
Federated Adversarial Learning: A Framework with Convergence Analysis

Xiaoxiao Li 1 Zhao Song 2 Jiaming Yang 3

Abstract

Federated learning (FL) is a trending training
paradigm to utilize decentralized training data.
FL allows clients to update model parameters
locally for several epochs, then share them to
a global model for aggregation. This training
paradigm with multi-local step updating before
aggregation exposes unique vulnerabilities to ad-
versarial attacks. Adversarial training is a popu-
lar and effective method to improve the robust-
ness of networks against adversaries. In this
work, we formulate a general form of federated
adversarial learning (FAL) that is adapted from
adversarial learning in the centralized setting. On
the client side of FL training, FAL has an inner
loop to generate adversarial samples for adver-
sarial training and an outer loop to update local
model parameters. On the server side, FAL ag-
gregates local model updates and broadcast the
aggregated model. We design a global robust
training loss and formulate FAL training as a
min-max optimization problem. Unlike the con-
vergence analysis in classical centralized training
that relies on the gradient direction, it is signifi-
cantly harder to analyze the convergence in FAL
for three reasons: 1) the complexity of min-max
optimization, 2) model not updating in the gra-
dient direction due to the multi-local updates on
the client-side before aggregation and 3) inter-
client heterogeneity. We address these challenges
by using appropriate gradient approximation and
coupling techniques and present the convergence
analysis in the over-parameterized regime. Our
main result theoretically shows that the mini-
mum loss under our algorithm can converge to
ε small with chosen learning rate and communi-
cation rounds. It is noteworthy that our analysis

1University of British Columbia, BC, Canada. 2Adobe Re-
search, CA, USA. 3University of Michigan, Ann Arbor, MI, USA.
. Correspondence to: Zhao Song <zsong@adobe.com>, Jiaming
Yang <jiamyang@umich.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

is feasible for non-IID clients.

1. Introduction
Federated learning (FL) is playing an important role nowa-
days, as it allows different clients to train models collabo-
ratively without sharing private information. One popular
FL paradigm called FedAvg (McMahan et al., 2017) in-
troduces an easy-to-implement distributed learning method
without data sharing. Specifically, it requires a central
server to aggregate model updates computed by the local
clients (also known as nodes or participants) using local
imparticipable private data. Then with these updates aggre-
gated, the central server use them to train a global model.

Nowadays deep learning model are exposed to severe
threats of adversarial samples. Namely, small adversarial
perturbations on the inputs will dramatically change the
outputs or output wrong answers (Szegedy et al., 2013). In
this regard, much effort has been made to improve neural
networks’ resistance to such perturbations using adversar-
ial learning (Tramèr et al., 2017; Samangouei et al., 2018;
Madry et al., 2018). Among these studies, the adversarial
training scheme in (Madry et al., 2018) has achieved the
good robustness in practice. (Madry et al., 2018) proposes
an adversarial training scheme that uses projected gradient
descent (PGD) to generate alternative adversarial samples
as the augmented training set. Generating adversarial ex-
amples during neural network training is considered as one
of the most effective approaches for adversarial training up
to now according to the literature (Carlini & Wagner, 2017;
Athalye et al., 2018; Croce & Hein, 2020).

Although adversarial learning has attracted much atten-
tion in the centralized domain, its practice in FL is under-
explored (Zizzo et al., 2020). Like training classical
deep neural networks that use gradient-based methods, FL
paradigms are vulnerable to adversarial samples. Adver-
sarial learning in FL brings multiple open challenges due to
FL properties on low convergence rate, application in non-
IID environments, and secure aggregation solutions. Hence
applying adversarial learning in an FL paradigm may lead
to unstable training loss and a lack of robustness. However,
a recent practical work (Zizzo et al., 2020) observed that
although there exist difficulties of convergence, the feder-
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ation of adversarial training with suitable hyperparameter
settings can achieve adversarial robustness and acceptable
performance. Motivated by the empirical results, we want
to address the provable property of combining adversarial
learning into FL from the theoretical perspective.

This work aims to theoretically study the unexplored con-
vergence challenges that lie in the interaction between ad-
versarial training and FL. To achieve a general understand-
ing, we consider a general form of federated adversarial
learning (FAL), which deploys adversarial training scheme
on local clients in the most common FL paradigm, Fe-
dAvg (McMahan et al., 2017) system. Specifically, FAL
has an inner loop of local updating that generates adversar-
ial samples (i.e., using (Madry et al., 2018)) for adversarial
training and an outer loop to update local model weights on
the client side. Then global model is aggregated using Fe-
dAvg (McMahan et al., 2017). Our algorithm is detailed in
Algorithm 1. We are interested in theoretically understand-
ing the proposed FAL scheme from the aspects of model
robustness and convergence:

Can FAL fit training data robustly and converge with an
over-parameterized neural network?

The theoretical convergence analysis of adversarial train-
ing itself is challenging in the centralized training setting.
(Tu et al., 2018) recently proposed a general theoretical
method to analyze the risk bound with adversaries but did
not address the convergence problem. The investigation
of convergence on over-parameterized neural network has
achieved tremendous progress (Du et al., 2019a; Allen-Zhu
et al., 2019b;c; Du et al., 2019b; Arora et al., 2019b). The
basic statement is that training can converge to sufficiently
small training loss in polynomial iterations using gradient
descent or stochastic gradient descent when the width of
the network is polynomial in the number of training exam-
ples when initialized randomly. Recent theoretical analy-
sis (Gao et al., 2019; Zhang et al., 2020b) extends these
standard training convergence results to adversarial train-
ing settings. To answer the above interesting but challeng-
ing question, we formulate FAL as an min-max optimiza-
tion problem. We extend the convergence analysis on the
general formulation of over-parameterized neural networks
in the FL setting that allows each client to perform min-
max training and generate adversarial examples (see Algo-
rithm 1). Involved challenges are arising in FL convergence
analysis due to its unique optimization method: 1) unlike
classical centralized setting, the global model of FL does
not update in the gradient direction; 2) inter-client hetero-
geneity issue needs to be considered.

Despite the challenges, we give an affirmative answer to
the above question. To the best of our knowledge, this
work is the first theoretical study that studies those unex-
plored problems about the convergence of adversarial train-

ing with FL. The contributions of this paper are:

• We propose a framework to analyze a general form
of FAL in over-parameterized neural networks. We
follow a natural and valid assumption of data separa-
bility that the training dataset are well separated apro-
pos of the adversarial perturbations’ magnitude. After
sufficient rounds of global communication and certain
steps of local gradient descent for each t, we obtain the
minimal loss close to zero. Notably, our assumptions
do not rely on data distribution. Thus the proposed
analysis framework is feasible for non-IID clients.

• We are the first to theoretically formulate the conver-
gence of the FAL problem into a min-max optimiza-
tion framework with the proposed loss function. In
FL, the update in the global model is no longer directly
determined by the gradient directions due to multiple
local steps. To tackle the challenges, we define a new
‘gradient’, FL gradient. With valid ReLU Lipschitz
and over-parameterized assumptions, we use gradient
coupling for gradient updates in FL to show the model
updates of each global updating is bounded in feder-
ated adversarial learning.

2. Related Work
Federated Learning. A efficient and privacy-preserving
way to learn from the distributed data collected on the edge
devices (a.k.a clients) would be FL. FedAvg is a easy-to-
implement distributed learning strategy by aggregating lo-
cal model updates of the server’s side, and then transmitting
the averaged model back to the local clients. Later, many
FL methods are developed baed on FedAvg. Theses FL
schemes can be divided into aggregation schemes (McMa-
han et al., 2017; Wang et al., 2020; Li et al., 2021) and
optimization schemes (Reddi et al., 2020; Zhang et al.,
2020a). Nearly all the them have the common characteris-
tics that client model are updating using gradient descent-
based methods, which is venerable to adversarial attacks.
In addition, data heterogeneity brings in huge challeng in
FL. For IID data, FL has been proven effective. However,
in practice, data mostly distribute as non-IID. Non-IID data
could substantially degrade the performance of FL mod-
els (Zhao et al., 2018; Li et al., 2019; 2021; 2020a). Despite
the potential risk in security and unstable performance in
non-IID setting, as FL mitigates the concern of data shar-
ing, it is still a popular and practical solution for distributed
data learning in many real applications such as health-
care (Li et al., 2020b; Rieke et al., 2020), autonomous driv-
ing (Liang et al., 2019), IoTs (Wang et al., 2019; Lim et al.,
2020). Sketching techniques have also been applied to fed-
erated learning and shown provable guarantees (Song et al.,
2023). (Bian et al., 2023) generalizes previous classical
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newton method (in the area of robust central path for solv-
ing linear programming (Cohen et al., 2019; Song & Yu,
2021; Jiang et al., 2021), semi-definite programming (Jiang
et al., 2020; Huang et al., 2022; Gu & Song, 2022) and em-
pirical risk minimization (Lee et al., 2019; Qin et al., 2023))
to federated learning setting.

Learning with Adversaries. Since the discovery of ad-
versarial examples (Szegedy et al., 2013), many effective
defense methods have been proposed to make neural net-
works robust to perturbations. As adversarial examples are
an issue of robustness, the popular scheme is to include
learning with adversarial examples, which can be traced
back to (Goodfellow et al., 2014). It produces adversar-
ial examples and injecting them into training data. Later,
Madry et al. (Madry et al., 2018) proposed training on
multi-step PGD adversaries and empirically observed that
adversarial training consistently achieves small and robust
training loss in wide neural networks. (Gao et al., 2022)
provides a sublinear time adversarial learning algorithm
with provable guarantee under NTK regime.

Federated Adversarial Learning. The fact that adversar-
ial examples are often misclassified poses potential secu-
rity threats for practical machine learning applications. Ad-
versarial training (Goodfellow et al., 2014; Kurakin et al.,
2016) is a popular protocol to train robust models by in-
serting adversarial examples in training. The use of ad-
versarial training in FL presents a number of open chal-
lenges, including poor convergence due to multiple local
update steps, instability and heterogeneity of clients, cost
and security request of communication, and so on. To de-
fend the adversarial attacks in federated learning, limited
recent studies have proposed to include adversarial training
on clients in the local training steps (Bhagoji et al., 2019;
Zizzo et al., 2020). These two works empirically showed
the performance of adversarial training, while the theoreti-
cal analysis of convergence is under explored. (Deng et al.,
2020) focused the problem of distributionally robust FL
with an emphasis on reducing the communication rounds,
they traded O(T 1/8) convergence rate for O(T 1/4) com-
munication rounds. In addition, different from our focus
on a generic theoretical analysis framework, (Zhang et al.,
2021) is a methodology paper that proposed an adversarial
training strategy in classical distributed setting, with focus
on specific training strategy (PGD, FGSM), which could be
generalized to a method in FAL.

Convergence via Over-parameterization. Convergence
analysis on over-parameterized neural networks falls in two
lines. In the first line of work (Li & Liang, 2018; Allen-
Zhu et al., 2019b;c;a) data separability plays a crucial role,
and is widely used in theoretically showing the conver-
gence result in the over-parameterized neural network set-
ting. To be specific, data separability theory shows that

to guarantee convergence, the width (m) of a neural net-
work shall be at least polynomial factor of all parameters
(i.e. m ≥ poly(n, d, 1/δ)), where δ is the minimum dis-
tance between all pairs of data points, n is the number of
data points and d is the data dimension. Another line of
work (Du et al., 2019b; Arora et al., 2019a;b; Song & Yang,
2019; Brand et al., 2021; Song et al., 2021a;b; Huang et al.,
2021; Zhang, 2022; Munteanu et al., 2022; Hu et al., 2022;
Alman et al., 2022; Zhang, 2022; Gao et al., 2023a) builds
on neural tangent kernel (NTK) (Jacot et al., 2018). In this
line of work, the minimum eigenvalue of the NTK is re-
quired to be lower bounded to guarantee convergence. Our
analysis focuses on the former approach based on data sep-
arability.

Robustness of Federated Learning. Previously there
were several works that theoretically analyzed the robust-
ness of federated learning under noise. (Yin et al., 2018)
developed distributed optimization algorithms that were
provably robust against arbitrary and potentially adversar-
ial behavior in distributed computing systems, and mainly
focused on achieving optimal statistical performance. (Rei-
sizadeh et al., 2020) developed a robust federated learn-
ing algorithm by considering a structured affine distribution
shift in users’ data. Their analysis was built on several as-
sumptions on the loss functions without a direct connection
to neural network.

3. Problem Formulation
To explore the properties of FAL in deep learning, we for-
mulate the problem in over-parameterized neural network
regime. We start by presenting the notations and setup re-
quired for federated adversarial learning, then we will de-
scribe the loss function we use and our FAL algorithm.

3.1. Notations

For a vector x, we use ‖x‖p to denote its `p norm, in this
paper we mainly consider the situation when p = 1, 2, or
∞. For a matrix U ∈ Rd×m, we use U> to denote its
transpose and use tr[U ] to denote its trace. We use ‖U‖1 to
denote its entry-wise `1 norm. We use ‖U‖2 to denote its
spectral norm. We use ‖U‖F to denote its Frobenius norm.
For j ∈ [m], we let Uj ∈ Rd be the j-th column of U . We
let ‖U‖2,1 denotes

∑m
j=1 ‖Uj‖2. We let ‖U‖2,∞ denotes

maxj∈[m] ‖Uj‖2.

We denote Gaussian distribution with mean µ and covari-
ance Σ as N (µ,Σ). We use σ(·) to denote the ReLU func-
tion σ(x) = max{x, 0}, and use 1{A} to denote the indi-
cator function of event A.
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3.2. Problem Setup

Two-Layer ReLU Network in FAL. Following recent
theoretical work in understanding neural networks training
in deep learning (Du et al., 2019b; Arora et al., 2019a;b;
Song & Yang, 2019; Lee et al., 2020; Song et al., 2021a;
Brand et al., 2021; Zhang, 2022; Alman et al., 2022; Hu
et al., 2022), in this paper, we focus on a two-layer neu-
ral network that has m neurons in the hidden layer, where
each neuron is a ReLU activation function. Formally we
have the following definitions.

We define the global network as

fU (x) :=

m∑
r=1

ar · σ(〈Ur, x〉+ br) (1)

and for c ∈ [N ], we define the local network of client c as

fWc(x) :=

m∑
r=1

ar · σ(〈Wc,r, x〉+ br). (2)

Here U = (U1, U2, . . . , Um) ∈ Rd×m is the global hid-
den weight matrix, Wc = (Wc,1, . . . ,Wc,m) ∈ Rd×m
is the local hidden weight matrix of client c, and a =
(a1, a2, . . . , am) ∈ Rm denotes the output weight, b =
(b1, b2, . . . , bm) ∈ Rm denotes the bias.

During the process of federated adversarial learning, we
only update the value of U and W , while keeping a and b
equal to their initialization, so we can write the global net-
work as fU (x) and the local network as fWc

(x). For the
situation we don’t care about the weight matrix, we write
f(x) or fc(x) for short. Next, we make some standard as-
sumptions regarding our training set.

Definition 3.1 (Dataset). There are N clients and n =
NJ data in total. Let S = ∪c∈[N ]Sc where Sc =

{(xc,1, yc,1), ..., (xc,J , yc,J)} ⊆ Rd × R denotes the J
training data of client c. Without loss of generality, we as-
sume ‖xc,j‖2 = 1 holds for all c ∈ [N ], j ∈ [J ], and the
last coordinate of each point equals to 1/2 , so we consider
X := {x ∈ Rd : ‖x‖2 = 1, xd = 1/2}. For simplicity, we
assume that |yc,j | ≤ 1 holds for all c ∈ [N ] and j ∈ [J ].1

We now define the initialization for the neural networks.

Definition 3.2 (Initialization). The initialization of a ∈
Rm, U ∈ Rd×m, b ∈ Rm is a(0) ∈ Rm, U(0) ∈
Rd×m, b(0) ∈ Rm. The initialization of client c’s local
weight matrix Wc is Wc(0, 0) = U(0). Here the second
term in Wc denotes iteration of local steps.

1Our assumptions on data points are reasonable since we can
do scale-up. In addition, `2 norm normalization is a typical tech-
nique in experiments. Same assumptions appears in many previ-
ous works like (Arora et al., 2019b; Allen-Zhu et al., 2019a;b).

• For each r ∈ [m], ar(0) are i.i.d. sampled from
[−1/m1/3,+1/m1/3] uniformly.

• For each i ∈ [d], r ∈ [m], Ui,r(0) and br(0) are i.i.d.
random Gaussians sampled from N (0, 1/m). Here
Ui,r means the (i, r)-entry of U .

For each global iteration t ∈ [T ],

• For each c ∈ [N ], the initial value of client c’s local
weight matrix Wc is Wc(t, 0) = U(t).

Next we formulate the adversary model that will be used.

Definition 3.3 (ρ-Bounded adversary). Let F denote the
function class. An adversary is a mapping A : F × X ×
R → X which denotes the adversarial perturbation. For
ρ > 0, we define the `2 ball B2(x, ρ) := {x̃ ∈ Rd : ‖x̃ −
x‖2 ≤ ρ} ∩ X , we say an adversary A is ρ-bounded if it
satisfies A(f, x, y) ∈ B2(x, ρ).

Furthermore, given ρ > 0, we denote the worst-case ad-
versary as A∗ := argmaxx̃∈B2(x,ρ) `(f(x̃), y), where ` is
defined in Definition 3.5.

Well-Separated Training Set. In the over-parameterized
regime, it is standard to assume that the training set is well-
separated. Since we deal with adversarial perturbations, we
require the following γ-separability, which is a bit stronger.

Definition 3.4 (γ-separability). Let γ ∈ (0, 1/2), δ ∈
(0, 1/2), ρ ∈ (0, 1/2) denote three parameters such that
γ ≤ δ · (δ − 2ρ). We say our training set

S = ∪c∈[N ]Sc = ∪c∈[N ],j∈[J]{(xc,j , yc,j)} ⊂ Rd × R

is globally γ-separable w.r.t a ρ-bounded adversary, if
‖xc1,j1 − xc2,j2‖2 ≥ δ holds for any c1 6= c2 and j1 6= j2.

Note that in the above definition, the introducing of γ is for
expression simplicity of Theorem 4.1, and the assumption
γ ≤ δ · (δ− 2ρ) is reasonable and easy to achieve in adver-
sarial training. It is also noteworthy that, our problem setup
does not need the assumption on independent and identi-
cally distribution (IID) on data, thus such a formation can
be applied to unique challenge of the non-IID setting in FL.

3.3. Federated Adversarial Learning

Adversary and Robust Loss. We set the following loss for
sake of technical presentation simplicity, as is customary in
prior studies (Gao et al., 2019; Allen-Zhu et al., 2019a):

Definition 3.5 (Lipschitz convex loss). A loss function ` :
R × R → R is a Lipschitz convex loss, if it satisfies the
following four properties:

1. non-negative;
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2. convex w.r.t. the first input of `;

3. 1-Lipshcitz, which means |`(x1, y1) − `(x2, y2)| ≤
‖(x1, y1)− (x2, y2)‖2;

4. `(y, y) = 0 for all y ∈ R.

We assume ` is a Lipschitz convex loss.2 Next we define
our robust loss function of a network, which is based on the
adversarial samples generated by a ρ-bounded adversaryA.

Definition 3.6 (Training loss). Given a client’s training set
Sc = {(xc,j , yc,j)}Jj=1 ⊂ Rd × R of J samples. Let fc :

Rd → R be the neural network. We define the classical
training loss of fc as

L(fc, Sc) :=
1

J

J∑
j=1

` (fc(xc,j), yc,j) .

Given S = ∪c∈[N ]Sc, we define the global loss as

L(fU , S) :=
1

NJ

N∑
c=1

J∑
j=1

`(fU (xc,j), yc,j).

Given an adversary A that is ρ-bounded, we define the
global loss with respect to A as

LA(fU ) :=
1

NJ

N∑
c=1

J∑
j=1

`(fU (A(fc, xc,j , yc,j)), yc,j)

and define global robust loss (in terms of worst-case) as

LA∗(fU ) :=
1

NJ

N∑
c=1

J∑
j=1

`(fU (A∗(fc, xc,j , yc,j)), yc,j)

Moreover, since we deal with pseudo-net (Definition 5.1),
we also define the local loss of a pseudo-net as

L(gc,Sc) :=
1

J

J∑
j=1

` (gc(xc,j), yc,j)

and the global loss of a pseudo-net as

L(gU ,S) :=
1

NJ

N∑
c=1

J∑
j=1

`(gU (xc,j), yc,j).

Algorithm. We focus on a general FAL framework that is
adapted from the most common adversarial training in the

2Lipschitz is a common and reasonable in deep learning and
large language models, since a number of work have proved
certain Lipschitz properties for those learning models(Li et al.,
2023b; Deng et al., 2023; Gao et al., 2023b; Li et al., 2023a).

classical setting on the client. Specifically, we describe the
adversarial learning of a local neural network fWc against
an adversary A that generate adversarial examples during
training as shown in Algorithm 1. As for the analysis of a
general theoretical analysis framework, we do not specify
the explicit format of A.

The FAL algorithm contains two procedures: one is
CLIENTUPDATE running on client side and the other is
SERVEREXECUTION running on server side. These two
procedures are iteratively processed through communica-
tion iterations. Adversarial training is addressed in pro-
cedure CLIENTUPDATE. Hence, there are two loops in
CLIENTUPDATE procedure: the outer loop is iteration for
local model updating; and the inner loop is iteratively gen-
erating adversarial samples by the adversary A. In the
outer loop in SERVEREXECUTION procedure, the neural
network’s parameters are updated to reduce its prediction
loss on the new adversarial samples.

4. Our Result
The main result of this work is showing the convergence
of FAL algorithm (Algorithm 1) in overparameterized neu-
ral networks. Specifically, our defined global training loss
(Definition 3.6) converges to a small εwith the chosen com-
munication round T , local and global learning rate ηlocal,
ηglobal. We now formally present our main result.

Theorem 4.1 (Federated Adversarial Learning). Let c0 ∈
(0, 1) be a fixed constant. Let N denotes the total num-
ber of clients and J denotes the number of data points
per client. Suppose that our training set S = ∪c∈[N ]Sc
is globally γ-separable for some γ > 0. Then, for
all ε ∈ (0, 1), there exists R = poly((NJ/ε)1/γ) that
satisfies: for every K ≥ 1 and T ≥ poly(R/ε), for
all m ≥ poly(d, (NJ/ε)1/γ), with probability ≥ 1 −
exp(−Ω(m1/3)) , running federated adversarial learning
(Algorithm 1) with step size choices

ηglobal = 1/ poly(NJ,R, 1/ε) and ηlocal = 1/K

will output a list of weights {U(1), U(2), · · · , U(T )} ∈
Rd×m that satisfy:

min
t∈[T ]

LA(fU(t)) ≤ ε.

Discussion. In Theorem 4.1, one key element that affects
parameters m,R, T is the data separability γ. As the data
separability bound becomes larger, the parameter R be-
comes smaller, resulting in the need of a larger global learn-
ing rate ηglobal to achieve convergence. We conduct exper-
iments in Section 6 to verify Theorem 4.1 empirically.
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Algorithm 1 Federated Adversarial Learning (FAL)
Notations: Training sets of clients with each client is indexed by c, Sc = {(xc,j , yc,j)}Jj=1; adversary A; local learning
rate ηlocal; global learning rate ηglobal; local updating iterations K; global communication round T .

1: Initialization a(0) ∈ Rm, U(0) ∈ Rd×m, b(0) ∈ Rm
2: For t = 0→ T , we iteratively run Procedure A then Procedure B
3: procedure A. CLIENTUPDATE(t, c)
4: Sc(t)← ∅
5: Wc(t, 0)← U(t) . Receive global model weights update.
6: for k = 0→ K − 1 do
7: for j = 1→ J do
8: x̃

(t)
c,j ← A(fWc(t,k), xc,j , yc,j) . Adversarial samples. fWc

is defined as (2).

9: Sc(t)← Sc(t) ∪ (x̃
(t)
c,j , yc,j)

10: end for
11: Wc(t, k + 1)←Wc(t, k)− ηlocal · ∇Wc

L(fWc(t,k),Sc(t))
12: end for
13: ∆Uc(t)←Wc(t,K)− U(t)
14: Send ∆Uc(t) to SERVEREXECUTION
15: end procedure
16: procedure B. SERVEREXECUTION(t):
17: for each client c in parallel do do
18: ∆Uc(t)← CLIENTUPDATE(c, t) . Receive local model weights update.
19: ∆U(t)← 1

N

∑
c∈[N ] ∆Uc(t)

20: U(t+ 1)← U(t) + ηglobal ·∆U(t) . Aggregation on the server side.
21: Send U(t+ 1) to client c for CLIENTUPDATE(c, t)
22: end for
23: end procedure

5. Proof Sketch
To handle the min-max objective in FAL, we formulate the
optimization of FAL in the framework of online gradient
descent3: at each local step k on the client side, firstly
the adversary generates adversarial samples and computes
the loss function L

(
fWc(t,k),Sc(t)

)
, then the local client

learner takes the fresh loss function and update

Wc(t, k+1) = Wc(t, k)−ηlocal ·∇Wc
L
(
fWc(t,k),Sc(t)

)
.

Compared with the centralized setting, the key difficulties
in the convergence analysis of FL are induced by multiple
local step updates of the client side and the step updates
on both local and global sides. Specifically, local updates
are not the standard gradient as the centralized adversar-
ial training when K ≥ 2. We use −∆U(t) in substitu-
tion of the real gradient of U to update the value of U(t).
This brings in challenges to bound the gradient of the neu-
ral networks. Nevertheless, gradient bounding is challeng-
ing in adversarial training solely. To this end, we use gra-
dient coupling method twice to solve this core problem:
firstly we bound the difference between real gradient and

3We refer the readers to (Hazan, 2016) for more details regard-
ing online gradient descent.

FL gradient (defined below), then we bound the difference
between pseudo gradient and real gradient.

5.1. Existence of Small Robust Loss

In this section, we denote U(t) as the global weights of
communication round t. U∗ is the value of U after small
perturbations from Ũ which satisfies ‖U∗ − Ũ‖2,∞ ≤
R/mc1 , here c1 ∈ (0, 1) is a constant (e.g. c1 = 2/3),
m is the width of the neural network and R is a parameter.
We will specify the value of these parameters in appendix.

We study the over-parameterized neural nets’ well-
approximated pseudo-network to learn gradient descent for
over-parameterized neural nets whose weights are close to
initialization. At a high level, pseudo-network can be seen
as a linear approximation of our two layer ReLU neural
network near initialization, and the introducing of pseudo-
network makes the proof more intuitive due to its linearity.

Definition 5.1 (Pseudo-network). Given weights U ∈
Rd×m, a ∈ Rm and b ∈ Rm, for a neural network
fU (x) =

∑m
r=1 ar · σ(〈Ur, x〉 + br), we define the cor-

responding pseudo-network gU : Rd → R as

gU (x) :=

m∑
r=1

ar·〈Ur(t)−Ur(0), x〉·1{〈Ur(0), x〉+br ≥ 0}.
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To obtain our main Theorem 4.1, we first show in Theo-
rem 5.2 that we can find a U∗ which is close to U(0) and
also makes LA∗(fU∗) sufficiently small. Later in Theo-
rem 5.6 we show that the average of LA(fU(t)) is dom-
inated by LA∗(fU∗), thus we can prove the minimum of
LA(fU(t)) is also ε small.

Theorem 5.2 (Existence result, informal version of Theo-
rem F.3). For all ε ∈ (0, 1), there exists

M0 = poly(d, (NJ/ε)1/γ) and R = poly((NJ/ε)1/γ)

satisfying: for all m ≥ M0, with probability at least 1 −
exp(−Ω(mc0)) there exists U∗ ∈ Rd×m such that

‖U∗ − U(0)‖2,∞ ≤ R/mc1 and LA∗(fU∗) ≤ ε.

The full proof of Theorem 5.2 is in appendix.

5.2. Convergence Result for FAL

Definition 5.3 (Local gradient). For a local real network
denoted by fWc(t,k), we denote its gradient by

∇(fc, t, k) := ∇WcL(fWc(t,k),Sc(t)).

If the corresponding pseudo-network is gWc(t,k), we denote
its gradient by

∇(gc, t, k) := ∇WcL(gWc(t,k),Sc(t)).

Now we consider the global neural network. We define
pseudo gradient as ∇(g, t) := ∇UL(gU(t),S(t)) and de-
fine FL gradient as ∇̃(f, t) := − 1

N∆U(t), which is used
in the proof of Theorem 5.6. Next we present the follow-
ing two lemmas. We call them gradient coupling lemmas,
since we couple the real and FL gradient, pseudo and real
gradient respectively.

Lemma 5.4 (Bound the difference between real gradient
and FL gradient, informal version of Lemma E.4). With
probability≥ 1−exp(−Ω(mc0)), for iterations t satisfying
‖U(t)− U(0)‖2,∞ ≤ 1/o(m), the gradients satisfy

‖∇(f, t)− ∇̃(f, t)‖2,1 ≤ o(m).

Lemma 5.5 (Bound the difference between pseudo gra-
dient and real gradient, informal version of Lemma E.5).
With probability≥ 1−exp(−Ω(mc0)), for iterations t sat-
isfying ‖U(t)−U(0)‖2,∞ ≤ 1/o(m), the gradients satisfy

‖∇(g, t)−∇(f, t)‖2,1 . NJ · o(m).

The above two gradient coupling lemmas are essential in
proving Theorem 5.6, which is our convergence result.

Theorem 5.6 (Convergence result, informal version of
Theorem E.3). Let R ≥ 1, ε ∈ (0, 1). Let K ≥ 1 and
let T ≥ poly(R/ε). There exists M = poly(n,R, 1/ε),
such that for every m ≥ M , with probability at least
1− exp(−Ω(mc0)), for every U∗ satisfying

‖U∗ − U(0)‖2,∞ ≤ R/mc1 ,

running Algorithm 1 with setting

ηglobal = 1/ poly(NJ,R, 1/ε) and ηlocal = 1/K

will output weights {U(t)}Tt=1 that satisfy

1

T

T∑
t=1

LA
(
fU(t)

)
≤ LA∗ (fU∗) + ε.

In the proof of Theorem 5.6 we first bound the local gra-
dient ∇r(fc, t, k). We first consider the pseudo-network,
split the difference into three part and bound the three quan-
tities respectively. Namely, we have

L(gU(t), S(t))− L(gU∗ , S(t)) ≤ α(t) + β(t) + γ(t),

where we denote
α(t) := 〈∇̃(f, t), U(t)− U∗〉;
β(t) := ‖∇(f, t)− ∇̃(f, t)‖2,1 · ‖U(t)− U∗‖2,∞;

γ(t) := ‖∇(g, t)−∇(f, t)‖2,1 · ‖U(t)− U∗‖2,∞.

In bounding α(t), we unfold ‖U(t+ 1)− U∗‖2F and have

α(t) =
ηglobal

2
‖∆U(t)‖2F

+
1

2ηglobal
· (‖U(t)− U∗‖2F − ‖U(t+ 1)− U∗‖2F ).

We bound ‖∆U(t)‖2F by ‖∆U(t)‖2F ≤ ηlocalK ·o(m), and
by doing summation over t, we have

T∑
t=1

α(t)

=
ηglobal

2

T∑
t=1

‖∆U(t)‖2F

+
1

2ηglobal
· (‖U(1)− U∗‖2F − ‖U(T + 1)− U∗‖2F )

≤ ηglobal
2

T∑
t=1

‖∆U(t)‖2F +
1

2ηglobal
· ‖U(1)− U∗‖2F

. ηglobalηlocalTK · o(m) +
1

ηglobal
mD2

U∗ . (3)

In bounding β(t), we apply Lemma 5.4 and have

β(t) = ‖∇(f, t)− ∇̃(f, t)‖2,1 · ‖U(t)− U∗‖2,∞
. o(m) · ‖U(t)− U∗‖2,∞
. o(m) · (‖U(t)− U(0)‖2,∞ +DU∗)

7
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whereDU∗ := ‖U∗−U(0)‖2,∞ ≤ R/mc1 . As for the first
term, we use the following bound

‖U(t)− U(0)‖2,∞

≤ ηglobal
t∑

τ=1

‖∆U(τ)‖2,∞

= ηglobal

t∑
τ=1

‖ηlocal
N

N∑
c=1

K−1∑
k=0

∇(fc, t, k)‖2,∞

≤ ηglobalηlocal
N

t∑
τ=1

N∑
c=1

K−1∑
k=0

‖∇(fc, t, k)‖2,∞

≤ ηglobalηlocaltKm−1/3

and have β(t) . ηglobalηlocaltK ·o(m)+o(m)·DU∗ . Then
we do summation over t and obtain

T∑
t=1

β(t) . ηglobalηlocalT
2K · o(m) + o(m) · TDU∗ .

(4)

In bounding γ(t), we apply Lemma 5.5 and have

γ(t) = ‖∇(g, t)−∇(f, t)‖2,1 · ‖U(t)− U∗‖2,∞
. NJ · o(m) · (‖U(t)− U(0)‖2,∞ +DU∗).

Then we do summation over t and have
T∑
t=1

γ(t) . ηglobalηlocalT
2KNJ · o(m)

+ TNJ · o(m)DU∗ . (5)

Putting Eq.(3), Eq.(4) and Eq.(5) together with our choice
of all parameters (i.e. ηlocal, ηglobal, R,K, T,m), we obtain

1

T

T∑
τ=1

L(gU(τ), S(τ))− 1

T

T∑
τ=1

L(gU∗ , S(τ))

≤ 1

T
(

T∑
τ=1

α(τ) +

T∑
τ=1

β(τ) +

T∑
t=1

γ(τ)) ≤ O(ε).

From Theorem D.2 in appendix, we have supx∈X |fU (x)−
gU (x)| ≤ O(ε), and thus,

1

T

T∑
t=1

L(fU(t),S(t))− L(fU∗ ,S(t)) ≤ O(ε). (6)

From the definition of A∗ we have L(fU∗ , S(t)) ≤
LA∗(fU∗). From the definition of loss function we have
L(fU(t),S(t)) = LA(fU(t)).

Moreover, since Eq. (6) holds for all ε > 0, we can replace
O(ε) with ε. Thus we prove for all ε > 0,

1

T

T∑
t=1

LA(fU(t)) ≤ LA∗(fU∗) + ε.

Combining the Results. From Theorem 5.2 we obtain
U∗ that is close to U(0) (i.e., ‖U∗ − U(0)‖2,∞ ≤ R/mc1 )
and makes LA∗(fU∗) close to zero (i.e., LA∗(fU∗) ≤ ε).
By using Theorem 5.6 we know the average of LA(fU(t))

is dominated by LA∗(fU∗) (i.e., 1
T

∑T
t=1 LA(fU(t)) ≤

LA∗(fU∗)+ε). By aggregating these two results, we prove
that the minimal of LA(fU(t)) is ε small:

min
t∈[T ]

LA(fU(t)) ≤
1

T

T∑
t=1

LA
(
fU(t)

)
≤ LA∗(fU∗) + ε ≤ 2ε.

Thus we finish the proof of our main Theorem 4.1. For the
full proof and the choice of parameters, we refer readers to
the appendix for details.

6. Numerical Results
In this section, we examine our theoretical result (Theo-
rem 4.1) on data separability γ (Definition 3.4), a standard
assumption in over-parameterized neural network conver-
gence analysis. We simulate synthetic data with different
levels of data separability as shown in Fig. 1. Specifically,
each data point contains two dimensions. Each class of data
is generated from two Gaussian distributions (std=1) with
different means. Each class consists of two Gaussian clus-
ters where intra-class cluster centroids are closer than inter-
class distances. We perform binary classification tasks on
the simulated datasets using multi-layer perceptrons MLP
with one hidden layer with 128 neurons. To increase learn-
ing difficulty, 5% of labels are randomly flipped. For each
class, we simulated 400 data points as training sets and 100
data points as a testing set. The training data is even divided
into four parts to simulate four clients. To simulate differ-
ent levels of separability, we expand/shrink data features
by (2.5, 1.5, 0.85) to construct (large, medium, small) data
separability. Note that the whole dataset is not normalized
before feeding into the classifier.

We deploy PGD (Madry et al., 2018) to generate adversar-
ial examples during FAL training with the box of radius
ρ = 0.0314, each perturbation step of 7, and step length of
0.00784. Model aggregation follows FedAvg (McMahan
et al., 2017) after each local update. We use SGD opti-
mizer with batch size 50. We depict the training and test-
ing accuracy curves in Fig. 2(a), where solid lines strand
for training and dash line stand for testing. The total com-
munication round for is 100, and we observe training con-
vergence for high (blue) and medium (green) separability
datasets with learning rate 1e-5. However, a low separa-
bility dataset requires a smaller learning rate (i.e., 5e-6) to
avoid divergence. From Theorem 4.1 we know a larger data
separability γ results in a smaller R, and we can choose a
larger learning rate to achieve convergence. Hence, the se-
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Figure 1: Simulated data with different levels of data separability in numerical experiment.

0 20 40 60 80 100
Communication round

50

60

70

80

90

Ac
cu

ra
cy

high sep
med sep
small sep

(a) FAL

0 20 40 60 80 100
Communication round

50

60

70

80

90

Ac
cu

ra
cy

high sep
med sep
small sep

(b) FedAvg

Figure 2: Training and testing curve on datasets with different levels of data separability. Solid lines present training curves
and dash lines present testing curves.

lection of learning rate for small separability is consistent
with the constraint of learning rate ηglobal implied in Theo-
rem 4.1. We empirically observe that a dataset with larger
data separability γ converges faster with the flexibility of
choosing a large learning rate, which is affirmative of our
theoretical results that convergence round T ≥ poly(R/ε)
has a larger lower bound with a smaller γ, where

R = poly((NJ/ε)1/γ).

In addition, we compare with the accuracy curves obtained
by using FedAvg (McMahan et al., 2017). As shown
Fig. 2(b), all the datasets converge at around round 40.
Therefore we notice that same data separability scales have
larger affect in FAL training.

7. Conclusion
We have studied the convergence of a general format of
adopting adversarial training in FL setting to improve FL
training robustness. We propose the general framework,
FAL, which deploys adversarial samples generation-based
adversarial training method on the client-side and then ag-
gregate local model using FedAvg. In FAL, each client is

trained via min-max optimization with inner loop adversar-
ial generation and outer loop loss minimization. As far as
we know, we are the first to detail the proof of theoretical
convergence guarantee for over-parameterized ReLU net-
work on the presented FAL strategy, using gradient descent.
Unlike the convergence of adversarial training in classical
settings, we consider the updates on both local client and
global server sides. Our result indicates that we can control
learning rates ηlocal and ηglobal according to the local up-
date steps K and global communication round T to make
the minimal loss close to zero. The technical challenges lie
in the multiple local update steps and heterogeneous data,
leading to the difficulties of convergence. We use gradient
coupling methods twice, and together we show the model
updates of each global updating bounded in our federated
adversarial learning.

Note that we do not require IID assumptions for data distri-
bution. In sum, the proposed FAL formulation and analy-
sis framework can well handle the multi-local updates and
non-IID data in FL. Our framework can be generalized to
other FL aggregation methods such as sketching and se-
lective aggregation. We denote these generalization in FL
aggregation as intriguing future works.
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Roadmap. The appendix is organized as follows. We introduce the probability tools to be used in our proof in Section A.
In addition, we introduce the preliminaries in Section B. We present the proof overview in Section C and additional remarks
used in the proof sketch in Section D. We show the detailed proof for the convergence in Section E and the detailed proof
of existence in Section F correspondingly.

A. Probability Tools
We introduce the probability tools that will be used in our proof. First we present two lemmas about random variable’s tail
bound in Lemma A.1 and A.2:

Lemma A.1 (Chernoff bound (Chernoff, 1952)). Let x =
∑n
i=1 xi, where xi = 1 with probability pi and xi = 0 with

probability 1− pi, and all xi are independent. Let µ = E[x] =
∑n
i=1 pi. Then

1. Pr[x ≥ (1 + δ)µ] ≤ exp(−δ2µ/3), ∀δ > 0 ;
2. Pr[x ≤ (1− δ)µ] ≤ exp(−δ2µ/2), ∀0 < δ < 1.

Lemma A.2 (Bernstein inequality (Bernstein, 1924)). Let Y1, · · · , Yn be independent zero-mean random variables. Sup-
pose that for i ∈ [n], |Yi| ≤M almost surely. Then for all t > 0, we have

Pr

[
n∑
i=1

Yi > t

]
≤ exp

(
− t2/2∑n

i=1 E[Y 2
i ] +Mt/3

)
.

Next, we introduce Lemma A.3 about CDF of Gaussian distributions:

Lemma A.3. Let Z ∼ N (0, σ2) denotes a Gaussian random variable, then we have

Pr[|Z| ≤ t] ∈
(

2

3

t

σ
,

4

5

t

σ

)
.

Finally, we introduce Claim A.4 about elementary anti-concentration property of Gaussian distribution.

Claim A.4. Let z ∼ N (0, Id) and u ∼ N (0, 1) are independent Gaussian random variables. Then for all t ≥ 0 and
x ∈ Rd that satisfies ‖x‖2 = 1, we have

Pr[|〈x, z〉+ v| ≤ t] = O(t).
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B. Preliminaries
B.1. Notations

For a vector x, we use ‖x‖p to denote its `p norm, in this paper we mainly consider the situation when p = 1, 2, or∞.

For a matrix U ∈ Rd×m, we use U> to denote its transpose and use tr[U ] to denote its trace. We use ‖U‖1 to denote its
entry-wise `1 norm. We use ‖U‖2 to denote its spectral norm. We use ‖U‖F to denote its Frobenius norm. For j ∈ [m],
we let Uj ∈ Rd be the j-th column of U . We let ‖U‖2,1 denotes

∑m
j=1 ‖Uj‖2. We let ‖U‖2,∞ denotes maxj∈[m] ‖Uj‖2.

For two matrices X and Y , we denote their Euclidean inner product as 〈X,Y 〉 := tr[X>Y ].

We denote Gaussian distribution with mean µ and covariance Σ as N (µ,Σ). We use σ(·) to denote the ReLU function,
and use 1{A} to denote the indicator function of A.

B.2. Two-Layer Neural Network and Initialization

In this paper, we focus on a two-layer neural network that has m neurons in the hidden layer, where each neuron is a ReLU
activation function. We define the global network as

fU (x) :=

m∑
r=1

ar · σ(〈Ur, x〉+ br) (7)

and for c ∈ [N ], we define the local network of client c as

fWc(x) :=

m∑
r=1

ar · σ(〈Wc,r, x〉+ br). (8)

Here U = (U1, U2, . . . , Um) ∈ Rd×m is the global hidden weight matrix, Wc = (Wc,1, . . . ,Wc,m) ∈ Rd×m is the local
hidden weight matrix of client c, and a = (a1, a2, . . . , am) ∈ Rm denotes the output weight, b = (b1, b2, . . . , bm) ∈ Rm
denotes the bias. During the process of federated adversarial learning, for convenience we keep a and b equal to their
initialized values and only update U and W , so we can write the global network as fU (x) and the local network as fWc

(x).
For the situation we don’t care about the weight matrix, we write f(x) or fc(x) for short. Next, we make some standard
assumptions regarding our training set.

Definition B.1 (Dataset). There are N clients and n = NJ data in total.4 Let S = ∪c∈[N ]Sc where Sc =

{(xc,1, yc,1), ..., (xc,J , yc,J)} ⊆ Rd × R denotes the J training data of client c. Without loss of generality, we assume
that ‖xc,j‖2 = 1 holds for all c ∈ [N ], j ∈ [J ], and the last coordinate of each point equals to 1/2, so we consider
X := {x ∈ Rd : ‖x‖2 = 1, xd = 1/2}. For simplicity, we assume that |yc,j | ≤ 1 holds for all c ∈ [N ] and j ∈ [J ].5

We now define the initialization for the neural networks.

Definition B.2 (Initialization). The initialization of a ∈ Rm, U ∈ Rd×m, b ∈ Rm is a(0) ∈ Rm, U(0) ∈ Rd×m, b(0) ∈
Rm. The initialization of client c’s local weight matrix Wc is Wc(0, 0) = U(0). Here the second term in Wc denotes
iteration of local steps.

• For each r ∈ [m], ar(0) are i.i.d. sampled from [−1/m1/3,+1/m1/3] uniformly.

• For each i ∈ [d], r ∈ [m], Ui,r(0) and br(0) are i.i.d. random Gaussians sampled from N (0, 1/m). Here Ui,r means
the (i, r)-entry of U .

For each global iteration t ∈ [T ],

• For each c ∈ [N ], the initial value of client c’s local weight matrix Wc is Wc(t, 0) = U(t).
4For simplicity, we assume that all clients have same number of training data. Our result can be generalized to the setting where each

client has a different number of data as the future work.
5Our assumptions on data points are reasonable since we can do scale-up. In addition, l2 norm normalization is a typical technique

in experiments. Same assumptions also appears in many previous theoretical works like (Arora et al., 2019b; Allen-Zhu et al., 2019a;b).
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B.3. Adversary and Well-Separated Training Sets

We first formulate the adversary as a mapping.

Definition B.3 (ρ-Bounded adversary). Let F denote the function class. An adversary is a mappingA : F ×X ×R→ X
which denotes the adversarial perturbation. For ρ > 0, we define the `2 ball as B2(x, ρ) := {x̃ ∈ Rd : ‖x̃−x‖2 ≤ ρ}∩X ,
we say an adversary A is ρ-bounded if it satisfies

A(f, x, y) ∈ B2(x, ρ).

Moreover, given ρ > 0, we denote the worst-case adversary as A∗ := argmaxx̃∈B2(x,ρ) `(f(x̃), y), where ` is defined in
Definition B.5.

In the over-parameterized regime, it is a standard assumption that the training set is well-separated. Since we deal with
adversarial perturbations, we require the following γ-separability, which is a bit stronger.

Definition B.4 (γ-separability). Let γ ∈ (0, 1/2), δ ∈ (0, 1/2), ρ ∈ (0, 1/2) denote three parameters such that γ ≤
δ · (δ − 2ρ). We say our training set S = ∪c∈[N ]Sc = ∪c∈[N ],j∈[J]{(xc,j , yc,j)} ⊂ Rd × R is globally γ-separable w.r.t a
ρ-bounded adversary, if

min
c1 6=c2,j1 6=j2

‖xc1,j1 − xc2,j2‖2 ≥ δ.

It is noteworthy that our problem setup does not need the assumption on independent and identically distribution (IID) on
data, thus such a formation can be applied to unique challenge of the non-IID setting in FL.

B.4. Robust Loss Function

We define the following Lipschitz convex loss function that will be used.

Definition B.5 (Lipschitz convex loss). A loss function ` : R× R→ R is said to be a Lipschitz convex loss, if it satisfies
the following four properties:

• non-negative;

• convex in the first input of `;

• 1−Lipshcitz, which means ‖`(x1, y1)− `(x2, y2)‖2 ≤ ‖(x1, y1)− (x2, y2)‖2;

• `(y, y) = 0 for all y ∈ R.

In this paper we assume ` is a Lipschitz convex loss. Next, we define our robust loss function of a neural network, which
is based on the adversarial examples generated by a ρ-bounded adversary A.

Definition B.6 (Training loss). Given a client’s training set Sc = {(xc,j , yc,j)}Jj=1 ⊂ Rd×R of J samples. Let fc : Rd →
R be a net. We define loss to be L(fc,Sc) := 1

J

∑J
j=1 ` (fc(xc,j), yc,j). Given S = ∪c∈[N ]Sc, the global loss is defined as

L(fU ,S) :=
1

NJ

N∑
c=1

J∑
j=1

`(fU (xc,j), yc,j).

Given an adversary A that is ρ-bounded, we define the global loss with respect to A as

LA(fU ) :=
1

NJ

N∑
c=1

J∑
j=1

`(fU (A(fc, xc,j , yc,j)), yc,j)

=
1

NJ

N∑
c=1

J∑
j=1

`(fU (x̃c,j), yc,j)
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and also define the global robust loss (in terms of worst-case) as

LA∗(fU ) :=
1

NJ

N∑
c=1

J∑
j=1

`(fU (A∗(fc, xc,j , yc,j)), yc,j)

=
1

NJ

N∑
c=1

J∑
j=1

max
x∗
c,j∈B2(xc,j ,ρ)

`
(
fU (x∗c,j), yc,j

)
.

Moreover, since we deal with pseudo-net which is defined in Definition D.1, we also define the loss of a pseudo-net as
L(gc,Sc) := 1

J

∑J
j=1 ` (gc(xc,j), yc,j) and L(gU ,S) := 1

NJ

∑N
c=1

∑J
j=1 `(gU (xc,j), yc,j).

B.5. Federated Adversarial Learning Algorithm

Classical adversarial training algorithm can be found in (Zhang et al., 2020b). Different from the classical setting, our
federated adversarial learning of a local neural network fWc against an adversary A is shown in Algorithm 2, where there
are two procedures: one is CLIENTUPDATE running on client side and the other is SERVEREXECUTION running on server
side. These two procedures are iteratively processed through communication iterations. Adversarial training is addressed
in procedure CLIENTUPDATE. Hence, there are two loops in CLIENTUPDATE procedure: the outer loop is iteration for
local model updating; and the inner loop is iteratively generating adversarial samples by the adversaryA. In the outer loop
in SERVEREXECUTION procedure, the neural network’s parameters are updated to reduce its prediction loss on the new
adversarial samples. These loops constitute an intertwining dynamics.
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Algorithm 2 Federated Adversarial Learning (FAL). Complete and formal version of Algorithm 1.

1: /*Defining notations and parameters*/
2: We use c to denote the client’s index
3: The training set of client c is denoted as Sc = {(xc,j , yc,j)}Jj=1

4: Let A be the adversary
5: We denote local learning rate as ηlocal
6: We denote global learning rate as ηglobal
7: We denote local updating iterations as K
8: We denote global communication round as T
9:

10: /*Initialization*/
11: Initialization a(0) ∈ Rm, U(0) ∈ Rd×m, b(0) ∈ Rm
12: For t = 0→ T , we iteratively run Procedure A then Procedure B
13:
14: /* Procedure running on client side */
15: procedure A. CLIENTUPDATE(t, c)
16: Sc(t)← ∅
17: Wc(t, 0)← U(t) . Receive global model weights update
18: for k = 0→ K − 1 do
19: for j = 1→ J do
20: x̃

(t)
c,j ← A(fWc(t,k), xc,j , yc,j) . Adversarial examples, fWc

is defined as (8)

21: Sc(t)← Sc(t) ∪ (x̃
(t)
c,j , yc,j)

22: end for
23: Wc(t, k + 1)←Wc(t, k)− ηlocal · ∇Wc

L(fWc(t,k),Sc(t))
24: end for
25: ∆Uc(t)←Wc(t,K)− U(t)
26: Send ∆Uc(t) to SERVEREXECUTION
27: end procedure
28:
29: /*Procedure running on server side*/
30: procedure B. SERVEREXECUTION(t):
31: for each client c in parallel do
32: ∆Uc(t)← CLIENTUPDATE(c, t) . Receive local model weights update
33: ∆U(t)← 1

N

∑
c∈[N ] ∆Uc(t)

34: U(t+ 1)← U(t) + ηglobal ·∆U(t) . Aggregation on the server side
35: Send U(t+ 1) to client c for CLIENTUPDATE(c, t)
36: end for
37: end procedure

17



Federated Adversarial Learning: A Framework with Convergence Analysis

C. Proof Overview
In this section we give an overview of our main result’s proof. Two theorems to be used are Theorem E.3 and Theorem F.3.

C.1. Pseudo-Network

We study the over-parameterized neural nets’ well-approximated pseudo-network to learn gradient descent for over-
parameterized neural nets whose weights are close to initialization. The introducing of pseudo-network makes the proof
more intuitive.

To be specific, we give the definition of pseudo-network in Section D, and also state Theorem D.2 which shows the fact
that the pseudo-network approximates the real network uniformly well. It can be seen that the notion of pseudo-network is
used for several times in our proof.

C.2. Online Gradient Descent in Federated Adversarial Learning

Our federated adversarial learning algorithm is formulated in online gradient descent framework: at each local step k on
the client side, firstly the adversary generates adversarial samples and computes the loss function L

(
fWc(t,k),Sc(t)

)
, then

the local client learner takes the fresh loss function and update Wc(t, k+ 1) = Wc(t, k)− ηlocal · ∇WcL
(
fWc(t,k),Sc(t)

)
.

We refer our readers to (Gao et al., 2019; Hazan, 2016) for more details regarding online learning and online gradient
descent.

Compared with the centralized setting, the key difficulties in the convergence analysis of FL are induced by multiple local
step updates of the client side and the step updates on both local and global sides. Specifically, local updates are not the
standard gradient as the centralized adversarial training when K ≥ 2. We used −∆U(t) in substitution of the real gradient
of U to update the value of U(t). This brings in challenges to bound the gradient of the neural networks. Nevertheless,
gradient bounding is challenging in adversarial training solely. We use gradient coupling method twice to solve this core
problem: firstly we bound the difference between real gradient and FL gradient in Lemma E.4, then we bound the difference
between pseudo gradient and real gradient in Lemma E.5. We show the connection of online gradient descent and federated
adversarial learning in the proof of Theorem E.3.

C.3. Existence of Robust Network Near Initialization

In Section F we show that there exists a global network fU∗ whose weight is close to the initial value U(0) and makes the
worst-case global loss LA∗(fU∗) sufficiently small. We show that the required width m is poly(d, (NJ/ε)1/γ).

Suppose we are given a ρ-bounded adversary. For a globally γ-separable training set, to prove Theorem F.3, first we state
Lemma F.1 which shows the existence of function f∗ that has "low complexity" and satisfies f∗(x̃c,j) ≈ yc,j for all data
point (xc,j , yc,j) and perturbation inputs x̃c,j ∈ B2(xc,j , ρ).

Then, we state Lemma F.2 which shows the existence of a pseudo-network gU∗ that approximates f∗ well. Finally, by
using Theorem D.2 we show that fU∗ approximates gU∗ well. By combining these results, we we finish the proof of
Theorem F.3.
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D. Real Approximates Pseudo
To make additional remark to proof sketch in Section 5, in this section, we state a tool that will be used in our proof that is
related to our definition of pseudo-network. First, we recall the definition of pseudo-network.
Definition D.1 (Pseudo-network). Given weights U ∈ Rd×m, a ∈ Rm and b ∈ Rm, the global neural network function
fU : Rd → R is defined as

fU (x) :=

m∑
r=1

ar · σ(〈Ur, x〉+ br).

Given this fU (x), we define the corresponding pseudo-network function gU : Rd → R as

gU (x) :=

m∑
r=1

ar · 〈Ur(t)− Ur(0), x〉 · 1{〈Ur(0), x〉+ br ≥ 0}.

From the definition we can know that pseudo-network can be seen as a linear approximation of the two layer ReLU
network we study near initialization. Next, we cite a Theorem from (Zhang et al., 2020b), which gives a uniform bound of
the difference between a network and its pseudo-network.
Theorem D.2 (Uniform approximation, Theorem 5.1 in (Zhang et al., 2020b)). Suppose R ≥ 1 is a constant. Let ρ :=
exp(−Ω(m1/3)). As long as m ≥ poly(d), with prob. 1− ρ, for every U ∈ Rd×m satisfying ‖U −U(0)‖2,∞ ≤ R/m2/3,
we have supx∈X |fU (x)− gU (x)| is at most O(R2/m1/6).

The randomness is due to initialization.

E. Convergence

Table 1: List of theorems and lemmas in Section E. The main result of this section is Theorem E.3. By saying "Statements
Used" we mean these statements are used in the proof in the corresponding section. For example, Lemma E.4, E.5 and
Theorem D.2 are used in the proof of Theorem E.3.

Section Statement Comment Statements Used
E.1 Definition E.1 and E.2 Definition -
E.2 Theorem E.3 Convergence result Lem. E.4, E.5, Thm. D.2
E.3 Lemma E.4 Approximates real gradient -
E.4 Lemma E.5 Approximates pseudo gradient Claim E.6
E.5 Claim E.6 Auxiliary bounding Claim A.4

E.1. Definitions and Notations

In Section E, we follow the notations used in Definition D.1. Since we are dealing with pseudo-network, we first introduce
some additional definitions and notations regarding gradient. For convenience we denote Ũ = U(0) as the initialization of
global weights U .
Definition E.1 (Gradient). For a local real network fWc(t,k), we denote its gradient by

∇(fc, t, k) :=∇Wc
L(fWc(t,k),Sc(t)).

If the corresponding pseudo-network is gWc(t,k), then we define the pseudo-network gradient as

∇(gc, t, k) :=∇Wc
L(gWc(t,k),Sc(t)).

Now we consider the global matrix. For convenience we write ∇(f, t) := ∇UL(fU(t),S(t)) and ∇(g, t) :=

∇UL(gU(t),S(t)). We define the FL gradient as ∇̃(f, t) := − 1
N∆U(t).

19



Federated Adversarial Learning: A Framework with Convergence Analysis

Definition E.2 (Distance). For U∗ ∈ Rd×m such that ‖U∗ − Ũ‖2,∞ ≤ R/m3/4, we define the following distance for
simplicity:

Dmax := max
t∈[T ]

‖Ũ − U(t)‖2,∞

DU∗ := ‖Ũ − U∗‖2,∞

We have DU∗ = O(R/m3/4) and ‖U(t)− U∗‖2,∞ ≤ Dmax +DU∗ by using triangle inequality.

Table 2: Notations of global model weights in federated learning to be used in this section.

Notation Meaning Satisfy
U(0) or Ũ Initialization of U Wc(0, 0) = U(0)

U(t) The value of U after t iterations Dmax = max ‖U(t)− Ũ‖2,∞
U∗ The value of U after small perturbations from Ũ ‖U∗ − Ũ‖2,∞ ≤ R/m3/4

E.2. Convergence Result

We are going to prove Theorem E.3 in this section.

Theorem E.3 (Convergence, formal version of Theorem 5.6). Let R ≥ 1. Suppose ε ∈ (0, 1). Let K ≥ 1. Let T ≥
poly(R/ε). There is M = poly(n,R, 1/ε), such that for every m ≥ M , with probability ≥ 1 − exp(−Ω(m1/3)), if we
run Algorithm 2 by setting

ηglobal = 1/poly(NJ,R, 1/ε) and ηlocal = 1/K,

then for every U∗ such that ‖U∗ − U(0)‖2,∞ ≤ R/m3/4, the output weights (U(t))Tt=1 satisfy

1

T

T∑
t=1

LA
(
fU(t)

)
≤ LA∗ (fU∗) + ε.

The randomness is from a(0) ∈ Rm, U(0) ∈ Rd×m, b(0) ∈ Rm.

Proof. We set our parameters as follows:

M = Ω
(

max
{

(NJ)8, (
R

ε
)12
})

ηglobal = O(
ε

Nm1/3 · poly(R/ε)
)

ηlocal = 1/K

Since the loss function is 1-Lipschitz, we first bound the `2 norm of real net gradient:

‖∇r(fc, t, k)‖2 ≤ |ar| ·
( 1

J

J∑
j=1

σ′(〈Wc,r(t, k), xc,j〉+ br) · ‖x̃c,j‖2
)
≤ |ar| ≤

1

m1/3
. (9)

Now we consider the pseudo-net gradient. The loss L(gU ,S(t)) is convex in U due to the fact that g is linear with U . Then
we have

L(gU(t),S(t))− L(gU∗ ,S(t))

≤ 〈∇UL(gU(t),S(t)), U(t)− U∗〉

= 〈∇̃(f, t), U(t)− U∗〉+ 〈∇(f, t)− ∇̃(f, t), U(t)− U∗〉+ 〈∇(g, t)−∇(f, t), U(t)− U∗〉
≤ α(t) + β(t) + γ(t)
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where the last step follows from

α(t) := 〈∇̃(f, t), U(t)− U∗〉,

β(t) := ‖∇(f, t)− ∇̃(f, t)‖2,1 · ‖U(t)− U∗‖2,∞,
γ(t) := ‖∇(g, t)−∇(f, t)‖2,1 · ‖U(t)− U∗‖2,∞.

Note that the FL gradient ∇̃(f, t) = − 1
N∆U(t) is the direction moved by center, in contrast, ∇(f, t) is the true gradient

of function f . We deal with these three terms separately. As for α(t), we have

‖U(t+ 1)− U∗‖2F = ‖U(t) + ηglobal∆U(t)− U∗‖2F
= ‖U(t)− U∗‖2F − 2Nηglobalα(t) + η2global‖∆U(t)‖2F

and by rearranging the equation we get

α(t) =
ηglobal

2N
‖∆U(t)‖2F +

1

2Nηglobal
· (‖U(t)− U∗‖2F − ‖U(t+ 1)− U∗‖2F ).

Next, we need to upper bound ‖∆U(t)‖2F ,

‖∆U(t)‖2F = ‖ηlocal
N

N∑
c=1

K−1∑
k=0

∇(fc, t, k)‖2F

≤ ηlocal
N

N∑
c=1

K−1∑
k=0

m∑
r=1

‖∇r(fc, t, k)‖22

= ηlocalKm
1/3

= m1/3. (10)

where the last step follows from Kηlocal = 1. Then we do summation over t and have

T∑
t=1

α(t) =
ηglobal

2N

T∑
t=1

‖∆U(t)‖2F +
1

2Nηglobal
·
T∑
t=1

(‖U(t)− U∗‖2F − ‖U(t+ 1)− U∗‖2F )

=
ηglobal

2N

T∑
t=1

‖∆U(t)‖2F +
1

2Nηglobal
· (‖U(1)− U∗‖2F − ‖U(T + 1)− U∗‖2F )

≤ ηglobal
2N

T∑
t=1

‖∆U(t)‖2F +
1

2Nηglobal
· ‖U(1)− U∗‖2F

.
ηglobal
N

Tm1/3 +
1

Nηglobal
mD2

U∗

where the last step follows from Eq. (10) and ‖Ũ − U∗‖2F ≤ m · ‖Ũ − U∗‖22,∞ = mD2
U∗ .

As for β(t), we apply Lemma E.4 and also triangle inequality and have

β(t) = ‖∇(f, t)− ∇̃(f, t)‖2,1 · ‖U(t)− U∗‖2,∞
.m2/3 · ‖U(t)− U∗‖2,∞
.m2/3 · (‖U(t)− Ũ‖2,∞ +DU∗).
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By using Eq. (9) we bound the size of ‖U(t)− Ũ‖2,∞:

‖U(t)− Ũ‖2,∞ ≤ ηglobal
t∑

τ=1

‖∆U(τ)‖2,∞

= ηglobal

t∑
τ=1

‖ηlocal
N

N∑
c=1

K−1∑
k=0

∇(fc, t, k)‖2,∞

≤ ηglobalηlocal
N

t∑
τ=1

N∑
c=1

K−1∑
k=0

‖∇(fc, t, k)‖2,∞

≤ ηglobalηlocaltKm−1/3

and have

β(t) . ηglobalηlocaltKm
1/3 +m2/3DU∗ .

Then we do summation over t and have
T∑
t=1

β(t) .
T∑
t=1

(ηglobalηlocaltKm
1/3 +m2/3DU∗)

. ηglobalηlocalT
2Km1/3 +m2/3TDU∗

. ηglobalT
2m1/3 +m2/3TDU∗ .

As for γ(t), we apply Lemma E.5 and have

γ(t) = ‖∇(g, t)−∇(f, t)‖2,1 · ‖U(t)− U∗‖2,∞
. NJm13/24 · (‖U(t)− Ũ‖2,∞ +DU∗).

Since ‖U(t)− Ũ‖2,∞ ≤ ηglobalηlocaltKm−1/3, we have

γ(t) . ηglobalηlocaltKNJm
5/24 +NJm13/24DU∗ .

Then we do summation over t and have
T∑
t=1

γ(t) .
T∑
t=1

(
ηglobalηlocaltKNJm

5/24 +NJm13/24DU∗
)

. ηglobalηlocalT
2KNJm5/24 +NJm13/24TDU∗

. ηglobalT
2NJm5/24 +NJm13/24TDU∗ .

Next we put it altogether. Note that DU∗ = O( R
m3/4 ), thus we obtain

T∑
t=1

L(gU(t),S(t))−
T∑
t=1

L(gU∗ ,S(t))

≤
T∑
t=1

α(t) +

T∑
t=1

β(t) +

T∑
t=1

γ(t)

.
ηglobal
N

Tm1/3 +
1

Nηglobal
mD2

U∗ + ηglobalT
2m1/3

+m2/3TDU∗ + ηglobalT
2NJm5/24 +NJm13/24TDU∗

.
ηglobal
N

Tm1/3 +
1

Nηglobal
R2m−1/2 + ηglobalT

2m1/3

+RTm−1/12 + ηglobalT
2NJm5/24 +NJm−5/24RT.
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We then have

1

T

T∑
τ=1

L(gU(τ),S(τ))− 1

T

T∑
τ=1

L(gU∗ ,S(τ))

.
ηglobal
N

m1/3 +
1

NηglobalT
R2m−1/2 + ηglobalTm

1/3 +Rm−1/12

+ ηglobalTNJm
5/24 +NJm−5/24R.

.
1

NηglobalT
R2m−1/2 + ηglobalTm

1/3 +Rm−1/12 + ηglobalTNJm
5/24 +NJm−5/24R (11)

≤ O(ε).

From Theorem D.2 we know

sup
x∈X
|fU (x)− gU (x)| ≤ O(R2/m1/6) = O(ε).

In addition,

1

T

T∑
t=1

(
L(fU(t),S(t))− L(fU∗ ,S(t))

)
≤ O(ε) (12)

From the definition of A∗ we have L(fU∗ , S(t)) ≤ LA∗(fU∗). From the definition of loss we have L(fU(t),S(t)) =
LA(fU(t)). Moreover, since Eq. (12) holds for all ε > 0, we can replace ε

c with ε. Thus we prove that for ∀ε > 0,

1

T

T∑
t=1

LA(fU(t)) ≤ LA∗(fU∗) + ε.

E.3. Approximates Real Global Gradient

We are going to prove Lemma E.4 in this section.

Lemma E.4 (Bounding the difference between real gradient and FL gradient). Let ρ := exp(−Ω(m1/3)) With probability
≥ 1− ρ, for iterations t satisfying

|U(t)− U(0)‖2,∞ ≤ O(m−15/24),

the following holds:

‖∇(f, t)− ∇̃(f, t)‖2,1 ≤ O(m2/3).

The randomness is from a(τ) ∈ Rm, U(τ) ∈ Rd×m, b(τ) ∈ Rm for τ at 0.

Proof. Notice that∇(f, t) = ∇UL(fU(t),S(t)) and

∇̃(f, t) = − 1

N
∆U(t) = − 1

N

N∑
c=1

∆Uc(t) =
ηlocal
N

N∑
c=1

K−1∑
k=0

∇(fc, t, k).
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So we have

‖∇(f, t)− ∇̃(f, t)‖2,1 =

m∑
r=1

‖∇r(f, t)− ∇̃r(f, t)‖2

=
1

N

m∑
r=1

‖N · ∇r(f, t)− ηlocal
N∑
c=1

K−1∑
k=0

∇r(fc, t, k)‖2

≤ ηlocal
N

m∑
r=1

K−1∑
k=0

‖N · ∇r(f, t)
Kηlocal

−
N∑
c=1

∇r(fc, t, k)‖2

=
1

NK

m∑
r=1

K−1∑
k=0

‖N · ∇r(f, t)−
N∑
c=1

∇r(fc, t, k)‖2

where the last step follows from the assumption that ηlocal = 1
K .

As for ‖N · ∇r(f, t)−
∑N
c=1∇r(fc, t, k)‖2, we have

‖N · ∇r(f, t)−
N∑
c=1

∇r(fc, t, k)‖2

≤ |ar| ·
∣∣∣( N
NJ

N∑
c=1

J∑
j=1

1{〈Ur(t), xc,j〉+ br ≥ 0}

− 1

J

N∑
c=1

J∑
j=1

1{〈Wc,r(t, k), xc,j〉+ br ≥ 0}
)
· ‖xc,j‖2

∣∣∣
≤ 1

m1/3
· 1

J

N∑
c=1

J∑
j=1

|1{〈Ur(t), xc,j〉+ br ≥ 0} − 1{〈Wc,r(t, k), xc,j〉+ br ≥ 0}|

≤ N

m1/3
.

Then we do summation and have

‖∇(f, t)− ∇̃(f, t)‖2,1 ≤
1

NK

m∑
r=1

K−1∑
k=0

‖N · ∇r(f, t)−
N∑
c=1

∇r(fc, t, k)‖2

≤ 1

NK

m∑
r=1

K−1∑
k=0

N

m1/3

= m2/3.

Thus we finish the proof.

E.4. Approximates Pseudo Global Gradient

We are going to prove Lemma E.5 in this section.

Lemma E.5. Let ρ := exp(−Ω(m1/3)). With probability ≥ 1− ρ, for iterations t satisfying

‖U(t)− U(0)‖2,∞ ≤ O(m−15/24),

the following holds:

‖∇(g, t)−∇(f, t)‖2,1 ≤ O(NJm13/24).

The randomness is because a(τ) ∈ Rm, U(τ) ∈ Rd×m, b(τ) ∈ Rm, for τ = 0.
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Proof. Notice that∇(g, t) = ∇UL(gU(t),S(t)) and∇(f, t) = ∇UL(fU(t),S(t)). By Claim E.6, with the given probabil-
ity we have

m∑
r=1

1{∇r(g, t) 6= ∇r(f, t)} ≤ O(NJm7/8).

For indices r ∈ [m] satisfying∇r(g, t) 6= ∇r(f, t), the following holds:

‖∇r(g, t)−∇r(f, t)‖2 = ‖∇U,rL(gU(t), S(t))−∇U,rL(fU(t), S(t))‖2

≤ |ar| ·
1

NJ
·
N∑
c=1

J∑
j=1

‖xc,j‖2 ·
∣∣1{〈Ũr, xc,j〉+ br ≥ 0}

− 1{〈Ur, xc,j〉+ br ≥ 0}
∣∣

≤ 1

m1/3
· 1

NJ
·
N∑
c=1

J∑
j=1

∣∣1{〈Ũr, xc,j〉+ br ≥ 0} − 1{〈Ur, xc,j〉+ br ≥ 0}
∣∣

≤ 1

m1/3
.

where the first step is definition, the second step follows that the loss function is 1-Lipschitz, the third step follows from
|ar| ≤ 1

m1/3 and ‖xc,j‖2 = 1, the last step follows from the bound of the indicator function. Thus, we do the conclusion:

‖∇(g, t)−∇(f, t)‖2,1

=

m∑
r=1

‖∇r(g, t)−∇r(f, t)‖2 · 1{∇r(g, t) 6= ∇r(f, t)}

≤ 1

m1/3

m∑
r=1

1{∇r(g, t) 6= ∇r(f, t)}

≤ 1

m1/3
·O(NJm7/8)

= O(NJm13/24)

and finish the proof.

E.5. Bounding Auxiliary

Claim E.6 (Bounding auxiliary). Let ρ := exp(−Ω(m1/3)). With probability ≥ 1− ρ , we have

m∑
r=1

1{∇r(g, t) 6= ∇r(f, t)} ≤ O(NJm7/8).

The randomness is from a(τ) ∈ Rm, U(τ) ∈ Rd×m, b(τ) ∈ Rm for τ = 0.

Proof. For r ∈ [m], let Ir := 1{∇r(g, t) 6= ∇r(f, t)}. By Claim A.4 we know that for each xc,j we have

Pr[|〈W̃c,r, xc,j〉+ br| ≤ m−15/24] ≤ O(m−1/8).

By putting a union bound on c and j, we get

Pr
[
∃c ∈ [N ], j ∈ [J ], |〈W̃c,r, xc,j〉+ br| ≤ m−15/24

]
≤ O(NJm−1/8).

Since

Pr[Ir = 1] ≤ Pr[∃j ∈ [J ], c ∈ [N ], |〈W̃c,r, xc,j〉+ br| ≤ m−15/24],
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we have

Pr[Ir = 1] ≤ O(NJm−1/8).

By applying concentration inequality on Ir (independent Bernoulli) for r ∈ [m], we obtain that with prob.

≥ 1− exp(−Ω(NJm7/8)) > 1− ρ,

the following holds:

m∑
r=1

Ir ≤ O(NJm7/8).

Thus we finish the proof.

E.6. Further Discussion

Note that in the proof of Theorem E.3 we set the hidden layer’s width m to be greater than O(ε−12), which seems im-
practical in reality: if we choose our convergence accuracy to be 10−2, the width will become 1024 which is impossible to
achieve.

However, we want to claim that the "−12" term is not intrinsic in our theorem and proof, and we can actually further
improve the lower bound of m to O((R/ε)c2) where c2 is some constant between −3 and −4. To be specific, we observe
from Eq. (11) that the "−12" term comes from 2

3 −
3
4 = − 1

12 , where 2
3 appears in Lemma E.4 and 3

4 appears in the
assumption that DU∗ ≤ R/m3/4 in Definition E.2. As for our observations, the 2

3 term is hard to improve. On the other
hand, we can actually adjust the value of DU∗ as long as we ensure

DU∗ ≤ R/mc3

for some constant c3 ∈ (0, 1). When we let c3 → 1, the final result will achieve

O((R/ε)3)

which is much more feasible in reality.

As the first work and the first step towards understanding the convergence of federated adversarial learning, the priority of
our work is not achieving the tightest bounds. Instead, our main goal is to show the convergence of a general federated
adversarial learning framework. We leave the task of improving the bound as future work.

F. Existence
In this section we prove the existence of U∗ that is close to U(0) and makes LA∗(fU∗) close to zero.

F.1. Tools from Previous Work

In order to prove our existence result, we first state two lemmas that will be used.

Lemma F.1 (Lemma 6.2 from (Zhang et al., 2020b)). Suppose that ‖xc1,j1 − xc2,j2‖2 ≥ δ holds for each pair of two
different data points xc1,j1 , xc2,j2 . Let D = 24γ−1 ln(48NJ/ε), then there ∃ a polynomial g : R → R with size of
coefficients no bigger than O(γ−126D) and degree no bigger than D, that satisfies for all c0 ∈ [N ], j0 ∈ [J ] and x̃c0,j0 ∈
B2(xc0,j0 , ρ), ∣∣∣∣∣∣

N∑
c=1

J∑
j=1

yc,j · g(〈xc,j , x̃c0,j0〉)− yc0,j0

∣∣∣∣∣∣ ≤ ε

3
.
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We let f∗(x) :=
∑N
c=1

∑J
j=1 yc,j · g(〈xc,j , x〉) and have |f∗(x̃c0,j0)− yc0,j0 | ≤ ε/3.

Lemma F.2 (Lemma 6.5 from (Zhang et al., 2020b)). Suppose ε ∈ (0, 1). Suppose

M = poly((NJ/ε)1/γ , d) and R = poly((NJ/ε)1/γ)

As long as m ≥M , with prob. ≥ 1− exp(−Ω(
√
m/NJ)) , there ∃U∗ ∈ Rd×m that satisfies

‖U∗ − U(0)‖2,∞ ≤ R/m2/3 and sup
x∈X
|gU∗(x)− f∗(x)| ≤ ε/3.

The randomness is due to a(τ) ∈ Rm, U(τ) ∈ Rd×m, b(τ) ∈ Rm for τ = 0.

F.2. Existence Result

We are going to present Theorem F.3 in this section and present its proofs.

Theorem F.3 (Existence, formal version of Theorem 5.2). Suppose that ε ∈ (0, 1). Suppose

M0 = poly(d, (NJ/ε)1/γ) and R = poly((NJ/ε)1/γ)

As long as m ≥M0, then with prob. ≥ 1− exp(−Ω(m1/3)), there exists U∗ ∈ Rd×m satisfying

‖U∗ − U(0)‖2,∞ ≤ R/m2/3 and LA∗(fU∗) ≤ ε.

The randomness comes from a(τ) ∈ Rm, U(τ) ∈ Rd×m, b(τ) ∈ Rm for τ = 0.

Proof. For convenient, we define

ρ0 := exp(−Ω(
√
m/NJ))− exp(−Ω(m1/3)).

From Lemma F.1 we obtain the function f∗. From Lemma F.2 we know the existence of M0 = poly(d, (NJ/ε)1/γ) and
also R = poly((NJ/ε)1/γ).

By combining these two results with Theorem D.2, we have that for all m ≥ poly(d, (NJ/ε)1/γ), with prob.

≥ 1− ρ0,

there ∃U∗ ∈ Rd×m that satisfies ‖U∗ − U(0)‖2,∞ ≤ R/m2/3.

In addition, the following properties:

• maxx∈X |gU∗(x)− f∗(x)| is at most ε/3

• maxx∈X |fU∗(x)− gU∗(x)| is at most O(R2/m1/6)

Consider the loss function. For all c ∈ [N ], j ∈ [J ] and x̃c,j ∈ B(xc,j , ρ), we have

`(fU∗(x̃c,j), yc,j) ≤ |fU∗(x̃c,j)− yc,j |
≤ |fU∗(x̃c,j)− gU∗(x̃c,j)|+ |gU∗(x̃c,j)− f∗(x̃c,j)|+ |f∗(x̃c,j)− yc,j |

≤ O(R2/m1/6) +
ε

3
+
ε

3
≤ ε,

Thus, we have that

LA∗(fU∗) =
1

NJ

N∑
c=1

J∑
j=1

max `
(
fU∗(x∗c,j), yc,j

)
≤ ε.
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Furthermore, since the m we consider satisfies m ≥ Ω((NJ)1/γ), the holding probability is

≥ 1− ρ0
= 1− exp(−Ω(m1/3)).

Thus, it finishes the proof of this theorem.
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