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Abstract
Federated Learning (FL) has been a popular ap-
proach to enable collaborative learning on mul-
tiple parties without exchanging raw data. How-
ever, the model performance of FL may degrade
a lot due to non-IID data. While many FL al-
gorithms focus on non-IID labels, FL on non-
IID features has largely been overlooked. Differ-
ent from typical FL approaches, the paper pro-
poses a new learning concept called ADCOL
(Adversarial Collaborative Learning) for non-IID
features. Instead of adopting the widely used
model-averaging scheme, ADCOL conducts train-
ing in an adversarial way: the server aims to train
a discriminator to distinguish the representations
of the parties, while the parties aim to generate
a common representation distribution. Our ex-
periments show that ADCOL achieves better per-
formance than state-of-the-art FL algorithms on
non-IID features.

1. Introduction
Deep learning is data hungry. While data are always dis-
persed in multiple parties (e.g., mobile devices, hospitals)
in reality, data are not allowed to transfer to a central server
for training due to privacy concerns and data regulations.
Collaborative learning among multiple parties without the
exchange of raw data has been an important research topic.

Federated learning (FL) (McMahan et al., 2016; Kairouz
et al., 2019; Li et al., 2019b;a) has been a popular form of
collaborative learning without exchanging raw data. A basic
FL framework is FedAvg (McMahan et al., 2016), which
uses a model-averaging scheme. In each round, the parties
update their local models and send them to the server. The
server averages all local models to update the global model,
which is sent back to the parties as the new local model in
the next round. FedAvg has been widely used due to its
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effectiveness and simpleness. Most existing FL approaches
are designed based on FedAvg.

However, as shown in many existing studies (Hsu et al.,
2019; Li et al., 2020; 2021a), the performance of FedAvg
and its alike algorithms may be significantly degraded in
non-IID data among parties. While many studies try to
improve FedAvg on non-IID data, most of them (Li et al.,
2020; Wang et al., 2020b; Karimireddy et al., 2020; Acar
et al., 2021; Li et al., 2021b; Wang et al., 2020a) focus on
the label imbalance setting, where the parties have different
label distributions. In their experiments, they usually sim-
ulate the federated setting by unbalanced partitioning the
dataset into multiple subsets according to labels.

As summarized in (Hsieh et al., 2020; Kairouz et al., 2019),
besides the label distribution skew, feature imbalance is also
an important case of non-IID data. In the feature imbal-
ance setting, the feature distribution Pi(x) varies across
parties. This setting widely exists in reality, e.g., people
have different stroke width and slant when writing the same
word. Another example in practice is that images collected
by different cameras have different intensity and contrast.
However, compared with non-IID labels, FL on non-IID
features has been less explored. Most existing studies on
non-IID data are still based on the model-averaging scheme
(Li et al., 2020; Collins et al., 2021; Li et al., 2021b; Fallah
et al., 2020), which implicitly assumes that the local knowl-
edge Pi(y|x) is common across parties and is not applicable
in the non-IID feature setting. For example, FedRep (Collins
et al., 2021) learns a common base encoder among parties,
which will output very different representation distributions
across parties in the non-IID feature case even though for the
data from the same class. Such a model-sharing design fails
to achieve good model accuracy for application scenarios
with non-IID features. Therefore, we need a fundamentally
new approach to address the technical challenges of non-IID
features.

In this paper, we think out of the model-averaging scheme
used in FL, and propose a novel learning concept called
adversarial collaborative learning. While the feature dis-
tribution of each party is different, we aim to extract the
common representation distribution that is sufficient for the
prediction task. Instead of averaging the local models, we
apply adversarial learning to match the representation distri-
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butions of different parties. Specifically, the server aims to
train a discriminator to distinguish the local representations
by the party IDs, while the parties train the base encoders
such that the generated representations cannot be distin-
guished by the discriminator. Besides the base encoders,
each party trains a predictor for local personalization and
ensures that the generated representation is meaningful for
the prediction task. Our experiments show that ADCOL out-
performs state-of-the-art FL algorithms on three real-world
tasks. More importantly, ADCOL points out a promising
research direction on collaborative learning. For example, it
is interesting to generalize ADCOL to other settings besides
feature skew in a communication-efficient way.

2. Background and Related Work
2.1. Non-IID Data

We use Pi(x, y) to denote the data distribution of party i,
where x is the features and y is the label. According to
existing studies (Kairouz et al., 2019; Hsieh et al., 2020),
we can categorize non-IID data in FL into the following four
classes: (1) non-IID labels: the marginal distribution Pi(y)
varies across parties. (2) non-IID features: the marginal dis-
tribution Pi(x) varies across parties. (3) concept drift: The
conditional distributions Pi(y|x) or Pi(x|y) varies across
parties. (4) quantity skew: the amount of data varies across
parties. In this paper, we focus on non-IID features, which
widely exist in reality. For example, the distributions of
images collected by different camera devices may vary due
to the different equipment and environments.

2.2. Federated Learning on non-IID Labels

Non-IID data is a key challenge in FL. There have been
many studies trying to improve the performance of FL under
non-IID data. However, most existing approaches (Li et al.,
2020; Wang et al., 2020a; Hsu et al., 2019; Li et al., 2021b;
Acar et al., 2021; Karimireddy et al., 2020; Wang et al.,
2021; Luo et al., 2021; Mendieta et al., 2022) simulate the
federated setting with heterogeneous label distributions in
the experiments, which does not pay attention to the non-IID
feature challenge. For example, FedProx (Li et al., 2020)
introduces a proximal term in the objective of local training,
which limits the update of the local model by the distance
between the local model and the global model. While it
is challenging to achieve a good global model for every
party, personalized FL (Fallah et al., 2020; Dinh et al., 2020;
Hanzely et al., 2020; Zhang et al., 2021b; Huang et al., 2021;
Collins et al., 2021) is a very promising direction, which
aims to learn a personalized local model for each party. For
example, FedRep (Collins et al., 2021) only adopts federated
averaging for the base encoder, while each party locally
trains a classifier head for personalization. Per-FedAvg
(Fallah et al., 2020) applies the idea of model-agnostic meta-

learning (Finn et al., 2017), which finds a shared model
that can be easily adapted to the local datasets with a few
steps of gradient descent. However, the above approaches
are all based on the model-averaging scheme, which is not
suitable for the non-IID feature setting as we will show in
Section 3.2. They have severe performance degradation on
parties with non-IID features.

2.3. Federated Learning on non-IID Features

Only several studies investigate FL on non-IID feature set-
ting. Observing that averaging batch normalization param-
eters may decrease the accuracy a lot, FedBN (Li et al.,
2021c) updates all the batch normalization (BN) parameters
locally and does not synchronize them with the global model.
The operations for non-BN parameters are the same as Fe-
dAvg. Considering each party as a domain, cross-domain
FL (Sun et al., 2021) is also applicable in the non-IID fea-
ture setting. Besides BN parameters, PartialFed (Sun et al.,
2021) updates selective model parameters locally and does
not initialize them as the global model. While both studies
try to address the feature skew problem by partially aver-
aging the local models, we propose a fundamentally new
training framework based on adversarial learning that does
not average the models at all.

2.4. Adversarial Learning for Distribution Matching

Adversarial learning has been successful for distribution
matching (e.g., domain adaptation (Tzeng et al., 2017),
GANs (Goodfellow et al., 2014)). The basic idea is to train
a discriminator to encourage indistinguishable distributions,
which is smart and sweet. (Peng et al., 2019b) proposes
FADA to apply adversarial learning in federated setting to
study the federated domain adaption problem, which has
a different setting and goal from our paper. More recently,
a study (Zhang et al., 2021a) proposed FedUFO, where
each party trains a discriminator to apply feature and ob-
jective consistency constrains to address the non-IID data
issue. However, during the local training stage, FedUFO
needs to transfer each local model to all the other parties,
which causes massive communication overhead. Moreover,
FedUFO focuses on the non-IID label setting in their exper-
iments.

3. The Proposed Method
3.1. Problem Statement

Suppose there are N parties, where party i has a local
dataset Di = {x, y}. The feature distributions P (x) are
different among parties while the label distributions P (y)
are same/similar among parties. The parties conduct col-
laborative learning over D ≜

⋃
i∈[N ]Di with the help of a

central server without exchanging the raw data. Like typical
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personalized FL, the goal of each party is to train a machine
learning model which has good accuracy on its local test
dataset.

3.2. Motivation

Problem of Model-Averaging on non-IID Features
Most existing studies (Li et al., 2020; Karimireddy et al.,
2020; Li et al., 2021b; Dinh et al., 2020; Collins et al.,
2021) are still based on FedAvg to address the non-IID
data. However, they are not suitable in our setting. In
the model-averaging scheme, the server averages the local
models as a global model, which essentially tries to learn
a common P (y|x). In their experiments, they usually par-
tition a dataset to different parties horizontally to simulate
the federated setting, where parties indeed follow the same
P (y|x) (with different Pi(y)) so that the global model is
helpful. However, in our setting, for party i and j, since
Pi(x) ̸= Pj(x) and Pi(y) = Pj(y), Pi(y|x) and Pj(y|x)
are different. Averaging the local models does not directly
help the learning of local knowledge Pi(y|x).

Instead of averaging and learning a global model, we pro-
pose to learning a common representation distribution to
address the non-IID features. Although the feature distribu-
tions Pi(x) are different among parties, they have the same
task y. Thus, we aim to extract the underlying task-specific
representation z for the task y from multiple parties. Specif-
ically, we decompose local objective Pi(y|x) into two parts:
Pi(z|x) and Pi(y|z). The first part is to learn the oracle
representation for the task and the second part is to predict
the label by the representations. The second part can be
easily achieved by training a predictor head with the repre-
sentations as inputs. For the first part, we assume that there
exists an oracle optimal representation distribution P ∗(z)
for the prediction of y. Then, the ideal objective of party i
can be formulated as

min
θi

Ex∼DiℓKL((Pi(x)Pi(z|x; θi)) || P ∗(z)), (1)

where ℓKL is the KL divergence loss and θi is the base en-
coder to generate the representation. In practice, P ∗(z) is
unknown. However, it has the following two features: (1)
P ∗(z) is same for each party; (2) P ∗(z) is able to predict
y. Thus, we approximate the objective by two aspects: (1)
To ensure that the representation absorbs the knowledge of
multiple parties, the parties aim to map their local data into
a common representation distribution P (z); (2) We ensure
that the generated P (z) contains necessary information for
the prediction of y by training a predictor on the representa-
tion. We introduce the details about the training procedure
in Section 3.4.

3.3. Model Architecture

There are two kinds of models in ADCOL: the local models
trained in the parties and the discriminator trained in the
server. As ADCOL works from the perspective of repre-
sentation, the architecture of the local model is similar as
existing studies (Chen et al., 2020; Chen & He, 2021) on
self-supervised representation learning. The local model has
three components: a base encoder, a projection head, and a
predictor. The base encoder (e.g., ResNet-50) extracts repre-
sentation vectors from inputs. Like existing self-supervised
learning studies (Chen et al., 2020; Chen & He, 2021), an
additional projection head is used to map the representation
to a space with a fixed dimension. The final predictor is used
to output probabilities for each class. We use F (·) to denote
the whole model and G(·) to denote the model before the
final predictor (i.e., G(x) is the mapped representation of
input x). For the discriminator, we simply use a MLP.

3.4. The Overall Framework

The overall framework is shown in Figure 1 and Algorithm
1. There are four steps in each round: (1) The server sends
the discriminator to the parties. (2) The parties update their
local models. (3) The parties send representations to the
server. (4) The server updates the discriminator.

Step 1 In the first step, the server sends the discriminator
to parties (line 4 of Algorithm 1).

Step 2 In the second step, the parties update their mod-
els using their local datasets (lines 10-17 of Algorithm 1).
In addition to the objective which aims to minimize the
cross-entropy loss (i.e., ℓCE) on the local dataset, ADCOL
introduces an additional regularization term which aims to
maximize the probability that the discriminator cannot dis-
tinguish the local representations. For each input x, ADCOL
feeds the representation G(x) to the discriminator. ADCOL
expects the discriminator to output probability vector [ 1N ]N

(i.e., the probability of each class is 1
N ) such that it cannot

distinguish which party that the representation comes from.
Thus, ADCOL uses Kullback–Leibler (KL) divergence loss
to measure the difference between the output of the discrim-
inator D(G(x)) and the target [ 1N ]N . The final loss of an
input (x, y) is computed as

ℓ = ℓCE(F (x), y) + µℓKL([
1

N
]N || D(G(x))) (2)

where µ is a hyper-parameter to control the weight of KL
divergence loss, ℓCE is the cross-entropy loss, and ℓKL

is the KL divergence loss. Each party minimizes its local
empirical risk E(x,y)∼Di

ℓ(x, y;D) to update its local model,
where ℓ(·) is presented in Equation 2.
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Step 3 After local training, the parties feed their data
into the local models and transfer the representations to the
server (line 5 of Algorithm 1).

Step 4 The server updates the discriminator using the
received representations (lines 6-9 of Algorithm 1). Specifi-
cally, the server builds a training set DR = {R, I}, where
the feature values are the representations and the labels are
the party IDs that the representations come from. The server
minimizes the empirical risk E(R,I)∼DR

ℓCE(R, I) on the
training set to update the discriminator.

Algorithm 1 The ADCOL algorithm
1: Input: number of communication rounds T , number of

parties N , number of local epochs E, learning rate η,
hyper-parameter µ

2: Output: The local models Fi (i ∈ [N ])
3: Server executes:
4: for t = 1, 2, ..., T do
5: for i = 1, 2, ..., N in parallel do
6: send the discriminator D to party i
7: Ri ← PartyLocalTraining(i, D)
8: end for
9: R← {(Ri, i)}Ni=1

10: for each batch b = {Ri, i} of R do
11: ℓ← CrossEntropyLoss(D(Ri), i)
12: D ← D − η∇ℓ
13: end for
14: end for

15: PartyLocalTraining(i, D):
16: for epoch e = 1, 2, ..., E do
17: for each batch b = {x, y} of Di do
18: ℓCE ← CrossEntropyLoss(Fi(x), y)
19: R← Gi(x)
20: ℓKL ← KLDiv([ 1N ]N ||D(R))
21: ℓ← ℓCE + µℓKL

22: Fi ← Fi − η∇ℓ
23: end for
24: end for
25: return Gi(x

i) to server

4. Theoretical Analysis
4.1. Convergence of ADCOL

As shown in Equation 2, the local loss has two parts: the
cross-entropy loss part to update the whole network F and
the KL divergence loss part to update the representation gen-
erator G. Ideally, to achieve minimum of ℓ, each part should
achieve minimum. Since the cross-entropy loss part is same
as FedAvg, we focus on the effect of the KL divergence
loss. For simplicity, we ignore the cross-entropy loss and

study the KL divergence loss in our theoretical analysis1.
The local objective of party i is:

min
Gi

Ex∼Di
ℓKL([

1

N
]N || D(Gi(x))). (3)

The objective of the discriminator is

max
D

N∑
i=1

Ex∼Di
log(Di(Gi(x))), (4)

where Di(·) is the i-th output of the prediction vector D(·)
(i.e., the probability of class i). Here we analyze the conver-
gence property of the training process like existing studies
on GANs (Goodfellow et al., 2014; Tran et al., 2019). In
Theorem 4.1, we derive the optimal discriminator given the
objective Equation 4. Then, in Theorem 4.2, we derive the
optimal solution for the distributions of local representations
to minimize the local objective Equation 3 given the opti-
mal discriminator from Theorem 4.1. Last, in Theorem 4.3,
we show that the distribution of local representations can
converge to optimal solution given in Theorem 4.2. All the
proofs are available in Appendix A.

Theorem 4.1. We use PGi to denote the distribution of
the representations generated in party i and PGi(z) is the
probability of representation z in distribution PGi

. Then,
the optimal discriminator D∗ of Equation 4 is

D∗
k(z) =

PGk
(z)∑N

i=1 PGi
(z)

. (5)

Theorem 4.2. Given the optimal discriminator D∗ from
Equation 5, the global minimum of Equation 3 is achieved
if and only if

PG1
= PG2

= · · · = PGN
(6)

Theorem 4.1 and Theorem 4.2 show that to achieve the
minimum of the objectives of the local parties and the dis-
criminator, the parties will generate the same representation
distribution, which matches the goal of ADCOL. In Theo-
rem 4.2, we assume that D can reach D∗ like existing GAN
studies (Goodfellow et al., 2014; Tran et al., 2019). For
detailed analysis on it, please refer to Appendix A.

Theorem 4.3. Suppose P ∗
G is the optimal solution shown

in Theorem 4.2. If Gi (∀i ∈ [1, N ]) and D have enough
capacity, and PGi is updated to minimize the local objective
(i.e., Equation 3), given the optimal discriminator D∗ from
Equation 5, then PGi

converges to P ∗
G.

The above theorem provides insights on the convergence of
the training. In practice, we optimize the parameter θ of the

1Note that G is a part of F and the two losses are not inde-
pendent of each other. For simplicity, we only analyze the KL
divergence loss to study its effect.
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Figure 1. The ADCOL framework

local networks rather than PGi itself, which is reasonable
due to the excellent performance as claimed in (Goodfellow
et al., 2014). Note that there are collapsing solutions for
Equation 3 and Equation 4. The representations of each
party can simply be constant vectors, which can achieve
global minimum of Equation 3. Thus, the cross-entropy loss
is necessary in Equation 2, which ensures that the generated
representations are meaningful.

4.2. Generalization Error

ADCOL can be further motivated from the generalization
perspective. The generalization error bound (Ben-David
et al., 2006) in domain adaptation can be directly applied in
our setting to get the following theorem.

Theorem 4.4. LetDk be the local data distribution of party
k and the training data are IID samples from Dk with size
m. Let D be the global data distribution. Let Rk : Xk →
Z be the feature extraction function of party k. Assume
that local models extract the same underlying task-specific
representation Z∗ as demonstrated in Theorem 4.2. Let
H be the hypothesis space with VC-dimension d. With
probability at least 1− δ,

εD(Fk) ≤ ε̂Dk
(Fk) +

√
4(d log 2em

d + log 4
δ )

m

+ dH(ẐDk
, ẐD) + λ,

(7)

where dH(ẐDk
, ẐD) is the empirical H-divergence be-

tween local representation distribution ẐDk
and the global

representation distribution ẐD and λ = minF∈H εD(F ) +
εDk

(F ).

ADCOL aims to reach the global representation distri-
bution during the local training, which also minimizes
dH(ẐDk

, ẐD). Thus, through generalization on the global
data, ADCOL can effectively mitigate over-fitting on lo-
cal data during local training to improve the model perfor-
mance.

4.3. Communication Size

For simplicity, our analysis assumes all parties participate
in learning in each round, and it is straightforward to extend
this assumption by considering party sampling techniques.
We use SL to denote the size of the local model. Then,
the communication size per round of FedAvg is 2NSL, in-
cluding the server sending the model to all parties and the
parties sending their local models to the server. We use n to
denote the total number of examples (i.e., n =

∑N
i=1 |Di|),

d to denote the dimension of the representations, and SD

to denote the size of the discriminator. Suppose each float
value costs four bytes to store. In each round, the commu-
nication size of ADCOL is (4nd + NSD), including the
parties sending the representations to the server and the
server sending the discriminator to the parties. Although the
communication costs of ADCOL and FedAvg depend on
the specific settings, we find that ADCOL is usually more
communication-efficient than FedAvg in practice given the
limited local data size in the federated setting, as we will
demonstrate in the experiments.
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4.4. Privacy

While sharing representation is used in ADCOL and other
collaborative learning studies (He et al., 2020; Peng et al.,
2019b; Vepakomma et al., 2018), one possible concern is
that representations may leak more information than mod-
els. There are many existing studies (Shokri et al., 2017;
Nasr et al., 2019) that infer sensitive information from ex-
changed gradients/models. Also, there are studies (Salem
et al., 2020) on reconstruction attacks on the output of a
model. While existing studies have shown that the mutual
information between the input data and the final represen-
tation is small (Shwartz-Ziv & Tishby, 2017), it is still not
clear that whether sharing models is more private than shar-
ing representations to the best of our knowledge, which can
be an interesting future direction.

To enhance the privacy guarantee, Differential Privacy (DP)
(Dwork et al., 2014) can be applied to protect the transferred
messages including the representation. For more details,
please refer to Appendix B.11.

5. Experiments
5.1. Experimental Setup

Baselines We compare ADCOL with seven baselines in-
cluding SOLO (i.e., each party trains the model individually
without collaborative learning), FedAvg (McMahan et al.,
2016), FedBN (Li et al., 2021c), PartialFed (Sun et al.,
2021), FedProx (Li et al., 2020), Per-FedAvg (Fallah et al.,
2020), and FedRep (Collins et al., 2021). Here FedBN is
the state-of-the-art FL approach on non-IID features. Par-
tialFed is a personalized FL approach on the cross-domain
setting which is also applicable to the non-IID feature set-
ting. FedProx is a popular FL approach for non-IID data.
Per-FedAvg and FedRep are two state-of-the-art person-
alized FL approaches. FedUFO is not open-sourced and
requires all-to-all communication of local models among
any two parties during local training, which leads to pro-
hibitively high communication cost. For example, in our
experimental setting with Digits task, FedUFO has 77 times
higher communication cost than ours. Thus, we omit the
experiments with FedUFO here. Like FedAvg (McMahan
et al., 2016), we use weighted average according to the data
volume of each party for all baselines. By default, we do
not apply representation sampling and DP in ADCOL.

Models All approaches use the same local model archi-
tecture for a fair comparison. The architecture of the local
model is similar as SimSam (Chen & He, 2021), which has
the following three components: (1) Base encoder: ResNet-
50 (He et al., 2016). (2) Projection head: a 3-layer MLP
with BN applied to each fully-connected layer. The input
dimension is 4096. The dimension of the hidden layer and

the output layer is 2048. (3) Predictor: a 2-layer MLP with
BN applied to its hidden layer. The input dimension is 2048.
The dimension of its hidden layer is 512. The discriminator
is a 3-layer MLP. The input dimension is 2048. The dimen-
sion of the hidden layers is 512. The output dimension is
equal to the number of parties.

Datasets We use the same tasks as in the study of FedBN.
There are three tasks in our experiments: (1) Digits: The
Digits task has the following five digit data sources from dif-
ferent domains: MNIST (LeCun et al., 1998), SVHN (Net-
zer et al., 2011), USPS (Hull, 1994), SynthDigits (Ganin &
Lempitsky, 2015), and MNIST-M (Ganin & Lempitsky,
2015). (2) Office-Caltech-10 (Gong et al., 2012): The
dataset has four data sources acquired using different cam-
era devices or in different real environments with various
backgrounds: Amazon, Caltech, DSLR, and WebCam. (3)
DomainNet (Peng et al., 2019a): The dataset contains nat-
ural images coming from six different data sources with
different image styles: Clipart, Infograph, Painting, Quick-
draw, Real, and Sketch. Here the first task is a synthetic task
by combining different digit datasets. The second and third
tasks are real-world datasets that naturally generated in a
federated setting. For each task, different datasets have het-
erogeneous features but share same label distribution, which
naturally forms the non-IID feature setting (Li et al., 2021a).
We train a ResNet-50 on all datasets (i.e., parties) from a
task and extract the feature distributions of each dataset.
Then, we use t-SNE to visualize the representation as shown
in Figure 2. We can observe that the feature distribution
of each party is different. Due to the page limit, we only
present some experimental results on Digits in the main
paper. For more experimental results and details, please
refer to Appendix B.

Setup By default, the number of parties is equal to the
number of data sources, where each party has data from one
of the data sources. For each dataset, we randomly split 1/5
of the original dataset as the test dataset, while the remained
dataset is used as the training dataset. The number of local
epochs is set to 10 by default for all FL approaches. The
number of epochs is set to 300 for SOLO. For ADCOL
and FedProx, we tune µ ∈ {10, 1, 0.1, 0.01, 0.001} and
report the best results. For FedRep, we tune β (i.e., step
size for the second batch training) from {0.001, 0.01} and
report the best results. We use the prediction layers as the
shared representation in FedRep. We use PyTorch (Paszke
et al., 2019) to implement all approaches. We use the SGD
optimizer for training with a learning rate of 0.01. The SGD
weight decay is set to 10−5 and the SGD momentum is set
to 0.9. The batch size is set to 64, 32, and 32 for Digits,
Office-Caltech-10, and DomainNet, respectively. We run
the experiments on a server with 8 * NVIDIA GeForce RTX
3090, a server with 4 * NVIDIA A100, and a cluster with
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Figure 2. The feature distributions of each task.

45 * NVIDIA GeForce RTX 2080 Ti.

5.2. Overall Comparison

Table 1 reports the test accuracy of different approaches
on three tasks. We have the following observations. First,
ADCOL is more effective than the other approaches. It can
achieve the best test accuracy on most datasets. Moreover,
ADCOL can outperform the other approaches by more than
2% accuracy on average. Second, while the parties may not
benefit from FL approaches in some cases (e.g., Caltech-
10), ADCOL always achieves better accuracy than SOLO,
which demonstrates the robustness of ADCOL. Last, the
personalized FL approaches (i.e., Per-FedAvg and FedRep)
have a poor performance on the non-IID feature setting,
which are even worse than SOLO. For the results of other
tasks, please refer to Appendix B.2.

5.3. Communication Efficiency

To show the communication efficiency of ADCOL, like ex-
isting studies (Karimireddy et al., 2020; Lin et al., 2020),
we compare the number of communication rounds and com-
munication size of each approach to achieve the same target
performance. The results on Digits are shown in Table 2.
We can observe that no approach consistently outperforms
the other approaches in terms of the number of communica-
tion rounds. However, the communication size of ADCOL
is always much smaller than the other approaches. AD-
COL can save at least 10 times the communication costs
to achieve the same accuracy as FedAvg. The speedup can
even be up to 34× on Digits. The results demonstrate that
ADCOL is much more communication-efficient than the
other FL approaches. For the results of other tasks, please
refer to Appendix B.2.

5.4. Sensitivity Studies

Scalability and Heterogeneity We adopt the same ap-
proach as (Li et al., 2021c) to study the effect of number of

parties and heterogeneity. We divide each dataset into ten
parts randomly and equally and allocate each part into one
party. The parties from the same dataset are treated as IID
and the parties from different datasets are treated as non-
IID. We add two parties from each dataset each time, which
results in the number of parties N ∈ {10, 20, 30, 40, 50}.
Moreover, the degree of heterogeneity decreases as the num-
ber of parties increases since the number of IID parties
increases. The test accuracies are reported in Figure 3a.
We can observe that the accuracy of all approaches can be
slightly improved when increasing the number of parties
due to the reduced heterogeneity and increased total amount
of data. Given a different number of parties, ADCOL con-
sistently outperforms the other baselines. Although the
number of classes to distinguish increases for the discrimi-
nator when increasing N , ADCOL still shows a good and
stable performance.

Effect of Local Dataset Size We vary the percentage of
the original local dataset used in each party from 20% to
100%. The results are shown in Figure 3c. The improvement
of ADCOL is more significant when the size of the local
dataset is small. If the size of the local dataset is large, each
party can already achieve satisfactory accuracy by SOLO.
The accuracy of all approaches is close when the percentage
is 100%. It is not necessary to conduct collaborative learning
in such a case.

Number of Local Epochs We vary the number of local
epochs E ∈ {1, 2, 5, 10, 20} and report the results in Figure
3b. We run all approaches for 100 rounds. If the number
of local epochs is too small, the local update is small in
each round and the convergence speed is slow. Thus, the
accuracy of all approaches is relatively low after running for
100 rounds with a small number of local epochs. ADCOL
still consistently outperforms the other approaches with a
different number of epochs.
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Table 1. The comparison of top-1 test accuracy among different approaches on Digits. We run FL approaches for 100 rounds (all
approaches have converged). We run three trials and report the mean and standard derivation. Besides the test accuracy on each party, we
also report the mean accuracy of all parties denoted as “AVG”.

Digits MNIST SVHN USPS SynthDigit MNIST M AVG
SOLO 87.9%±0.4% 34.8%±0.8% 94.8%±0.1% 63.0%±0.4% 67.2%±0.4% 69.5%±0.3%

FedAvg 94.4%±0.5% 59.4%±0.9% 94.3%±0.2% 74.4%±0.5% 70.3%±1.2% 78.6%±0.6%
FedBN 94.1%±0.8% 59.9%±0.7% 94.1%±0.1% 73.9%±0.6% 71.3%±1.1% 78.7%±0.6%

PartialFed 94.7%±0.4% 59.4%±0.6% 94.2%±0.1% 75.2%±0.4% 69.7%±0.6% 78.6%±0.4%
FedProx 94.1%±0.4% 59.8%±0.6% 94.3%±0.1% 73.4%±0.3% 71.6%±0.9% 78.6%±0.4%

Per-FedAvg 88.9%±0.7% 36.6%±1.3% 89.5%±0.2% 58.3%±0.7% 54.5%±1.3% 65.6%±0.8%
FedRep 92.6%±0.2% 42.0%±1.0% 93.1%±0.1% 61.1%±0.5% 50.8%±1.4% 67.9%±0.8%
ADCOL 94.7%±0.6% 58.2%±1.0% 95.4%±0.2% 76.0%±0.3% 76.7%±0.8% 80.2%±0.5%

Table 2. The communication round and size of each approach to achieve the same target performance as the minimum converged accuracy
among FedAvg, FedBN, PartialFed, FedProx, and ADCOL as shown in Table 1 (i.e., 94.1% in MNIST). We use the slash cell to indicate
that the approach (i.e., Per-FedAvg and FedRep) cannot reach the target performance in 100 rounds/30 GB. The speedup is computed by
dividing the communication size of FedAvg by the communication size of ADCOL.

Digits MNIST SVHN USPS SynthDigit MNIST M AVG

#communication
round

FedAvg 11 54 5 11 7 28
FedBN 11 73 5 68 7 22

PartialFed 9 23 6 14 8 14
FedProx 64 42 8 12 10 31

Per-FedAvg
FedRep
ADCOL 19 86 6 19 9 21

communication
size (GB)

FedAvg 3.12 15.34 1.42 3.12 1.99 7.95
FedBN 3.12 20.73 1.42 19.31 1.99 6.25

PartialFed 2.56 6.53 1.70 3.98 2.27 3.98
FedProx 18.18 11.93 2.27 3.41 2.84 8.80

Per-FedAvg
FedRep
ADCOL 0.21 0.95 0.07 0.21 0.10 0.23

Speedup 14.95x 16.21x 21.52x 14.95x 20.08x 34.42x

Effect of µ We vary µ ∈ {0, 0.1, 1, 10} and report the
accuracy of ADCOL as shown in Figure 3d. We can observe
that ADCOL can achieve the best accuracy when µ = 1. If
µ is too small, the KL divergence loss of Equation 2 has
little effect on the local training. Then, the goal of learning
a common representation distribution may not achieve. If µ
is too large, the cross-entropy loss of Equation 2 has little
effect on the local training, and the representations may not
be useful for classification at all (e.g., all representations
are a constant vector). ADCOL with µ = 10 may even be
worse than SOLO (i.e., µ = 0). Thus, an appropriate µ is
important in ADCOL. Through our experimental studies,
we find that setting µ = 1 is a good default choice.

5.5. Representation Sampling

Here we apply the representation sampling technique and
change the sampling rate from {20%, 60%, 80%, 100%}.

Table 3. ADCOL with different representation sampling rates. We
present the final converged mean accuracy and the number of
communication rounds and communication costs to achieve the
target accuracy 78% on Digit.

Sampling ratio accuracy #rounds size (GB)
20% 78.4% 32 0.07
40% 78.5% 32 0.14
60% 79.1% 26 0.17
80% 79.8% 23 0.20

100% 80.2% 21 0.23

The final accuracy and the communication efficiency are
shown in Table 3. We can observe that the communication
cost of ADCOL can be significantly reduced with represen-
tation sampling. Moreover, there is little accuracy loss when
the sampling rate is large than 60%.
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Figure 3. Effect of different factors. We run three trials and report
the mean accuracy across parties and its standard derivation.

6. Discussion
In this section, we discuss the relation of ADCOL to stud-
ies in domain generalization, limitations of ADCOL, and
possible future work.

Relation to Domain Generalization While the motiva-
tion of ADCOL is intuitive, it can also be explained from the
perspective of domain generalization (Muandet et al., 2013).
In domain generalization, the goal is to extract knowledge
from multiple source domains to apply it to an unseen tar-
get domain. Considering each party as a source domain
and the target domain as the oracle optimal representation
space, we aim to extract the domain invariant representa-
tion distribution and use it to regularize the local training.
Existing domain generalization techniques are designed in
a centralized setting, which usually require the access to
the raw data of multiple source domains (Li et al., 2018a;b;
Liu et al., 2018). There is one work (Liu et al., 2021) that
studies domain generalization in the federated setting. It
is designed for medical image segmentation by episodic
learning in the frequency space. In this paper, we aim to
design a general collaborative learning framework based on
adversarial learning.

Limitations ADCOL is a collaborative learning method
for non-IID features and may not be applicable in the non-
IID label setting. Note that ADCOL aims to learn a common
representation distribution. Intuitively, the task-specific rep-
resentations of images from different classes should be very
different, which can be easily classified by a small MLP.
Thus, if the label distribution varies across parties, the rep-

resentation distribution naturally also varies a lot across
parties. The current objective of ADCOL does not fit into
the non-IID label setting. Also, the communication size of
ADCOL is related to the number of examples. If the number
of examples is very large and the size of the model is small,
the communication cost of ADCOL will be larger than other
federated learning approaches.

Insights and Future Work The key insights from AD-
COL are (1) a GAN-style training scheme and (2) regular-
ization from a view of representation distribution. While
ADCOL does not have a limitation on the local training al-
gorithm, it can also be extended to self-supervised federated
learning, where cross-entropy loss is replaced by losses used
in self-supervised learning (e.g., contrastive loss (Chen et al.,
2020; Chen & He, 2021)). Moreover, while ADCOL only
works on non-IID feature settings currently, the adversarial
collaborative training scheme can potentially be applied to
address other data settings by modifying the objectives of
local training and server training. There are many research
opportunities based on the findings of this paper.

7. Conclusion
In this paper, we propose ADCOL, a novel collaborative
learning approach for non-IID features. Unlike most previ-
ous studies performing model averaging, ADCOL trains the
models in an adversarial way between the parties and the
server from the perspective of representation distributions.
The parties aim to learn a common representation distribu-
tion, while the server aims to distinguish the representations
by party IDs. Our experiments on three real-world tasks
show that ADCOL achieves higher accuracy than the other
state-of-the-art federated learning approaches on non-IID
features.

ADCOL shows that it is possible to incorporate global
knowledge into parties in an adversarial way instead of
model averaging. This is a fundamentally new and poten-
tially powerful way for federated learning. We are interested
in future studies on extending ADCOL to more federated
settings and advanced techniques for efficient and privacy-
preserving representation sharing.
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A. Theoretical Analysis
Theorem 4.1. We use PGi

to denote the distribution of the representations generated in party i and PGi
(z) is the probability

of representation z in distribution PGi . Then, the optimal discriminator D∗ of Equation 4 of the main paper is

D∗
k(z) =

PGk
(z)∑N

i=1 PGi
(z)

. (8)

Proof. From the view of the distribution of representations z, we can reformulate Equation 4 and the objective is to
maximize:

N∑
i=1

∫
z

PGi
(z) log(Di(z))dz (9)

Let V (D) =
∑N

i=1 PGi
(z) log(Di(z)). To maximize Equation 9 with respect to D, it is equivalent to maximize V (D) with

respect to D given any z. Note that
∑N

i=1 Di(z) = 1. Let F (D) = V (D) + λ(1−
∑N

i=1 Di(z)). We have

∂F (D)

∂Di(z)
=

PGi
(z)

Di(z)
− λ (10)

Let ∂F (D)
∂Di(z)

= 0 for i ∈ [1, N ], we have

PG1
(z)

D1(z)
=

PG2
(z)

D2(z)
= · · · = PGN

(z)

DN (z)
= λ (11)

Thus, V (D) can achieve maximum when

D∗
k(z) =

PGk
(z)∑N

i=1 PGi
(z)

(12)

Note that the discriminator uses SGD to update its model with cross-entropy loss as shown in Lines 6-9 of Algorithm 1.
If the discriminator is a linear function, then it can converge to the global optima since the loss function is convex. If the
discriminator is a neural network with non-linear activations, whether SGD finds a global minimum or not is a traditional
optimization problem, which is orthogonal to our study. Given the evidence of the power of deep learning with SGD from
existing studies (Du et al., 2019; Zhou et al., 2019; Zou et al., 2018; Choromanska et al., 2015; Dauphin et al., 2014), we
assume that D can reach D∗ like existing GAN studies (Goodfellow et al., 2014; Tran et al., 2019). We also empirically
show that the discriminator can converge to optima in Appendix B.14.

Theorem 4.2. Given the optimal discriminator D∗ from Equation 8, the global minimum of Equation 3 of the main paper is
achieved if and only if

PG1
= PG2

= · · · = PGN
(13)

Proof. From Equation 3 of the main paper, the local objective of party k is to minimize

W (Gk) = −Ex∼Dk

1

N

N∑
i=1

log(N ·Di(Gk(x)))

= −Ex∼Dk

1

N

N∑
i=1

log(
N · PGi

(Gk(x))∑N
j=1 PGj (Gk(x))

)

= −Ex∼Dk

1

N

N∑
i=1

(logN + log(
PGi(Gk(x))∑N
j=1 PGj

(Gk(x))
))

(14)

13



Adversarial Collaborative Learning on Non-IID Features

To minimize Equation 14, we need to maximize log(
PGi

(Gk(x))∑N
j=1 PGj

(Gk(x))
). Note that

∑N
i=1

PGi
(Gk(x))∑N

j=1 PGj
(Gk(x))

= 1. Similar to

the proof in Theorem 4.1, Equation 14 can achieve minimum when

PG1(Gk(x))∑N
j=1 PGj

(Gk(x))
=

PG2(Gk(x))∑N
j=1 PGj

(Gk(x))
= · · · = PGN

(Gk(x))∑N
j=1 PGj

(Gk(x))
=

1

N
. (15)

For ∀k ∈ [1, N ] and ∀i ∈ [1, N ], we have PGi(Gk(x)) =
∑N

j=1 PGj
(Gk(x))

N . Given a representation z, we have

PG1
(z) = PG2

(z) = · · · = PGN
(z) =

∑N
j=1 PGj

(z)

N
(16)

Thus, PG1
= PG2

= · · · = PGN
.

Theorem 4.3. Suppose P ∗
G is the optimal solution shown in Theorem 4.2. If Gi (∀i ∈ [1, N ]) and D have enough capacity,

and PGi
is updated to minimize the local objective (i.e., Equation 3 of the main paper), given the optimal discriminator D∗

from Equation 8, then PGi
converges to P ∗

G.

Proof. In Equation 14, consider W (Gk) = U(PGi
) as a function of PGi

. Then

∂U(PGi
)

∂PGi

= −
∑

k ̸=i PGk

NPGi(PGi +
∑

k ̸=i PGk
)
. (17)

We have
∂2U(PGi

)

∂PGi

2 =
1

P 2
Gi

− 1

(PGi +
∑

k ̸=i PGk
)2
≥ 0 (18)

Thus, U(PGi
) is convex in PGi

. Therefore, with sufficiently small updates of PGi
, PGi

converges to P ∗
G, concluding the

proof.

Before we prove Theorem 4.4, we introduce the following lemma from (Ben-David et al., 2006) for the generalization error
in domain adapataion. We use DS to denote the source distribution and D̃S the induced distribution over the feature space
Z . We use DT to denote the target distribution and D̃T the induced distribution over the feature space Z .
Lemma 1. LetR be a fixed representation function from X to Z andH be a hypothesis space of VC-dimension d. Suppose
a random labeled sample of size m is generated by applying R to a DS − i.i.d. sample labeled according to f . With
probability at least 1− δ, for every h ∈ H,

εT (h) ≤ ε̂S(h) +

√
4

m
(d log(

2em

d
) + log

4

δ
) + dH(D̃S , D̃T ) + λ, (19)

where D̃S is the induced distribution over feature space Z dH(D̂S , D̂T ) is the empiricalH-divergence between D̃S and D̃T

and λ = minF∈H εDT (F ) + εDS
(F ).

The above lemma can be directly applied in our setting by considering DS as the local data distribution and DT as the global
data distribution, which leads to the below theorem.
Theorem 4.4. Let Dk be the local data distribution of party k and the training data are IID samples from Dk with size
m. Let D be the global data distribution. Let Rk : Xk → Z be the feature extraction function of party k. Assume that
local models extract the same underlying task-specific representation Z∗ as demonstrated in Theorem 4.2. Let H be the
hypothesis space with VC-dimension d. With probability at least 1− δ,

εD(Fk) ≤ ε̂Dk
(Fk) +

√
4(d log 2em

d + log 4
δ )

m

+ dH(ẐDk
, ẐD) + λ,

(20)

where dH(ẐDk
, ẐD) is the empiricalH-divergence between local representation distribution ẐDk

and the global represen-
tation distribution ẐD and λ = minF∈H εD(F ) + εDk

(F ).
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Table 4. The statistics of all studied datasets.
#training samples #testing samples FID

Digits

MNIST 56,000 14,000

140.97±30.61
SVHN 79,431 19,858
USPS 7,438 1,860

SynthDigit 402,209 97,791
MNIST M 56,000 14,000

Caltech-10

Amazon 766 192

78.12±43.11Caltech 898 225
DSLR 125 32

WebCam 236 59

DomainNet

Clipart 2,103 526

144.81±35.40

Infograph 2,626 657
Painting 2,472 619

Quickdraw 4,000 1,000
Real 4,864 1,217

Sketch 2,213 554
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(c) DomainNet

Figure 4. The label distributions of each task. The value in each cell of row i and column j represents the percentage of samples with
class j in Party i.

B. Additional Experimental Results
B.1. Additional Experimental Details

In each experiment, like FedBN (Li et al., 2021c), to remove the effect of quantity skew, we truncate the size of all datasets
to their smallest number with random sampling. For Digits, we resize all images to 28× 28× 3 and normalize them with
mean 0.5 and standard derivation 0.5 for each channel. For Office-Caltech-10, we resize all images to 64× 64× 3 with
random horizontal flip and random rotation. For DomainNet, we resize all images to 64× 64× 3 with random horizontal
flip and random rotation. Like FedBN, we take Digits as the benchmark task for most studies.

The statistics of all the datasets are shown in Table 4. To quantitatively demonstrate the feature imbalance, we use FID
(Heusel et al., 2017) to measure the difference between feature distributions of different parties. Specifically, it measures the
Frechet distance between the representation distributions of different datasets, where the representation is generated by a
Inception v3 model pretrained on ImageNet dataset. FID is 0 when two datasets are the same. For each task, we compute
the FID between each subset and the whole dataset by merging all subsets. With FID values for each subset, we report the
mean value and the standard deviation. From Table 4, we can observe that there indeed exists feature imbalance for each
task. We also show the label distributions in Figure 4. The portion of samples with each class is close to 0.1. The label
distribution is balanced among the parties.

There are two major differences between our experimental setup and the setup in FedBN. (1) The model architecture is
different. Our paper adopts ResNet-50 for all datasets, while FedBN uses a simple CNN for Digit and AlexNet for Office and
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Table 5. The comparison of top-1 test accuracy among different approaches on Caltech-10.
Caltech-10 Amazon Caltech DSLR WebCam AVG

SOLO 52.8%±0.9% 36.0%±0.9% 71.9%±0.5% 74.6%±0.5% 58.8%±0.6%
FedAvg 24.0%±1.7% 36.9%±1.4% 81.3%±0.4% 82.7%±0.4% 56.2%±1.0%
FedBN 33.3%±1.5% 33.8%±1.8% 81.3%±0.5% 80.0%±0.6% 57.1%±1.0%

PartialFed 17.4%±2.2% 24.2%±1.6% 70.3%±3.4% 77.1%±3.6% 47.2%±2.4%
FedProx 43.2%±1.6% 33.1%±0.8% 82.6%±0.4% 83.1%±0.7% 60.5%±0.7%

Per-FedAvg 33.9%±1.6% 32.4%±1.5% 62.5%±0.8% 74.6%±0.8% 50.8%±1.3%
FedRep 16.1%±1.9% 22.7%±1.7% 56.3%±1.0% 57.6%±1.1% 38.2%±1.4%
ADCOL 54.2%±1.1% 38.2%±1.3% 75%±0.6% 83.1%±0.5% 62.6%±0.9%

Table 6. The comparison of top-1 test accuracy among different approaches on DomainNet.
DomainNet Clipart Infograph Painting Quickdraw Real Sketch AVG

SOLO 31.7%±0.9% 20.2%±1.2% 30.9%±0.9% 48.2%±1.1% 36.5%±0.8% 20.8%±1.5% 31.4%±0.9%
FedAvg 33.5%±1.2% 20.4%±0.7% 29.2%±0.8% 56.2%±1.2% 40.5%±0.8% 22.6%±1.1% 33.7%±0.9%
FedBN 36.3%±1.3% 20.4%±0.8% 27.8%±1.4% 61.3%±0.9% 41.9%±1.3% 23.6%±1.2% 35.2%±1.1%

PartialFed 35.0%±0.2% 20.5%±0.2% 30.4%±0.2% 61.4%±0.7% 38.3%±2.1% 27.1%±0.5% 35.4%±0.3%
FedProx 37.8%±1.0% 21.6%±0.8% 28.1%±1.0% 23.6%±0.7% 43.6%±1.2% 22.4%±1.0% 29.5%±1.0%

Per-FedAvg 38.2%±0.7% 20.2%±0.6% 27%±1.2% 42.4%±0.8% 40.3%±0.7% 22.6%±1.2% 31.8%±1.3%
FedRep 27.9%±1.2% 19%±0.9% 24.1%±1.2% 17.9%±1.1% 31.1%±1.4% 16.8%±1.1% 22.8%±1.4%
ADCOL 39.9%±1.0% 21.9%±0.9% 33.9%±1.2% 61.7%±0.8% 39.3%±1.5% 23.9%±1.2% 36.8%±1.0%

DomainNet. We adopt ResNet since we need to extract the representations for the input data, and ResNet-50 is commonly
used as a base encoder to extract the representations in representation learning studies (Chen et al., 2020; Grill et al., 2020;
Chen & He, 2021). (2) The image size is different. FedBN resizes all images of Office and Domain to 256x256x3, while our
paper resizes them to 64x64x3 for computation efficiency.

B.2. Caltech-10 and DomainNet

Table 5 and 6 show the test accuracy of different approaches on Caltech-10 and DomainNet, respectively. We can observe
that ADCOL still outperforms the other approaches in most cases.

We show the communication efficiency of ADCOL on Caltech-10 and DomainNet in Table 7 and Table 8. We can observe
that ADCOL is much more communication-efficient than the other approaches. The speedup can be even up to 300 times.

B.3. Explanation of the Experimental Results by FID

We observe that there is a correlation between FID and the performance gain of ADCOL compared with local training.
Generally, with a higher FID (i.e., more imbalanced feature distribution), the party can gain more from our approach. The
relative improvement on the accuracy of ADCOL against local training is 15.4%, 6.8%, and 17.2% on Digits, Caltech-10, and
DomainNet, respectively. The improvement is positively related to the FID of each task. If FID is small, the representation
distribution of the local dataset is close to the global dataset, then local training may already learn a good representation and
the improvement of ADCOL is limited.

B.4. Training Curves

The training curves of different approaches on Digit are shown in Figure 5. We can observe that ADCOL is much more
communication-efficient than the other approaches. ADCOL can convergence with a much smaller communication size than
the other approaches.

B.5. Party Sampling

Party sampling is a technique usually used in the cross-device setting, where a fraction of parties is sampled to participate in
federated learning in each round. Here we set the sample fraction to 0.4 in Digit and choose FedAvg and FedBN as the
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Figure 5. The training curves of different approaches on Digit.
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Table 7. The communication round and communication cost of each approach to achieve the same target performance on Caltech-10.
Caltech-10 Amazon Caltech DSLR WebCam AVG

#round

FedAvg 7 22 12 14 14
FedBN 3 21 12 19 19

PartialFed
FedProx 14 29 15 29 22

Per-FedAvg 23
FedRep
ADCOL 3 18 31 12 20

cost (GB)

FedAvg 1.99 6.25 3.41 3.98 3.98
FedBN 0.85 5.96 3.41 5.40 5.40

PartialFed
FedProx 3.98 8.24 4.26 8.24 6.25

Per-FedAvg 6.53
FedRep
ADCOL 0.02 0.10 0.17 0.07 0.11

Speedup 120.48 63.11 19.99 60.24 36.15

Table 8. The communication round and communication cost of each approach to achieve the same target performance on DomainNet.
DomainNet Clipart Infograph Painting Quickdraw Real Sketch AVG

#round

FedAvg 22 5 9 38 23 17 47
FedBN 14 7 5 54 29 18 41

PartialFed 15 4 28 36 15 13 20
FedProx 13 8 16 32 12

Per-FedAvg 31 19 34 64 57
FedRep
ADCOL 11 4 9 6 44 19 26

cost (GB)

FedAvg 6.25 1.42 2.56 10.79 6.53 4.83 13.35
FedBN 3.98 1.99 1.42 15.34 8.24 5.11 11.64

PartialFed 4.26 1.14 7.96 10.23 2.46 3.69 5.69
FedProx 3.69 2.27 4.54 9.09 3.41

Per-FedAvg 8.80 5.40 9.66 18.18 16.19
FedRep
ADCOL 0.06 0.02 0.05 0.04 0.26 0.11 0.15

Speedup 96.9 60.6 48.5 306.9 25.3 43.4 87.6

baselines. The training curves are shown in Figure 6. We can observe that all approaches have an unstable accuracy during
training due to sampling. Moreover, FedAvg and FedBN have a very poor accuracy, which shows that existing federated
learning approaches cannot well support party sampling on non-IID features. ADCOL significantly outperforms the other
approaches.

We increase the number of parties to 100 (i.e., divide each dataset to 20 subsets) and vary the sampling rate from
{0.1, 0.2, 0.5, 1}. We run all approaches for 200 rounds. The results are shown in Table 9. We can observe that when
the sampling rate decreases, the performance of all approaches decreases. Moreover, the training is more unstable if the
sampling rate is smaller. However, ADCOL still significantly outperforms FedAvg and FedBN. It is still a challenging task
to develop effective algorithm on the cross-device setting with a low sampling rate.

B.6. Study on the Discriminator

One natural question is how to increase the information contained in the discriminator to improve the performance of
ADCOL. We have tried two approaches.
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Figure 6. The training curves with party sampling (sample fraction = 0.4). We report the mean test accuracy across all parties.

Table 9. The performance of different approaches varying the sampling rate. We run all approaches for 200 rounds and report the final
mean accuracy and standard deviation with three runs.

Sampling Rate FedAvg FedBN ADCOL
0.1 12.1%±9.2% 25.3%±8.1% 34.1%±6.5%
0.2 15.3%±7.6% 31.9%±7.4% 46.7%±4.2%
0.5 60.2%±5.4% 62.2%±4.9% 67.3%±2.4%
1 77.6%±1.4% 77.7%±1.2% 79.1%±0.9%

Changing Model Architecture One approach is to increase the capacity of the discriminator. We change the model
architecture to ResNet-50. The results are shown in Table 10. The performance of ADCOL cannot be improved by increasing
the capacity of the discriminator.

Increasing the Number of Discriminators The other one approach is to increase the number of discriminators. Suppose
the number of discriminators is Nd and the current round is t. Then, we use discriminators from round max(1, t−Nd) to
round (t− 1) in the local training. The KL divergence loss is computed as

ℓ =
1

Nd

Nd∑
i=1

ℓKL([
1

N
]N || Di(G(x))), (21)

where Di is the discriminator trained in round max(1, t− i). The results are shown in Table 11. ADCOL cannot benefit
from more discriminators. When the number of discriminators is larger, the accuracy of ADCOL is even worse. It is a future
work to investigate how to integrate more useful information into the discriminator.

B.7. Dimension of Representations

Same as SimSam (Chen & He, 2021), we set the dimension of representations (i.e., the output dimension of the projection
head, the input dimension of the discriminator) to 2048 by default. As shown in Table 12, we report the performance of
ADCOL varying the representation dimension. ADCOL can benefit from a larger representation dimension, where the

Table 10. ADCOL with different discriminator architectures.
Discriminator MNIST SVHN USPS SynthDigit MNIST-M AVG

ResNet-50 95.1% ± 0.5% 55.6% ± 0.8% 96.0% ± 0.3% 73.6% ± 0.5% 76.5% ± 0.5% 79.4% ± 0.4%
MLP 94.7% ± 0.6% 58.2% ± 1.0% 95.4% ± 0.2% 76.0% ± 0.3% 76.7% ± 0.8% 80.2% ± 0.5%
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Table 11. ADCOL with different number of discriminators.
Number of discriminators 1 2 10 20

MNIST 94.7% ± 0.6% 95.1% ± 0.6% 91.0 % ± 0.3% 88.6% ± 0.8%
SVHN 58.2% ± 1.0% 45.4% ± 1.1% 52.4% ± 1.2% 46.5% ± 1.4%
USPS 95.4% ± 0.2% 95.2% ± 0.1% 95.3% ± 0.2% 90.1% ± 0.4%

SynthDigit 76.0% ± 0.3% 73.4% ± 0.4% 67.2% ± 0.8% 73.4% ± 0.5%
MNIST-M 76.7% ± 0.8% 76.4% ± 0.7% 72.1% ± 0.9% 57.0% ± 1.2%

AVG 80.2% ± 0.5% 77.1% ± 0.6% 75.6% ± 0.8% 71.1% ± 1.0%

Table 12. The test accuracy of ADCOL with different representation dimensions.
Dimension 512 1024 2048

MNIST 93.2% ± 0.6% 94.9% ± 0.5% 94.7% ± 0.6%
SVHN 48.9% ± 1.2% 50.5% ± 1.4% 58.2% ± 1.0%
USPS 94.8% ± 0.2% 95.5% ± 0.3% 95.4% ± 0.2%

SynthDigit 72.9% ± 0.8% 79.4% ± 0.7% 76.0% ± 0.3%
MNIST-M 68.9% ± 0.9% 73.1% ± 0.7% 76.7% ± 0.8%

AVG 75.7% ± 0.7% 78.7% ± 0.7% 80.2% ± 0.5%

representations are more informative. The mean accuracy can be improved by about 5% by increasing the dimension from
512 to 2048.

B.8. Non-IID Labels

We test the performance of ADCOL on non-IID label settings. Specifically, we sample pk ∼ DirN (0.5) and allocate a pk,j
proportion of the instances of class k to party j, where Dir(0.5) is the Dirichlet distribution with a concentration parameter
0.5. The results are shown in Table 13. ADCOL cannot achieve a better performance than FedAvg and FedBN. Intuitively,
the task-specific representations of images from different classes should be very different. If the label distribution varies
across parties, the representation distribution naturally also varies a lot. The intuition of ADCOL, which aims to learn a
common representation distribution, is not appropriate on non-IID label settings.

B.9. Computation Overhead

As shown in Table 14, the training time of ADCOL is larger than the other approaches. ADCOL requires the training of a
discriminator in the server side, while the other approaches only need to average the models in the server side. However, in
practice, the server usually has much powerful computation resources than the parties. Thus, the computation overhead in
the server side is affordable.

B.10. Sharing the Predictor Layers

The parties only send the representations to the server in ADCOL. While ADCOL aims to learn a common representation
distribution z, an interesting extension is to share the predictor layers between the parties and the server, which ideally helps
in regularizing p(y|z). The results are shown in Table 15. We can observe that ADCOL without sharing the predictor layers
is generally more effective than sharing the predictor layers. In practice, the distribution p(y|xi) is not exactly the same
across parties. Thus, it is not necessary to regularize p(y|z) among the parties. Leaving the parties to fine tune their own
predictor layer is more capable to learn the personalized local distribution.

Table 13. The test accuracy of different approaches on non-IID label settings.
SOLO FedAvg FedBN ADCOL

CIFAR-10 59.3% ± 8.0% 89.0% ± 2.4% 90.7% ± 2.1% 79.2% ± 4.7%
CIFAR-100 33.5% ± 2.1% 57% ± 2.8% 55.6% ± 3.0% 36.1% ± 2.8%
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Table 14. The total training time of running all approaches for 100 rounds.
FedAvg FedBN PartialFed ADCOL FedProx Per-FedAvg FedRep

Training time (hour) 6.5 7 7 11 8 7 8.5

Table 15. The comparison between sharing the predictor layers and not sharing the predictor layers.
w/ sharing w/o sharing

MNIST 95.4% 94.7%
SVHN 48.8% 58.2%
USPS 95.2% 95.4%

SynthDigit 75.9% 76.0%
MNIST M 73.4% 76.7%

AVG 77.7% 80.2%

B.11. Differential Privacy

We consider two popular threat models in existing FL studies: 1) The server is trusted and the parties are honest-but-
curious (Geyer et al., 2017). We need to protect the messages that are sent from the server to the parties. 2) The server and
the parties are honest-but-curious and we need to protect all the transferred messages (Wei et al., 2020; Truex et al., 2020).

Trusted Server In this setting, we do not need to protect the representations sent from parties to the server. We need
to protect the classification model sent from the server to the parties. Thus, when training the classification model on the
server-side, we apply DP-SGD (Abadi et al., 2016) to add Gaussian noises to the gradients during training to satisfy (ε, δ)-DP
with the same default parameters. We keep ε fixed and ensure that δ ≤ 10−2 to compare the accuracy of DP-ADCOL with
the non-private version as shown in Table 16. We can observe that DP-ADCOL can achieve a very close accuracy to the
non-private version with a budget 5. There are two reasons that DP works well in ADCOL: 1) DP-SGD works well with the
discriminator as it is a shallow model (Tramer & Boneh, 2021), which is a simple 2-layer MLP. If we increase the number
of layers for the discriminators, the accuracy of DP-ADCOLL will decrease as shown in the last row of Table 16. 2) The
discriminator needs a small number of steps to update and the accumulated privacy loss is small. For FedAvg, it is not easy
to apply record-level DP. Existing studies (Geyer et al., 2017; McMahan et al., 2017) clip the local model updates to provide
party-level DP which is more strict than the record-level DP. We conduct simple experiments and find that the accuracy of
DP-FedBN is low with party-level DP, which is about 66.3% accuracy given the budget 5.

Honest-but-curious Server In this setting, the messages sent from parties to the server should also be protected. We
apply local differential privacy with sampling in ADCOL to provide rigorous privacy guarantees. Specifically, in each round,
we sample and normalize the representations and add noises from Gau(0, 1/ϵ) before sending them to the server, where
Lap(0, 1/ϵ) is the Laplace distribution with mean 0 and scale 1/ϵ. Then, in each round, the transferred representations
satisfy ϵ-differential privacy (Lyu et al., 2020). Due to the parallel composition, the privacy loss is not accumulated among
rounds. To achieve the same level of privacy guarantee with DP-ADCOL for FedBN, we implement DP-FedBN by clipping
and adding Laplace noises to the communicated model updates (Kairouz et al., 2019). For DP-FedBN, we try two methods:
1) without party sampling: the privacy loss is accumulated among different rounds. 2) party sampling without replacement:
we set the sampling fraction per round to 0.2 and the privacy loss is not accumulated among every five rounds. The results
are shown in Table 17. We can observe that the accuracy of ADCOL is very close to the non-private version with a modest

Table 16. The privacy-accuracy tradeoff of DP-ADCOL in the trusted server setting.
MNIST SVHN USPS SynthDigit MNIST-M AVG

non-private 94.7% 58.2% 95.4% 76.0% 76.7% 80.2%
ε = 2 90.2% 52.4% 90.1% 67.4% 69.7% 74.0%
ε = 5 93.9% 57.6% 94.1% 72.4% 73.8% 78.4%
ε = 10 94.2% 57.8% 94.5% 74.1% 74.8% 79.1%

ε = 5 (5 layers) 91.1% 53.8% 91.8% 69.9% 72.2% 75.8%

21



Adversarial Collaborative Learning on Non-IID Features

privacy budget (i.e., 10). Moreover, DP-ADCOL achieves a higher accuracy than DP-FedBN in the same privacy level. It is
promising to apply DP in ADCOL thanks to the representation-sharing scheme.

Table 17. Comparison between DP-ADCOL and DP-FedBN under the same privacy level.
ε approaches MNIST SVHN USPS SynthDigit MNIST M AVG

2
DP-ADCOL 89.1% 50.4% 88.2% 64.1% 66.8% 71.7%

DP-FedBN (w sampling) 69.9% 19.2% 82.3% 15.5% 17.1% 40.8%
DP-FedBN (w/o sampling) 76.1% 21.2% 78.2% 10.2% 10.9% 39.3%

5
DP-ADCOL 92.7% 56.7% 93.0% 69.4% 71.9% 76.7%

DP-FedBN (w sampling) 73.5% 23.3% 85.8% 28.6% 26.2% 47.5%
DP-FedBN (w/o sampling) 78.7% 24.4% 82.5% 13.2% 13.7% 42.5%

10
DP-ADCOL 93.1% 56.9% 93.1% 73.2% 74.3% 78.1%

DP-FedBN (w sampling) 90.5% 34.3% 91.2% 52.8% 58.7% 65.5%
DP-FedBN (w/o sampling) 84.9% 21.5% 88.7% 15.6% 25.8% 47.3%

non-private ADCOL 94.7% 58.2% 95.4% 76.0% 76.7% 80.2%
FedBN 94.1% 59.9% 94.1% 73.9% 71.3% 78.7%

B.12. Experiments on a Simulated Dataset

We run experiments on a simulated dataset with two parties so that we can control different factors more easily to investigate
the behavior of ADCOL. We generate a binary classification dataset containing 20,000 samples and 100 features, allocating
80% for training and the remaining portion for testing. For Party A, we generate data p(x|y = 0) ∼ Gau(−1, 1) and
p(x|y = 1) ∼ Gau(1, 1), where Gau(x, y) is a Gaussian distribution with mean x and standard deviation y. For Party B,
we generate data p(x|y = 0) ∼ Gau(−2, σ) and p(x|y = 1) Gau(2, σ), wherein we vary the standard deviation σ from 2
to 20. We use a four-layer MLP with 100 hidden units as the local model. The results are shown in Table 18. When σ is
larger, the heterogeneity is higher and FID score is also larger. ADCOL still outperforms the other baselines, particularly
when the heterogeneity is high. The results show that our approach can effectively reduce dH(ẐDk

, ẐD) even when the
distance between local data distributions is large.

B.13. Party Sampling with a Fixed Number of Selected Parties

One practical concern is that the output dimension of the discriminator is fixed to be the number of participating parties,
which may not handle the case when the number of parties is extremely large or the number of parties is changing over time.
To address the concern, we propose to apply party sampling with a fixed number of selected parties each round. The output
dimension of the discriminator is same as the number of participated parties each round. The selected parties first update
their models locally without the regularization term we introduced. Next, the parties send their representations to the server,
which updates the discriminator and sends back the discriminator to the parties. Then, the same parties update their models
again with the regularization term using the discriminator. After that, we can move into next round and sample new parties
again. We have conducted experiments on Digits with 50 parties. In each round, we randomly drop 5 parties tentatively for
one round to simulate the scenario where the number of parties change over time (i.e., the selected 5 parties leave FL for
current round and join FL again in the next round). After dropping 5 parties, we randomly select 5 parties to participate in
FL in the current round. The output dimension of the discriminator is set to 5. We run ADCOL, FedAvg, and FedBN for
100 rounds and the results are shown in Table 19. We can observe that FedAvg and FedBN have a poor accuracy in such a

Table 18. The test accuracy on simulated datasets.
σ FID SOLO FedAvg FedBN ADCOL
2 4.5 100%±0 100%±0 100%±0 100%±0
5 10.7 99.9%±0.03% 99.8%±0.08% 99.8%±0.1% 99.9%±0.02%
10 30.4 95.4%±0.1% 96.3%±0.4% 96.1%±0.2% 97.9%±0.4%
20 80.2 86.5%±1.3% 87.3%±1.6% 88.2%±1.8% 93.8%±1.5%
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Table 19. The mean test accuracy and standard derivation across parties when applying party sampling with a fixed number of selected
parties each round. The output dimension of the discriminator in ADCOL is set to the number of selected parties each round.

FedAvg FedBN ADCOL
Accuracy 13.4+-3.8% 13.7+-3.5% 69.2+-20.6%
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Figure 7. The training curves of different discriminators.

scenario. ADCOL significantly outperforms these two approaches.

B.14. Convergence of the Discriminator

We empirically study whether the discriminator converge to optima or not. Besides using a MLP as the discriminator in
our experiments, to compare convex and non-convex loss function, we also try a linear function as the discriminator by
removing the non-linear activation in MLP. The training curves are shown in Figure 7 and the accuracy of using a linear
function is shown in Table 20. We can observe both MLP and linear function can achieve optima (i.e., zero training loss)
with SGD. Moreover, ADCOL with a linear function as the discriminator can still achieve a better performance than the
other baselines from Table 1 of the main paper.

B.15. Study on the Local Model Architecture

Instead of using ResNet-50, we try a different local model to investigate the robustness of our approach. We use the same
model as the experiments in FedBN for Digit task, which is a six-layer convolutional neural network. We use the input
before the last fully-connected layer as the representation. The results are shown in Table 21. From the table, we can observe
that ADCOL outperforms FedBN, which further verifies the effectiveness of ADCOL.

Table 20. ADCOL with MLP or linear function as the discriminator.
Discriminator MNIST SVHN USPS SynthDigit MNIST-M AVG

Linear Function 94.9% 48.4% 95.7% 81.9% 75.9% 79.3%

Table 21. Comparison between ADCOL and FedBN using a CNN as local model.
MNIST SVHN USPS SynthDigit MNIST-M AVG

ADCOL 96.6% 73.0% 97.3% 88.3% 85.0% 88.1%
FedBN 96.3% 74.8% 96.8% 85.4% 81.8% 87.0%

23


