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Abstract
The concentration of measure inequalities serves
an essential role in statistics and machine learn-
ing. This paper gives unbounded analogues of
the McDiarmid-type exponential inequalities for
three popular classes of distributions, namely sub-
Gaussian, sub-exponential and heavy-tailed distri-
butions. The inequalities in the sub-Gaussian and
sub-exponential cases are distribution-dependent
compared with the recent results, and the inequali-
ties in the heavy-tailed case are not available in the
previous works. The usefulness of the inequalities
is illustrated through applications to the sample
mean, U-statistics and V-statistics.

1. Introduction
Concentration-of-measure inequalities are studied in order
to understand the fluctuations of complicated random ob-
jects. These inequalities have made great progress over
the years, playing a significant role in various fields which
include functional analysis, high-dimensional geometry,
high-dimensional probability and statistics, information the-
ory, machine learning, statistical physics, stochastic anal-
ysis, and theoretical computer science (Wainwright, 2019;
Ledoux, 2001; Boucheron et al., 2013; Raginsky & Sason,
2018). Specifically, concentration-of-measure inequalities
provide upper bounds on the probability that a random vari-
able deviates from its mean, median or any other typical
value by a given amount.

Among these concentration inequalities, McDiarmid’s in-
equality is a classical benchmark one, which works not only
for sums but for general functions of independent random
variables. It has proved to be useful in a number of applica-
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tions, such as algorithmic stability (Bousquet & Elisseeff,
2002; Bousquet et al., 2020) and suprema of empirical pro-
cesses (Bartlett & Mendelson, 2002; Maurer & Pontil, 2021;
Maurer, 2006). McDiarmid’s inequality (McDiarmid, 1998),
also called bounded difference inequality, states that

P (f(X)− E[f(X)] > t) ≤ exp

(
−2t2∑
k c

2
k

)
,

where f is a real-valued function of the sequence of inde-
pendent random variables X = (X1, ..., Xn), such that

|f(x)− f(x′)| ≤ ck

whenever x and x′ differ only in the k-th coordinate. Some
extensions of McDiarmid’s inequality to non-independent
variables have also been considered (Marton, 1996; Cha-
zottes et al., 2007; Kontorovich & Ramanan, 2008; Zhang,
2022; Paulin, 2015). Recently, a line of work by Maurer &
Pontil (2019); Maurer (2019) has also introduced inequali-
ties for general functions of independent random variables,
which is Bernstein-type inequality and capable of estimating
nonlinear statistics. These inequalities are pretty attractive
and useful, however, unfortunately, they require the bound-
edness of functions, imposing inherent limitations on their
applicability to unbounded loss functions.

The concentration properties of unbounded functions be-
come important in many settings, such as signal pro-
cessing (Bakhshizadeh et al., 2020b;a), neural networks
(Vladimirova et al., 2020; 2019; Torralba et al., 2008),
stochastic optimization (Gurbuzbalaban et al., 2021; 2022;
Barsbey et al., 2021; Simsekli et al., 2019), sample bias
correction (Dudı́k et al., 2005), domain adaptation (Cortes
& Mohri, 2014; Ben-David et al., 2006; Mansour et al.,
2009), boosting (Dasgupta & Long, 2003), and importance-
weighting (Cortes et al., 2019; 2021). To counter this diffi-
culty, some concentration inequalities for general functions
of unbounded random variables have been proposed (Kutin,
2002; Combes, 2015; Meir & Zhang, 2003; Kontorovich,
2014; Maurer & Pontil, 2021). Among these works, Kutin
(2002); Kutin & Niyogi (2002) prove two extensions of
McDiarmid’s inequality for strongly and weakly difference-
bounded functions. However, their approach entails com-
plex statement and proof, and their conditions are too re-
strictive in practice, see a discussion in (Kontorovich, 2014).
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Then, Meir & Zhang (2003); Kontorovich (2014) give exten-
sions of McDiarmid’s inequality for sub-Gaussian distribu-
tions. Combes (2015) proposes a somewhat different exten-
sion of McDiarmid’s inequality for functions with bounded
differences on a high probability set and no restriction out-
side this set. Very recently, Maurer & Pontil (2021), the
most related work to this paper, provide a more applicable in-
equality than the ones in (Meir & Zhang, 2003; Kontorovich,
2014) in the sub-Gaussian case and further study the heavier
sub-exponential distributions, whose results can be seen as
unbounded analogues of the McDiarmid’s inequality under
the sub-Gaussian and sub-exponential conditions.

Although very powerful, the results of Maurer & Pontil
(2021) suffer from the worst-case value of the sample space.
Specifically, their variance proxy term depends on the worst-
case choice of the configuration of sample space, refer to
Eqs. (1) and (2); we will elaborate upon this in Section 3.
In this paper, we propose distribution-dependent concen-
tration inequalities by replacing the worst-case value (i.e.
supremum) in Maurer & Pontil (2021) with an expectation.
This replacement is possible if the sum of conditional vari-
ance proxies has the suitable properties of concentration
around its mean, refer to Lemmas A.6 and A.7. To this end,
we should control the interaction functional, which indi-
cates that the variation of f in any given argument must
not depend too much on other arguments, refer to Def-
inition 2.3. This paper’s principal contributions include
providing such concentration inequalities for sub-Gaussian,
sub-exponential and heavy-tailed distributions, where the
McDiarmid-type exponential inequalities of heavy-tailed
distributions haven’t been studied before to our knowledge.
Not only that, we give corresponding refined inequalities
for sub-Gaussian, sub-exponential and heavy-tailed distribu-
tions by considering a weaker interaction functional, refer
to Definition 5.1. Some interesting applications, the sample
mean, U-statistics and V-statistics, are provided to illustrate
the usefulness of the inequalities.

The paper is organized as follows. In Section 2 the prelimi-
naries relevant to our discussion are presented. In Section 3
we provide our concentration inequalities, separated by sub-
Gaussian, sub-exponential and heavy-tailed distributions.
Section 4 is devoted to concrete applications (the sample
mean, U-statistics and V-statistics). In Section 5 we derive
refined concentration inequalities. Section 6 concludes this
paper. Finally, all the proofs are given in the Appendix.

2. Preliminaries
We use uppercase letters to present random variables and
vector of random variables, and lowercase letters to present
scalars and vector of scalars. Let X = (X1, ..., Xn) be a
vector of independent random variables with values in a
space X , and the vector X ′ = (X ′1, ..., X

′
n) is independent

and identically distributed (i.i.d.) to X . We consider that f
is a function f : Xn → R. In this paper, we are interested
in studying the concentration of the random variable f(X)
with respect to (w.r.t.) its expectation, i.e.,

P (f(X)− E[f(X ′)] > t) , ∀t > 0.

To proceed, we need some notations to characterize the
fluctuations of f in the k-th variable Xk, when the other
variables (xi : i 6= k) are given.

Definition 2.1. (Maurer, 2019) For fixed k ∈ {1, ..., n}
and y, y′ ∈ X define the substitution operator Sky and the
difference operator Dk

y,y′ by

(Skyf)(x1, ..., xn) = f(x1, ..., xk−1, y, xk+1, ..., xn)

and

Dk
y,y′ = Sky − Sky′ .

We also give a definition on the centered conditional version
of f .

Definition 2.2 (Definition 1 in (Maurer & Pontil, 2021)).
If f : Xn → R, x = (x1, ..., xn) ∈ Xn and X =
(X1, ..., Xn) is a random vector with independent compo-
nents in Xn, then the k-th centered conditional version of f
is the random variable

fk(X)(x) = f (x1, ..., xk−1, Xk, xk+1, ..., xn)

−E [f (x1, ..., xk−1, X
′
k, xk+1, ..., xn)] .

fk(X) can be seen as a random-variable-valued-function
fk(X) : x ∈ Xn → fk(X)(x). It is clear that Sky , Dk

y,y′

and fk(X) does not depend on the k-th coordinate of x. For
instance, consider the summation function f(x) =

∑n
i=1 xi,

then fk(X)(x) = Xk − E[Xk] is independent of x.

We also introduce some notations of the norm. If ‖ · ‖a is
any given norm on random variables, then ‖fk(X)‖a(x) :=
‖fk(X)(x)‖a defines a non-negative real-valued function
‖fk(X)‖a on Xn. Thus ‖fk(X)‖a(X) is also a random
variable. If X ′ is i.i.d. to X then ‖fk(X)‖a is the same
function as ‖fk(X ′)‖a and ‖fk(X)‖a(X ′) is i.i.d. to
‖fk(X)‖a(X). Note that

fk(X)(X) = f(X)− E[f(X)|X1, ..., Xk−1, Xk+1, ..., Xn].

The Lp norms of any real random variable Z is ‖Z‖p =

(E[|Z|p])
1
p .

Finally, we introduce the interaction functional of f , which
represents the extent to which the variation of f in any given
argument depends on other arguments.
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Definition 2.3. The interaction functional Ia of f : Xn →
R is defined by

Ia(f)

=2

 sup
x∈Xn

∑
l

sup
z∈X

∑
k:k 6=l

‖fk(X)− Slzfk(X)‖2a(x)

 1
2

.

From the above discussion on the summation function, one
can verify that the functional Ia(f) vanishes for sum. The
formalism in Definition 2.3 is similar to Definition 1 in
(Maurer, 2019) who defines

I(f) = 2

 sup
x∈Xn

∑
l

sup
z∈X

∑
k:k 6=l

σ2
k(f − Slzf)(x)

 1
2

,

where σ2
k(f) = Ek[(f − Ekf)2] and where Ek =

Ey∼µ[Skyf ]. The two definitions are similar but different
in that Maurer (2019) focuses on the conditional variance,
while this paper studies the norms.

3. Main Results
This section presents our main results, organized by sub-
Gaussian, sub-exponential and heavy-tailed distributions.
Successively, the latter has a heavier tail than the former.

3.1. Sub-Gaussian Distributions

We define a sub-Gaussian random variable, which is a pop-
ular sub-class of unbounded random variables. This class
of distributions subsumes the Gaussian random variables,
as well as all the bounded ones (such as Bernoulli, uniform,
and multinomial).

Definition 3.1. (Vershynin, 2018) A random variable Z is
sub-Gaussian if there exists σ > 0 such that

P(|Z| > t) ≤ 2 exp

(
− t2

2σ2

)
,

for every t > 0, where the quantity σ2 is named as the
sub-Gaussian variance proxy.

We consider norms to present our concentration inequal-
ities. For this purpose, we use the following equivalent
sub-Gaussian norm (Buldygin & Kozachenko, 2000; Lei &
Zhang, 2020)

‖Z‖ψ2 = sup
p≥1

[
EZ2p

(2p− 1)!!

] 1
2p

.

which is equal to ‖Z‖ψ2

.
= supp≥1

[
2pP !
(2p)!EZ

2p
] 1

2p

since

(2p− 1)!! = (2p)!
2pp! for any p ≥ 1, please refer to page 6 and

Theorem 1.3 in (Buldygin & Kozachenko, 2000) for details
of this sub-Gaussian norm.

We show the first concentration inequality, which assumes
that fk(X) follows a sub-Gaussian distribution.

Theorem 3.2. Let f : Xn → R and X = (X1, ..., Xn) be
a vector of independent random variables with values in the
space X . Then for any t > 0, we have

P (f(X)− E[f(X ′)] > t)

≤ exp

 −t2

16E
[∑n

k=1 ‖fk(X)‖2ψ2
(X)

]
+ 2
√

2Iψ2(f)t

 .

We give some remarks.

(1): If f is a sum of independent random variables, we
recover the general Hoeffding’s inequality, i.e.,

P

(∑
k

Xk − E
[∑

k

X ′k

]
> t

)
≤ exp

(
−t2

16
∑
k ‖Xk‖2ψ2

)
,

refer to Theorem 2.6.2 in (Vershynin, 2018). The constant
16 present in this bound is not optimal. Theorem 1.5 in
(Buldygin & Kozachenko, 2000) gives a better bound with
a constant 2, but this result is provided for the sum of inde-
pendent sub-Gaussian random variables.

(2): Theorem 3 in Maurer & Pontil (2021) shows

P (f(X)− E[f(X ′)] > t)

≤ exp

(
−t2

32e‖
∑n
k=1 ‖fk(X)‖2ψ′2‖∞

)
, (1)

where the sub-Gaussian norm in (Maurer & Pontil,
2021) is defined as ‖Z‖ψ′2

.
= supp≥1

‖Z‖p√
p , and

where ‖fk(X)‖2ψ′2‖∞ is the essential supremum of
‖fk(X)‖2ψ′2(X). Clearly, E[

∑n
k=1 ‖fk(X)‖2ψ2

(X)] ≤
‖
∑n
k=1 ‖fk(X)‖2ψ′2‖∞. Thus, the variance proxy term in

(1) can never be small than what we get in Theorem 3.2.
Indeed, the supremum can be very large in some extreme
cases, and we successfully replace it with an expectation,
giving a distribution-dependent inequality.

(3): The bound has two tails. The sub-Gaussian tail is of
course expected from the sub-Gaussian distribution. The
sub-exponential tail is produced by the concentration prop-
erty of weakly self-bounded functions, refer to (9) in Lemma
A.6, where a2 corresponds to the interaction functional
Iψ2

(f) in Theorem 3.2. In the applications to U-statistics
and V-statistics respectively, we show that the interaction
functional Ia(f) is only of order m2/n and m(m − 1)/n,
which will approach to 0 as n→∞, where m is the degree
of the two statistics.
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3.2. Sub-Exponential Distributions

The second class of random variables that we treat in this pa-
per are sub-exponential. Although the class of sub-Gaussian
distributions is natural and quite large, it leaves out some
important distributions whose tails are heavier than Gaus-
sian. For instance, all sub-Gaussian random variables are
sub-exponential. Products and squares of sub-Gaussian vari-
ables are sub-exponential, no more sub-Gaussian. Apart
from that, sub-exponential distributions include the expo-
nential, chi-squared and Poisson distributions.

Definition 3.3. (Vershynin, 2018) A random variable Z is
sub-exponential if there exists c > 0 such that

P(|Z| > t) ≤ 2 exp(−ct),

for every t > 0.

Here, we use the following equivalent sub-exponential norm
(Buldygin & Kozachenko, 2000; Yang et al., 2022)

‖Z‖ψ1
= sup

p≥1

[
E|Z|p

p!

] 1
p

,

please refer to page 23 and Remark 3.2 in (Buldygin &
Kozachenko, 2000) for details of this sub-exponential norm.

We now show the concentration inequality assuming that
fk(X) follows a sub-exponential distribution.

Theorem 3.4. Let f : Xn → R and X = (X1, ..., Xn) be
a vector of independent random variables with values in the
space X . Then for any t > 0, we have

P (f(X)− E[f(X ′)] > t)

≤ exp

 −t2

4E
[∑n

k=1 ‖fk(X)‖2ψ1
(X)

]
+ 2

(
M +

Iψ1
(f)√
2

)
t

 ,

where M = maxk ‖‖fk(X)‖ψ1
‖∞ and ‖‖fk(X)‖ψ1

‖∞ is
the essential supremum of ‖fk(X)‖ψ1

(X).

We give some remarks.

(1): If f is a sum, we recover Bernstein’s inequality for
sub-exponential random variables, refer to Theorem 2.8.1
in (Vershynin, 2018).

(2): Theorem 4 in Maurer & Pontil (2021) shows

P (f(X)− E[f(X ′)] > t)

≤ exp

(
−t2

4e2‖
∑n
k=1 ‖fk(X)‖2ψ′1‖∞ + 2eMt

)
, (2)

where M = maxk ‖‖fk(X)‖ψ′1‖∞ and ‖‖fk(X)‖ψ′1‖∞ is
the essential supremum of ‖fk(X)‖ψ′1(X), and where the
sub-exponential norm in (Maurer & Pontil, 2021) is defined

as ‖Z‖ψ′1
.
= supp≥1

‖Z‖p
p . As a comparison, we improve

the supremum variance proxy ‖
∑n
k=1 ‖fk(X)‖2ψ′1‖∞ in

(2) to an expectation E[
∑n
k=1 ‖fk(X)‖2ψ1

(X)], giving a
distribution-dependent McDiarmid-type inequality.

(3): The bound exhibits a mixture of two tails, a
sub-Gaussian tail governed by the variance-proxy
E[
∑n
k=1 ‖fk(X)‖2ψ1

(X)] for small deviations, and
a sub-exponential tail governed by the scale-proxy
maxk ‖‖fk(X)‖ψ1

‖∞ + Iψ1
(f) for large deviations.

(4): We now discuss the improvement of the constants in
our bound from two perspectives, one is giving proofs and
the other is providing some examples.

(i) We first consider the sub-Gaussian case. In Theorem 1.3
of (Buldygin & Kozachenko, 2000), it states that: suppose
that Z is a zero-mean random variable, in order for Z to be
sub-Gaussian, it is necessary and sufficient that ‖Z‖ψ2 <∞
or ‖Z‖′ψ2

<∞. And in this case, the following inequality
hold

‖Z‖ψ2
≤ e9/16‖Z‖ψ′2 . (3)

Substituting the above inequality (3) into our Theorem 3.2,
we get

P (f(X)− E[f(X ′)] > t) ≤

exp

 −t2

16e9/8E
[∑n

k=1 ‖fk(X)‖2ψ′2(X)
]

+ 2
√

2Iψ2
(f)t

 .

(4)

Now the definition of the sub-Gaussian norm in (4) is equal
to the one in (Maurer & Pontil, 2021). Comparing (4) with
(1), since 16e9/8 < 32e, our bound gives an improvement
in the constant.

We then consider the sub-exponential case. In Theorem
3.2 and Remark 3.2 of (Buldygin & Kozachenko, 2000), it
states that: suppose that Z is a zero-mean random variable,
in order for Z to be sub-exponential, it is necessary and
sufficient that ‖Z‖ψ1

< ∞. And in this case, a similar
inequality to (3) is

‖Z‖ψ1
≤ e√

2π
‖Z‖ψ′1 . (5)

We now give the proof. By the Stirling formula

n! =
√

2πnnne−n+θn , |θn| <
1

12n
, n > 1,

we obtain the inequality[
1

p!

] 1
p

=

[
ep−θp√
2πppp

] 1
p

≤ e

(2πp)1/2pp
=

1

π1/2p

1

(2p)1/2p

e

p
≤ e√

2πp

4



Distribution-dependent McDiarmid-type Inequalities for Functions of Unbounded Interaction

for all positive integers p, giving ‖Z‖ψ1
≤ e√

2π
‖Z‖ψ′1 .

Substituting the above inequality (5) into our Theorem 3.4,
we get

P (f(X)− E[f(X ′)] > t) ≤

exp

 −t2
4e2

2π E
[∑n

k=1 ‖fk(X)‖2ψ′1(X)
]

+ 2
(
M +

Iψ1
(f)√
2

)
t

 ,

(6)

where M = e√
2π

maxk ‖‖fk(X)‖ψ′1‖∞. Now the defini-
tion of the sub-exponential norm in (6) is equal to the one
in (Maurer & Pontil, 2021). Comparing (6) with (2), since
4e2

2π < 4e2 and 2 e√
2π
≤ 2e, our bound gives an improve-

ment in the constants. These proofs confirm our improve-
ments in the constants compared to (Maurer & Pontil, 2021).

(ii) We now list some examples to support the improvement
in the constants. For example, the constant in Theorem 3 in
(Maurer & Pontil, 2021) for Gaussian distribution (i.e. r.v.
X ∼ N(µ, σ2) with mean µ and variance σ2) is

32en

(
sup
p≥1

σ
√

2
[Γ( (1+p)

2 )]1/p

√
p
√
π

1/p

)2

=64enσ2 sup
p≥1

[Γ( (1+p)
2 )]2/p

pπ1/p
=

64enσ2

π
.

Note that the moments of the normal distribution X ∼
N(µ, σ2) are E[|X − µ|p] = σp2p/2

Γ(
(1+p)

2 )√
π

and E[|X −
µ|2p] = σ2p (2p)!

2pp! . As a comparison, in Gaussian distribu-
tion, our Theorem 3.2 improves the constants as

16n

(
sup
p≥1

[
2pp!

(2p)!
σ2p (2p)!

2pp!

]1/(2p)
)2

= 16nσ2.

The constant in Theorem 4 in (Maurer & Pontil, 2021) for
Laplace distribution (i.e. r.v. X ∼ Laplace(µ, λ) with
mean µ and |X − µ| ∼ exponential(λ−1) are

4e2n

(
sup
p≥1

λ(p!)1/p

p

)2

+ 2e

(
sup
p≥1

λ(p!)1/p

p

)
=4e2nλ2 sup

p≥1

(p!)2/p

p2
+ 2eλ sup

p≥1

(p!)1/p

p

=4e2nλ2 + 2eλ.

Note that the moments of the exponential distribution
|X − µ| ∼ exponential(λ−1) is E[|X − µ|p] = p!λp.
As a comparison, in Laplace distribution, our Theorem 3.4
improves the constants as

4n

(
sup
p≥1

λ(p!)1/p

(p!)1/p

)2

+ 2

(
sup
p≥1

λ(p!)1/p

(p!)1/p

)
= 4nλ2 + 2λ.

These examples confirm our improvements in the constants
compared to (Maurer & Pontil, 2021).

3.3. Heavy-tailed Distributions

The previous two sections give concentration inequalities of
magnitude P (f(X)− E[f(X ′)] > t) = O (exp(−ctα)),
t → ∞, where α ∈ {1, 2} and c > 0 is a constant. It
is natural to ask under what condition we have the following
exponential decay rate

P (f(X)− E[f(X ′)] > t) = O (exp(−ctα)) t→∞,
(7)

where α ∈ (0, 1) is given and c > 0 is a constant. We
should mention that distributions satisfying (7) fall under the
broad class of heavy-tailed distributions (see (Vladimirova
et al., 2020; Kuchibhotla & Chakrabortty, 2022)), such as
Weibull distributions. The standard technique, i.e. finding
upper bounds for the moment generating function, fails for
the heavy-tailed distributions whose moment generating
functions do not exist. In this paper, we give a sufficient
condition in order that (7) holds. Specifically, for any real
random variable Z, we give the following moment condition

E
[
exp

(
(Z+)

2α
1−α

)]
≤ c, (8)

where Z+ = max{Z, 0}. Clearly, E[exp((Z+)
2α

1−α )] ≤
E[exp(|Z|

2α
1−α )]. The result in this section also holds for

this condition E[exp(|Z|
2α

1−α )] ≤ c.

We now show the concentration inequality assuming that
fk(X) satisfies the moment condition (8).

Theorem 3.5. Let f : Xn → R and X = (X1, ..., Xn) be
a vector of independent random variables with values in the
space X . Then for any t > 0, we have

P (f(X)− E[f(X ′)] > t) ≤ nc exp(−tα)+

exp

(
−t2

2E [
∑n
k=1 ‖fk(X)‖22(X)] + 2(2t1−α/3 + I2(f)/2)t

)
.

We give some remarks.

(1): If f is a sum of independent random variables, we get

P

(∑
k

Xk − E
[∑

k

X ′k

]
> t

)
≤ nc exp(−tα)

+ exp

(
−t2

2
∑n
k=1 ‖Xk‖22 + 4t2−α/3

)
,

which exhibits a mixture of two tails. One is the sub-
Gaussian tail for small deviations, which is of course ex-
pected from the central limit theorem, and the other has the
tail of magnitude O(exp(−ctα)) for large deviations.

(2): For concentration inequalities of general functions, we
haven’t seen related results of heavy-tailed distributions.
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(3): Theorem 3.5 gives a distribution-dependent McDiarmid-
type inequality and exhibits a tail of magnitude
O(exp(−ctα)) for large deviations.

(4): Similar motivation and techniques to this paper have
been used in (Maurer, 2019) exploring Bernstein-type in-
equalities with bounded functions. We first consider the
sub-Gaussian case to compare the technical difference. Ac-
cording to the entropy method, the proof techniques can be
divided into four steps. Central to the entropy method is the
entropy and the sub-additivity of entropy. The first step is to
give a bound of the entropy S(γf(X)) in terms of the sum
of the conditional entropies

S(γf(X)) ≤ 4γ2Eγf(X)

[
n∑
k=1

‖fk(X)‖2ψ2
(X)

]
.

In bounding the entropy, the techniques of unbounded
random variables are different from the bounded one,
refer to Lemma 2 in (Maurer, 2019) for the bounded
case and our Lemma A.8 for the sub-Gaussian case.
After the entropy bound, the second step is to use a
decoupling technique to decouple the expectation func-
tional Eγf(X)

[∑n
k=1 ‖fk(X)‖2ψ2

(X)
]
. The aim is to

give a bound on the entropy S(γf(X)) in terms of the
lnE

[
eθ

∑n
k=1 ‖fk(X)‖2ψ2

(X)
]
. In this proof, the techniques

of unbounded random variables are also different from
the bounded one. The third step is to prove the weakly
self-boundedness of

∑n
k=1 ‖fk(X)‖2a(X), where a =

{ψ2, ψ1, 2}. Since we deal with norms, the proof here is
different from (Maurer, 2019) that deal with real-valued
functions, refer to the proof of Lemma A.7 and the proof of
Proposition 2 in (Maurer, 2019). After the three steps, we
obtain the entropy bound. The forth step is use standard log-
Laplace transform argument (Theorem 7 in (Maurer, 2012))
to give the concentration inequality. The above analysis of
sub-Gaussian variables hold for the sub-exponential case,
while for the heavy-tailed variables, an clipping argument
on random variables is additionally introduced.

4. Applications
This section applies our concentration inequalities to the
sample mean, U-statistics and V-statistics.

4.1. Sample Mean

The sample mean is f(x) = 1
n

∑n
i=1 xi. In this case,

fk(X)(x) = 1
n (Xk −E[Xk]) is independent of x, and thus

Ia(f) = 0. The sample mean is the most natural choice of
a mean estimator and, particularly, is closely related to em-
pirical risk in learning theory (Mohri et al., 2018). We now
give its results, which would be useful in the generalization
error analysis in learning theory.

Theorem 4.1. Let f(x) be as defined above and X =
(X1, ..., Xn) be a vector of independent random variables
with values in the space X . Then for any t > 0, we have

(1) for the sub-Gaussian case

P (f(X)− E[f(X ′)] > t)

≤ exp

(
−t2

64
n2

∑n
k=1 ‖Xk‖2ψ2

)
.

(2) for the sub-exponential case

P (f(X)− E[f(X ′)] > t)

≤ exp

(
−t2

16
n2

∑n
k=1 ‖Xk‖2ψ1

+ 4
n maxk ‖Xk‖ψ1

t

)
.

(3) for the heavy-tailed case

P (f(X)− E[f(X ′)] > t)

≤nc exp(−tα) + exp

(
−t2

8
n2

∑n
k=1 ‖Xk‖22 + 4t2−α/3

)
.

4.2. U-statistics

Let f be a measurable, symmetric kernel f : Xm → R with
1 < m < n. Then, we define U-statistics as

U(x) =

(
n

m

)−1 ∑
1≤j1<···<jm≤n

f(xj1 , · · · , xjm).

We introduce some notations. If B is a set and m ∈ N, then
let SmB denote the set of all those subsets of B which have
cardinality m. Also, if S ⊆ {1, ..., n} and x ∈ Xn, we
use xS to denote the vector (xj1 , ..., xj|S|) ∈ X |S|, where
{j1, ..., j|S|} = S and the jk are increasingly ordered. For
y, z ∈ X we use (y, xS) and (y, z, xS) to denote the vec-
tors (y, xj1 , ..., xj|S|) ∈ X |S|+1 and (y, z, xj1 ..., xj|S|) ∈
X |S|+2 respectively. With these notations, we have

U(x) =

(
n

m

)−1 ∑
S∈Sm{1,...,n}

f(xS).

Let fk(X)(xS) := f(xS , Xk)− E[f(xS , Xk)], where S ∈
Sm−1
{1,...,n}\k. We assume maxS maxk ‖fk(X)‖a(xS) ≤
b, which is weaker than the boundedness of f , and
E‖fk(X)‖2a(XS) ≤ σ2 for any k = {1, ..., n}. Note that
the two assumptions are intended to present the following
results in a concise form. The results allow for weaker and
fine-grained assumptions.

Theorem 4.2. Let U(x) be as defined above and X =
(X1, ..., Xn) be a vector of independent random variables
with values in the space X . Then for any t > 0, we have

6
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(1) for the sub-Gaussian case

P (U(X)− E[U(X ′)] > t)

≤ exp

(
−t2

16m2σ2

n + 8
√

2m2b
n t

)
.

(2) for the sub-exponential case

P (U(X)− E[U(X ′)] > t)

≤ exp

(
−t2

4m2

n σ2 + 2(mn b+ 4m2

n
√

2
b)t

)
.

(3) for the heavy-tailed case

P (U(X)− E[U(X ′)] > t) ≤ nc exp(−tα)+

exp

(
−t2

2m2

n σ2 + 2(2t1−α/3 + 2m2

n b)t

)
.

U-statistics are closely relevant to ranking (clémençon
et al., 2008) and pairwise learning (U-statistic of order
2), where the latter instantiates many well-known machine
learning tasks, for instance, similarity and metric learning
(Cao et al., 2016; Maurer et al., 2021), AUC maximization
(Cortes & Mohri, 2003; Ying et al., 2016), bipartite rank-
ing (clémençon et al., 2005), gradient learning (Mukherjee
& Wu, 2006), minimum error entropy principle (Hu et al.,
2013), multiple kernel learning (Kumar et al., 2012), and
preference learning (Fürnkranz & Hüllermeier, 2010).

4.3. V-statistics

V-statistics is introduced in (Mises, 1947). Let f : Xm → R
with 1 < m < n. The V-statistic is defined by

V (x) =
1

nm

∑
{j1,...,jm}∈{1,...,n}m

f(xj1 , · · · , xjm).

V (x) receives contributions from multi-indices with multi-
ple occurrences of individual indices, different from U(x)
that avoids multi-indices with multiple occurrences of in-
dices. We then introduce some notations. If multi-index
S = {j1, ..., j|S|} ∈ {1, ..., n}|S| and x ∈ Xn, we
use xS to denote the vector (xj1 , ..., xj|S|) ∈ X |S|. For
y, z ∈ X we also use (y, xS) and (y, z, xS) to denote
respectively, the vectors (y, xj1 , ..., xj|S|) ∈ X |S|+1 and
(y, z, xj1 ..., xj|S|) ∈ X |S|+2. With these notations, we have

V (x) =

(
n

m

)−1 ∑
S∈{1,...,n}m

f(xS).

Let fk(X)(xS) := f(xS , Xk)− E[f(xS , Xk)], where S ∈
{1, ..., n}m−1. We assume maxS maxk ‖fk(X)‖a(xS) ≤

b, which is weaker than the boundedness of f , and
E‖fk(X)‖2a(XS) = σ2 for any k = {1, ..., n}. We give
results of the V-statistics, which also allows for weaker and
fine-grained assumptions.

Theorem 4.3. Let V (x) be as defined above and X =
(X1, ..., Xn) be a vector of independent random variables
with values in the space X . Then for any t > 0, we have

(1) for the sub-Gaussian case

P (V (X)− E[V (X ′)] > t)

≤ exp

(
−t2

16m2σ2

n + 8
√

2m(m−1)b
n t

)
.

(2) for the sub-exponential case

P (V (X)− E[V (X ′)] > t)

≤ exp

 −t2
4m2

n σ2 + 2(mn b+ 4m(m−1)

n
√

2
b)t

 .

(3) for the heavy-tailed case

P (V (X)− E[V (X ′)] > t) ≤ nc exp(−tα)+

exp

(
−t2

2m2

n σ2 + 2(2t1−α/3 + 2m(m−1)
n b)t

)
.

V-statistics reveal some interesting machine learning appli-
cations, such as auto-encoding variational Bayes (Lopez
et al., 2018), off-policy evaluation in reinforcement learning
(Feng et al., 2020), and kernel learning (Shen et al., 2020).

Next, we take the sub-exponential case as an example to dis-
cuss how these bounds can be compared to the inequalities
of (Maurer & Pontil, 2021).

(1) We first consider the application to the sample
mean. In this case, fk(X)(x) = 1

n (Xk − E[Xk]) is
independent of x. Following the proof in Appendix
B.1, we can deduce ‖‖fk(X)‖2ψ′1‖∞ ≤

4
n2 ‖Xk‖2ψ′1 and

maxk ‖‖fk(X)‖ψ′1‖∞ ≤
2
n maxk ‖Xk‖ψ′1 . Plugging these

bounds into Theorem 4 of (Maurer & Pontil, 2021) gives

P (f(X)− E[f(X ′)] > t)

≤ exp

(
−t2

16e2

n2

∑n
k=1 ‖Xk‖2ψ′1 + 4e

n maxk ‖Xk‖ψ′1t

)
.

By comparison, our bound in Theorem 4.1 has an improve-
ment in the constants.

(2) We then consider the application to U-statistics. Since
the variance proxy term in (Maurer & Pontil, 2021) de-
pends on the worst-case choice of the configuration of
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sample space, the upper bound of their variance proxy
term would be very large. Following the proof in Ap-
pendix B.2, we can deduce maxk ‖‖Uk(X)‖ψ′1‖∞ ≤

m
n b

and ‖
∑n
k=1 ‖Uk(X)‖2ψ′1‖∞ ≤

m2

n b
2, where b is from the

assumption maxS maxk ‖fk(X)‖ψ′1(xS) ≤ b. Plugging
these bounds into Theorem 4 of (Maurer & Pontil, 2021)
gives

P (U(X)− E[U(X ′)] > t) ≤

(
−t2

4e2m2

n b2 + 2emn bt

)
.

In the regime of sub-Gaussian tail, our variance proxy term
4m2

n σ2 in Theorem 4.2 is sharper than the result of (Maurer
& Pontil, 2021) since b2 depends on the worst case and may
be very larger than σ2. In the regime of sub-exponential
tail, our scale-proxy term 2(mn b+ 4m2

n
√

2
b) would have sim-

ilar performance to the bound 2emn b of (Maurer & Pontil,
2021), especially for the widely studied pairwise learning
in machine learning (i.e., m = 2).

(3) We further consider the application to V-
statistics. Following the proof in Appendix B.3, we
can deduce that maxk ‖‖Vk(X)‖ψ′1‖∞ ≤ m

n b and

‖
∑n
k=1 ‖Vk(X)‖2ψ′1‖∞ ≤ m2

n b
2, where b is from the

assumption maxS maxk ‖fk(X)‖ψ′1(xS) ≤ b. Plugging
these bounds into Theorem 4 of (Maurer & Pontil, 2021)
gives

P (V (X)− E[V (X ′)] > t) ≤

(
−t2

4e2m2

n b2 + 2emn bt

)
.

Since b2 depends on the worst-case choice of the configu-
ration of sample space and may be very larger than σ2, in
the regime of sub-Gaussian tail, our variance proxy term
4m2

n σ2 is sharper than the result of (Maurer & Pontil, 2021).
In the regime of sub-exponential tail, our scale-proxy term
2(mn b + 4m(m−1)

n
√

2
b) would also have similar performance

to the bound 2emn b of (Maurer & Pontil, 2021), especially
for the widely studied pairwise learning (i.e., m = 2).

5. Refined Results
This section gives refined concentration inequalities by
considering a weaker interaction functional, inspired from
(Maurer, 2017). Let µ be a probability measure defined
on the sample space X . The definition of this interaction
functional is introduced below.

Definition 5.1. The interaction functional I ′a of f : Xn →

R is defined by

I ′a(f) = 2

(
sup
x∈Xn

∑
l

EZ∼µ

∑
k:k 6=l

‖fk(X)− SlZfk(X)‖2a(x)IAl(Z)

 1
2

,

where EZ∼µ denotes the expectation w.r.t. the random vari-
able Z drawn from µ, IAl(Z) is the indicator function, and
Al is the subset of X defined by

Al =
{
Z ∈ X :

SlZ

n∑
k=1

‖fk(X)‖2a(X) ≤
n∑
k=1

‖fk(X)‖2a(X)
}
.

Clearly, we have I ′a(f) ≤ Ia(f) for any f . By this weaker
interaction functional, we get improved concentration in-
equalities with Ia(f) replaced by I ′a(f).

Theorem 5.2. Let f : Xn → R and X = (X1, ..., Xn) be
a vector of independent random variables with values in the
space X . Then for any t > 0, we have

(1) for the sub-Gaussian case

P (f(X)− E[f(X ′)] > t)

≤ exp

 −t2

16E
[∑n

k=1 ‖fk(X)‖2ψ2
(X)

]
+ 2
√

2I ′ψ2
(f)t

 .

(2) for the sub-exponential case

P (f(X)− E[f(X ′)] > t)

≤ exp

 −t2

4E
[∑n

k=1 ‖fk(X)‖2ψ1
(X)

]
+ 2

(
M +

I′ψ1
(f)
√

2

)
t

 .

(3) for the heavy-tailed case

P (f(X)− E[f(X ′)] > t) ≤ nc exp(−tα)+

exp

(
−t2

2E [
∑n
k=1 ‖fk(X)‖22(X)] + 2(2t1−α/3 + I ′2(f)/2)t

)
.

6. Conclusion
This paper gave distribution-dependent McDiarmid-
type concentration inequalities for sub-Gaussian, sub-
exponential and heavy-tailed distributions. The results
sharpen existing inequalities by replacing the supremum
with an expectation. This paper then illustrated these in-
equalities with applications to the sample mean, U-statistics
and V-statistics.
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A. Proof of Main Results
The proof of our main results uses the entropy method. We introduce some necessary tools useful to our proof, which are
collected from (Maurer, 2012; Maurer & Pontil, 2021).

The entropy S(Z) of a real valued random variable Z is defined as

S(Z) = EZ [Z]− lnE[eZ ],

where the expectation functional EZ is defined as EZ [Y ] = E[Y eZ ]/E[eZ ]. Note that the meaning of this notation EZ is
different from the notation EZ∼µ in Definition 5.1. Besides, we have the following fluctuation representation of the entropy.
Lemma A.1 (Theorem 3 in (Maurer, 2012)). For γ > 0, we have

S(γZ) =

∫ γ

0

(∫ γ

t

EsZ [(Z − EsZ [Z])2]ds

)
dt.

We present an important Lemma that shows how bounds on the entropy can lead to concentration results.
Lemma A.2 (Theorem 1 in (Maurer, 2012)). For any f : Xn → R and β > 0, we have

lnE
[
eβ(f(X)−E[f(X′)])

]
= β

∫ β

0

S(γf(X))

γ2
dγ,

and, for any t ≥ 0,

P (f(X)− E[f(X ′)] > t) ≤ exp

(
β

∫ β

0

S(γf(X))dγ

γ2
− βt

)
.

The following is an important lemma which shows the sub-additivity of entropy and states that the total entropy is no greater
than the thermal average of the sum of the conditional entropies. Before presenting it, we introduce the conditional entropy.
If f : Xn → R, X and fk are as in Section 2 then the conditional entropy is the function Sf,k : Xn → R defined by
Sf,k(x) = S(fk(X)(x)) for x ∈ Xn.
Lemma A.3 (Theorem 6 in (Maurer, 2012)). The sub-additivity of entropy is

S(f(X)) ≤ Ef(X)

[
n∑
k=1

Sf,k(X)

]
.

In our proofs, we also use the following decoupling technique.
Lemma A.4 (Lemma 5 in (Maurer, 2019)). We have for any function g : Xn → R that

Eγf [g] ≤ S(γf) + lnE[eg].

The following Lemma considers the weakly self-boundedness of f . We first give a definition, and then show the Lemma.
Definition A.5. Define an operator D of f : Xn → R as

Df =
∑
k

(f − inf
y∈X

Skyf)2.

Lemma A.6 (Theorem 19 in (Maurer, 2012)). Suppose that

Df ≤ a2f.

Then for β ∈ (0, 2/a2)

lnE[eβf ] ≤ βEf
1− a2β/2

,

and for any t > 0,

P (f − E[f ] > t) ≤ exp

(
−t2

2a2E[f ] + a2t

)
. (9)

12
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We then show the weakly self-boundedness of
∑n
k=1 ‖fk(X)‖2a(X), where a = {ψ2, ψ1, 2}. For brevity, we denote the

sum of conditional variance proxies
∑n
k=1 ‖fk(X)‖2a(X) as

∑
(f)2, which together with Lemma A.6 shows that the sum

of conditional variance proxies has the suitable properties of concentration around its mean.

Lemma A.7. We have D(
∑

(f)2) ≤ I2
a(f)

∑
(f)2 for any f : Xn → R, where a = {ψ2, ψ1, 2}.

Proof. For l ∈ {1, ..., n} let zl ∈ X be a minimizer in z of Slz
∑

(f)2, so that

inf
z∈X

Slz
∑

(f)2 = Slzl

∑
(f)2 =

∑
Slzl‖fk(X)‖2a(X) =

∑
k:k 6=l

Slz‖fk(X)‖2a(X) + ‖fl(X)‖2a(X),

where the last step uses the fact that Slzl‖fl(X)‖2a(X) = ‖fl(X)‖2a(X), because for l ∈ {1, ..., n}, the substitution operator
Slz is homomorphism (linear and multiplicative) w.r.t. f and the identity w.r.t. the l-th coordinate.

Thus we get

D(
∑

(f)2)

=
∑
l

(∑
(f)2 − Slzl

∑
(f)2

)2

=
∑
l

( ∑
k:k 6=l

(‖fk(X)‖2a(X)− Slzl‖fk(X)‖2a(X))2
)2

=
∑
l

( ∑
k:k 6=l

(‖fk(X)‖2a(X)− ‖Slzlfk(X)‖2a(X))2
)2

=
∑
l

( ∑
k:k 6=l

(‖fk(X)‖a(X)− ‖Slzlfk(X)‖a(X))× (‖fk(X)‖a(X) + ‖Slzlfk(X)‖a(X))
)2

≤
∑
l

∑
k:k 6=l

(
‖fk(X)‖a(X)− ‖Slzlfk(X)‖a(X)

)2

×
∑
k:k 6=l

(
‖fk(X)‖a(X) + ‖Slzlfk(X)‖a(X)

)2

,

where the third step uses the fact that Slzl‖fk(X)‖2a(X) = ‖Slzlfk(X)‖2a(X) and the last inequality uses the Cauchy-
Schwarz inequality. Then, we can get∑

k:k 6=l

(
‖fk(X)‖a(X) + ‖Slzlfk(X)‖a(X)

)2

≤ 2
∑
k:k 6=l

‖fk(X)‖2a(X) + ‖Slzlfk(X)‖2a(X)

≤2(
∑

(f)2 + Slzl

∑
(f)2) ≤ 4

∑
(f)2,

where the first inequality uses (a+ b)2 ≤ 2(a2 + b2).

Now we obtain that

D(
∑

(f)2)

≤4
∑
l

∑
k:k 6=l

(
‖fk(X)‖a(X)− ‖Slzlfk(X)‖a(X)

)2∑
(f)2

≤4
∑
l

∑
k:k 6=l

‖fk(X)− Slzlfk(X)‖2a(X)
∑

(f)2

≤4
∑
l

sup
z∈X

∑
k:k 6=l

‖fk(X)− Slzfk(X)‖2a(X)
∑

(f)2

≤4 sup
x∈Xn

∑
l

sup
z∈X

∑
k:k 6=l

‖fk(X)− Slzfk(X)‖2a(x)
∑

(f)2

≤I2
a(f)

∑
(f)2,

where the second inequality uses the norm’s triangle inequality. The proof is complete.

13



Distribution-dependent McDiarmid-type Inequalities for Functions of Unbounded Interaction

A.1. Proof of Theorem 3.2

We first give a bound on the entropy of a sub-Gaussian random variable.
Lemma A.8. For any centered random variable Z, if Z is sub-Gaussian and β is real, then we have S(βZ) ≤ 4β2‖Z‖2ψ2

.

Proof. We have

S(Z) = EZ [Z]− lnE[eZ ] = EZ
[
ln

eZ

EeZ

]
≤ lnEZ

[
eZ

EeZ

]
= lnE[e2Z ]− 2 lnE[eZ ] ≤ lnE[e2Z ],

where the first and second inequalities use the Jensen’s inequality. We next focus on the bound of E[eβZ ] for all β ∈ R. By
Cauchy’s inequality and arithmetic-geometric mean inequality, we have

E|βZ|2m+1 ≤ (E|βZ|2mE|βZ|2m+2)
1
2 ≤ 1

2
(β2mEZ2m + β2m+2EZ2m+2),

which gives

E[eβZ ] = 1 +

∞∑
m=2

βmEZm

m!
≤ 1 +

(
1

2
+

1

2× 3!

)
β2EZ2 +

∞∑
m=2

(
1

(2m)!
+

1

2

[
1

(2m− 1)!
+

1

(2m+ 1)!

])
β2mEZ2m

≤
∞∑
m=0

2m
β2mEZ2m

(2m)!
≤ exp(β2‖Z‖2ψ2

).

Thus, we get

S(βZ) ≤ 4β2‖Z‖2ψ2
.

The proof is complete.

We begin to prove Theorem 3.2.

Proof. By Lemma A.8, we have

Sγf,k(X) = S(γfk(X)(X)) ≤ 4γ2‖fk(X)‖2ψ2
(X).

Together with Lemma A.3, we get

S(γf(X)) ≤ Eγf(X)

[
n∑
k=1

Sγf,k(X)

]
≤ 4γ2Eγf(X)

[
n∑
k=1

‖fk(X)‖2ψ2
(X)

]
.

Again, denote
∑n
k=1 ‖fk(X)‖2ψ2

(X) as
∑

(f)2. Let 0 < γ ≤ β < 1√
2a

and take θ := 1
a2
√

2γ, we can get

θ <
2

a2
and θ > 4γ2.

Now, using Lemma A.4, we have

θS(γf(X)) ≤ 4γ2Eγf(X)

[
θ
∑

(f)2
]
≤ 4γ2

(
S(γf(X)) + lnE

[
eθ

∑
(f)2
])
≤ 4γ2S(γf(X)) +

4γ2θE
∑

(f)2

1− a2θ/2
,

where the last inequality follows from Lemma A.6.

Thus, we have

S(γf(X)) ≤ 1

θ − 4γ2

4γ2θE
∑

(f)2

1− a2θ/2
) =

4γ2E
∑

(f)2

(1− a
√

2γ)2
,

which implies that ∫ β

0

S(γf(X))dγ

γ2
≤
∫ β

0

4E
∑

(f)2

(1− a
√

2γ)2
dγ =

β4E
∑

(f)2

1− a
√

2β
.

To proceed, we need an optimization Lemma.

14
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Lemma A.9 (Lemma 14 in (Maurer & Pontil, 2021)). Let C and b denote two positive real numbers, t > 0. Then

inf
β∈[0,1/b)

(
−βt+

Cβ2

1− bβ

)
≤ −t2

2(2C + bt)
.

Now, by Lemma A.2, we get

P (f(X)− E[f(X ′)] > t) ≤ inf
β>0

exp

(
β

∫ β

0

S(γf(X))dγ

γ2
− βt

)

≤ inf
β>0

exp

(
4β2E

∑
(f)2

1− a
√

2β
− βt

)
≤ exp

(
−t2

2(8E[
∑

(f)2] + a
√

2t)

)
,

where the last inequality uses Lemma A.9. According to Lemma A.7, by substituting Iψ2
(f) for a, we finally get

P (f(X)− E[f(X ′)] > t) ≤ exp

(
−t2

2(8E[
∑

(f)2] + Iψ2
(f)
√

2t)

)

= exp

(
−t2

2(8E[
∑n
k=1 ‖fk(X)‖2ψ2

(X)] + Iψ2
(f)
√

2t)

)
.

The proof is complete.

A.2. Proof of Theorem 3.4

We first give a bound on the entropy of a sub-exponential random variable.

Lemma A.10. For any centered random variable Z, if Z is sub-exponential and ‖Z‖ψ1 ≤ 1, then we have S(Z) ≤
‖Z‖2ψ1

(1−‖Z‖ψ1
)2 .

Proof. According to Lemma A.1, we have

S(γZ) =

∫ γ

0

(∫ γ

t

EsZ [(Z − EsZ [Z])2]ds

)
dt.

Next, we show

EsZ [(Z − EsZ [Z])2] ≤ EsZZ2 =
E[Z2esZ ]

E[esZ ]
≤ E[Z2esZ ]

=E

[ ∞∑
m=0

smZm+2

m!

]
≤
∞∑
m=0

sm(m+ 2)!‖Z‖m+2
ψ1

m!
=

∞∑
m=0

sm(m+ 2)(m+ 1)‖Z‖m+2
ψ1

,

where the first inequality follows from the variational property of variance, the second from Jensen’s inequality and EZ = 0,
and the third from the definition of the sub-exponential norm. Together with this inequality gives

S(Z) =

∫ 1

0

(∫ 1

t

∞∑
m=0

sm(m+ 2)(m+ 1)‖Z‖m+2
ψ1

ds

)
dt

≤
∞∑
m=0

(m+ 1)‖Z‖m+2
ψ1

= ‖Z‖2ψ1

∞∑
m=0

(m+ 1)‖Z‖mψ1
=

‖Z‖2ψ1

(1− ‖Z‖ψ1
)2
.

The proof is complete.

We begin to prove Theorem 3.4.
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Proof. By Lemma A.10, we first show that

Sγf,k(X) = S(γfk(X)(X)) ≤
γ2‖fk(X)‖2ψ1

(X)

(1− γ‖fk(X)‖ψ1
(X))2

≤
γ2‖fk(X)‖2ψ1

(X)

(1− γM)2
.

By Lemma A.3, we get

S(γf(X)) ≤ Eγf(X)

[
n∑
k=1

Sγf,k(X)

]
≤
γ2Eγf(X)

[∑n
k=1 ‖fk(X)‖2ψ1

(X)
]

(1− γM)2
.

Again, denote
∑n
k=1 ‖fk(X)‖2ψ1

(X) as
∑

(f)2. Let 0 < γ ≤ β < 1
M+a/

√
2

and take θ :=
√

2γ
a(1−γM) , we can get

θ <
2

a2
and θ >

γ2

(1− γM)2
.

Now, using Lemma A.4, we have

θS(γf(X)) ≤
γ2Eγf(X)[θ

∑
(f)2]

(1− γM)2

≤ γ2

(1− γM)2

(
S(γf(X)) + lnE[eθ

∑
(f)2 ]

)
≤ γ2

(1− γM)2

(
S(γf(X)) +

θE
∑

(f)2

1− a2θ/2

)
,

where the last inequality follows from Lemma A.6.

We now get (
θ − γ2

(1− γM)2

)
S(γf(X)) ≤ γ2

(1− γM)2

θE
∑

(f)2

1− a2θ/2
,

which implies that

S(γf(X)) ≤ aγ√
2(1−Mγ − aγ/

√
2)

θE
∑

(f)2

1− a2θ/2
=

γ2E
∑

(f)2

(1−Mγ − aγ/
√

2)2
.

Thus we get ∫ β

0

S(γf(X))dγ

γ2
≤
∫ β

0

E
∑

(f)2

(1−Mγ − aγ/
√

2)2
dγ =

βE
∑

(f)2

1−Mβ − aβ/
√

2
.

Further, by Lemma A.2, we obtain

P (f(X)− E[f(X ′)] > t) ≤ inf
β>0

exp

(
β

∫ β

0

S(γf(X))dγ

γ2
− βt

)

≤ inf
β>0

exp

(
β2E

∑
(f)2

1−Mβ − aβ/
√

2
− βt

)
≤ exp

(
−t2

2(2E
∑

(f)2 + (M + a/
√

2)t)

)
,

where the last inequality uses Lemma A.9. According to Lemma A.7, by substituting Iψ1
(f) for a, we finally get

P (f(X)− E[f(X ′)] > t) ≤ exp

(
−t2

2(2E
∑

(f)2 + (M + Iψ1
(f)/
√

2)t)

)

≤ exp

(
−t2

2(2E[
∑n
k=1 ‖fk(X)‖2ψ1

(X)] + (M + Iψ1(f)/
√

2)t)

)
.

The proof is complete.
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A.3. Proof of Theorem 3.5

We first give a bound on the entropy of a bounded random variable.

Lemma A.11. For any centered random variable Z, if Z ≤ b where b > 0, then we have S(γZ) ≤
(

1
b e
bγγ − 1

b2 e
bγ +

1
b2

)
‖Z‖22.

Proof. By Lemma A.1, we have

S(γZ) =

∫ γ

0

(∫ γ

t

EsZ [(Z − EsZ [Z])2]ds

)
dt.

Next,

EsZ [(Z − EsZ [Z])2] ≤ E[Z2esZ ] ≤ ebsE[Z2] = ebs‖Z‖22.

Together with this inequality gives

S(γZ) =

∫ γ

0

(∫ γ

t

ebsE[Z2]ds

)
dt =

(1

b
ebγγ − 1

b2
ebγ +

1

b2

)
‖Z‖22.

The proof is complete.

We begin to prove Theorem 3.5.

Proof. Given u > 0, set

Z ′ := ZIZ≤u and Z ′′ := ZIZ>u.

Then, we define three events E1 : f(X)− E[f(X ′)] > t, E2 : ∃k, fk(X)(X) > u and E3 as the mutually exclusive event
of E1. We decude

P (E1) ≤ P(E1E3) + P(E2).

We first focus on P(E1E3). The proof follows the proof of Theorem 1 in (Maurer, 2019). Without losing generality, we
consider the case u = 1. Then, by Lemma A.11,

Sγf,k(X) = S(γfk(X)(X)) ≤ (eγγ − eγ + 1)‖fk(X)‖22(X).

Using Lemma A.3, we get

S(γf(X)) ≤ Eγf(X)

[
n∑
k=1

Sγf,k(X)

]
≤ (eγγ − eγ + 1)Eγf(X)

[
n∑
k=1

‖fk(X)‖22(X)

]
.

Again, denote
∑n
k=1 ‖fk(X)‖22(X) as

∑
(f)2. Let 0 < γ ≤ β < 1

1/3+a/2 and take θ :=

√
2(eγγ−eγ+1)

a , according to
Lemma 6 in (Maurer, 2019), we have

θ <
2

a2
and θ > (eγγ − eγ + 1).

Now, using Lemma A.4, we have

θS(γf(X)) ≤ (eγγ − eγ + 1)Eγf(X)[θ
∑

(f)2] ≤(eγγ − eγ + 1)(S(γf(X)) + lnE[eθ
∑

(f)2 ])

≤(eγγ − eγ + 1)

(
S(γf(X)) +

θE
∑

(f)2

1− a2θ/2

)
,

17
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where the last inequality follows from Lemma A.6.

We now get

(θ − (eγγ − eγ + 1))S(γf(X)) ≤ (eγγ − eγ + 1)
θE
∑

(f)2

1− a2θ/2
,

which implies that

S(γf(X)) ≤ (eγγ − eγ + 1)
θE
∑

(f)2

1− a2θ/2
=

(eγγ − eγ + 1)E
∑

(f)2

(1− a
√

(eγγ − eγ + 1)/2)2
.

Thus we get∫ β

0

S(γf(X))dγ

γ2
≤
∫ β

0

(eγγ − eγ + 1)E
∑

(f)2dγ

γ2(1− a
√

(eγγ − eγ + 1)/2)2
≤
∫ β

0

E
∑

(f)2dγ

2(1− (1/3 + a/2)γ)2
=

E
∑

(f)2

2

β

1− (1/3 + a/2)β
,

where the second inequality uses Lemma 6 in (Maurer, 2019). Further, by Lemma A.2, we obtain the following inequality
for the case u = 1

P(E1E3) ≤ inf
β>0

exp

(
β

∫ β

0

S(γf(X))dγ

γ2
− βt

)
≤ inf
β>0

exp

(
E
∑

(f)2

2

β2

1− (1/3 + a/2)β
− βt

)
≤ exp

(
−t2

2(E
∑

(f)2 + (1/3 + a/2)t)

)
,

where the last inequality uses Lemma A.9. According to Lemma A.7, by substituting I2(f) for a, we finally get

P(E1E3) ≤ exp

(
−t2

2(E
∑

(f)2 + (1/3 + I2(f)/2)t)

)
≤ exp

(
−t2

2(E[
∑n
k=1 ‖fk(X)‖22(X)] + (1/3 + I2(f)/2)t)

)
.

By rescaling, we get the following inequality for the general case of u

P (E1E3) ≤ exp

(
−t2

2(E[
∑n
k=1 ‖fk(X)‖22(X)] + (2u/3 + I2(f)/2)t)

)
.

We then focus on P(E2). Using the exponential Markov’s inequality and the condition E exp((Z+)
α

1−α ) ≤ c for α ∈ (0, 1)
and some constant c ∈ (0,+∞), we get

P(E2) ≤
n∑
k=1

P(fk(X)(X) > u) ≤
n∑
k=1

E exp
((

(fk(X)(X))+
) α

1−α − u
α

1−α

)
≤ nc exp

(
−u

α
1−α
)
.

Combining the inequalities of P(E1E3) and P(E2), we obtain

P (f(X)− E[f(X ′)] > t) ≤ exp

(
−t2

2(E[
∑n
k=1 ‖fk(X)‖22(X)] + (2u/3 + I2(f)/2)t)

)
+ nc exp(−u

α
1−α ).

Taking u = t1−α, we get

P (f(X)− E[f(X ′)] > t) ≤ exp

(
−t2

2(E[
∑n
k=1 ‖fk(X)‖22(X)] + (2t1−α/3 + I2(f)/2)t)

)
+ nc exp(−tα).

The proof is complete.
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B. Proof of Applications
B.1. Sample Mean

Proof. For any given k, we have

‖fk(X)‖2a(X) =

∥∥∥∥ 1

n
(Xk − E[Xk])

∥∥∥∥2

a

=
1

n2
‖(Xk − E[Xk])‖2a ≤

1

n2
(2‖Xk‖a)2 ≤ 4

n2
‖Xk‖2a,

where the first inequality uses Lemma 6 (ii) in (Maurer & Pontil, 2021). And with a similar proof, we have

M = max
k
‖‖fk(X)‖ψ1‖∞ ≤

2

n
max
k
‖Xk‖ψ1 .

Plugging these inequalities into the concentration inequalities gives the results of Theorem 4.1.

B.2. U-Statistics

We have the following lemma.

Lemma B.1. (i) Ia(U) ≤ 4m2

n b, (ii) maxk ‖‖Uk(X)‖ψ1
‖∞ ≤ m

n b, and (iii) E[
∑n
k=1 ‖Uk(X)‖2a(X)] ≤ m2

n σ
2.

Proof. (i) For any given k, we have a decomposition

U(x) =

(
n

m

)−1 ∑
S∈Sm−1

{1,...,n}\k

f(xS , xk) +

(
n

m

)−1 ∑
S∈Sm{1,...,n},k/∈S

f(xS).

Thus, we get

Uk(X)(x) =

(
n

m

)−1 ∑
S∈Sm−1

{1,...,n}\k

f(xS , Xk)− E[f(xS , Xk)]. (10)

We deduce that

‖Uk(X)‖a(x) =

(
n

m

)−1∥∥∥ ∑
S∈Sm−1

{1,...,n}\k

f(xS , Xk)− E[f(xS , Xk)]
∥∥∥
a

≤
(
n

m

)−1 ∑
S∈Sm−1

{1,...,n}\k

∥∥∥f(xS , Xk)− E[f(xS , Xk)]
∥∥∥
a
≤
(
n

m

)−1 ∑
S∈Sm−1

{1,...,n}\k

b =
m

n
b, (11)

where the second inequality uses the assumption maxS maxk ‖fk(X)‖a(xS) ≤ b.

Further, for k 6= l we have

Slz′Uk(X)(x)− SlzUk(X)(x)

=

(
n

m

)−1 ∑
S∈Sm−2

{1,...,n}\k,l

f(z′, xS , Xk)− E[f(z′, xS , Xk)]− [f(z, xS , Xk)− E[f(z, xS , Xk)]].

This gives

‖Uk(X)− SlzUk(X)‖a(x) ≤ sup
z′∈X

‖Slz′Uk(X)− SlzUk(X)‖a(x)

≤ sup
z∈X

(
n

m

)−1 ∑
S∈Sm−2

{1,...,n}\k,l

2‖f(z, xS , Xk)− E[f(z, xS , Xk)]‖a ≤
(
n

m

)−1 ∑
S∈Sm−2

{1,...,n}\k,l

2b ≤ m(m− 1)

n(n− 1)
2b,
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where the second inequality uses the norm’s triangle inequality and the third inequality uses the assumption
maxS maxk ‖fk(X)‖a(xS) ≤ b. Thus,

Ia(U) = 2
(

sup
x∈Xn

∑
l

sup
z∈X

∑
k:k 6=l

‖Uk(X)− SlzUk(X)‖2a(x)
) 1

2 ≤ 4m(m− 1)√
n(n− 1)

b ≤ 4m2

n
b.

(ii) With a proof similar to (11), maxk ‖‖Uk(X)‖ψ1
‖∞ ≤ m

n b.

(iii) According to (10), we deduce

Uk(X)(X) =

(
n

m

)−1 ∑
S∈Sm−1

{1,...,n}\k

f(XS , Xk)− E[f(XS , Xk)].

This gives

‖Uk(X)‖a(X) ≤
(
n

m

)−1 ∑
S∈Sm−1

{1,...,n}\k

‖fk(X)‖a(XS).

Thus, using the assumption E‖fk(X)‖2a(XS) ≤ σ2 for any k = {1, ..., n},

E

[
n∑
k=1

‖Uk(X)‖2a(X)

]
≤ m2

n
σ2.

The proof is complete.

Plugging Lemma B.1 into the concentration inequalities gives the results of Theorem 4.2.

B.3. V-Statistics

We have the following lemma.

Lemma B.2. (i) Ia(V ) ≤ 4m(m−1)
n b, (ii) maxk ‖‖Vk(X)‖ψ1

‖∞ ≤ m
n b, and (iii) E[

∑n
k=1 ‖Vk(X)‖2a(X)] ≤ m2

n σ
2.

Proof. The proof follows the proof of Lemma B.1.

(i) The index k can appear with m possibilities and the remaining indices can assume all values in {1, ..., n}. Thus, we get

Vk(X)(x) = n−m
m∑
k=1

∑
S∈{1,...,n}m−1

f(xS , Xk)− E[f(xS , Xk)],

which implies that

‖Vk(X)‖a(x) ≤ n−m
m∑
k=1

∑
S∈{1,...,n}m−1

‖fk(X)‖a(xS) ≤ n−m
m∑
k=1

∑
S∈{1,...,n}m−1

b =
m

n
b, (12)

where the second inequality uses the assumption maxS maxk ‖fk(X)‖a(xS) ≤ b.

Further, for k 6= l we have a decomposition

‖Vk(X)− SlzVk(X)‖a(x) ≤ sup
z′
‖Slz′Vk(X)− SlzVk(X)‖a(x) ≤ n−m

∑
l

∑
k,k 6=l

∑
S∈{1,...,n}m−2

2b =
m(m− 1)

n2
2b.

Thus,

Ia(V ) = 2
(

sup
x∈Xn

∑
l

sup
z∈X

∑
k:k 6=l

‖Vk(X)− SlzVk(X)‖2a(x)
) 1

2 ≤ 4
m(m− 1)

n
b.
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(ii) With a proof similar to (12), maxk ‖‖Vk(X)‖ψ1
‖∞ ≤ m

n b.

(iii) Similar to the proof of Lemma B.1, we deduce

E

[
n∑
k=1

‖Vk(X)‖2a(X)

]
≤ m2

n
σ2.

The proof is complete.

Plugging Lemma B.2 into the concentration inequalities gives the results of Theorem 4.3.

C. Proof of Refined Results
C.1. Proof of Theorem 5.2

To proceed, we first introduce an operator.
Definition C.1. Define an operator V + of f : Xn → R as

V +f =
∑
k

EZ∼µ(f − SkZf)2
+,

where Z+ = max{Z, 0}.

The following Lemma also considers the weakly self-boundedness of f in terms of V +.
Lemma C.2 (Corollary 4 in (Maurer, 2017)). Suppose that

V +f ≤ a2f.

Then for β ∈ (0, 2/a2)

lnE[eβf ] ≤ βEf
1− a2β/2

.

For brevity, we denote
∑n
k=1 ‖fk(X)‖2a(X) as

∑
(f)2.

Lemma C.3. We have V +(
∑

(f)2) ≤ (I ′a(f))2
∑

(f)2 for any f : Xn → R.

Proof. This proof follows the proof of Lemma A.7 and Proposition 6 in (Maurer, 2017). For l ∈ {1, ..., n} and any z ∈ X

Slz
∑

(f)2 =
∑
k:k 6=l

Slz‖fk(X)‖2a(X) + ‖fl(X)‖2a(X),

where we use the fact that Slz‖fl(X)‖2a(X) = ‖fl(X)‖2a(X), because for l ∈ {1, ..., n}, the substitution operator Slz is
homomorphism (linear and multiplicative) w.r.t. f and the identity w.r.t. the l-th coordinate.

Thus we get

V +(
∑

(f)2) =
∑
l

EZ∼µ
[(∑

(f)2 − SlZ
∑

(f)2
)2

IAl(Z)
]

=
∑
l

EZ∼µ
[( ∑

k:k 6=l

(‖fk(X)‖2a(X)− SlZ‖fk(X)‖2a(X))2
)2

IAl(Z)
]

=
∑
l

EZ∼µ
[( ∑

k:k 6=l

(‖fk(X)‖2a(X)− ‖SlZfk(X)‖2a(X))2
)2

IAl(Z)
]

=
∑
l

EZ∼µ
[( ∑

k:k 6=l

(‖fk(X)‖a(X)− ‖SlZfk(X)‖a(X))× (‖fk(X)‖a(X) + ‖SlZfk(X)‖a(X))
)2

IAl(Z)
]

≤
∑
l

EZ∼µ
[ ∑
k:k 6=l

(
‖fk(X)‖a(X)− ‖SlZfk(X)‖a(X)

)2

×
∑
k:k 6=l

(
‖fk(X)‖a(X) + ‖SlZfk(X)‖a(X)

)2

IAl(Z)
]
,
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where the third step uses the fact that SlZ‖fk(X)‖2a(X) = ‖SlZfk(X)‖2a(X) and the last inequality uses the Cauchy-Schwarz
inequality. Using Hölder inequality, we have

V +(
∑

(f)2)

≤
∑
l

EZ∼µ
[ ∑
k:k 6=l

(
‖fk(X)‖a(X)− ‖SlZfk(X)‖a(X)

)2

IAl(Z)
]
× sup
Z∈Al

∑
k:k 6=l

(
‖fk(X)‖a(X) + ‖SlZfk(X)‖a(X)

)2

.

Then, we can get

sup
Z∈Al

∑
k:k 6=l

(
‖fk(X)‖a(X) + ‖SlZfk(X)‖a(X)

)2

≤2
∑
k:k 6=l

‖fk(X)‖2a(X) + sup
Z∈Al

‖SlZfk(X)‖2a(X)

≤2
(∑

(f)2 + sup
Z∈Al

SlZ
∑

(f)2
)

≤4
∑

(f)2,

where the first inequality uses (a+ b)2 ≤ (a2 + b2), and the last uses the definition of Al.

Now we obtain that

V +(
∑

(f)2)

≤4
∑
l

EZ∼µ
[ ∑
k:k 6=l

(
‖fk(X)‖a(X)− ‖SlZfk(X)‖a(X)

)2

IAl(Z)
]∑

(f)2

≤4
∑
l

EZ∼µ
[ ∑
k:k 6=l

‖fk(X)− SlZfk(X)‖2a(X)IAl(Z)
]∑

(f)2

≤4 sup
x∈Xn

∑
l

EZ∼µ
[ ∑
k:k 6=l

‖fk(X)− SlZfk(X)‖2a(x)IAl(Z)
]∑

(f)2

≤(I ′a)2(f)
∑

(f)2,

where the second inequality uses the norm’s triangle inequality. The proof is complete.

Following the proof in Section 3 and then replacing Ia by I ′a, we get the results in Theorem 5.2.
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