
RACE: Improve Multi-Agent Reinforcement Learning with Representation
Asymmetry and Collaborative Evolution

Pengyi Li 1 Jianye Hao 1 Hongyao Tang 1 Yan Zheng 1 Xian Fu 1

Abstract
Multi-Agent Reinforcement Learning (MARL)
has demonstrated its effectiveness in learning col-
laboration, but it often struggles with low-quality
reward signals and high non-stationarity. In con-
trast, Evolutionary Algorithm (EA) has shown bet-
ter convergence, robustness, and signal quality in-
sensitivity. This paper introduces a hybrid frame-
work, Representation Asymmetry and Collabora-
tion Evolution (RACE), which combines EA and
MARL for efficient collaboration. RACE main-
tains a MARL team and a population of EA teams.
To enable efficient knowledge sharing and policy
exploration, RACE decomposes the policies of
different teams controlling the same agent into a
shared nonlinear observation representation en-
coder and individual linear policy representations.
To address the partial observation issue, we intro-
duce Value-Aware Mutual Information Maximiza-
tion to enhance the shared representation with use-
ful information about superior global states. To
facilitate coordination, EA evolves the population
using novel agent-level crossover and mutation
operators, offering diverse experiences for MARL.
Concurrently, MARL optimizes its policies and
injects them into the population for evolution. The
experiments on challenging continuous and dis-
crete tasks demonstrate that RACE significantly
improves the basic algorithms, consistently out-
performing other algorithms. Our code is avail-
able at https://github.com/yeshenpy/RACE.

1. Introduction
Multi-Agent Reinforcement Learning (MARL) has emerged
as a powerful approach for tackling complex real-world
problems across various domains, such as robot control (Jo-

1College of Intelligence and Computing, Tianjin University,
China. Correspondence to: Jianye Hao <jianye.hao@tju.edu.cn>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

hannink et al., 2019; Yuan et al., 2023), game AI (Vinyals
et al., 2019; HAO et al., 2023b), and transportation (Li et al.,
2019; Ni et al., 2021). In MARL, individual agents interact
with the environment and with each other, collecting sam-
ples and receiving reward signals to evaluate their decisions.
By leveraging value function approximation, MARL opti-
mizes policies through gradient updates. However, the re-
ward signals are often of low quality (e.g., deceptive, sparse,
delayed, and team-level), making it challenging to obtain ac-
curate value estimates (Yang et al., 2020a;b). Consequently,
the gradient-based optimization approach may struggle to
efficiently explore the multi-agent policy space and facili-
tate collaboration (Christianos et al., 2020; Li et al., 2022).
Furthermore, MARL algorithms suffer from the problem
of non-stationarity (Papoudakis et al., 2019), as the agents
learn concurrently and continuously influence each other,
breaking the Markov assumption on which most single-
agent RL algorithms are based (Majid et al., 2021). To
address this, the Centralized Training with Decentralized
Execution (CTDE) (Lowe et al., 2017) paradigm has been
proposed. During centralized training, agents can access to
other agents’ information and the global state, while during
decentralized execution, agents execute decisions indepen-
dently based on their individual policies. However, the
non-stationarity problem persists, especially when agents
only have partial observations of their environment, making
policy optimization even more challenging. These issues
pose significant hurdles to MARL in effectively learning
collaboration (Majid et al., 2021; Papoudakis et al., 2019).

Evolutionary Algorithm (EA) (Bäck & Schwefel, 1993;
Gomez et al., 2006) simulates the natural process of ge-
netic evolution and does not rely on gradient information
for policy optimization, which has been demonstrated to
be competitive with RL (Salimans et al., 2017) in single-
agent settings. Unlike RL which typically maintains only
one policy, EA maintains a population of individuals and
performs iterative evolution according to policy fitness. EA
possesses several key strengths: 1) EA does not require
RL value function approximation and directly evolves indi-
viduals within the population according to fitness, i.e., the
cumulative rewards. This makes EA more robust to reward
signals (Sigaud, 2022; Khadka & Tumer, 2018). 2) EA is
not reliant on the Markov property in problem formulation

1

https://github.com/yeshenpy/RACE

RACE: Improve Multi-Agent Reinforcement Learning with Representation Asymmetry and Collaborative Evolution

and evolves policies from the team perspective, thereby cir-
cumventing the non-stationarity problem encountered in
MARL (Majid et al., 2021). 3) EA has strong exploration
ability, good robustness, and stable convergence (Sigaud,
2022).

As described above, EA offers numerous strengths that can
complement the weaknesses of MARL. However, the ef-
ficient integration of both approaches in complex multi-
agent collaborative tasks has not been thoroughly investi-
gated. To this end, we propose a novel framework called
Representation Asymmetry and Collaborative Evolution
(RACE), which combines EA with MARL to achieve effi-
cient collaboration. RACE introduces an additional popu-
lation of teams alongside the MARL team. However, in-
dependently maintaining and optimizing each team’s pol-
icy is highly inefficient, as it fails to leverage the valuable
knowledge acquired by other teams. Moreover, exploring
collaboration in a vast nonlinear policy space is also ineffi-
cient. To address these challenges, we propose a two-level
team policy construction, which decomposes the policies of
different teams controlling the same agent into a nonlinear
shared observation representation encoder and independent
linear policy representations. We refer to the different repre-
sentation scopes of the policy construction as representation
asymmetry. The observation representation encoder, respon-
sible for sharing the task-related and collaboration-related
knowledge, is optimized using an integrated update direc-
tion derived from value function maximization involving all
the EA teams and the MARL team collectively.

However, relying solely on value information is inadequate
for efficient representation due to the issue of partial observ-
ability. To address the problem, RACE maximizes the cor-
relation, i.e., Mutual information (MI), between the shared
observation representations and the global states. However,
maximizing in inferior states (i.e., states with low values)
may induce negative influences on shared representations
from poorly coordinated global information, resulting in
suboptimal collaborations (Li et al., 2022). To overcome
this limitation, we propose Value-Aware MI Maximization,
which incorporates the normalized state values as weights to
extract the superior global state information into shared ob-
servation representations. Building upon the useful knowl-
edge conveyed by the shared observation representation,
each team can be viewed as a collection of policy represen-
tations and searches for superior collaboration within the
linear policy representation space rather than in the non-
linear parameter space as the convention does. Within the
more compact and favorable linear space, policies explore
more efficiently, thus facilitating collaboration.

Furthermore, RACE synergistically combines the strengths
of EA and MARL by leveraging their respective advan-
tages. Specifically, EA evolves populations and generates

diverse experiences, which are then utilized by MARL. Con-
versely, the MARL team is optimized based on collected
samples and periodically incorporated into the population
for evolution. To facilitate efficient evolution, we introduce
the agent-level crossover and mutation. The agent-level
crossover only exchanges the corresponding individual pol-
icy representations in the two selected teams, enabling the
exploration of better team composition. The agent-level
mutation perturbs the policy representation for the specific
agent in the team, driving the discovery of better individual
policies for agent control. Finally, we evaluate RACE on
16 challenging tasks, comprising both complex continuous
control and discrete micromanipulation scenarios. The ex-
periment results demonstrate that RACE can significantly
improve the basic MARL methods and outperform other
baselines in various challenging tasks. Notably, our work
demonstrates, for the first time, that EA has the capability
to significantly enhance MARL performance in complex
collaborative tasks.

2. Background
2.1. Preliminaries

We consider a fully cooperative multi-agent task where a
team of agents operates in a stochastic, partially observ-
able environment. The task can be modeled as a decentral-
ized partially observable Markov decision process (Dec-
POMDP) (Oliehoek & Amato, 2016), which is defined as
a tuple: ⟨N ,S,U ,O, T ,R, γ⟩. Here, N = {1, · · · , N}
denotes the set of N agents. In a Dec-POMDP, the com-
plete state of the environment st ∈ S is not directly ob-
servable to the agents at each time step t. Instead, each
agent i ∈ N can only observe its individual observation
oit ∼ O(st, i). Each agent i uses a stochastic policy πi to
select actions uit ∼ πi(·|oit) ∈ U i, resulting in a joint action
ut = {uit}Ni=1 ∈ U . After executing the joint action ut in
state st, the environment transitions to the next state st+1 ac-
cording to the transition function T (st, ut), and the policies
receive a team reward rt from the reward function R(st, ut),
γ ∈ [0, 1) is a discount factor. We denote the joint policy as
π = {π1, · · · , πN} ∈ Π, where Π is the joint policy space.
In cooperative MARL, the collaborative team aims to find
a joint policy that maximizes the total expected discounted
return, denoted as J(π) = Eπ [

∑∞
t=0 γ

trt]. For instance,
MADDPG (Lowe et al., 2017) and MATD3 (Ackermann
et al., 2019) learn a centralized value function Qψ(st, ut) to
optimize decentralized policies using Q-value maximization.
To evaluate the contributions of individual policies to the
team, QMIX (Rashid et al., 2018) and FACMAC (Peng et al.,
2021) maintain a factored value function Qtot(st, {Qi}Ni=1)
for credit assignment.

In addition, we adopt the Policy-extended Value Function
Approximator (Tang et al., 2020) (PeVFA) in RACE to pre-

2

RACE: Improve Multi-Agent Reinforcement Learning with Representation Asymmetry and Collaborative Evolution

serve the values of multiple policies using a single value
function. PeVFA, parameterized by θ, incorporates the pol-
icy representation χπ as an additional input, resulting in the
form Qθ(s, u, χπ). By explicitly including the policy repre-
sentation χπ , PeVFA exhibits an appealing characteristic of
value generalization across policies within the policy space.

Evolutionary Algorithm (EA) (Bäck & Schwefel, 1993;
Gomez et al., 2006) is a class of population-based gradient-
free optimization methods. In EA, a population of poli-
cies P = {π1, · · · , πn} is maintained, and policy search
is performed iteratively. During each iteration, all poli-
cies interact with the environment, obtaining their fitness,
denoted as {f(π1), · · · , f(πn)}. The fitness is typically
defined as the average Monte Carlo (MC) return over e
episodes, formalized as f(πi) = 1

e

∑e
i=1[

∑T
t=0 rt | πi].

Subsequently, the population is improved based on fitness
using various EAs, including Genetic Algorithm (GA) and
Evolutionary Strategy (ES). Taking GA as an example, the
next generation is produced by selecting parents from the
population based on some selection criteria (e.g., selecting
individuals with high fitness) and applying crossover and
mutation operators. Specifically, parents πi and πj generate
offspring π′

i and π′
j using the crossover operator, denoted as

π′
i, π

′
j = Crossover(πi, πj), or using the mutation oper-

ator, denoted as π′
i = Mutation(πi). General crossover

and mutation operate on policy parameters, such as the
k-point crossover that randomly exchanges segment-wise
(network) parameters between parents, and Gaussian mu-
tation that adds Gaussian noise to the parameters. In this
paper, we utilize GA for subsequent research.

2.2. Related Work

Centralized Training & Decentralized Execution (Lowe
et al., 2017; Liu et al., 2022; 2023) (CTDE) is a widely
adopted paradigm in MARL that offers improved scalability
and deployability. During the training phase, agents can
utilize global information for optimization. During the ex-
ecution phase, agents make individual decisions based on
their policies. For instance, MADDPG (Lowe et al., 2017)
and MATD3 (Ackermann et al., 2019) employ a centralized
value function to optimize decentralized policies. Other
approaches such as VDN (Sunehag et al., 2018), QMIX
(Rashid et al., 2018), and FACMAC (Peng et al., 2021)
achieve value function factorization under CTDE. In this pa-
per, our focus is on investigating whether RACE can further
enhance the performance of MARL in complex collabora-
tive tasks. We select MATD3 and FACMAC as representa-
tive algorithms for our evaluation.

Evolutionary Reinforcement Learning (ERL) (Khadka
& Tumer, 2018) is a hybrid method thats combine GA and
DDPG (Lillicrap et al., 2016) for policy optimization. EA
and RL simultaneously optimize the ultimate objective. In

the concurrent optimization process, EA provides diverse
experiences to the replay buffer for RL optimization. If the
RL policy is superior to the individuals of the population,
it is injected into the population to dictate the direction of
population evolution, if it is inferior, it is eliminated. This
hybrid approach is more capable of exploration, conver-
gence, and robustness than RL algorithms, and is less sensi-
tive to sparse, deceptive, and delayed rewards. Subsequent
works (Pourchot & Sigaud, 2019; Bodnar et al., 2020; HAO
et al., 2023a) have built upon the foundational framework of
ERL and further improved its performance in single-agent
settings. Notably, ERL-Re2 (HAO et al., 2023a) addresses
the inefficiency of maintaining population individuals sep-
arately by decomposing the population policy into shared
state representation and linear policy representation. This
decomposition promotes knowledge sharing among the pop-
ulation and has achieved state-of-the-art performance in
benchmark MuJoCo tasks. However, there remains a large
gap in multi-agent collaborative tasks.

Multi-Agent Evolutionary Reinforcement Learning
(MERL) (Majumdar et al., 2020) is a method that incor-
porates GA into MARL. It aims to enhance sample effi-
ciency by leveraging both sparse team rewards and dense
agent-specific rewards. The optimization process in MERL
involves two parts: GA maximizes the sparse team reward,
and MARL utilizes gradient optimization to maximize the
dense agent-specific rewards. However, the practical appli-
cation of MERL faces challenges due to the lack of agent-
specific rewards in many tasks. Furthermore, MERL is only
evaluated on some easy tasks such as Predator Prey and
the efficacy of MERL in solving complex control tasks and
micromanipulation tasks has not been thoroughly validated.

3. MARL with Representation Asymmetry
and Collaborative Evolution

This section introduces our framework Representation
Asymmetry and Collaborative Evolution (RACE). We begin
by introducing the concept of Representation Asymmetry
for team construction. Then, we detail how to learn the
shared observation representation encoders. Next, we de-
scribe how to improve MARL with Collaborative Evolution.
Finally, we provide an overview of RACE.

3.1. Representation-Asymmetry Team Construction

Beyond the MARL team, RACE introduces a population of
teams. These teams learn collaboration through evolution
and reinforcement. Typically, each team maintains sepa-
rate policies for decision-making and optimization. How-
ever, this independent policy construction limits knowledge
sharing across teams and makes exploration in large policy
spaces inefficient. Inspired by ERL-Re2 (HAO et al., 2023a),
we propose Representation-Asymmetry Team Construction

3

RACE: Improve Multi-Agent Reinforcement Learning with Representation Asymmetry and Collaborative Evolution

𝒁𝝓𝟏

Population
Team nTeam 2Team 1

MARL
Team

𝒐𝒕
𝟏

𝒐𝒕
𝟐

𝒐𝒕
𝟑

Shared observation
representation

𝒁𝝓𝟐

𝒁𝝓𝟑

Samples

Team policy

Each agent control
one joint

𝑊1
1

𝑊1
1

𝑊2
1 𝑊n

1

𝑊1
2 𝑊𝑛

2𝑊2
2

𝑊1
3 𝑊2

3 𝑊𝑛
3

Figure 1. The conceptual illustration of Representation-Asymmetry Team Construction (RATC) on 3-Agent Hopper task. All policies
are composed of the nonlinear shared observation representation encoder Zϕi and an individual linear policy representation W i

j where
j denotes the team index and i denotes the policy index in the team. RACE maintains a population of teams (denoted by green, red,
and yellow) and a MARL team (grey). By sharing the observation representation encoders, each team is composed of multiple policy
representations (denoted by hexagon, square, and triangle). In the population, each row controls the same agent (joint) and each column
constructs the team policy representation Wj = {W i

j }Ni=1.

(RATC) to enable efficient knowledge sharing and policy
exploration. The illustration of RATC is shown in Fig. 1.
Specifically, the policies that control the same agent in dif-
ferent teams are composed of a shared nonlinear observation
representation encoder zit = Zϕi(o

i
t) ∈ Rd (given the ob-

servation oit of the agent i) and an individual linear policy
representation W i

j ∈ R(d+1)×|Ui|, where j denotes the team
index and i denotes the policy index in the team. The i-th
policies in all teams share the same observation represen-
tation encoder Zϕi

(oit) and make decisions by combining
the shared observation representation encoder and the pol-
icy representation. The decision-making process can be
described as follows:

πij(o
i
t) = act(Zϕi(o

i
t)

TW i
j,[1:d] +W i

j,[d+1]) ∈ R|Ui|,

where W i
j,[m(:n)] denotes the slice of matrix W i

j that con-
sists of row m (to n) and act(·) denotes the activation func-
tion. On the foundation of shared observation representa-
tions, only policy representations differ among teams. Thus
the team j can be defined as Wj = {W i

j}Ni=1 and makes
decisions by πj(st) = {π1

j (o
1
t), · · · , πNj (oNt)}. Intuitively,

we expect the shared observation representation encoders to
provide rich task-related and collaborative knowledge that
benefits all policies controlling the same agent. The shared
observation representation encoder determines a more com-
pact and favorable linear policy space for controlling the
agent i denoted by Π(ϕi), where we conduct evolution and
reinforcement. Formally, we summarize the construction of
individual, team, and population in RACE below:

Team j policy i:πij(o
i
t) = act(Zϕi(o

i
t)

TW i
j,[1:d] +W i

j,[d+1])

Team policy of team j:πj(st) = {π1
j (o

1
t), · · · , πNj (oNt)}

Construction of team j:Wj = {W 1
j ,W

2
j , · · · ,WN

j }
Team Population:P = {W1,W2, · · · ,Wn}

3.2. Shared Observation Representation Learning

Thanks to the team construction, all policies learn collab-
oration in the linear policy space Π(ϕi), which poses two
demands: (1) The shared observation representation encoder
Zϕi

should provide useful knowledge about collaboration
and tasks; (2) The knowledge is required to be beneficial
to all teams, not just one particular team. To achieve this,
we propose to learn the shared observation representation
encoders with value function maximization regarding the
corresponding policies in all teams. Specifically, we learn a
centralized Policy-extended Value Function Approximator
(PeVFA) (introduce in Section 2.1) Qθ(s, u,Wj) to esti-
mate the value for the team policy representations Wj ∼ P;
For the MARL team, the conventional centralized critic
Qψ(s, u) is maintained. The loss functions of Qθ and Qψ

are formulated below:

Lθ = ED

[
(r + γQθ′ (s′, πj(s′),Wj)−Qθ (s, u,Wj))

2
]
,

Lψ = ED

[
(r + γQψ′ (s′, π′

marl(s
′))−Qψ (s, u))

2
]
,

(1)
where Wj is sampled form P, s, u, r, s′ are sampled from
the experience buffer D collected by all teams, Qθ′ , Qψ′

denote the target networks of the PeVFA and the MARL
critic, respectively. π′

marl denote the target policies (actors).

For all teams, the individual update direction of the shared
encoder associated with a specific agent i can be obtained.
This is done by computing ∇ϕiQθ(s, πj(s),Wj) for any
Wj ∈ P or ∇ϕiQψ(s, πmarl(s)) through πj and πmarl re-
spectively. This is the value function maximization principle
where we adjust Zϕi

to induce superior policy (space) for
controlling the corresponding agents i. However, it is crucial
to ensure that the optimization direction of Zϕi

is beneficial
for all individuals in the team. Instead of relying solely on
individual update directions, it is necessary to integrate the

4

RACE: Improve Multi-Agent Reinforcement Learning with Representation Asymmetry and Collaborative Evolution

update directions from all teams. Therefore, the Value Func-
tion Maximization loss for shared observation representation
encoder is defined:

LVFM
ϕi

= −ED,P

[
Qψ (s, πmarl (s)) +Qθ (s, πj (s) ,Wj)

]
.

(2)
By minimizing Eq. 2, the shared observation representation
encoder Zϕi

is optimized towards a superior policy space
Πϕi about all policies that control the same agent iteratively.
In practice, it is feasible to maintain only one centralized
PeVFA for both MARL and EA teams, but to make RACE a
plug-and-play component, we maintain the original MARL
critic as the convention does, thus avoiding the performance
impact introduced by modifications to the value function.

However, only using the value information is inadequate
since most tasks in Multi-Agent systems are partially observ-
able, where agents can not access global information, and
thus non-stationarity throughout the execution and learning
phases is exacerbated. Thus we propose to maximize the
mutual information (MI) between the shared observation
representations zi = Zϕi

(oi) and global state s to make zi
reflect global information thus alleviating the problem of
partial observations. However, maximizing MI with inferior
states may induce a negative influence on shared observation
representations from the global information of poor collab-
oration, leading to suboptimality (Li et al., 2022). To this
end, we propose a novel Value-Aware MI Maximization to
extract the superior global information into zi. Specifically,
we first approximate the MI lower bound of representations
zi and states s by Mutual Information Neural Estimation
(MINE) (Belghazi et al., 2018) as follows:

I(zi; s) ≥ sup
ω∈Ω

EPSZi
[−sp (−Tω(st, zi,t))]− EPS⊗PZi

[sp (Tω(st, zi,k))]︸ ︷︷ ︸
Ilb(zi;s)

,

(3)
where zi,t is the shared observation representation of the
agent i at time t, PSZi is the joint probability distribution,
PS and PZi

are the marginals. Tω is a neural network
with parameters ω ∈ Ω, sp(z) = log(1 + exp(z)). We
can use the lower bound Ilb(zi, s) in Eq. 3 to approximate
the MI and maximize it to extract the global information
into zi. It is worth noting that Ilb(zi, s) is equivalent to
the expectation of It(zi,t, st) = −sp (−Tω1(st, zi,t)) −
EPS⊗PZi

[sp (Tω1
(st, zi,k))], thus It(zi,t, st) can be consid-

ered as the per-step signals of MI, which are then selectively
maximized to extract the superior states into zi. To achieve
the ultimate objective, we employ a value function Vζ(s)
that estimates the best return of state s on all teams. We
implement it by minimizing the following loss:

Lζ = Es∼D
[
(V (s)− F (s))

2
]
. (4)

F (s) should be defined as the maximum target value

of actions taken by all teams under s. To reduce com-
putational expenses, we approximate it by considering
only the maximum target value obtained from the ac-
tions taken by the MARL team and a randomly selected
team from the population. Thus F (s) can be defined as
r + max(Qψ′(s′, πmarl(s

′)),Qθ′ (s′, πj(s′),Wj)), where
Qψ′(s′, πmarl(s

′)) and Qθ′ (s′, πj(s′),Wj) can directly uti-
lize the intermediate results obtained during the optimization
of Eq. 1. Subsequently, we use the normalized values of
Vζ(s) as the weights of It . The loss of Value-Aware MI
Maximization can be defined as follows:

LVMM
ϕi

= −ED

 Vζ(st)− min
sj∼D

(Vζ(sj))

max
sj∼D

(Vζ(sj))− min
sj∼D

(Vζ(sj))
It(z

t
i , st)

.
(5)

Intuitively, the shared observation representations capture
more of the global information with high values rather than
the ones with low values by minimizing Eq. 5.

Finally, the loss function of Zϕi
is defined as:

Lϕi
= LVFM

ϕi
+ βLVMM

ϕi
, (6)

where β is the hyperparameter to balance the impact of
Value-Aware MI Maximization loss.

3.3. Improving MARL with Collaborative Evolution

Thanks to the Value Function Maximization and Value-
Aware MI Maximization, shared observation representations
not only provide the collaboration-related and task-related
knowledge to build favorable policy space for efficient ex-
ploration but also capture high-quality global information,
thus mitigating the challenges posed by partial observations.
Based on the shared observation representation encoder Zϕi

,
the policies of different teams controlling the same agents
optimize their policy representations more efficiently in the
linear policy space Π(ϕi) than in the original non-linear
policy space. In the following, we detail how to achieve
collaborative evolution in the linear policy space.

For evolution, RACE first evaluates n teams in the popula-
tion and selects the best-performing team as the elite team.
Then crossover and mutation are performed. For crossover,
two teams should be selected. The elite team serves as one
parent to produce offspring. The other parent is selected
by the tournament mechanism (Khadka & Tumer, 2018)
(filtering the best-performing team in 3 randomly selected
teams). Teams not selected as parents are replaced by the
offspring. Additionally, all non-elite teams have a certain
probability of mutation.

To achieve more efficient evolution, we design the agent-
level crossover and mutation for both team and individual
exploration. For team exploration, we randomly exchange
the individual policy representations that control the same

5

RACE: Improve Multi-Agent Reinforcement Learning with Representation Asymmetry and Collaborative Evolution

agent in the two selected teams, promoting the exploration
of better team compositions. For individual exploration, we
introduce random parameter perturbation to some policy
representations for the selected team, driving the discov-
ery of better individual policies for agent control. These
operations are formulated as follows:

W ′
i ,W

′
j = ((Wi −W di

i) ∪W di
j , (Wj −W

dj
j) ∪W

dj
i)

= Crossover(Wi,Wj),

W ′
j = (Wj −W

dj
j) ∪ P (W

dj
j) = Mutation(Wj),

where Wi and Wj are two selected teams, di, dj are the
randomly sampled subsets of agents indices {1, · · · , N},
and P is the perturbation function that adds Gaussian noise
to (or reset) certain parameters. We use W d to denote the
subset of the policy representations of the team with indices
d. Thanks to the agent-level operators, the population can
achieve more efficient and stable evolution, as well as more
intuitive semantic meaning on teams and individuals.

During the evolution process, populations efficiently explore
the policy space to develop collaboration policies. Addition-
ally, the samples generated throughout population evolution
can be utilized for training the MARL team. The learn-
ing process of the MARL team, denoted as Wmarl, follow
the standard policy optimization approach of MARL, with
two notable distinctions: 1) policy optimization occurs in a
linear policy space, 2) the optimization utilizes samples col-
lected by all teams. Taking MADDPG (Lowe et al., 2017)
as a representative example, the loss function for Wmarl is
defined below, based on the centralized critic Qψ (learned
using Eq. 1):

LMARL(Wmarl) = −Es∼D

[
Qψi

(s, πmarl(s))
]
, (7)

where D stores the off-policy experiences collected by both
the MARL team and the EA teams. Furthermore, at the end
of each iteration, the population incorporates the MARL
policy representation Wmarl for evolution. This reciprocal
interaction enables populations to provide high-quality sam-
ples to MARL for optimization, while MARL, in turn, offers
potentially superior policies to assist population evolution.

3.4. The Algorithm Framework of RACE

In principle, RACE is a general framework that can be imple-
mented with most MARL algorithms. In this paper, we em-
ploy MATD3 (Ackermann et al., 2019) and FACMAC (Peng
et al., 2021) as the fundamental MARL algorithms. The
general pseudo-code of RACE is presented in Algorithm
1. Each iteration of RACE consists of three distinct phases,
indicated in blue. First, each team of the population and
the MARL team interact with the environment and collect
experiences. The teams in the population P obtain the cu-
mulative rewards of one episode as the fitness for evolution

Algorithm 1: RACE
1 Initialize: Replay buffer D, the population size n, the team

size N , the shared observation representation encoders
Zϕ1 , · · · , ZϕN , the MARL team Wmarl, the population
P = {W1, · · · ,Wn}, a state value function Vζ , a MINE Tω
for each agent, the MARL centralized critic Qψ and the
centralized PeVFA Qθ (target networks are omitted here)

2 repeat
3 # Rollout both the teams in the population P and MARL

team with {Zϕ1 , · · · , ZϕN } and obtain the fitness
4 Rollout each team in P for one episode and evaluate its

fitness {f(W1), · · · , f(Wn)} by summing the
undiscounted reward f(Wi) =

∑T
t=0[rt | Wi]

5 Rollout the MARL team for one episode
6 Store the experiences generated by P and Wmarl to D
7 # Evolution and reinforcement in the linear policy space
8 Train Qθ , Qψ and Vζ with D ▷ see Eq. 1 and Eq. 4
9 Optimize the population: perform the genetic operators

(i.e., selection, crossover, and mutation)
10 Optimize the MARL policies: update Wmarl (by e.g.,

MADDPG, MATD3) according to Qψ ▷ see Eq. 7
11 Inject MARL team policy to the population P
12 # Optimize the shared representations {Zϕ1 , · · · , ZϕN }
13 Update the shared observation representation encoders

Zϕi with Value Function Maximization and
Value-Aware MI Maximization ▷ see Eq. 6

14 until reaching maximum training steps;

(Line 4-6). Subsequently, evolution and reinforcement occur
in the linear policy space provided by the currently shared
observation representation encoders {Zϕ1

, · · · , ZϕN
}. The

teams in the population P are optimized using genetic opera-
tors (Line 9). The MARL team learns from the experiences
collected by all teams and periodically injects policies to P
(Line 10-11). Finally, the shared observation representation
encoders are updated to enhance the policy space for the
next iteration (Line 13). Overall, we provide the technical
details of RACE and describe how it can be combined with
MARL algorithms.

4. Experiments
This section empirically evaluates RACE to answer the fol-
lowing research questions (1) RQ1: Can RACE improve
MARL and outperform the related baselines in complex
multi-agent cooperative tasks? (2) RQ2: Are the shared
observation representation encoders optimized by Eq. 6 ef-
ficient? Are the agent-level crossover and mutation more
efficient? (3) RQ3: How do the hyperparameters α and β
impact the performance of RACE?

4.1. Experimental Setups

For a comprehensive comparative study, we evaluate
RACE on tasks with both continuous and discrete action
spaces. For continuous tasks, we integrate RACE with
MATD3 (Ackermann et al., 2019) and evaluate it on eight

6

RACE: Improve Multi-Agent Reinforcement Learning with Representation Asymmetry and Collaborative Evolution

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

1000

2000

3000

4000

5000

6000

Un
di

sc
ou

nt
ed

 R
et

ur
n

2-Agent HalfCheetah

RACE
MERL
FACMAC
MATD3
EA

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

500

0

500

1000

1500

2000

2500

Un
di

sc
ou

nt
ed

 R
et

ur
n

6-Agent HalfCheetah

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

500

1000

1500

2000

2500

3000

Un
di

sc
ou

nt
ed

 R
et

ur
n

3-Agent Hopper

0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

800

1000

1200

1400

1600

Un
di

sc
ou

nt
ed

 R
et

ur
n

2-Agent Ant-v1

0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

800

1000

1200

1400

1600

1800

Un
di

sc
ou

nt
ed

 R
et

ur
n

2-Agent Ant-v2

0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

800

900

1000

1100

1200

1300

1400

Un
di

sc
ou

nt
ed

 R
et

ur
n

4-Agent Ant

0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

350

400

450

500

550

600

650

700

Un
di

sc
ou

nt
ed

 R
et

ur
n

2-Agent Humanoid

0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

100000

110000

120000

130000

140000

150000

160000

Un
di

sc
ou

nt
ed

 R
et

ur
n

2-Agent HumanoidStandup

Figure 2. Performance comparison between RACE and baselines in Multi-Agent MuJoCo (All in MATD3 version).

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 w
in

 %

2s_vs_1sc

RACE
MERL
FACMAC
EA

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time Steps (1e6)

0.0

0.2

0.4

0.6

0.8

Te
st

 w
in

 %

2c_vs_64zg

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time Steps (1e6)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Te
st

 w
in

 %

MMM2

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Te
st

 w
in

 %

MMM

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 w
in

 %

So_many_baneling

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time Steps (1e6)

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 w
in

 %

3s5z

0.2 0.4 0.6 0.8 1.0
Time Steps (1e6) 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 w
in

 %

2s3z

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 w
in

 %

3s_vs_3z

Figure 3. Test win rate comparison between RACE and baselines in SMAC (All in FACMAC version).

cooperative continuous control tasks from the Multi-Agent
MuJoCo benchmark (Peng et al., 2021). These tasks in-
volve controlling different joints of the robot with various
morphologies to complete tasks such as standing or walk-
ing. Each agent can only observe its own joint information.
For discrete tasks, we integrate RACE with FACMAC and
evaluate it in the StarCraft II micromanagement environ-
ments (Samvelyan et al., 2019) (SMAC), which feature high
control complexity and require learning policies in large dis-
crete action space. We compare RACE with the following
baselines: MATD3 (Ackermann et al., 2019), MERL (Ma-
jumdar et al., 2020), EA (Khadka & Tumer, 2018), and
FACMAC (Peng et al., 2021). We use the official implemen-
tation of these algorithms for comparison. MATD3 is an
extension of the official TD3 (Fujimoto et al., 2018) imple-
mentation in the CTDE framework. We implement RACE
on the official code of EA and basic MARL algorithms
while keeping the other hyperparameters and processes con-
sistent. We fine-tune all baselines to provide their best

performance. It is worth noting that since only one team
reward is available for these tasks, MERL cannot be directly
applied. Therefore, we optimize the team reward through
EA and MARL collectively in the MERL baseline.

To ensure statistical significance, we conduct 5 indepen-
dent runs with the same seeds from 1 to 5 and report
the average results with 95% confidence intervals. The
hyperparameters specific to RACE are set as follows:
the population size of 5 for all tasks, α selected from
{0.2, 0.5, 0.7, 1.0} for Multi-Agent MuJoCo, α selected
from {0.005, 0.005, 0.01, 0.05, 0.1} for SMAC, and β se-
lected from {0.1, 0.01, 0.001, 0.0001}. Further implemen-
tation details are provided in Appendix A.

4.2. Performance

To answer RQ1, our focus is on experimentally verifying
whether RACE can significantly enhance the performance
of MARL algorithms. We begin by integrating RACE with

7

RACE: Improve Multi-Agent Reinforcement Learning with Representation Asymmetry and Collaborative Evolution

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Time Steps (1e6)

0.0

0.2

0.4

0.6

0.8

Se
le

ct
io

n
Ra

te
Elite

Ant(4)
HalfCheetah(6)
Hopper(3)
Humanoid(2)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Time Steps (1e6)

0.2

0.3

0.4

0.5

0.6

0.7

Se
le

ct
io

n
Ra

te

Discarder

Figure 4. Elite rate and discarded rate on different tasks.

MATD3 (Ackermann et al., 2019) and evaluating its perfor-
mance (RACE (MATD3)) alongside other related baselines
in the Multi-Agent MuJoCo environment. The results shown
in Figure 2 demonstrate that RACE (represented in red) sig-
nificantly improves upon MATD3 (represented in black) and
outperforms other baselines in most tasks. These findings
clearly demonstrate the superiority of RACE in tackling
challenging continuous control tasks. Notably, our exper-
iments reveal that RACE consistently yields performance
gains as the number of agents increases from 2 to 6 on the
HalfCheetah task and 2 to 4 on the Ant task.

To further assess the generality of RACE, we integrate it
with FACMAC (Peng et al., 2021) and evaluate its perfor-
mance (RACE (FACMAC)) in SMAC. The results depicted
in Fig.3 indicate that RACE (represented in red) can further
enhance FACMAC (represented in black) and outperform
other baselines. Specifically, RACE exhibits faster con-
vergence and achieves higher performance. Overall, these
experiments highlight RACE as an efficient framework that
can be seamlessly integrated with multiple MARL algo-
rithms, offering substantial improvements in both challeng-
ing continuous and discrete tasks.

To investigate the impact of EA and MARL on collabo-
ration, we analyze the elite rate and discarded rate of the
MARL team within the population, as depicted in Figure 4.
We observe that, in most environments, both the elite rate
and discarded rate hover around 40%. Notably, the teams
maintained by EA are more likely to be selected as the elite
compared to those guided solely by Reinforcement Learning
(RL). This finding underscores the vital role played by EA in
exploring efficient collaboration. However, on the 4-Agent
Ant task, MARL achieves a higher elite rate and lower dis-
carded rate, indicating that MARL assumes a leading role
while EA plays a supporting role in this scenario.

4.3. Analysis of Components and Hyperparameter

To answer RQ2, we study whether jointly optimizing the
shared observation representation encoders with Value Func-
tion Maximization (VFM) and Value-Aware MI Maximiza-
tion (VMM) yields better results compared to optimizing
them individually. Additionally, we investigate whether
only maximizing Qψ (MARL) or maximizing Qθ (EA) is

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time Steps (1e6)

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 w
in

 %

3s5z

RACE
RACE w/o VFM loss
RACE w/o Considering MARL
RACE w/o Considering EA
RACE w/o VMM loss
FACMAC

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time Steps (1e6)

0.0

0.2

0.4

0.6

0.8

Te
st

 w
in

 %

MMM2

Figure 5. Experiments about how to update the shared observa-
tion representation encoders. RACE w/o Considering MARL/EA
means only maximizing Qθ/Qψ in VFM.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time Steps (1e6)

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 w
in

 %

3s5z

RACE
RACE w/ Normal Crossover
RACE w/ Normal Mutation
RACE w/o Agent-level Crossover
RACE w/o Agent-level Mutation
FACMAC

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time Steps (1e6)

0.0

0.2

0.4

0.6

0.8

Te
st

 w
in

 %

2c_vs_64zg

Figure 6. Ablation study on Agent-Level operators.

superior to VFM.

The results in Fig. 5 reveal the following findings: (1)
Jointly optimizing the shared observation representation
encoders with VFM and VMM is more efficient than using
VFM/VMM alone. (2) Maximizing the value function of EA
and MARL is preferable to maximizing EA/MARL alone,
indicating that constructing shared representations that favor
only MARL or EA does not promote efficient learning for
all teams.

It’s worth noting that RACE demonstrates greater sample
efficiency and faster convergence. However, using the en-
coder with only VMM significantly damages performance
(0% win rate on SMAC tasks). This result indicates that
the performance of RACE is more dependent on VFM than
VMM. This can be attributed to the model’s core architec-
ture, which includes team policy construction involving a
nonlinear observation representation encoder and a linear
policy representation. The linear form of the policy repre-
sentation helps compact the policy search space and facili-
tate policy search. However, it necessitates the observation
encoder to provide rich information about the task and col-
laboration, as it determines the policy space. While VMM
can only provide some global information about the good
states. The linear policy space constructed by VMM-based
observation encoders relies on the linear policy representa-
tion to extract task-relevant information, leading to limited
expressiveness and performance collapse. Thus, Eq.2 plays
a critical role.

Additional experiments conducted on all 16 tasks confirm
that using the observation encoder with VFM improves
the basic algorithm’s performance by 27.1% on all tasks,

8

RACE: Improve Multi-Agent Reinforcement Learning with Representation Asymmetry and Collaborative Evolution

including 8 MAMUJOCO tasks (26.7%) and 8 SMAC tasks
(27.4%). Furthermore, using the encoder with VFM and
VMM enhances performance by 34.4% compared to the
basic algorithm. While using only the EA part or the MARL
part of VFM leads to degraded performance of 9% and
11.5%, respectively.

To verify the superiority of the agent-level operators, we
perform an ablation study on the Agent-level crossover and
mutation and compare them with the normal crossover and
mutation operators. The normal operators operate directly
on the parameter values without considering the individual
agent characteristics. The results in Fig. 6 demonstrate
that removing or replacing either agent-level crossover or
agent-level mutation degrades performance. This illustrates
the efficiency of team search and individual search. Team
search helps find a better team composition, while individual
search promotes the discovery of superior individuals. Both
Agent-level operators exhibit greater stability and efficiency
compared to the normal operators.

To further support this claim, we conduct a comparison
between RACE with and without the agent-level operators
on all 8 SMAC tasks. The results show that using agent-
level crossover and mutation outperforms the use of normal
crossover and mutation by 6.8%, with improved stability in
performance and faster convergence.

0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

600

800

1000

1200

1400

1600

1800

Un
di

sc
ou

nt
ed

 R
et

ur
n

2-Agent Ant-v2

RACE w/ =0.2
RACE w/ =0.5
RACE w/ =0.7
RACE w/ =1.0
MATD3

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time Steps (1e6)

0.2

0.4

0.6

0.8

1.0

Te
st

 w
in

 %

3s5z

0.005
0.01
0.05
0.1
FACMAC

Figure 7. Analysis on hyperparameter α.

To answer RQ3, we first analyze the hyperparameter α,
which controls the proportion of mutated parameters in the
mutation process. The results in Fig. 7 indicate that the
performance across different α is comparable, and proper
adjustment of α can provide better results. For the con-
tinuous control tasks (Multi-Agent MuJoCo), α is chosen
from {0.2, 0.5, 0.7, 1.0}. These tasks are generally insen-
sitive to small policy perturbations, large perturbations are
efficient for exploration. For the micromanipulation tasks
(SMAC), α is chosen from {0.005, 0.005, 0.01, 0.05, 0.1}.
These micromanagement tasks are highly sensitive to small
policy changes, which can result in significant behavioral
differences.

We further analyze the hyperparameter β to balance the im-
pact of Value-Aware MI Maximization in Eq. 6. The results
in Fig. 8 demonstrate that RACE is sensitive to β which
influences the quality of the shared representations. When

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

500

1000

1500

2000

2500

3000

Un
di

sc
ou

nt
ed

 R
et

ur
n

6-Agent HalfCheetah

RACE w/ =0.0001
RACE w/ =0.001
RACE w/ =0.01
RACE w/ =0.1
MATD3

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time Steps (1e6)

0.0

0.2

0.4

0.6

0.8

Te
st

 w
in

 %

MMM2

RACE w/ =0.0001
RACE w/ =0.001
RACE w/ =0.01
RACE w/ =0.1
FACMAC

Figure 8. Analysis on hyperparameter β.

β is set to a large value, the representations contain more
global information than task-related information. Since the
importance of global and task-related information varies
across tasks, it is necessary to appropriately adjust β for
each task.

5. Conclusion
To address the reward sensitivity and non-stationarity im-
posed by MARL, we propose a hybrid framework RACE,
which uses EA to further improve MARL. For efficient
knowledge sharing and policy exploration, RACE decom-
poses the team policy into shared observation representa-
tion encoders and individual policy representations. With
the shared observation representations optimized by Value
Function Maximization and Value-Aware MI Maximization,
knowledge of tasks and global information can be efficiently
conveyed across different teams, and collaboration is more
easily formed in linear policy space. To achieve efficient
evolution, the agent-level crossover and mutation are pro-
posed to facilitate team policy (composition) exploration
and individual exploration. Finally, we integrate RACE with
different MARL algorithms and demonstrate that RACE can
further improve MARL in a wide range of challenging co-
operative environments with both continuous action space
and discrete action space.

Acknowledgments

This work is supported by the National Key R&D Program
of China (Grant No. 2022ZD0116402), the National Nat-
ural Science Foundation of China (Grant No. 62106172),
and the Natural Science Foundation of Tianjin (No. 22JC-
QNJC00250).

References
Ackermann, J., Gabler, V., Osa, T., and Sugiyama, M. Re-

ducing overestimation bias in multi-agent domains using
double centralized critics. CoRR, 2019.

Bäck, T. and Schwefel, H. An overview of evolutionary
algorithms for parameter optimization. Evol. Comput.,
1993.

9

RACE: Improve Multi-Agent Reinforcement Learning with Representation Asymmetry and Collaborative Evolution

Belghazi, I., Rajeswar, S., Baratin, A., Hjelm, R. D., and
Courville, A. C. MINE: mutual information neural esti-
mation. CoRR, 2018.

Bodnar, C., Day, B., and Lió, P. Proximal distilled evolu-
tionary reinforcement learning. In AAAI, 2020.

Christianos, F., Schäfer, L., and Albrecht, S. V. Shared expe-
rience actor-critic for multi-agent reinforcement learning.
In NeurIPS, 2020.

Fujimoto, S., v. Hoof, H., and Meger, D. Addressing func-
tion approximation error in actor-critic methods. In ICML,
2018.

Gomez, F. J., Schmidhuber, J., and Miikkulainen, R. Ef-
ficient non-linear control through neuroevolution. In
ECML, 2006.

HAO, J., Li, P., Tang, H., ZHENG, Y., Fu, X., and Meng,
Z. ERL-re$ˆ2$: Efficient evolutionary reinforcement
learning with shared state representation and individual
policy representation. In ICLR, 2023a.

HAO, J., X.Hao, Mao, H., Wang, W., Yang, Y., Li, D.,
Zheng, Y., and Wang, Z. Boosting multiagent reinforce-
ment learning via permutation invariant and permutation
equivariant networks. In ICLR, 2023b.

Johannink, T., Bahl, S., Nair, A., Luo, J., Kumar, A.,
Loskyll, M., Ojea, J. A., Solowjow, E., and Levine, S.
Residual reinforcement learning for robot control. In
ICRA, 2019.

Khadka, S. and Tumer, K. Evolution-guided policy gradient
in reinforcement learning. In NeurIPS, 2018.

Li, M., Qin, Z., Jiao, Y., Yang, Y., Wang, J., Wang, C., Wu,
G., and Ye, J. Efficient ridesharing order dispatching with
mean field multi-agent reinforcement learning. In WWW,
2019.

Li, P., Tang, H., Yang, T., Hao, X., Sang, T., Zheng, Y., Hao,
J., Taylor, M. E., Tao, W., and Wang, Z. PMIC: improv-
ing multi-agent reinforcement learning with progressive
mutual information collaboration. In ICML, 2022.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T.,
Tassa, Y., Silver, D., and Wierstra, D. Continuous control
with deep reinforcement learning. In ICLR, 2016.

Liu, Z., Zhu, Y., Wang, Z., Gao, Y., and Chen, C. MIXRTs:
Toward interpretable multi-agent reinforcement learning
via mixing recurrent soft decision trees. arXiv preprint,
2022.

Liu, Z., Zhu, Y., and Chen, C. NA2Q: Neural attention
additive model for interpretable multi-agent q-learning.
arXiv preprint, 2023.

Lowe, R., Wu, Y., Tamar, A., Harb, J., Abbeel, P., and Mor-
datch, I. Multi-agent actor-critic for mixed cooperative-
competitive environments. In NeurIPS, 2017.

Majid, A. Y., Saaybi, S., Rietbergen, T., François-Lavet, V.,
Prasad, R. V., and Verhoeven, C. J. M. Deep reinforce-
ment learning versus evolution strategies: A comparative
survey. CoRR, 2021.

Majumdar, S., Khadka, S., Miret, S., McAleer, S., and
Tumer, K. Evolutionary reinforcement learning for
sample-efficient multiagent coordination. In ICML, 2020.

Ni, F., Hao, J., Lu, J., Tong, X., Yuan, M., Duan, J., Ma, Y.,
and He, K. A multi-graph attributed reinforcement learn-
ing based optimization algorithm for large-scale hybrid
flow shop scheduling problem. In KDD, 2021.

Oliehoek, F. A. and Amato, C. A Concise Introduction to
Decentralized POMDPs. Springer, 2016.

Papoudakis, G., Christianos, F., Rahman, A., and Albrecht,
S. V. Dealing with non-stationarity in multi-agent deep
reinforcement learning. CoRR, 2019.

Peng, B., Rashid, T., de Witt, C. S., Kamienny, P., Torr,
P., Boehmer, W., and Whiteson, S. FACMAC: factored
multi-agent centralised policy gradients. In NeurIPS,
2021.

Pourchot, A. and Sigaud, O. CEM-RL: combining evolu-
tionary and gradient-based methods for policy search. In
ICLR, 2019.

Rashid, T., Samvelyan, M., de Witt, C. S., Farquhar, G.,
Foerster, J. N., and Whiteson, S. QMIX: monotonic value
function factorisation for deep multi-agent reinforcement
learning. In ICML, 2018.

Salimans, T., Ho, J., Chen, X., and Sutskever, I. Evolu-
tion strategies as a scalable alternative to reinforcement
learning. CoRR, 2017.

Samvelyan, M., Rashid, T., de Witt, C. S., Farquhar, G.,
Nardelli, N., Rudner, T. G. J., Hung, C., Torr, P. H. S.,
Foerster, J. N., and Whiteson, S. The starcraft multi-agent
challenge. In AAMAS, 2019.

Sigaud, O. Combining evolution and deep reinforcement
learning for policy search: a survey. CoRR, 2022.

Sunehag, P., Lever, G., Gruslys, A., Czarnecki, W. M.,
Zambaldi, V. F., Jaderberg, M., Lanctot, M., Sonnerat,
N., Leibo, J. Z., Tuyls, K., and Graepel, T. Value-
decomposition networks for cooperative multi-agent
learning based on team reward. In AAMAS, 2018.

10

RACE: Improve Multi-Agent Reinforcement Learning with Representation Asymmetry and Collaborative Evolution

Tang, H., Meng, Z., Hao, J., Chen, C., Graves, D., Li,
D., Liu, W., and Yang, Y. What about taking policy as
input of value function: Policy-extended value function
approximator. CoRR, 2020.

Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M.,
Dudzik, A., Chung, J., Choi, D., Powell, R., Ewalds, T.,
Georgiev, P., Oh, J., Horgan, D., Kroiss, M., Danihelka, I.,
Huang, A., Sifre, L., Cai, T., Agapiou, J., Jaderberg, M.,
Vezhnevets, A. S., Leblond, R., Pohlen, T., Dalibard, V.,
Budden, D., Sulsky, Y., Molloy, J., Paine, T. L., Gülçehre,
Ç., Wang, Z., Pfaff, T., Wu, Y., Ring, R., Yogatama,
D., Wünsch, D., McKinney, K., Smith, O., Schaul, T.,
Lillicrap, T., Kavukcuoglu, K., Hassabis, D., Apps, C.,
and Silver, D. Grandmaster level in starcraft II using
multi-agent reinforcement learning. Nat., 2019.

Yang, Y., Hao, J., Chen, G., Tang, H., Chen, Y., Hu, Y., Fan,
C., and Wei, Z. Q-value path decomposition for deep
multiagent reinforcement learning. In ICML, 2020a.

Yang, Y., Hao, J., Liao, B., Shao, K., Chen, G., Liu, W., and
Tang, H. Qatten: A general framework for cooperative
multiagent reinforcement learning. arXiv preprint, 2020b.

Yuan, Y., HAO, J., Ni, F., Mu, Y., ZHENG, Y., Hu, Y., Liu,
J., Chen, Y., and Fan, C. EUCLID: Towards efficient
unsupervised reinforcement learning with multi-choice
dynamics model. In ICLR, 2023.

11

RACE: Improve Multi-Agent Reinforcement Learning with Representation Asymmetry and Collaborative Evolution

A. Method Implementation Details
All experiments are carried out on NVIDIA GTX 2080 Ti GPU with Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz.

A.1. Network Architecture

For EA, we use ERL-Re2 codebase1, and all the processes and hyperparameters remain the same.

For the basic MARL algorithms, MATD3 is a simple extension of TD3 in the CTDE paradigm and we follow the official
code 2, FACMAC follows the official implementation3. To reiterate, the above process and the hyperparameters introduced
by these algorithms remain unchanged.

For structures specific to RACE, the centralized RACE is the same as the MARL critic except for taking policy representations
as extra inputs. In Multi-Agent MuJoCo, the shared observation representation encoders are constructed by two fully
connected layers with 400 and 300 units. The policy representation is the final layer that controls one agent’s actions. In
SMAC, the shared observation representation encoders use the first n-1 layers of policy networks in FACMAC. The policy
representation is the final layer. In the following, we detail the structures which are specific to RACE.

In RACE (MATD3), the centralized PeVFA takes the state, actions, and the team policy representation Wj as inputs and
maintains double Q networks which are similar to MATD3. The team policy representation can be regarded as a combination
of a matrix with shape [300, |U|] = [300,

∑N
i=1 |U i|] (i.e., weights) and a vector with shape [|U|] (i.e., biases) which can be

concatenated as a matrix with shape [300 + 1, |U|]. We first encode each vector with shape [300 + 1] of the team policy
representations with 3 fully connected layers with units 64 and leaky relu activation function. Thus we can get an
embedding list with shape [64, |U|] and get the final team policy embedding with shape [64] by taking the mean value of the
embedding list in the action dimension. With the team policy embedding, we concatenate it with states and actions as the
input to an MLP with 2 fully connected layers with units 400 and 300 and get the predicted value by the centralized PeVFA.
The activation functions in the centralized PeVFA all use leaky relu. We list structures in Table 1 and 2.

In RACE (FACMAC), the overall process is the same as RACE (MATD3) except that we use the structures of FACMAC.
FACMAC maintains a shared policy network and a shared critic network, in addition to a Mixer Net for credit assignments.
We introduce an extra Critic network with team policy representations as the inputs (i.e., Critic PeVFA) and an extra Mixer
network with team policy representations as the inputs (i.e., Mixer PeVFA). The policy representations are processed in the
same way as in Table. 2 and subsequently spliced with observation and action/Q value as inputs. To better confirm that
the performance improvement is brought by RACE, we do not maintain a separate observation representation encoder for
each agent, which means the observation representation encoder is shared for different agents in the same team. In fact,
inter-team sharing is orthogonal to intra-team sharing. To be consistent and fair comparisons (without changing the basic
MARL structure), the MARL team uses the shared observation representation encoders and a shared policy representation.
But for each EA team, RACE maintains independent policy representations for each policy.

To calculate the Mutual Information, we leverage MINE (Belghazi et al., 2018) adopted in PMIC4 (Li et al., 2022). In general,
the number of MINE maintained corresponds to the number of shared observation representation encoders. Consequently,
we maintain N MINEs in Multi-Agent MuJoCo tasks and one MINE is maintained in SMAC tasks. The structure of the
MINE network, i.e., Tω , can be divided into two parts: One for encoding the global states, which consists mainly of two fully
connected layers with 128 units with leaky relu activation function. The other part is used to encode the shared observation
representations, which consists of one 128-cell fully connected layer. The hidden variables encoded by states and shared
representations are finally calculated by the equation (3) to obtain the loss, and minimizing this loss maximizes the mutual
information. To calculate Value-Aware MI Maximization, we maintain a value network to estimate the expected value of
states to determine whether a state is a good state. The structure of the value network consists of two fully connected layers
with 400 and 300 units with leaky relu activation function in MAMUJOCO and 32 units with relu in SMAC.

1https://github.com/yeshenpy/ERL-Re2
2https://github.com/sfujim/TD3
3https://github.com/oxwhirl/facmac
4https://github.com/yeshenpy/PMIC

12

RACE: Improve Multi-Agent Reinforcement Learning with Representation Asymmetry and Collaborative Evolution

Table 1. The structures of the shared observation representation encoder and policy representations in MATD3.
Shared Observation Representation Encoder Policy Representation

(obs dim, 400) (300, |U|)
tanh tanh

(400,300)
tanh

Table 2. The structure of the centralized PeVFA in RACE (MATD3)
PeVFA

(|S|+ |U|+ 64, 400) (301, 64)
leaky relu leaky relu
(400, 300) (64, 64)

leaky relu leaky relu
(300, 1) (64, 64)

A.2. Hyperparameters

This section details the hyperparameters across different tasks. Two hyperparameters α and β need to tune across tasks. We
list hyperparameters α and β which are various across tasks in Table 3 and Table 4.

Value-Aware MI Maximization in Eq. 6. The results in Fig. 8 show that RACE is sensitive to β which affects the quality
of the shared representations. When the β is large, the representations contain more global information than task-related
information. Since the importance of global and task-related information is different for different tasks, it needs to be
adjusted appropriately.

Table 3. Details of the hyperparameter α and β of RACE (MATD3) in Multi-Agent MuJoCo.
Env name α β
2-Agent HalfCheetach 0.7 1e-1
6-Agent HalfCheetach 0.5 1e-2
2-Agent Ant 0.7 1e-2
2-Agent Ant-v2 0.2 1e-2
4-Agent Ant 0.2 1e-3
3-Agent Hopper 1.0 1e-1
2-Agent Humanoid 0.7 1e-2
2-Agent HumanoidStandup 1.0 1e-3

13

RACE: Improve Multi-Agent Reinforcement Learning with Representation Asymmetry and Collaborative Evolution

Table 4. Details of the hyperparameter α and β of RACE (FACMAC) in SMAC.
Env name α β
so many baneling 0.1 1e-3
2s3z 0.05 1e-3
2c vs 64zg 0.05 1e-2
2s vs 1sc 0.05 1e-2
MMM 0.05 1e-1
MMM2 0.01 1e-2
3s5z 0.005 1e-3
3s vs 3z 0.005 1e-3

14

