
FAIRER: Fairness as Decision Rationale Alignment

Tianlin Li 1 Qing Guo 2 3 Aishan Liu 4 Mengnan Du 5 Zhiming Li 1 Yang Liu 6 1

Abstract
Deep neural networks (DNNs) have made sig-
nificant progress, but often suffer from fairness
issues, as deep models typically show distinct ac-
curacy differences among certain subgroups (e.g.,
males and females). Existing research addresses
this critical issue by employing fairness-aware
loss functions to constrain the last-layer outputs
and directly regularize DNNs. Although the fair-
ness of DNNs is improved, it is unclear how the
trained network makes a fair prediction, which
limits future fairness improvements. In this pa-
per, we investigate fairness from the perspective
of decision rationale and define the parameter
parity score to characterize the fair decision pro-
cess of networks by analyzing neuron influence
in various subgroups. Extensive empirical studies
show that the unfair issue could arise from the
unaligned decision rationales of subgroups. Ex-
isting fairness regularization terms fail to achieve
decision rationale alignment because they only
constrain last-layer outputs while ignoring inter-
mediate neuron alignment. To address the issue,
we formulate the fairness as a new task, i.e., deci-
sion rationale alignment that requires DNNs’ neu-
rons to have consistent responses on subgroups at
both intermediate processes and the final predic-
tion. To make this idea practical during optimiza-
tion, we relax the naive objective function and
propose gradient-guided parity alignment, which
encourages gradient-weighted consistency of neu-
rons across subgroups. Extensive experiments on
a variety of datasets show that our method can
significantly enhance fairness while sustaining a
high level of accuracy and outperforming other
approaches by a wide margin.
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1. Introduction
Deep neural networks (DNNs) are increasingly being used
in high-stakes applications in our society. However, as deep
learning is increasingly adopted for many applications that
have brought convenience to our daily lives (He et al., 2016;
Devlin et al., 2019; Deng et al., 2013), DNNs still suffer
from the fairness problem and often exhibit undesirable
discrimination behaviors (News, 2021; 2020). For example,
for an intelligent task (e.g., salary prediction), a trained
DNN easily presents distinct accuracy values in different
subgroups (e.g., males and females). The discriminatory
behaviors contradict people’s growing demand for fairness,
which would cause severe social consequences. To alleviate
such fairness problems, a line of mitigation strategies has
been constantly proposed (Zemel et al., 2013; Sarhan et al.,
2020; Wang et al., 2019).

A direct regularization method to improve fairness is to
relax fairness metrics as constraints in the training pro-
cess (Madras et al., 2018). This regularization method is
designed to reduce the disparities between different sub-
groups in the training and testing data (See Fig. 1 (a) vs.
(b)). Although this method easily improves the fairness of
DNN models, it is still unclear how the trained network
makes a fair decision1. For example, we do not know how
the fairness regularization terms actually affect the final
network parameters and let them make a fair prediction.
Without such an understanding, we would not know the
effective direction for further fairness enhancement. Exist-
ing work does not address this question and the majority of
them concentrate on the last-layer outputs (i.e., predictions)
while ignoring the internal process. In this work, we pro-
pose to study the fairness from the perspective of decision
rationale and analyze existing fairness-regularized methods
through a decision-rationale-aware analysis method. The
term ‘decision rationale’ is known as the reason for making
a decision and could be represented as the influence of neu-
rons in a DNN (Khakzar et al., 2021). Specifically, for each
intermediate neuron (i.e., a parameter of the DNN 2), we
can calculate the loss change on a subgroup before and after

1The ‘decision’ here means the prediction results of the DNN
regarding given inputs. The name follows the interpretable works
(Du et al., 2019; Wang et al., 2018b; Khakzar et al., 2021).

2We follow Molchanov et al. (2016; 2019) to use the terms
"neuron" and "parameter" interchangeably.
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Figure 1: Schematic diagrams of two existing solutions and the proposed one. (a) and (b) represent results of the standard trained network and the regularized fairness network.
(c) show the results of the decision rationale-aligned network. The previous work, i.e., fairness regularization-based method, adds a regularization term to the final loss function
to make the trained network have similar predictions on the two subgroups, which makes the "decision rationales" of the trained network on the two subgroups become partially
similar (See the green solid line for the subgroup and yellow solid line for the subgroup in (b)). In contrast, our method is to add a "decision rationale" alignment explicitly and
make "decision rationales" on the two subgroups consistent.

removing the neuron. As a result, we can characterize the
decision rationale of a network on the subgroup by collect-
ing the loss changes of all neurons. For example, the solid
green and yellow lines in Fig. 1 represent the neurons lead-
ing to high loss changes at each layer and characterize the
decision rationales of the two subgroups. Then, we define
the parameter parity score as the decision rationale shift-
ing across different subgroups, which actually reveals the
influences of intermediate neurons (i.e., parameters) to the
decision rationale changes. With the new analysis tool, we
find that the network fairness is directly related to the consis-
tency of the decision rationales on different subgroups, and
existing fairness regularization terms could only partially
achieve this goal, which restricts the fairness improvement
(Compare the solid lines in Fig. 1 (b)) since they only add
constraints to the final outputs. Intuitively, we could define
new regularization terms to minimize parity scores of all
neurons and encourage them to have similar influence across
subgroups. We name this new task as the decision rationale
alignment that requires DNNs to have consistent decision
rationales as well as final predictions on different subgroups.
Although straightforward, the task is challenging for two
reasons: First, the decision rationale and parity score are
defined based on a dataset and it is impractical to calculate
them at each iteration during the training process. Second,
different neurons have different effects on fairness and such
differences should be carefully considered.

To address the above two challenges, we propose the
gradient-guided parity alignment method by relaxing the
calculation of decision rationale from the dataset-based strat-
egy to the sample-based one. As a result, the correspond-
ing regularization term is compatible with the epoch-based
training process. Moreover, we use the first-order Taylor

expansion to approximate the parity score between deci-
sion rationales, and the effects of different neurons on the
fairness are weighted via their gradient magnitudes auto-
matically. Overall, the proposed method can achieve much
higher fairness than state-of-the-art methods. In summary,
the work makes the following contributions:

1. To understand how a network makes a fair decision, we
define parameter parity score to characterize the deci-
sion rationales of the network on different subgroups.
We reveal that the fairness of a network is directly re-
lated to the consistency of its decision rationales on
different subgroups and existing regularization terms
cannot achieve this goal.

2. To train a fairer network, we formulate the decision ra-
tionale alignment task and propose the gradient-guided
parity alignment method to solve it by addressing the
complex optimization challenges.

3. Extensive experiments on three public datasets, i.e.,
Adult, CelebA, and Credit, demonstrate that our
method can enhance the fairness of DNNs effectively
and outperform others largely.

2. Preliminaries
2.1. Problem Formulation

In general, given a dataset D containing data samples (i.e.,
x ∈ X ) and corresponding labels (i.e., y ∈ Y), we can
train a DNN to predict the labels of input samples, i.e.,
ŷ = F(x) with ŷ ∈ Y being the prediction results. In the
real world, the samples might be divided into subgroups
according to some sensitive attributes a ∈ A such as gender
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and race. Without loss of generality, we consider the binary
classification and binary attribute setup, i.e., y ∈ {0, 1} and
a ∈ {0, 1}. For example, a = 0 and a = 1 could represent
males and females, respectively. A fair DNN (i.e., F(·)) is
desired to obtain a similar accuracy in the two subgroups.

2.2. Fairness Regularization

Among fairness evaluation measures, Demographic Par-
ity (DP) and Equalized Odds (EO) are most frequently
adopted in deep learning fairness research. Specifically,
Feldman et al. (2015) develop the DP metric to encourage
the predicted label to be independent of the sensitive at-
tribute (i.e., a), that is, P (ŷ|a = 0) = P (ŷ|a = 1) which
means that the probability distribution of ŷ condition on
a = 0 should be the same as the condition on a = 1.
Hardt et al. (2016a) further propose the EO metric to con-
sider the ground truth label y and make the prediction and
sensitive attribute conditionally independent w.r.t. y, i.e.,
P (ŷ|a = 0, y) = P (ŷ|a = 1, y). Although straightforward,
it is difficult to optimize the above measures and existing
fairness works (Madras et al., 2018; Chuang & Mroueh,
2021) focus on designing fairness regularization terms and
adding them to the loss function, which encourages the
targeted DNN to predict similar results across subgroups.
Madras et al. (2018) propose relaxed counterparts:

∆DP(F) = |Ex∼P0
(F(x))− Ex∼P1

(F(x))| , (1)

where P0 = P (x|a = 0) and P1 = P (x|a = 1) are the dis-
tributions of x condition on a = 0 and a = 1, respectively,
and the function E(·) is to calculate the expectation under
the distributions.

∆EO(F) =
∑

y∈{0,1}

∣∣∣Ex∼Py
0
(F(x))− Ex∼Py

1
(F(x))

∣∣∣ , (2)

where P 1
0 = P (x|a = 0, y = 1) denotes the distribution of

x condition on the a = 0 and y = 1, and we have similar
notations for P 0

0 , P 1
1 , P 0

1 if we set the DNN for a binary
classification task and have the label y ∈ 0, 1. We can add
Eq. (1) and Eq. (2) to the classification loss (e.g., cross-
entropy loss) to regularize the fairness of the targeted DNN,
respectively, and obtain the whole loss function

L = E(x,y)∼P (Lcls(F(x), y)) + λLfair(F), (3)

where P denotes the joint distribution of x and y, Lcls is
the classification loss, and the term Lfair could be ∆DP(F)
or ∆EO(F) defined in Eq. (1) or Eq. (2). We can mini-
mize the above loss function and get fairness-regularized
DNNs. Although effective, the above method presents some
generalization limitations. To alleviate this issue, (Chuang
& Mroueh, 2021) embed the data augmentation strategy
into the fairness regularization method and propose Fair-
Mixup with novel DP- and EP-dependent regularization
terms. Please refer to Chuang & Mroueh (2021) for details.

Figure 2: Accuracy and fairness comparison of five different methods on the Adult
dataset. The hyperparameter λ increases from 0.2 to 0.6 along the −DP axis as it
becomes larger.

Overall, we get several fairness regularization methods via
different regularization terms. Specifically, we denote the
methods without augmentation as FairReg(∆DP, noAug)
and FairReg(∆EO, noAug) based on regularization func-
tions (i.e., Eq. (1) and Eq. (2)). We denote the methods
equipped with data augmentation as FairReg(∆DP,Aug)
and FairReg(∆EO,Aug), respectively.

2.3. Observations

We conduct an experiment on the Adult dataset (Dua
& Graff, 2017a) with a neural network with 3-layer
MLPs. Specifically, we train the network with two fair-
ness regularization methods (i.e., FairReg(∆DP, noAug)
and FairReg(∆DP,Aug) 3) and five different λ ∈
{0.2, 0.3, 0.4, 0.5, 0.6}, that is, for each method, we get
five trained networks. Then, we can calculate the accuracy
scores and fairness scores of all networks on the testing
dataset. We employ average precision for the accuracy
score and −DP for the fairness score since a smaller DP
means better fairness. For each method, we can draw a
plot w.r.t. different λ. Besides, we also train a network
without the fairness regularization term and denote it as
w.o.FairReg. Based on w.o.FairReg, we can conduct over-
sampling on the training samples to balance the samples
across different subgroups (Wang et al., 2020) and denote it
as w.o.FairReg-Oversample. As shown in Fig.2, we see that:
❶ The standard trained network via w.o.FairReg presents
an obvious fairness issue and the oversampling solution
has limited capability to fix it. ❷ When we use the regu-
larization methods and gradually increase the weight λ in
Eq. (3) from 0.2 to 0.6, FairReg(∆DP, noAug) is able to
generate fairer networks with higher fairness scores (i.e.,
higher -DP) than the one from w.o.FairReg. However, the
corresponding accuracy decreases by a large margin, that
is, existing methods could hardly generate enough fair net-
works under similar accuracy. ❸ The data augmentation-

3We have similar observations on the ∆EO-based methods and
remove them for a clear explanation.
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based method (i.e., FairReg(∆DP,Aug)) can alleviate such
an issue to some extent and achieves higher fairness than
FairReg(∆DP, noAug) under similar accuracy.

Such fairness regularization methods neglect the decision-
making process and might generate sub-optimal models.
Although intuitively having a consistent decision process
among various groups could enhance model performance
in terms of fairness, we still empirically explore the con-
nection between the decision-making process and fairness.
We provide an analysis method by extending the decision
rationale-aware explainable methods in Sec. 3. Specifically,
instead of using the final fairness metrics, we define the
parameter parity score for each parameter of a network that
measures whether the parameter is fair, that is, whether it
has consistent responses to different subgroups.

3. Decision Rationale-aware Fairness Analysis
In recent years, decision rationale-aware explainable meth-
ods are developed and help understand how a trained net-
work makes a decision (Khakzar et al., 2021; Wang et al.,
2018a). In these works, the decision rationale is represented
by measuring the importance of intermediate neurons. In-
spired by this idea, to understand a fair decision, we study
the decision process of networks by analyzing their neuron
influence under different subgroups, and define the deci-
sion rationales for different subgroups. Then, we define the
parity score for a network that actually measures whether
the decision rationales on different subgroups are consis-
tent. Besides, we can use the parity score to compare the
networks trained with different regularization terms.

3.1. Parameter Parity Score

Inspired by recent work on understanding the importance
of the neuron for the classification loss (Molchanov et al.,
2019), we define the parameter parity score based on the
independent assumption across neurons (i.e., parameters)4.
When we have a trained network F(·) with its parameters
W = {w0, . . . , wK}, we can calculate classification losses
on samples from two distributions P0 = P ((x, y)|a = 0)
and P1 = P ((x, y)|a = 1) which correspond to the training
subsets of two subgroups (i.e., a = 0 and a = 1), and get the
losses J (F, P0) and J (F, P1), respectively. Meanwhile,
we can modify F(·) by removing a specific parameter wk

and denote the new counterpart as Fwk=0, and we can also
obtain losses via J (Fwk=0, P0) and J (Fwk=0, P1). Then,
for each subgroup (i.e., P0 or P1), we calculate the loss
change before and after removing the parameter wk by

ca=i
k = C(F, wk, Pi) = |J (F, Pi)− J (Fwk=0, Pi)|2, (4)

∀i ∈ {0, 1}, k ∈ [0,K],

4More details about this assumption are deferred to A.13.

where the function J (F, Pi) is to calculate the classification
loss (i.e., Lcls in Eq. (3)) of examples in Pi with ∀i ∈ {0, 1}
based on the network F. With a subgroup Pi and a K-neuron
network F, we can get ca=i

F = [ca=i
0 , ca=i

1 , . . . , ca=i
K ] that is

regarded as a representation of the decision rationale on the
subgroup Pi (Khakzar et al., 2021).

Then, we define the parity score of the parameter wk as
the difference between ca=0

k = C(F, wk, P0) and ca=1
k =

C(F, wk, P1), i.e.,

dk = |C(F, wk, P0)− C(F, wk, P1)|2. (5)

Intuitively, if the network F is fair to a kind of sensitive at-
tribute, each parameter should have consistent responses to
different subgroups, and the changes before and after remov-
ing the parameter should be the same. As a result, a smaller
dk means that the parameter wk is less sensitive to the at-
tribute changes. For the entire network with K neurons, we
get K parity scores and ca=i

F = [ca=i
0 , ca=i

1 , . . . , ca=i
K ], and

can represent the network with dF = [d0, d1, . . . , dK ] and
aggregate all scores for a network-level parity score, i.e.,
dF =

∑K
k=0 dk = |ca=0

F −ca=1
F |1, which measures whether

the decision rationales on the two subsets are consistent (i.e.,
properly aligned).

3.2. Relationship between Parity Score and Fairness

With the parameter parity score, we conduct an em-
pirical study based on the Adult dataset and a neu-
ral network with 3-layer MLPs. Specifically, we
train six networks with the regularization terms defined
in Sec. 2.3, e.g., the ∆DP-based regularization terms
with six different weights (i.e., FairReg(∆DP, noAug)
with λ ∈ {0.0, 0.2, 0.3, 0.4, 0.5, 0.6}). Note that,
FairReg(∆DP, noAug) with λ = 0.0 represents the stan-
dard trained network without fair regularization terms (i.e.,
w.o.FairReg). Then, for each method, we can train a
neural network and calculate the parity score, i.e., dF =∑K

k=0 dk = |ca=0
F − ca=1

F |1 to measure the decision ratio-
nale shifting across subgroups and the fairness score defined
by −DP. As reported in Table 1, we see that: ❶ the parity
score of the network gradually decreases as the DP becomes
smaller, which demonstrates that the fairness of a network
is highly related to the decision rationale shifting across
subgroups. ❷ adding the fairness regularization term on the
last-layer outputs (i.e., λ > 0) can decrease the decision
rationale shifting to some extent. However, such an indirect
way could hardly achieve the optimized results and a more
effective way is to actively align the decision rationale ex-
plicitly. Note that we can observe similar results on other
regularization methods and focus on FairReg(∆DP, noAug)
due to the limited space. We conclude that the existing
fairness regularization-based methods can only encourage
the consistency between decision rationales of the network
on different subgroups to some extent. This inspires our
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Table 1: Parity scores, fairness scores, and the first-order Taylor approximation of
the parity scores of networks trained via FairReg(∆DP, noAug) with different λ
in Eq. (3). For each network, we train 10 runs with different seeds and the average
results are reported.

FairReg(∆DP, noAug)
λ = 0.0 λ = 0.2 λ = 0.3 λ = 0.4 λ = 0.5 λ = 0.6

Parity score (dF) 0.624 0.391 0.101 0.070 0.046 0.039

Fairness (−DP) −0.160 −0.084 −0.048 −0.022 −0.020 −0.010

Approx. (−
∑L

l=0 cos(⃗ca=0
l , c⃗a=1

l )) −0.670 −1.382 −1.530 −1.629 −1.631 −1.800

method in Sec.4 that conducts alignment of the decision ra-
tionales of different subgroups explicitly. It is worth noting
that the parameter parity score is the most straightforward
way to measure whether the parameter has consistent re-
sponses to different subgroups and represents the degree of
the decision rationale alignment.

4. Decision Rationale Alignment
4.1. Formulation and Challenges

According to Eq. (5), we can achieve a fairer network by
aligning the decision rationales of subgroups and a straight-
forward way is to set the parity score dF =

∑K
k=0 dk as an

extra loss function and minimize it directly, that is, we can
add a new loss to Eq. (3) and have

L = E(x,y)∼P (Lcls(F(x), y)) + λLfair(F) + β

K∑
k=0

dk,

(6)

where dk is the parity score of the kth neuron and calculated
by Eq. (5). Such a loss should calculate parity scores for all
neurons and all samples in a dataset, leading to a high cost
and is not practical.

4.2. Gradient-guided Parity Alignment

To address the challenges, we relax Eq. (4) to the sample-
based counterpart

ca=i
k = C(F, wk, Pi) =|E(x,y)∼Pi

(Lcls(F(x), y)− (7)

E(x,y)∼Pi
(Lcls(Fwk=0(x), y))|2,

∀i ∈ {0, 1}, k ∈ [0,K].

We use the first-order Taylor expansion to approximate ca=i
k

similar to Molchanov et al. (2019) and get

ĉa=i
k = Ĉ(F, wk, Pi) = (ga=i

k · wk)
2, ∀i ∈ {0, 1}, k ∈ [0,K].

(8)
where ga=i

k denotes the gradient of the kth neuron (i.e., wk)
w.r.t. the loss function on the examples sampled from the
distribution of the ith subgroup (i.e., Pi). Intuitively, the
above definition means that we should pay more attention
to the neurons with higher gradients and make them have
similar responses to different subgroups. However, neurons

(i.e., parameters) of different layers may have different score
ranges. To avoid this influence, we further normalize ĉa=i

k

by ĉa=i
k

|ĉa=i
l | ∀i ∈ {0, 1}, k ∈ Kl, where Kl contains the in-

dexes of the neurons in the lth layer, and parity scores of
neurons in the lth layer (i.e., {ĉa=i

k |k ∈ Kl}) form a vec-
tor ĉa=i

l = vec({ĉa=i
k |k ∈ Kl}). Then, we can get a new

vector for the lth layer c⃗a=i
l = vec({ ĉa=i

k

|ĉa=i
l | |k ∈ Kl}) by

normalizing each element. Then, we can update Eq. (6) by
minimizing the distance between c⃗a=0

l and c⃗a=1
l ∀l ∈ [0, L],

i.e.,

L = E(x,y)∼P (Lcls(F(x), y)) + λLfair(F) (9)

− β

L∑
l=0

cos(⃗ca=0
l , c⃗a=1

l ),

where L denotes the number of layers in the network,
and the function cos(·) is the cosine similarity function.
The last two terms are used to align the final predictions
and the responses of the intermediate neurons across sub-
groups, respectively. To validate the approximation (i.e.,
−
∑L

l=0 cos(⃗ca=0
l , c⃗a=1

l )) can reflect the decision rationale
alignment degree like the parity score

∑K
k=0 dk, we conduct

an empirical study on FairReg(∆DP, noAug) as done in
Sec. 3.2 and calculate the value of −

∑L
l=0 cos(⃗ca=0

l , c⃗a=1
l )

for all trained networks. From Table 1, we see that the ap-
proximation has a consistent variation trend with the parity
score under different λ.

4.3. Implementation Details

We detail the whole training process in Algorithm 1. In
particular, given a training dataset D, we first sample two
groups of samples (ie, (X0,Y0) and (X1,Y1)) from the
two subgroups in the dataset, respectively (See lines 4 and 5).
Then, we calculate the cross-entropy loss for both sample
groups (See line 7) and calculate the fairness regularization
loss (i.e., Lfair = ∆DP(F,X0,X1)). After that, we can
calculate the gradient of each parameter (i.e., neuron wk)
w.r.t. the classification loss (See lines 11 and 12) and calcu-
late the decision rationale for each neuron and layer (See
lines 16 and 17). Finally, we calculate the cosine similarity
between c⃗a=0

l and c⃗a=1
l and use the whole loss to update

the parameters. We defer the algorithm depiction for the EO
metric to the Appendix (A.2).

5. Experiments
5.1. Experimental Setup

Datasets. In our experiments, we use two tabular bench-
marks (Adult and Credit) and one image dataset (CelebA)
that are all for binary classification tasks: ❶ Adult (Dua
& Graff, 2017a). The original aim of the dataset Adult is
to determine whether a person makes salaries over 50K a
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Algorithm 1 Gradient-guided Parity Alignment

1: Input: Network F with parameters W =
{w0, . . . , wK}, epoch index set E , training data
D, batch size B, network layers L, neurons in the lth
layer Kl, hyper-parameters λ and β, learning rate η

2: for e ∈ E do
3: // Sampling B samples from subgroups in D
4: (X0,Y0)← Sample(D, a = 0, B)
5: (X1,Y1)← Sample(D, a = 1, B)
6: // Calculating loss and updating the model
7: Lcls = Lcls(F(X0),Y0) + Lcls(F(X1),Y1)
8: Lfair = ∆DP(F,X0,X1)
9: for l ∈ L do

10: for k ∈ Kl do
11: ga=0

k = ∂(Lcls(F(X0),Y0))
∂wk

12: ga=1
k = ∂(Lcls(F(X1),Y1))

∂wk

13: ĉa=0
k = (ga=0

k · wk)
2

14: ĉa=1
k = (ga=1

k · wk)
2

15: end for
16: c⃗a=0

l = [ĉa=0
0 , ĉa=0

1 , ..., ĉa=0
|Kl| ]

17: c⃗a=1
l = [ĉa=1

0 , ĉa=1
1 , ..., ĉa=1

|Kl| ]
18: end for
19: LdF

= −
∑L

l=0 cos(⃗c
a=0
l , c⃗a=1

l );
20: L = Lcls + λLfair + βLdF

;
21: w = w − η∇wL,∀w ∈ W.
22: end for

year. We consider gender as the sensitive attribute, and the
vanilla training will lead the model to predict females to earn
less salaries. ❷ CelebA (Liu et al., 2015). The CelebFaces
Attributes dataset is to predict the attributes of face. We
split into two subgroups according to the attribute gender.
Here we consider two attributes classification tasks. For the
task to predict whether the hair in an image is wavy or not,
the standard training will show discrimination towards the
male group; when predicting whether the face is attractive,
the standard training will result in a model prone to predict
males as less attractive. ❸ Credit (Dua & Graff, 2017b).
This dataset is to give an assessment of credit based on
personal and financial records. In our paper, we take the
attribute gender as the sensitive attribute.

Models. For tabular benchmarks, we use the MLP (multi-
layer perception) (Bishop, 1996) as the classification model,
which is commonly adopted in classifying tabular data. For
the CelebA dataset, we use AlexNet (Krizhevsky et al.,
2012) and ResNet-18 (He et al., 2016), both of which are
popular in classifying image data (Alom et al., 2018). We
mainly show the experimental results of predicting wavy
hair using AlexNet. More results are in the Appendix (A.3).

Metrics. For fairness evaluation, we take two group fairness
metrics DP and EO as we introduced in the Sec. 2.2 and

define −DP and −EO as fairness scores since smaller DP
and EO mean better fairness. We use the average precision
(AP) for classification accuracy evaluation. A desired fair-
ness method should achieve smaller DP or EO but higher
AP (i.e., the top left corner in Fig. 3). Consistent with the
previous work (Chuang & Mroueh, 2021; Du et al., 2021),
we consider the DP and EO metrics in our work. Moreover,
we also explore the Equality of Opportunity (Hardt et al.,
2016b) and Predictive Parity (Chouldechova, 2017) . The
details are deferred to the Appendix (A.11).

Baselines. Following the common setups in Chuang &
Mroueh (2021), we compare our method with several base-
lines which are shown to be among the most effective and
typical methods: ❶ Standard training based on empiri-
cal risk minimization (ERM) principle (i.e., w.o.FairReg).
DNNs are trained only with the cross entropy loss. ❷ Over-
sample (i.e., w.o.FairReg-Oversample) (Wang et al., 2020).
This method samples from the subgroup with rare examples
more often, making a balanced sampling in each epoch. ❸
FairReg(∆DP or ∆EO, noAug) (Madras et al., 2018). This
method is to directly regularize the fairness metrics, i.e.,
∆DP or ∆EO. ❹ FairReg(∆DP or ∆EO,Aug) (i.e., Fair-
Mixup) (Chuang & Mroueh, 2021). This method regularizes
the models on paths of interpolated samples between sub-
groups to achieve fairness. ❺ Adversarial (Zhang et al.,
2018). This method minimizes the adversary’s ability to
predict sensitive attributes.

5.2. Fairness Improvement Performance

As shown in Fig. 3, we have following observations: ❶
With the Adult and CelebA datasets, our method (i.e.,
DRAlign) achieves higher fairness (i.e., higher -DP or -
EO scores) than all baseline methods when they have
similar AP scores. In particular, on the Adult dataset,
DRAlign has relative 41.6% DP improvement over the
second best method (i.e., FairReg(∆DP,Aug)) when both
get around 0.770 AP. Overall, our method can enhance
the fairness significantly with much less precision sac-
rifice. ❷ Data augmentation method does not always
improve DNN’s fairness. For example, on the dataset
CelebA, FairReg(∆DP, noAug) presents slightly higher
fairness score (i.e., higher -DP) than FairReg(∆DP,Aug).
A potential reason is that the augmented data becomes less
realistic due to the rich information in the image modal-
ity, which leads to less effective learning. ❸ Although
oversampling could improve fairness to some extent, it is
less effective than the fairness regularization-based meth-
ods (i.e., FairReg(∗, noAug)). For example, on the CelebA
dataset, w.o.FairReg-Oversample only obtains -0.069 -EO
score with the 0.812 AP score, while FairReg(∆EO, noAug)
achieves the -0.054 -EO score with 0.817 AP score. The
networks trained by FairReg(∆EO, noAug) are not only
fairer but also of higher accuracy. On the tabular dataset,
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(a) Adult (b) CelebA (c) Credit

Figure 3: Comparing different methods on AP vs. (-DP/-EO). According to the common setups, we evaluate ∆DP-based and ∆EO-based methods via -DP and -EO, respectively.
The plot is drawn by adjusting the hyperparameter λ and β in Eq. 6 and Eq. 9. The detailed hyperparameter settings are in the Appendix (A.1). We train networks with the
compared methods for 10 times and the averaging results are reported. We show our results are statistically significant via t-test (A.10).

w.o.FairReg-Oversample outperforms the w.o.FairReg by a
small margin. ❹ On the Credit dataset, FairReg(∆DP, Aug)
achieves better results than DRAlign under the DP metric
although our method still outperforms the regularization-
based one. A potential reason is that the data size of the
Credit is small (i.e., 500 training samples) and the data aug-
mentation can present obvious advantages by enriching the
training data significantly. The data augmentation and our
decision rationale alignment are two independent ways to
enhance fairness. Intuitively, we can combine the two so-
lutions straightforwardly. We did further experiments and
found that our DRAlign could still improve FairReg(∆DP,
Aug). In addition, our experiments show that the decision ra-
tionale alignment itself could still slightly improve fairness
when the fairness regularization item (Lfair(F)) is removed.
More details are put in the Appendix (A.8,A.9).

5.3. Discussion and Analysis

Connection with over-parameterization.

To better understand the cause of the decision rationale
misalignment, we further investigate the connection be-
tween decision rationale misalignment and model over-
parameterization. We conduct an empirical study on
the Adult dataset using 3-layer MLP networks based on
FairReg(∆DP, noAug). Specifically, we explore 4 MLP
architectures, where the hidden sizes are set as 10, 20,
50, and 200, respectively. The corresponding parame-
ter sizes of the 4 networks are 1331, 2861, 8651, and
64601. For each architecture, we draw a plot w.r.t.
different λ for FairReg(∆DP, noAug) to show the deci-
sion rationale similarity score (i.e.,

∑L
l=0 cos(⃗ca=0

l , c⃗a=1
l )

in Sec. 4.2). We denote the four trained models

as FairReg(∆DP,noAug) (c10), FairReg(noAug) (c20),
FairReg(∆DP,noAug) (c50), and FairReg(∆DP,noAug)
(c200), respectively, according to their hidden sizes. Ac-
curacy performance of these models and more results un-
der ∆EO metric are put in the Appendix (A.6,A.4). With
Fig. 4 (a), we have the following observations: ❶ The de-
cision rationale similarity consistently ascends when λ in-
creases. When λ becomes 0.5, decision rationale similari-
ties of FairReg(∆DP,noAug) (c10), FairReg(∆DP,noAug)
(c20)and FairReg(∆DP,noAug) (c50) reach the same max-
imum score (i.e., 3.0 for any 3-layer MLP network). We
conclude that larger λ (stricter fairness constraint) results
in a higher decision rationale similarity. ❷ The misalign-
ment of decision rationale is more likely to occur in the
over-parameterized networks. For the largest network
FairReg(∆DP,noAug) (c200), even when the λ is set as
0.6 for a strict fairness constraint, the decision rationale sim-
ilarity score only reaches 1.8 which is much smaller than the
values on other variants and infers that the decision rationale
is still far from being aligned.

Furthermore, we also report the results of augmentation-
based method, i.e., FairReg(∆DP,Aug). We find that data
augmentation can generally mitigate the misalignment but
still fails to completely align the decision rationale (See
the plot of FairReg(∆DP,noAug) (c200)). Our method
DRAlign is able to achieve the maximum similarity on all
λ settings even on the architecture with hidden size 200.
(See the plot of DRAlign (c200)) This enlightens us that
common methods such as data augmentation that aims to
address over-parameterization can not completely solve the
misalignment, while our gradient-guided parity alignment
method can directly improve the alignment.
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(a) (b)

Figure 4: (a) : correlation between λ and decision rationale similarity score. (b) layer-wise analysis for correlation between λ and decision rationale similarity score.

Layer-wise decision rationale alignment analysis.

We further conduct a layer-wise analysis to understand
which layer owns better decision rationale alignment. We
calculate the decision rationale similarity for the 1st and 2nd
layer (i.e., cos(⃗ca=0

l=0 , c⃗
a=1
l=0 ) and cos(⃗ca=0

l=1 , c⃗
a=1
l=1 )). From

Fig. 4 (b), we see that: for both layers, the layer-wise sim-
ilarity score ascends when λ increases. This is consistent
with the observation that stricter fairness constraint results
in a higher decision rationale similarity. As we compare
the 1st and 2nd layers, we can observe that the similarity
score of the first layer is generally higher. Moreover, we can
see that for smaller models (i.e., models with hidden size
50), the similarity gap between the first layer and the second
layer is relatively trivial. However, for models with hidden
size 200, the similarity score of the second layer is rather
low (i.e., the score is 0.113 even when the λ is 0.6). Thus,
the misalignment of the deeper layer is severer.

6. Related Work
Fairness in Deep Learning. Deep learning models, while
potent, often display questionable behavior in relation to
critical issues such as robustness, privacy, and trustworthi-
ness (Goodfellow et al., 2014; Kurakin et al., 2018; Liu
et al., 2019; 2020b;a; 2021; 2023; Guo et al., 2023; Huang
et al., 2023). Among these concerns, discrimination stands
out as a highly influential factor with considerable social im-
plications. There are different methods to evaluate fairness
in deep learning, among which individual fairness (Zhang
et al., 2020b; 2021; George John et al., 2020; Xiao et al.,
2023), group fairness (Louppe et al., 2016; Moyer et al.,
2018; Gupta et al., 2021; Garg et al., 2020), and counter-
factual fairness (Kusner et al., 2017) are the mainstream.
We focus on group fairness which is derived by calculat-
ing and comparing the predictions for each group There
is a line of work dedicated to alleviating unjustified bias.
For example, Wang et al. (2020) compare mitigation meth-
ods including oversampling, adversarial training, and other

domain-independent methods. Some work proposes to dis-
entangle unbiased representations to ensure fair DNNs. On
the contrary, Du et al. (2021) directly repair the classifier
head even though the middle representations are still biased.
To improve fairness, it is also popular to constrain the train-
ing process by imposing regularization. Woodworth et al.
(2017) regularize the covariance between predictions and
sensitive attributes. Madras et al. (2018) relax the fairness
metrics for optimization. Although such methods are easy
to be implemented and integrated into the training process,
these constraints suffer from overfitting (Cotter et al., 2019).
The model with a large number of parameters could memo-
rize the training data, which causes the fairness constraints
to fit well only in the training process. Chuang & Mroueh
(2021) ensure better generalization via data augmentation
(e.g., mix-up) to reduce the trade-off between fairness and
accuracy. However, these methods barely pay attention
to the rationale behind the fair decision results. Besides,
some studies propose measures for procedural fairness that
consider the input features used in the decision process and
evaluate the moral judgments of humans regarding the use of
these features (Grgic-Hlaca et al., 2016; Grgić-Hlača et al.,
2018). They focus on feature selection for procedurally fair
learning. In this paper, we further analyze the decision ratio-
nales behind the fair decision results in the training process
and reveal that ensuring the fair decision rationale could
further improve fairness.

Understanding DNNs Decision Rationale. There are some
interpretable methods enabling DNNs models to present
their behaviors in understandable ways to humans (Zhang
& Zhu, 2018; Fong & Vedaldi, 2017; Koh & Liang, 2017;
Liang et al., 2019; Zhang et al., 2020a; Li et al., 2021).
Specifically, there is a line of work that depicts the de-
cision rationale of DNNs via neuron behaviors analysis.
Routing paths composed of the critical nodes (e.g. neurons
with the most contribution to the final classification on each
layer) can be extracted in a learnable way to reflect the net-
work’s semantic information flow regarding to a group of

8
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data (Khakzar et al., 2021). Conquering the instability ex-
isting in the learnable method, Qiu et al. (2019) propose an
activation-based back-propagation algorithm to decompose
the entire DNN model into multiple components composed
of structural neurons. Meanwhile, Xie et al. (2022) base
the model function analysis on the neuron contribution cal-
culation and reveal that the neuron contribution patterns of
OOD samples and adversarial samples are different from
that of normal samples, resulting in wrong classification
results. Zheng et al. (2022) analyze neurons sensitive to
individual discrimination and generate testing cases accord-
ing to sensitive neuron behaviors. However, these methods
analyze neuron behaviors via static analysis or in a learnable
way. These analysis methods result in huge time overhead,
making their integration into the training process difficult,
which restricts their applications in optimizing the training.

In our paper, we follow the spirit of analyzing neuron be-
haviors to understand the model decision rationale. Unlike
previous methods, our method successfully simplifies the
estimation process of neuron contribution and can be easily
integrated into the training process to optimize the model.

7. Conclusions and Future Work
In this work, we have studied the fairness issue of deep
models from the perspective of decision rationale and de-
fined the parameter parity score to characterize the decision
rationale shifting across subgroups. We observed that such
a decision rationale-aware characterization has a high cor-
relation to the fairness of deep models, which means that
a fairer network should have aligned decision rationales
across subgroups. To this end, we formulated fairness as
the decision rationale alignment (DRAlign) and proposed
the gradient-guided parity alignment to implement the new
task. The results on three public datasets demonstrate the
effectiveness and advantages of our methods and show that
DRAlign is able to achieve much higher fairness with less
precision sacrifice than all existing methods.

Although promising, our method also presents some draw-
backs: (1) it requires the computation of second-order
derivatives; and (2) the gradient-guided parity alignment
method is limited to the layer-wise DNN architecture. In
the future, we are interested in solving these limitations.
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A. Appendix
A.1. Training Details

Adult Dataset. The parameter setting of the Adult Dataset is shown in Table 2. We follow the settings in Chuang & Mroueh
(2021) for data preprocessing. The hidden size of MLP is 200. We use Adam as the learning optimizer and the batch size is
set as 1000 for the DP metric and 2000 for the EO metric following the setting in Chuang & Mroueh (2021).

Table 2: Setting for Adult Dataset training with MLP.

w.o.FairReg w.o.FairReg - OverSample FairReg(*, noAug) FairReg(*, Aug) DRAlign

Training Epochs for DP 20 20 20 20 20

Training Epochs for EO 20 20 20 20 20

Learning rate 0.001 0.001 0.001 0.001 0.001

Range of λ for DP - - [0.2,0.3,0.4,0.5,0.6] [0.2,0.3,0.4,0.5,0.6] [0.1,0.2,0.3,0.4,0.5]

β for DP - - - - [0.01,0.02,0.03,0.04,0.05]

Range of λ for EO - - [0.5,0.8,1.0,2.0] [0.5,0.8,1.0,2.0] [0.5,0.8,1.0,2.0]

β for EO - - - - [0.05,0.08,0.1,0.2]

CelebA Dataset. The parameter setting of the CelebA Dataset is shown in Table 3. We follow the settings in (Chuang &
Mroueh, 2021) for data preprocessing. We use Adam as the learning optimizer and the batch size is set as 64 for the DP
metric and 128 for the EO metric following the setting in Chuang & Mroueh (2021).

Table 3: Setting for CelebA Dataset training with AlexNet.

w.o.FairReg w.o.FairReg - OverSample FairReg(*, noAug) FairReg(*, Aug) DRAlign

Training Epochs for DP 15 15 15 30 15

Training Epochs for EO 30 30 30 60 30

Learning rate 0.0001 0.0001 0.0001 0.0001 0.0001

Range of λ for DP - - [0.2,0.3,0.4,0.5,0.6] [0.2,0.3,0.4,0.5] [0.2,0.3,0.4,0.5,0.6]

β for DP - - - - 0.01

Range of λ for EO - - [0.1,0.4,0.7,1.0] [0.1,0.4,0.7,1.0] [0.1,0.4,0.7,1.0]

β for EO - - - - 0.01

Credit Dataset. The parameter setting of the Credit Dataset is shown in Table 4. We follow the settings in (Zhang et al.,
2020c) for data preprocessing. We use Adam as the learning optimizer and the batch size is set as 400 for the DP metric and
500 for the EO metric.

Table 4: Setting for Credit Dataset.

w.o.FairReg w.o.FairReg - OverSample FairReg(*, noAug) FairReg(*, Aug) DRAlign

Training Epochs for DP 20 20 20 20 20

Training Epochs for EO 20 20 20 20 20

Learning rate 0.001 0.001 0.001 0.001 0.001

Range of λ for DP - - [0.2,0.8,1.0] [0.2,0.4,0.8,2.0] [1.0,2.0,3.0]

β for DP - - - - 0.005

Range of λ for EO - - [0.2,0.4,0.6,0.8] [0.2,0.4,0.8,1.0] [0.8,1.0,2.0]

β for EO - - - - 0.01

13



FAIRER: Fairness as Decision Rationale Alignment

Algorithm 2 Gradient-guided Parity Alignment for The EO Metric

Input: Network F with parametersW = {w0, . . . , wK}, epoch index set E , training data D, batch size B, network layers
L, neurons in the lth layer Kl, hyper-parameters λ and β, learning rate η
for e ∈ E do

// Sampling B samples from subgroups in D
[X00,Y00] = Sample(D, a=0, y=0, B);
[X01,Y01] = Sample(D, a=0, y=1, B);
[X10,Y10] = Sample(D, a=1, y=0, B);
[X11,Y11] = Sample(D, a=1, y=1, B);
// Calculating loss and updating the model
Lc = Lcls(F(X00),Y00)) + Lcls(F(X01),Y01) + Lcls(F(X10),Y10)) + Lcls(F(X11),Y11);
Lfair = ∆EO(F,X00,X01,X10,X11)
for l ∈ L do

for k ∈ Kl do
ga=0,y=0
k = ∂(Lcls(F(X00),Y00))

∂wk
;

ga=1,y=0
k = ∂(Lcls(F(X10),Y10))

∂wk
;

ga=0,y=1
k = ∂(Lcls(F(X01),Y01))

∂wk
;

ga=1,y=1
k = ∂(Lcls(F(X11),Y11))

∂wk
;

ĉa=0,y=0
k = (ga=0,y=0

k · wk)
2;

ĉa=1,y=0
k = (ga=1,y=0

k · wk)
2;

ĉa=0,y=1
k = (ga=0,y=1

k · wk)
2;

ĉa=1,y=1
k = (ga=1,y=1

k · wk)
2;

end for
c⃗a=0,y=0
l = [ĉa=0,y=0

0 , ĉa=0,y=0
1 , ..., ĉa=0,y=0

Kl
];

c⃗a=1,y=0
l = [ĉa=1,y=0

0 , ĉa=1,y=0
1 , ..., ĉa=1,y=0

Kl
];

c⃗a=0,y=1
l = [ĉa=0,y=1

0 , ĉa=0,y=1
1 , ..., ĉa=0,y=1

Kl
];

c⃗a=1,y=1
l = [ĉa=1,y=1

0 , ĉa=1,y=1
1 , ..., ĉa=1,y=1

Kl
];

LdF
= −

∑L
l=0 cos(⃗c

a=0,y=0
l , c⃗a=1,y=0

l ) +
∑L

l=0 cos(⃗c
a=0,y=1
l , c⃗a=1,y=1

l );
L = Lc + λLfair + βLdF

;
w ← w − η∇wL,∀w ∈ W.

end for
end for

In our paper, we did a rough search for the hyper-parameter β. Taking CelebA dataset as an example, we mainly search β
value in the range 0.001, 0.01, 0.1. When β is set as 0.001, the training process is close to that of FairReg, which means that
our decision rationale alignment item is ignored in the training because β is too small. When β is 0.1, the training process
will optimize the decision rationale alignment first and cause a detrimental influence on the optimization of other loss items.
We finally choose 0.01 as the β value. We have found that the training process is stable with a proper β setting. We train the
models for the CelebA dataset from scratch.

In our paper, we mainly consider the parameters of multiplicative weights (neurons/filters) in the convolution layers and the
linear layers, because we focus on the decision rationale which could be defined by the influence of neuron/filter/parameter
that is usually regarded as a semantic unit. We did not consider the biases parameters and the parameters in BN layers.

A.2. Algorithm of DRAlign When Training under The EO Metric

The training algorithm for EO metric is shown in Algorithm 2.
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A.3. More Experimental Results

A.3.1. CLASSIFICATION FOR ATTRACTIVE ATTRIBUTE

In our paper, on the CelebA dataset, we show the results of predicting wavy hair attribute. Here, we also show the results of
classifying attractive attribute adopting AlexNet. For better observation, we show our results in Table 5. We find that our
method outperforms FairReg(noAug) both in AP and in the fairness metric.

Table 5: Comparison between DRAlign(ours) and FairReg(*, noAug) when classifying attractive attribute.

−DP −EO
λ = 0.1 λ = 0.2 λ = 0.3 λ = 0.1 λ = 0.4 λ = 1.0

APDRAlign 0.8956 0.8895 0.8783 0.8760 0.8735 0.8717

FairnessDRAlign -0.3196 -0.2727 -0.2126 -0.0520 -0.0337 -0.0243

APFairReg(∗,noAug) 0.8942 0.8873 0.8807 0.8733 0.8707 0.8681

FairnessFairReg(∗,noAug) −0.3305 −0.2819 −0.2377 −0.0533 −0.0374 −0.0273

A.3.2. CLASSIFICATION FOR WAVY HAIR BASED ON RESNET-18

In our algorithm, we expect to reduce the parity score for all layers. However, for some larger architectures such as
ResNet-18, it is relatively difficult to optimize all layers. To address such a problem, we here only align the last two layers.
We find that only aligning the last two layers could also improve fairness. The loss function is revised as follows:

L = E(x,y)∼P (Lcls(F(x), y)) + λLfair(F)− β

L∑
l=L−1

cos(⃗ca=0
l , c⃗a=1

l ), (10)

The experimental results are shown in Table 6.

Table 6: Comparison between DRAlign(ours) and FairReg(*, noAug) when classifying Wavy hair attribute using ResNet-18.

−DP −EO
λ = 0.1 λ = 5.0 λ = 10.0 λ = 0.2 λ = 5.0 λ = 10.0

APDRAlign 0.8578 0.8385 0.8179 0.8212 0.7965 0.7703

FairnessDRAlign -0.3011 -0.2723 -0.2481 -0.1294 -0.0495 -0.0446

APFairReg(∗,noAug) 0.8506 0.8355 0.8123 0.8063 0.7857 0.7560

FairnessFairReg(∗,noAug) −0.3063 −0.2795 −0.2552 −0.1832 −0.0498 −0.0494

A.4. Connection With Over-parameterization under EO Metric

We here analyze the connection between decision rationale alignment and over-parameterization under EO metric. We show
the results on the Adult dataset adopting 3-layer MLP models. The maximum alignment score is 6.0. Here we also conclude
that over-parameterization might prevent the alignment of decision rationale and stricter fairness regularizations require
fairer decision rationale.

A.5. Training Time Estimation

We here show the time consumption of different methods on the Adult dataset, CelebA dataset, and Credit dataset in Table
8, Table 9 and Table 10 respectively. Please be noted that the FairReg(*,Aug) method also requires the calculation of a
second-order derivative. Moreover, as a method based on data augmentation, the FairReg(*,Aug) method requires more time
to converge.
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Table 7: Connection between decision rationale similarity and over-parameterization under EO metric.

λ = 0.5 λ = 0.8 λ = 1.0 λ = 2.0 λ = 3.0

FairReg(∆EO,noAug), (c10) 6.0 6.0 6.0 6.0 6.0

FairReg(∆EO,noAug), (c20) 5.7 5.7 5.8 6.0 6.0

FairReg(∆EO,noAug), (c50) 5.6 5.7 5.8 6.0 6.0

FairReg(∆EO,noAug), (c200) 5.6 5.7 5.8 5.9 6.0

FairReg(∆EO,Aug), (c10) 6.0 6.0 6.0 6.0 6.0

FairReg(∆EO,Aug), (c20) 6.0 6.0 6.0 6.0 6.0

FairReg(∆EO,Aug), (c50) 5.9 6.0 6.0 6.0 6.0

FairReg(∆EO,Aug), (c200) 5.7 5.9 6.0 6.0 6.0

Table 8: Training time estimation when training with Adult dataset under the DP and EO metric.

w.o.FairReg w.o.FairReg - OverSample FairReg(*,noAug) FairReg(*,Aug) DRAlign

DP 8.2s 10.1s 10.5s 14.7s 14.5s

EO 12.5s 14.6s 15.0s 33.2s 30.1s

A.6. The AP Values of Various Model Architectures

Table 11 show the AP values of different model architectures. The model is chosen according to the performance on the
validation dataset. We can see that larger models are prone to have higher APs.

A.7. Connection With Human Society

Our main idea is similar to human society where people are not only focusing on the outcome justice (Tyler, 2000) (e.g.,
fairness in the decision results) but pay increasing attention to the procedural justice (Tyler, 2003) (e.g., fairness in the
decision rationale). The regularization method to improve fairness can be deemed as achieving the outcome justice directly.
Our experiments/analysis show that procedural justice might be easily violated in DNN models. We propose decision
rationale alignment to further achieve the procedural justice and improve fairness.

A.8. Combination With Data Augmentation

The data augmentation and our decision rationale alignment are two independent ways to enhance fairness. From Fig. 3
(main paper), we can see that on the Credit dataset, FairReg(∆DP, Aug) achieves better results than DRAlign under the DP
metric. Intuitively, we can combine the two solutions straightforwardly. For example, we can replace the second term in
Eq.(6) (main paper) (i.e., Lfair) with the data augmentation-embedded term (See (Chuang & Mroueh, 2021) for more details)
and have a new formulation of Eq.(6) (main paper).

L = E(x,y)∼P (Lcls(F(x), y)) + λLaug(F) + β

K∑
k=0

dk, (11)

We denote the above method for DP regularization as DRAlign(∆DP,Aug). We evaluate this version and compare it to
the method without augmentation (i.e., DRAlign(∆DP) on the Credit dataset. We see that: the fairness score (i.e., -DP)
increases from -0.0169 to -0.0155 while the average precision (AP) also increases from 0.877 to 0.881, which further
demonstrates the scalability of our method.

A.9. Decision Rationale Alignment Without The Fairness Regularization.
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Table 9: Training time estimation when training with CelebA dataset and AlexNet under the DP and EO metric.

w.o.FairReg w.o.FairReg - OverSample FairReg(*,noAug) FairReg(*,Aug) DRAlign

DP 611.3s 725.2s 811.6s 1995.3s 1397.8s

EO 661.8s 761.8s 865.8s 3640.8s 3278.2s

Table 10: Training time estimation when training with Credit dataset under the DP and EO metric.

w.o.FairReg w.o.FairReg - OverSample FairReg(*,noAug) FairReg(*,Aug) DRAlign

DP 6.1s 8.6s 8.7s 12.5s 12.1s

EO 8.5s 10.7s 11.1s 13.5s 13.0s

Figure 5: Accuracy and fairness comparison of five different methods on the Adult
dataset. The hyperparameter λ increases from 0.2 to 0.6 along the −DP axis as it
becomes larger.

We find that the alignment itself could still slightly
improve fairness when fairness regularization is re-
moved. Specifically, we remove the Lfair term in
Eq.(6) (main paper) and retain the classification loss
and the decision rationale alignment loss and com-
pare the results of the two loss functions L = Lcls

and L = Lcls + LDRA. We denote this version as
w.o.FairReg-DRAlign. From Fig. 5 we can see that:
compared with the model only trained with the classifi-
cation loss (i.e., w.o.FairReg, w.o.FairReg - Oversample),
w.o.FairReg-DRAlign increases the experimental results
(AP, -DP) from (0.776, -0.16 ) to (0.781, -0.14). The re-
sults are consistent with our observation that our decision
rationale alignment method could further improve fair-
ness and demonstrate that decision rationale alignment is
actually a favorable supplement for existing fairness regularization terms.

A.10. The T-Test Results to Show The Significant Fairness Improvement

We showcase our results are statistically significant via t-test (regarding FairReg(∆DP,noAug) and DRAlign under the DP
metric on the Adult dataset and the CelebA dataset in Table 12 and Table 13. We can see that under all parameter settings,
the p-values < 0.05. This means that our results are statistically significant. Note that, our method not only improves the
model performance in fairness but also improves the model accuracy. Taking both AP values and fairness performance into
consideration, our DRAlign outperforms other methods saliently.

A.11. Experiments on More Fairness Measures

we further evaluate and compare our method with FairReg methods on the third popular metric Equality of Opportunity
(EOP), and Predictive Parity (PP). Specifically, we adopt the EOP definition in (Wang et al., 2022), and the PP definition in
(Garg et al., 2020).

EOP = TPRa=0/TPRa=1 = P (ŷ = 1|a = 0, y = 1)/P (ŷ = 1|a = 1, y = 1)

PP = |p(y = 1|a = 0, ŷ = 1)− p(y = 1|a = 1, ŷ = 1)|.

Under the above definition, EOP close to 1 and PP close to 0 indicate fair classification results. We carefully modify the
FairReg method for the EOP and PP metrics.

Lfair,EOP = ∆EOP(F ) = Ex∼P 1
0
(F (x))− Ex∼P 1

1
(F (x)),
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Table 11: The AP Values of Different Model Architectures.

λ = 0 λ = 0.1 λ = 0.2 λ = 0.3 λ = 0.4 λ = 0.5 λ = 0.6 λ = 0.7

c10 0.781 0.780 0.776 0.768 0.758 0.745 0.731 0.729

c20 0.782 0.780 0.777 0.768 0.757 0.743 0.734 0.728

c50 0.783 0.781 0.776 0.769 0.758 0.741 0.737 0.730

c200 0.784 0.781 0.777 0.769 0.760 0.744 0.744 0.738

Table 12: T-test results for FairReg(∆DP,noAug) and our DRAlign method on the Adult Dataset.

λ = 0.2 λ = 0.3 λ = 0.4 λ = 0.5

P Value (Adult) 1.19e-05 3.74e-05 0.011 0.027

Lfair,PP = ∆PP(F ) =
Ex∼P 0

0
(F (x)) ∗N0

0 ) + (Ex∼P 1
0
(F (x)) ∗N1

0 )

N0
0 +N1

0

−
Ex∼P 0

1
(F (x)) ∗N0

1 ) + (Ex∼P 1
1
(F (x)) ∗N1

1 )

N0
1 +N1

1

,

N0
0 , N1

0 , N0
1 , N1

1 are the sample numbers of subgroups D00, D01, D10, and D11, which satisfy the following attribute and
category conditions: a=0,y=0, a=0,y=1,a=1,y=0,a=1,y=1 in the batch of data. The sampling methods of FairReg(∆ EOP,
noAug) and FairReg(∆ PP, noAug) follow those of FairReg(∆ EO, noAug). For the EOP metric, we align the decision
rationales between subgroups a=0,y=1 and a=1,y=1. For the PP metric, we align the decision rationales of (D00, D10) and
the decision rationales of (D01,D11).

We showcase the experimental results here (the report averages over 10 times). The models evaluated on the EOP metrics
are trained for 20 epochs. λ is set as in range {0.03,0.1,0.5} and β is set as λ/10. The models evaluated on the EOP metrics
are trained for 5 epochs. λ is set as in range {0.07,0.09,0.1}. From the Table 14, we can see that our method DRAlign
consistently improves the fairness performance under the EOP and PP metrics, that is, our method could be extended to
EOP and PP.

A.12. Experiments on the COMPAS dataset

We further evaluate another widely-used dataset, i.e., COMPAS (Office). We train all the models in 5 epochs. The learning
rate is set as 0.001. For our method DRAlign, is set as β/10. From Table 15, we see that: our method consistently
outperforms all baseline methods, which is in line with the conclusion of our paper. For instance, when we set λ as 0.1,
DRAlign(∆DP) achieves higher AP (0.637) and -DP (-0.033) scores than the baseline methods. We will include the results
in our paper.

A.13. Independent assumption across neurons

The assumption of neuron independence is used to estimate the influence/importance of a group of neurons by calculating
the influence/importance of each individual neuron. In our work, the essential objective of decision rationale alignment
is to ensure that eliminating any random combination of neurons has the same influence on various subgroups. However,
evaluating the importance of all potential neuron combinations is impractical and computationally challenging due to the vast
search space for possible combinations of neurons. Therefore, we assume that neurons are independent, which enables us to
estimate the influence of any neuron combination by summing the individual impacts of each neuron in the combination.
This assumption can be viewed as a "greedy" approximation strategy to assess the influence of arbitrary neuron combinations
(Molchanov et al., 2016; 2019). Note that the independence assumption doesn’t limit our method to networks with all
independent neurons. Instead, it is an approximation to align the influence of any neuron combination in regular networks.

Note that, the neuron independence assumption has been widely used in previous works (Molchanov et al., 2016; 2019) to
achieve the approximation to evaluate the influence of a group of neurons.
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Table 13: T-test results for FairReg(∆DP,noAug) and our DRAlign method on the CelebA dataset.

λ = 0.2 λ = 0.3 λ = 0.4 λ = 0.5

P Value (CelebA) 0.017 0.018 0.003 0.002

Table 14: Comparison between DRAlign(ours) and FairReg(*, noAug) under the EOP metric and the PP metric.

Equality of Opportunity Predictive Parity

APDRAlign 0.7787 0.7737 0.7597 APDRAlign 0.7854 0.7852 0.7839

EOPDRAlign 0.9494 0.9510 0.9692 PPDRAlign 0.0219 0.0186 0.0175

APFairReg(∆EOP,noAug) 0.7769 0.7695 0.7552 APFairReg(∆PP,noAug) 0.7852 0.7845 0.7840

EOPFairReg(∆EOP,noAug) 0.9411 0.9456 0.9606 PPFairReg(∆PP,noAug) 0.0276 0.0246 0.0205

A.14. Comparing pre-processing and post-processing techniques

We further add experiments to compare our method with a pre-processing method which adjusts the inputs to be uncorrelated
with the sensitive attribute in each iteration. This method achieves a -DP value of -0.086 and an AP value of 0.761. We test
the parity score of the trained model and find it to be 0.43, which is smaller than the parity score of 0.624 obtained through
standard training. This observation is consistent with our conclusion drawn using the FairReg(*,noAug) method and shows
that the pre-processing method could also implicitly lead to lower neuron/parameter parity scores.

However, it should be noted that post-processing techniques only modify the outputs of the trained model and do not alter
the model itself. Therefore, the post-processing methods could be regarded as aligning the neuron/parameter of the last
layer while neglecting the alignment of the middle neurons/parameters. Thus, with these observations, we can regard the
misalignment as a fundamental reason for unfairness.

Table 15: Experimental results on the COMPAS dataset.

Method Method
Van AP 0.649 Van AP 0.643

-DP -0.245 -EO -0.442
Oversampling AP 0.636 Oversampling AP 0.65

-DP -0.189 -EO -0.102
FairReg(DP,noAug) lam 0.05 0.1 0.3 FariReg(EO,noAug) lam 0.02 0.03 0.05

AP 0.637 0.635 0.634 AP 0.647 0.646 0.646
-DP -0.117 -0.055 -0.015 -EO -0.045 -0.044 -0.034

FairReg(DP,Aug) lam 0.02 0.04 0.05 FairReg(EO, Aug) lam 0.02 0.03 0.05
AP 0.638 0.637 0.636 AP 0.648 0.647 0.644
-EO -0.145 -0.122 -0.105 -EO 0.07 0.06 0.032

DRAlign lam 0.05 0.1 0.3 DRAlign lam 0.02 0.03 0.05
AP 0.639 0.637 0.635 AP 0.649 0.647 0.646
-DP -0.104 -0.033 -0.008 -EO -0.044 -0.039 -0.032
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