. (a), (b), (c), and (d) are the data pieces at different moments, respectively.

Meta anomaly detection: In real word applications with
MTS data, there is a potential need to adapt the detection
model to new MTSs, such as new machines or new websites,
with limited observed data. In this way, we define a novel ex-
periment setting named meta anomaly detection to evaluate
the performance of the models in this practical application
scenario. For all datasets in our experiment, we used 80%
of the MTSs as the history data and others as new data. In
real word applications, if a one-for-one anomaly detection
model is deployed on new equipment, we may only have a
few data samples to train the model. For the above reasons,
we train one-for-one models on i ( i ∈ {1, 5, 10, 20, 200}
) samples in every new MTS and test the model on the
rest of the data. For the one-for-all models, the parameters
have been updated with the history MTSs. The detection
performance of different methods is listed in Table 2. As
we can see, the one-for-one models couldn’t learn normal
patterns correctly with the limited observations, leading to
performance degradation. Oppositely, benefiting from the
stored information from the history MTSs, the one-for-all
models, including GmVRNN and PUAD, perform much
better than the one-for-one models. Moreover, with the aid
of the transferable global prototypes and meta-learned local
prototypes, PUAD achieves the best meta anomaly detection
performance. In addition, to further prove the advantages
of our prototypes designed for the one-for-all setting, we
pre-training the one-for-one models with historical data and
finetune on the first i data in new MTSs. As shown in Table
2, one-for-one models can perform better because of the
history MTSs involved, but their performance is still much
worse than PUAD. We list more results in the Appendix.

4.2.3. ABLATION STUDY

As shown in Fig. 3 (a), we further investigate the effect of
each part in PUAD. Four experiments are performed in our

ablation study, Transformer is a baseline model which only
has three layers of transformer, Transformer+VAE incor-
porates the transformer-structure into the encoder of VAE,
Transformer+VAE+POT further introduces the proposed
POT module and PUAD is the integrated version that brings
the OT cost as the regular terms in the loss. We can see that
PUAD performs 4.52% better than Transformer+VAE+POT
averaged over four datasets in Fig. 3 (a), showing the ef-
fectiveness of proposed OT based regular terms in the loss
function. Comparing Transformer+VAE+POT and Trans-
former+VAE, we find that the proposed POT model im-
proves the F1 score by 7.11% on average, which is a benefit
from the prototype-oriented framework. In short, all compo-
nents we incorporate into our model can bring improvement
in performance, illustrating the effectiveness of each.

4.2.4. QUALITATIVE ANALYSIS

Anomaly score: Firstly, we compare the anomaly scores be-
tween PUAD, Anomaly Transformer, Transformer + VAE,
and a simple Transformer. The results are visualized in
Fig. 4. As the deterministic methods, Transformer gets
more rough anomaly scores since they ignore the stochastic
of MTS. For probabilistic methods, the anomaly score of
Transformer + VAE is smoother due to more elaboration
probabilistic model design. However, it is still difficult to
deal with some difficult situations with a simple Gaussian
hidden variable model. Fig. 4 (a) - (c) represents several
cases where PUAD can be detected but other methods can-
not. In (a) and (c), the model easily ignores some incon-
spicuous anomalies as noise, and PUAD can detect them
but others cannot provide a high enough anomaly score due
to insufficient robustness. In Fig. 4 (b), the more practi-
cal model design makes Anomaly Transformer and PUAD
have higher anomaly scores and thus successfully detect
the anomaly. As shown in Fig. 4 (d), thanks to the diverse
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Methods Average training times per epoch (sec) Testing times per sample (sec × 10−5)

SMD MSL SMAP PSM DND SMD MSL SMAP PSM DND

GmVRNN 25.20 2.67 5.04 37.96 35.26 7.02 13.54 8.17 8.26 8.89
TranAD 43.76 5.57 10.55 63.58 60.30 9.17 17.63 10.49 10.66 11.71

Anomaly Transformer 18.76 1.47 3.37 28.27 26.29 8.29 12.59 8.41 9.73 10.51

Ours 19.15 1.75 3.51 28.79 26.81 3.30 6.34 3.87 3.87 4.11
Table 3. Training and testing time of different methods.

global information provided by POT, the anomaly score of
PUAD is much lower than other models in the non-anomaly
state. The process of POT to find relevant information in
prototypes can be equivalent to comparing current MTS
with a large amount of historical data. This allows PUAD to
have a smoother anomaly score in non-anomaly cases and
obtain a higher anomaly score in anomaly cases.

Transport Probability Matrix: In this paper, a signifi-
cant contribution is to propose a prototype-oriented UAD
model, where we want to capture diverse temporal infor-
mation within multiple MTSs by prototypes to enhance the
capturing of the normal pattern. Recalling the appropriate
information for new MTSs from well-learned prototypes is
essential to our model. To verify this ability, we observed
the transport probability matrix weights of POT in Fig. 5.
We randomly select five prototypes to visualize the transport
probability weights between selected prototypes and θ0 for
observation. The top of the figure shows the MTS data,
which contains four different dynamic patterns indicated by
the red boxes. The bar chart below represents the mean of
the probability weights in the red box. As shown in Fig. 5,
the corresponding prototypes can be generated for different
MTSs by adjusting the transport probability weights.

4.2.5. TIME EFFICIENCY

Similar to previous works (Dai et al., 2022), we test the
time efficiency of different methods, including our proposed
PUAD, transformer-based methods TranAD, RNN-based
methods GmVRNN, in terms of their training and testing
time, and list the results in Table 3. As we can see, being ac-
celerated with Graphical Process Units (GPUs), the training
and testting time of our proposed method are much lower
than other methods. Meanwhile, all models can perform
anomaly detection for a sample within one-tenth second
versus the data collecting interval of 60 seconds, which
illustrates that these methods can be employed for online
detection.

5. Conclusion
In this paper, we propose a novel prototype-oriented proba-
bilistic meta anomaly detection method, named PUAD, to
improve the limitation of the existing unsupervised anomaly
detection methods for MTS in modeling the diverse nor-
mal patterns and adapting to new data. PUAD considers
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Figure 5. Illustration of transport probability matrix weights.
The top half of the figure shows part of the MTS channels,
with four different patterns intercepted, and the bottom half
height=5.0cm,width=9.0cmshows the matrix weights of the corre-
sponding positions in red boxes.

the various dynamics within multiple MTSs by defining
a group of prototypes, and views each MTS as the distri-
bution over these prototypes. A novel POT is developed
to optimize the prototypes, and then PUAD formulates a
Transformer-based powerful probabilistic dynamical gen-
erative framework for a reconstruction-based unsupervised
anomaly detection approach. PUAD can not only make use
of global prototypes to capture the diverse normal patterns
for multiple MTSs, but also leverages meta-learned trans-
ferable prototypes to achieve high model adaption capacity
for new MTSs. Extensive experiments on five datasets show
that PUAD achieves SOTA performance on both regular and
meta anomaly detection tasks for MTS.
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A. Datasets
Five datasets are used in our experiments, including (1) SMD (Su et al., 2019) is a 5-week-long dataset that is collected from
a large Internet company with 38 dimensions. (2) Both MSL (Mars Science Laboratory rover) and SMAP (Soil Moisture
Active Passive satellite) are public datasets from NASA (Hundman et al., 2018b) with 55 dimensions, which contain the
telemetry anomaly data derived from the Incident Surprise Anomaly (ISA) reports of spacecraft monitoring systems. (3)
PSM (Abdulaal et al., 2021) is collected internally from multiple application server nodes at eBay with 26 dimensions. (4)
The DND, multivariate KPIs dataset, is the real-world dataset that collected from a large internet company in China. It
contains 12 websites monitored with 36 KPIs individually. These websites are different from each other in types of services,
e.g., Video on Demand (VoD) or live streaming video, etc. Besides, for each website, KPIs span about one and a half months
and are collected every 60 seconds. In our experiments, for each website, the first half of the KPIs are used for training,
while the last half are used for testing. Note that ground-truth anomalies at test time of the DND have been confirmed by
human operators. The basic statistical information of datasets is reported in Table 4.

Dataset SMD MSL SMAP PSM DND

Dimension 38 55 55 25 32
Window 20 20 20 20 20
Training 708405 58317 135181 105984 344843

Test (labeled) 708420 73729 427617 87841 344843
Anomaly ratio (%) 4.1 10.7 13.13 27.8 3.44

Table 4. Basic statistics of datasets.

B. Why the Baselines Is Selected
In reconstruction-based models, we select multiple reconstruction methods including hierarchical VAE (InterFusion), LSTM-
based VAE (LSTM-VAE and OmniAnomaly), and GAN (BeatGAN). The density-estimation models include a Gaussian
mixture AE (DAGMM), a probabilistic dimensionality reduction method (MPPCACD), and a classic density-estimation
model (LOF). Three clustering-based methods are involved in our experiments: a tensor-based decomposition method
(ITAD), a hierarchical one-class network, and a deep learning-based Support Vector Data Description method (Deep-
SVDD). The autoregression-based models include a convolutional-LSTM based method (CL-MPPCA), a LSTM-based
method (LSTM), and a widely used VAR method (VAR). We also introduce the classic methods, including OC-SVM and
IsolationForest, to show the gains from deep learning. The Mem-autoencoder-based models (Men-SkipAE, MemAE and
TSMAE) and prototype-based models(PGDLE and SummerNet) is selected to compare the advantage of PUAD. Then, a
recently proposed one-for-all model GmVRNN is used as a baseline to compare the adapt-to-new performance with PUAD.
Finally, InterFusion, Anomaly Transformer, and TranAD are recently proposed methods and achieve SOTA performance,
we introduce them as the baselines to illustrate the overall SOTA performance of PUAD. Generally speaking, the selected
baselines aim to cover all detection path and SOTA methods.

C. Evaluation Metrics
Four metrics is used to evaluate the proposed model. The P, R, F1 and AUC represent the precision, recall, F1-score (as
%) and area under the ROC curve respectively. Precision (also called positive predictive value) is the fraction of relevant
instances among the retrieved instances, while recall (also known as sensitivity) is the fraction of relevant instances that
were retrieved. F1-score is the harmonic mean of precision and recall. For these three metrics, a higher value indicates a
better performance. AUC is a metric that is widely used to anomaly detection.

D. More Experiments for Meta Anomaly Detection (Random Initialization)
In real word applications with MTS data, such as CDN system, there is a potential need that adapting detection model to
new MTSs, such as new machines or new websites, with limited observed data. In this way, we proposed a novel experiment
setting named meta anomaly detection to evaluate the performance of the models in this practical application scenario. For
all datasets in our experiment, we used 80% of the MTSs as the history data and others as new data. In real word applications,
if a one-for-one anomaly detection model is deployed on new equipment, we may have ten or twenty data samples to train
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Data Number 1 5 10 20 200

Metric P R F1 AUC P R F1 AUC P R F1 AUC P R F1 AUC P R F1 AUC

DAGMM 40.91 45.58 43.11 51.15 43.26 45.08 44.16 51.54 44.55 45.22 44.87 51.49 42.80 45.30 44.02 51.25 59.57 67.70 63.38 77.32
MMPCACD 57.94 51.26 54.40 60.40 56.43 54.59 55.49 60.97 57.13 54.21 55.63 60.96 57.89 54.62 56.21 60.40 68.49 65.68 67.05 79.01

VAR 49.55 60.30 54.40 57.91 53.99 54.61 54.29 57.25 54.45 54.84 54.65 57.51 57.58 54.02 55.75 57.01 67.72 65.12 66.39 78.38
LSTM 51.51 61.75 56.17 62.78 56.96 56.40 56.68 62.95 57.32 56.42 56.87 62.73 56.89 56.88 56.89 62.19 68.18 67.33 67.76 79.03

CL-MPPCA 66.60 49.81 57.00 63.19 57.03 57.07 57.05 63.46 56.89 57.47 57.17 63.01 58.56 57.21 57.87 63.23 67.36 68.94 68.14 80.51
ITAD 54.57 58.28 56.36 58.37 54.11 58.20 56.08 58.16 54.57 58.60 56.51 58.95 54.45 59.56 56.90 58.36 63.70 70.53 66.93 78.21

LSTM-VAE 52.13 66.32 58.38 58.71 52.39 66.85 58.74 58.18 51.58 66.47 58.08 58.55 53.64 66.78 59.48 58.03 63.13 76.45 69.15 79.02
BeatGAN 62.34 60.29 61.30 70.47 61.53 60.82 61.18 70.16 60.79 61.30 61.04 70.64 58.44 66.06 62.02 70.98 69.97 67.55 68.73 79.12

OmniAnomaly 64.40 64.19 64.29 78.73 65.40 64.91 65.15 78.84 62.34 64.77 63.53 78.15 59.78 64.49 62.05 78.63 62.08 75.93 68.31 79.91
InterFusion 62.96 64.42 63.68 71.86 60.72 64.74 62.66 71.69 60.38 64.51 62.37 71.70 60.64 64.01 62.28 71.27 63.97 76.90 69.83 81.71

THOC 63.63 65.23 64.41 76.14 61.50 65.58 63.47 76.97 61.00 65.41 63.12 76.62 62.22 65.74 63.94 76.50 74.73 67.66 71.01 83.79
GmVRNN 91.57 90.50 91.03 98.81 88.39 90.68 89.51 98.32 89.05 90.98 90.01 98.84 91.37 90.21 90.78 98.06 90.47 90.19 90.34 98.41

Anomaly Transformer 62.15 66.47 64.24 87.17 63.90 66.32 65.09 87.89 78.68 66.11 71.85 87.84 77.60 76.39 76.98 87.55 82.74 79.56 81.11 97.97

Ours 92.33 99.29 95.68 99.60 91.84 99.29 95.42 99.60 90.91 99.51 95.01 99.60 92.00 99.27 95.50 99.56 92.00 99.29 95.51 99.58

Table 5. Result of SMD

Data Number 1 5 10 20 200

Metric P R F1 AUC P R F1 AUC P R F1 AUC P R F1 AUC P R F1 AUC

DAGMM 49.45 51.91 50.66 90.25 49.45 51.64 50.52 90.76 51.08 51.63 51.36 90.54 51.56 51.34 51.45 90.56 63.66 66.70 65.15 92.45
MMPCACD 51.32 51.29 51.31 91.07 52.06 51.84 51.94 91.91 54.02 51.18 52.57 91.44 53.68 51.87 52.75 91.17 64.52 65.65 65.08 92.53

VAR 53.30 54.71 53.99 91.73 51.89 54.18 53.02 91.17 52.56 54.70 53.60 91.36 53.33 54.32 53.82 91.53 64.01 68.79 66.31 93.89
LSTM 61.91 59.31 60.58 93.33 61.41 59.85 60.62 93.31 63.27 59.43 61.29 93.74 63.27 59.56 61.37 93.93 67.53 71.77 69.59 95.12

CL-MPPCA 58.75 60.63 59.67 92.13 58.06 60.67 59.34 92.56 59.64 60.98 60.30 92.61 61.22 60.15 60.69 92.55 69.30 70.88 70.08 94.85
ITAD 63.01 62.97 62.98 93.59 62.89 62.54 62.71 93.77 63.47 62.87 63.17 93.40 63.82 62.88 63.35 93.16 68.77 70.23 69.50 95.18

LSTM-VAE 62.15 61.64 61.89 94.27 60.26 61.95 61.10 94.05 62.22 61.57 61.90 94.16 63.32 61.05 62.16 94.29 68.39 73.95 71.05 95.80
BeatGAN 61.72 64.52 63.09 95.19 63.15 64.00 63.57 95.95 63.85 64.60 64.23 95.89 66.86 64.93 65.88 95.36 73.41 75.20 74.30 96.90

OmniAnomaly 65.25 63.48 64.36 97.83 65.86 63.07 64.43 97.32 66.36 63.97 65.14 97.59 75.38 63.22 68.77 97.27 73.41 74.21 73.80 97.82
InterFusion 62.92 64.31 63.60 97.96 63.13 64.00 63.56 97.59 63.92 64.71 64.32 97.80 67.53 64.22 65.83 97.84 58.71 66.06 62.16 98.77

THOC 63.13 65.59 64.33 97.53 62.96 65.32 64.13 97.25 63.39 65.07 64.22 97.43 66.05 65.95 66.00 97.58 73.96 75.35 74.65 98.45
GmVRNN 79.68 83.80 81.68 98.63 78.72 83.75 81.15 98.38 80.45 83.86 82.12 98.12 79.49 83.79 81.59 98.96 79.37 83.17 81.22 98.89

Anomaly Transformer 66.64 63.74 65.16 97.27 66.95 63.15 64.99 97.04 67.48 69.59 68.52 97.64 71.74 69.22 70.46 97.68 75.23 78.89 77.02 98.84

Ours 94.13 89.44 91.72 99.48 93.44 93.98 93.71 99.71 93.16 93.98 93.57 99.70 92.63 93.98 93.30 99.67 93.30 93.98 93.64 99.70

Table 6. Result of MSL

Data Number 1 5 10 20 200

Metric P R F1 AUC P R F1 AUC P R F1 AUC P R F1 AUC P R F1 AUC

DAGMM 52.13 54.68 53.38 90.42 51.94 54.67 53.26 90.63 55.38 54.41 54.89 90.10 67.77 54.10 60.16 90.23 64.85 66.54 65.68 94.51
MMPCACD 51.36 54.54 52.90 91.96 50.86 54.81 52.76 91.64 57.08 54.99 56.01 91.77 69.58 54.39 61.05 91.11 64.97 66.80 65.87 94.29

VAR 55.07 55.52 55.29 91.82 54.40 55.98 55.18 91.56 56.93 55.79 56.36 91.85 72.65 55.47 62.90 91.66 63.51 68.68 66.00 93.71
LSTM 56.19 57.30 56.73 90.65 55.43 57.76 56.57 90.85 57.85 57.32 57.58 90.86 67.84 57.04 61.98 90.32 67.29 68.18 67.74 93.38

CL-MPPCA 58.51 59.02 58.76 92.01 57.08 59.86 58.43 92.33 57.03 59.59 58.28 92.02 72.79 59.63 65.55 92.29 66.67 70.13 68.36 94.50
ITAD 63.82 61.69 62.74 93.56 63.78 61.67 62.71 93.66 66.26 61.60 63.85 93.03 73.72 61.32 66.95 93.15 66.52 71.35 68.85 96.58

LSTM-VAE 59.76 63.59 61.61 93.18 58.78 63.88 61.23 93.84 60.72 63.75 62.19 93.80 71.40 63.85 67.41 93.62 67.68 70.70 69.16 95.06
BeatGAN 60.57 62.46 61.49 93.63 59.97 62.41 61.18 93.23 61.00 62.46 61.72 93.34 72.44 62.12 66.89 93.92 70.01 72.21 71.10 96.24

OmniAnomaly 62.20 64.10 63.13 94.82 66.33 64.79 65.55 94.90 66.45 64.80 65.61 94.90 73.49 64.54 68.72 94.45 70.04 70.49 70.27 96.64
InterFusion 61.84 65.23 63.50 94.69 61.10 65.76 63.34 94.26 62.51 65.48 63.95 94.20 72.44 65.50 68.79 94.78 70.47 74.52 72.44 96.45

THOC 59.87 64.82 62.24 93.39 60.48 64.58 62.46 93.27 63.13 64.72 63.92 93.10 78.56 64.20 70.66 93.06 73.92 76.58 75.22 97.14
GmVRNN 92.76 94.20 93.47 99.42 92.14 94.71 93.41 99.36 91.49 94.59 93.01 99.33 89.89 94.65 92.21 99.16 90.83 97.68 94.12 99.15

Anomaly Transformer 62.92 64.75 63.82 94.19 68.99 64.59 66.72 94.04 64.66 70.23 67.34 94.10 73.25 69.72 71.45 94.17 77.17 80.68 78.88 97.16

Ours 90.84 99.99 95.20 99.45 91.71 99.99 95.67 99.51 92.26 99.99 95.97 99.54 92.42 99.99 96.06 99.55 92.54 99.99 96.12 99.56

Table 7. Result of SMAP

the model (acquiring one data sample need 60s; usually, we want to take about 20 minutes to get the equipment up). For
the above reasons, we train one-for-one models by first i ( i ∈ {1, 5, 10, 20, 200} ) samples in every new MTS and test
the model on the rest of the data. For the one-for-all models ( GmVRNN and PUAD ), the parameters have been updates
with the history MTSs first. Table 5 6 7 shown the results of proposed PUAD achieves competitive performance on three
databases.

E. More Experiments for Meta Anomaly Detection (Pretraining with History MTSs)
To further prove the advantages of our methods designed for the one-for-all setting, we pre-training the one-for-one models
with historical data and finetune on the first i data in new MTSs. As shown in Table 8, one-for-one models can also perform
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Dataset SMD MSL SMAP

Data Number 1 5 10 20 200 1 5 10 20 200 1 5 10 20 200

Metric F1 F1 F1 F1 F1 F1 F1 F1 F1 F1 F1 F1 F1 F1 F1

DAGMM 72.08 72.55 72.82 73.04 73.39 68.47 67.71 68.28 68.68 69.17 70.81 71.04 71.66 71.94 72.07
MMPCACD 73.15 72.90 73.90 73.31 73.11 69.99 69.68 70.34 70.57 70.04 72.95 73.01 73.05 73.25 73.44

VAR 74.54 75.01 74.11 74.78 74.10 70.88 71.14 71.09 71.67 71.96 71.87 72.16 72.67 72.38 72.56
LSTM 73.77 73.61 73.78 73.92 73.70 71.79 71.32 72.01 72.17 71.94 74.07 74.57 74.44 73.76 74.81

CL-MPPCA 75.23 75.18 74.92 75.31 75.87 73.57 72.99 73.51 73.36 73.12 76.50 75.96 76.15 76.74 76.64
ITAD 77.03 76.85 77.76 77.67 76.99 77.08 77.00 77.49 77.18 77.64 78.80 78.89 79.31 78.82 79.34

LSTM-VAE 80.65 80.73 80.13 81.68 81.51 76.19 76.31 76.47 76.20 77.02 77.92 77.83 77.96 78.19 78.50
BeatGAN 82.90 83.02 83.08 82.93 82.57 79.67 79.66 80.56 80.21 80.84 81.66 81.61 82.12 82.50 82.36

Men-SkipAE 83.26 83.32 83.85 83.23 83.59 81.29 80.99 81.71 81.78 81.85 84.12 84.43 84.01 84.80 84.54
MemAE 83.31 83.22 83.34 83.40 83.54 80.32 80.55 80.47 80.19 81.10 82.32 82.27 82.52 82.75 82.78
TSMAE 84.94 85.60 85.41 85.71 85.24 82.06 82.12 82.40 82.65 82.72 84.62 84.11 84.58 84.19 84.22

OmniAnomaly 85.40 85.42 85.78 86.19 85.83 81.12 80.58 82.13 81.86 81.64 84.28 84.71 84.61 84.97 85.49
InterFusion 84.60 84.73 84.74 84.85 85.09 82.09 81.87 82.28 82.46 83.00 86.70 86.80 87.26 87.27 87.12

THOC 86.01 86.05 86.24 86.62 86.54 81.56 81.55 81.38 82.73 82.86 88.95 89.28 88.92 88.54 88.95
PGDLE 86.28 86.46 86.66 86.88 86.18 81.73 81.48 81.96 81.56 82.38 89.38 89.24 89.28 89.04 89.34

SummerNet 90.22 89.90 90.16 90.71 90.55 82.79 82.70 82.43 82.80 82.74 91.10 91.29 91.18 91.81 91.55
GmVRNN 91.03 89.51 90.01 90.78 90.34 81.68 81.15 82.12 81.59 81.22 93.47 93.41 93.01 92.21 94.12

Anomaly Transformer 91.58 91.92 91.46 91.78 91.69 80.65 82.87 82.15 83.55 84.01 93.32 93.89 93.51 94.01 94.11

Ours 95.68 95.42 95.01 95.50 95.51 91.72 93.71 93.57 93.30 93.64 95.20 95.67 95.97 96.06 96.12

Table 8. Quantitative results of different methods for adapting to new MTSs on three public datasets. Models are pre-trained on history
MTSs first, then test on the new MTSs.

better because of the history MTSs involved, but their performance is still much worse than PUAD in this setting.

F. Quantitative Comparison

Dataset SMD MSL PSM SMAP DND

Metric P R F1 P R F1 P R F1 P R F1 P R F1

OC-SVM 44.34 76.72 56.19 59.78 86.87 70.82 62.75 80.89 70.67 53.85 59.07 56.34 68.23 70.36 69.28
IsolationForest 42.31 73.29 53.64 53.94 86.54 66.45 76.09 92.45 83.48 52.39 59.07 55.53 69.63 74.21 71.85

LOF 56.34 39.86 46.68 47.72 85.25 61.18 57.89 90.49 70.61 58.93 56.33 57.60 70.24 74.66 72.38
Deep-SVDD 78.54 79.67 79.10 91.92 76.63 83.58 95.41 86.49 90.73 89.93 56.02 69.04 73.09 79.02 75.94

DAGMM 67.30 49.89 57.30 89.60 63.93 74.62 93.49 70.03 80.08 86.45 56.73 68.51 72.72 77.67 75.11
MMPCACD 71.20 79.28 75.02 81.42 61.31 69.95 76.26 78.35 77.29 88.61 75.84 81.73 71.52 75.75 73.57

VAR 78.35 70.26 74.08 74.68 81.42 77.90 90.71 83.82 87.13 81.38 53.88 64.83 72.92 77.72 75.24
LSTM 78.55 85.28 81.78 85.45 82.50 83.95 76.93 89.64 82.80 89.41 78.13 83.39 73.52 79.67 76.47

CL-MPPCA 82.36 76.07 79.09 73.71 88.54 80.44 56.02 99.93 71.80 86.13 63.16 72.88 73.12 78.71 75.81
ITAD 86.22 73.71 79.48 69.44 84.09 76.07 72.80 64.02 68.13 82.42 66.89 73.85 73.87 75.43 74.64

LSTM-VAE 75.76 90.08 82.30 85.49 79.94 82.62 73.62 89.92 80.96 92.20 67.75 78.10 75.10 79.05 77.02
BeatGAN 72.90 84.09 78.10 89.75 85.42 87.53 90.30 93.84 92.04 92.38 55.85 69.61 76.64 80.18 78.37

Men-SkipAE 75.77 84.22 79.77 90.64 86.68 88.61 92.05 93.10 92.57 85.77 89.66 87.67 78.72 83.50 81.03
MemAE 74.09 83.27 78.41 90.16 84.97 87.48 91.86 92.49 92.17 85.63 67.39 75.42 77.32 82.67 79.90
TSMAE 83.47 87.32 85.35 88.93 86.84 87.87 82.73 79.17 80.91 91.29 81.41 86.06 80.33 82.46 81.38

OmniAnomaly 83.68 86.82 85.22 89.02 86.37 87.67 88.39 74.46 80.83 92.49 81.99 86.92 79.47 82.37 80.90
InterFusion 87.02 85.43 86.22 81.28 92.70 86.62 83.61 83.45 83.52 89.77 88.52 89.14 78.21 85.34 81.62

THOC 79.76 90.95 84.99 88.45 90.97 89.69 88.14 90.99 89.54 92.06 89.34 90.68 80.97 83.45 82.19
PGDLE 80.95 89.56 85.03 89.48 91.32 90.39 89.84 90.91 90.37 93.20 90.86 92.02 81.58 84.71 83.11

SummerNet 93.23 92.17 92.69 91.61 92.56 92.08 95.59 93.43 94.49 92.53 91.70 92.11 82.21 81.60 81.90
GmVRNN 96.07 91.23 93.56 90.81 92.10 91.41 95.62 98.36 96.97 96.51 94.54 95.51 83.80 87.67 85.58

Anomaly Transformer 89.40 95.45 92.33 92.09 95.15 93.59 96.91 98.90 97.89 94.13 99.40 96.69 82.13 86.31 84.16
TranAD 92.62 99.74 96.05 90.38 99.99 94.94 95.36 98.65 96.97 80.43 99.99 89.15 82.59 86.60 84.54

Ours 93.75 98.71 96.16 91.91 98.39 95.04 97.87 98.42 98.14 94.49 99.07 96.72 84.77 88.57 86.62

Table 9. Quantitative results for different methods on five public datasets and one real-world datasets. The P, R and F1 represent the
precision, recall and F1-score (as %) respectively. F1-score is the harmonic mean of precision and recall. For these three metrics, a higher
value indicates a better performance.
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To evaluate the performance of PUAD in the typical anomaly detection setting, we consider our model on five datasets
with multiple competitive baselines. Three metrics is used to evaluate the proposed model. The P, R and F1 represent the
precision, recall and F1-score (as %) respectively. As show in Table 9, our proposed model goes beyond the reconstruction
models such as OmniAnomaly, the density-estimation methods such as MPPCACD, and the well performance deep learning
model Anomaly Transformer. The results in Table 9 are persuasive for the advantage of association learning in time series
anomaly detection. PUAD has the highest performance on all four datasets.

G. Evidence Lower Bound (ELBO) of Log Likelihood
Use the Bayes’ theorem for p(x), we can add the collocation terms q(θ1 | θ′0, x), p(θ1 | θ′0), q(θ0 | x) and p(θ0) as

log p(x) = E [log
p(x | θ1)p(θ1)

p(θ1 | x)
q(θ1 | θ′0, x)
q(θ1 | θ′0, x)

p(θ1 | θ′0)
p(θ1 | θ′0)

p(θ0)

p(θ0)

q(θ0 | x)
q(θ0 | x)

] (1)

Organizing Eq. 1 can conclude:

log p(x) = E [log p(x | θ1)]−E [log
q(θ1 | θ′0, x)
p(θ1 | θ′0)

]

−E [log
q(θ0 | x)
p(θ0)

] +E [log
q(θ0 | x)
p(θ0)

]

+E [log
q(θ1 | θ′0, x)
p(θ1 | θ′0)

] +E [log
p(θ1)

p(x | θ1)
]

(2)

Then, with the KillbackLeibler (KL) Divergence equation DKL (p∥q)= E[log(p/q)] , Eq. 2 can be further reexpresed as:

log p(x) = E [log p(x | θ1)]−DKL (q(θ1 | θ′0, x)∥p(θ1 | θ′0))

−DKL (q(θ0 | x)∥p(θ0)) +DKL (q(θ0 | x)∥p(θ0))

+DKL (q(θ1 | θ′0, x)∥p(θ1 | θ′0)) +DKL (p(θ1)∥p(x | θ1))

(3)

Using Jensen’s inequality, ELBO can obtain afterward:

log p(x) ≥ E[log p(x | θ1)]−DKL (q(θ0 | x)∥p(θ0))

−DKL (q(θ1 | θ′0, x) | x)∥p(θ1 | θ′0))
(4)

Inspired by beta-VAE (Higgins et al., 2016), we introduce three hyperparameters ρ1 > 0, ρ2 > 0 and ρ3 > 0, then adding
the KL loss gradually with ρ1, ρ2 and ρ3 increasing from 0 to 1 during the first N training epochs.

L = Eq(θ0),q(θ1) [log p(x | θ1)]

− ρ1DKL (q(θ0 | x)∥p(θ0))

− ρ2DKL (q(θ1 | θ′0, x) | x)∥p(θ1 | θ′0))
(5)

H. More In-Depth Discussion on PUAD
H.1. The advantages of the proposed method over the existing anomaly detection methods

Leveraging meta-learned transferable prototypes, PUAD can achieve high model adaptation capacity for new MTS, which is
the biggest advantage of our model has over existing anomaly detection methods. This adaptation is achieved by defining
global and local prototypes. Specifically, the global prototypes in PUAD is encouraged to capture the statistical temporal
dependency shared by multiple MTS, which is similar to the transfer patterns useful for all related tasks in meta-learning,
thus to enable PUAD to achieve high model adaption capacity. In addition, we also introduce the local prototypes for newly
arrived MTSs to capture specific information for new MTSs to enhance the adaption capacity. We note that the existing
memory-augmented deep Autoencoder (Yan et al., 2023; Gong et al., 2019; Gao et al., 2022) have difficulty in modeling
new MTS.
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In addition to model adaptation capacity, modeling different MTSs with a single group of parameters is another advantage
of PUAD. Specifically, previous methods have difficulty in modeling multiple MTSs for the diverse statistic characteristics
within them, so they always characterize different MTS by training different specific groups of parameters, which consumes
huge computing and storage resources. PUAD can model different MTSs with a single group of parameters for considering
the diverse normal patterns within multiple MTSs as a group of prototypes, and then incorporating the prototypes into the
developed powerful probabilistic dynamical generative module, enhancing its generative capacity for multiple MTSs with
diverse statistic characteristics, thus to achieve superior unsupervised anomaly detection based on reconstruction. As shown
in Table 2 and Fig. 3 in our manuscript, PUAD can outperform SOTA baselines with much less model parameters.

Our proposed PUDA can be regarded as a mem-autoencoder-based approach, while a group of prototypes are similar as the
memories. Compared with previous mem-autoencoder-based approaches (Yan et al., 2023; Gong et al., 2019; Gao et al.,
2022), our defined prototypes can capture the statistical temporal dependency of normal patterns centers within multiple
MTSs, enhancing its capacity in model adaptation and diversity consideration. In addition, different from previous methods,
we introduce a prototype-oriented OT module in PUAD, which uses OT distance between distributions to guide the learning
process of prototypes, while the existing methods always use cosine similarity and softmax operation to learn memory
vectors. There are two main advantages of using OT distance in our model. Firstly, introducing the OT lose can ensure the
representative of prototypes as in (Guo et al., 2021). Secondly, using a simple cosine similarity (Yan et al., 2023; Gong et al.,
2019; Gao et al., 2022) to balance the global and local information stored in prototypes is hard. The distance between query
vectors and memory vectors is not enough to achieve this balance. The OT distance provides a transport plan for how to
transport query vectors to both global and local prototypes, thus to balance the importance of two kinds of prototypes.

To better illustrate the efficiency of PUAD, we add more baselines about Mem-autoencoder-based approaches (Yan et al.,
2023; Gong et al., 2019; Gao et al., 2022) , and perform experiment to compare them with PUAD (as show in Table 8 and
Table 9). On both traditional and meta anomaly detection tasks, PUAD significantly outperforms existing memory-based
methods, illustrating its advantage over the existing well-established anomaly detection methods for MTS.

H.2. The primary advantage of PUAD in actual engineering requirements

Modern information technology (IT) operations generate an enormous amount of high-dimensional sensor data that must
be continuously monitored. Anomaly detection for MTS is a fundamental scenario in IT operations, as it is critical for
managing service quality of industry devices or internet infrastructures. With the development of the IT field, a large number
of anomaly detection models for MTS need to be deployed on servers for different purposes every day. Unlike anomaly
detection in computer vision, a key challenge of UAD for MTS coming from a large-scale system is that each device has
distinct normal mode. For example, there is a clear distributed difference between the MTSs from the server used for video
websites and shopping websites. To address this problem, previous methods always train different models for different MTS.
However, according to the statistics, global server shipments of about 13.539 million units in 2021, and these servers will be
deployed to multiple domains. Training new models on such a large server scale can be very challenging and wasteful. The
meta anomaly detection and “one-for-all” problems are both formulated towards this real world scenario. Compared with
previous methods, the proposed PUAD has the following advantages for practical application scenarios:

PUAD is a “one-for-all” model that considers the diverse normal dynamic patterns within multiple MTSs as a group
of global prototypes. It learns these prototype memories with the proposed novel prototype-oriented OT module. This
eliminates the potential need to train individual model parameters for different MTSs, significantly reducing deployment
costs.

In real-word applications, when we deploy anomaly detection model to new scenarios, it is difficult to get enough data to
train the model at limited time. We formulate meta anomaly detection task for such common situations, and enhance the
capacity of PUAD to perform well on this task.

H.3. The detailed description of the PUAD framework

Anomaly detection on multivariate time series is defined as a problem that determines whether an observation from a certain
task and at a certain time is anomalous or not. The complete framework for unsupervised anomaly detection for multivariate
time series contains three key modules. The first module pre-processes the original multivariate time series data so that
they can be used by the learning model for training. Specifically, the normalization and sliding time window approaches
are adopted in this work. In the representation module, we propose a PUAD to learn the complex structural and dynamic
characteristics within multivariate time series. Finally, we apply the reconstruction probability and as the anomaly score to
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determine whether an observed variable is anomalous or not. An observation will be classified as anomalous if anomaly
score is below a specific threshold. From a practical point of view, we use the Peaks-Over-Threshold approach to help select
threshold. In our case, the lower anomaly scores are more likely considered to be extreme values since the lower anomaly
score.
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