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Abstract

There has been growing interest in employing
neural network (NN) to directly solve constrained
optimization problems with low run-time com-
plexity. However, it is non-trivial to ensure NN
solutions strictly satisfying problem constraints
due to inherent NN prediction errors. Existing
feasibility-ensuring methods either are computa-
tionally expensive or lack performance guarantee.
In this paper, we propose homeomorphic projec-
tion as a low-complexity scheme to guarantee NN
solution feasibility for optimization over a gen-
eral set homeomorphic to a unit ball, covering all
compact convex sets and certain classes of non-
convex sets. The idea is to (i) learn a minimum
distortion homeomorphic mapping between the
constraint set and a unit ball using an invertible
NN (INN), and then (ii) perform a simple bisec-
tion operation concerning the unit ball so that the
INN-mapped final solution is feasible with respect
to the constraint set with minor distortion-induced
optimality loss. We prove the feasibility guar-
antee and bound the optimality loss under mild
conditions. Simulation results, including those
for non-convex AC-OPF problems in power grid
operation, show that homeomorphic projection
outperforms existing methods in solution feasi-
bility and run-time complexity, while achieving
similar optimality loss.

1. Introduction

Constrained Optimization (CO) has tremendous applications
in various engineering domains, including supply chain,
transportation, power systems, and resource allocation. A
large number of iterative algorithms have been developed

!School of Data Science, City University of Hong Kong. 2Depts.

of EE and CMS, Caltech. Correspondence to: Minghua Chen
<minghua.chen@cityu.edu.hk>.

Proceedings of the 40" International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

and incorporated into commercial solvers (e.g., Gurobi and
MOSEK) to solve various CO problems exactly or approxi-
mately. While widely successful, iterative algorithms can
still fail to solve challenging CO problems in real-time, lim-
iting their usefulness in time-sensitive applications, such as
solving AC optimal power flow problems in real-time power
grid operations and semi-definite programming-based real-
time scheduling and coding operations in modern wireless
communication systems.

Recently, machine learning (ML) schemes have been devel-
oped for solving CO in real-time, including the end-to-end
(E2E) solution mapping (Kotary et al., 2021; Amos, 2022)
and the learning-to-optimize (L20) iterative scheme (Khalil
et al., 2016; Chen et al., 2021b). Boosted by the universal
approximation capacity of neural networks (NN) (Hornik
et al., 1989; Leshno et al., 1993), the end-to-end approaches
learn the mapping between the input parameters and high-
quality solutions of CO. After the training procedure, NN
directly outputs the solution in real-time, which is much
faster than iterative solvers. For example, researchers have
developed NN-based approaches for optimal power flow
(OPF) problems, where NN predicts the optimal power gen-
eration schemes based on real-time power demand (Pan
et al., 2019; Guha et al., 2019; Pan et al., 2020; Fioretto
et al., 2020; Zamzam & Baker, 2020; Donti et al., 2021).

However, it is non-trivial to ensure NN solution feasibility
with respect to the problem constraints, due to inherent NN
prediction errors. Existing feasibility-ensuring methods are
either computationally expensive or lacking performance
guarantees. See Sec. 2 for detailed discussions.

In this paper, we develop homeomorphic projection (HP)
as a novel low-complexity approach to take an infeasible
NN solution and generate a feasible solution with bounded
optimality loss. We make the following contributions:

> After presenting the optimization problem over a general
ball-homeomorphic set in Sec. 3, we propose an HP frame-
work for ensuring NN solution feasibility in Secs. 4 and
5. The framework includes (i) training an invertible neural
network (INN) in an unsupervised manner to approximate
a minimum distortion homeomorphic (MDH) mapping be-
tween the constraint set and a unit ball, and (ii) performing
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Table 1: Comparison of existing approaches for ensuring NN solution feasibility for constrained optimization problems.

Existing Study Input-Adaptive  Solution Feasibility Bounded Optimality Low Run-Time Low Training
(see Sec. 2 for references) | Constraint Set Guarantee Loss Complexity Complexity
Penalty approach 3 7 7 3 3

Projection approach 3 3 3 7 N/A
Sampling approach 7 3 3 7 7
Preventive learning 3 (linear) 3 7 3 7

Gauge mapping 3 (linear) 3 7 3 N/A
Homeomorphic Projection 3 3 3 3 3

simple bisection operation with respect to the unit ball sang projection problem by optimization solver (Diamond &
that the corresponding nal solution in the constraint set isBoyd, 2016) or applying equivalent projection layers (Amos
feasible with minor distortion-induced optimality loss. & Kolter, 2017; Agrawal et al., 2019; Chen et al., 2021a) is
B In Sec. 6, we prove that the HP framework can takecompL'JtatlonaIIy'expenswe and inef cient in real-time. Dif-

. ; . : ) .. ferentiable gradient-based methods are proposed to correct
an infeasible solution and recover a feasible solution with . . i

. . Infeasible solutions (Donti et al., 2021). L20-based methods

bounded overall optimality loss. We also discuss the run-

time complexity and training complexity of the framework are also proposed to learn the iterative process of projec-
plexity 9 plexity "tion by different types of NN (Xia & Wang, 2000; Heaton

B In Sec. 7, we carry out simulations, including for solving et al., 2021; 2022). However, those projection-equivalent ap-
non-convex AC-OPF problems in power grid operationsproaches do not guarantee feasibility for general constraints.
to evaluate the performance of our HP approach. The rex

sults show that homeomorphic projection outperforms exisf—Sampllng approach To guarantee feasibility, feasible

. . - . : . points are sampled and used to construct the inner approxi-
ing methods in feasibility and run-time complexity, while . - . L

o o S mation of the original constraint set. A convex combination
achieving similar optimality loss.

of vertexes and rays is adopted to ensure feasibility under
To the best of our knowledge, this is the rst work to guar-linear constraints (Frerix et al., 2020; Zheng et al., 2021).
antee NN solution feasibility for (fairly) general constrained For a general but input-invariant constraint sets, sampling-
optimization problems, with bounded optimality loss andbased methods are theoretically studied in (Kratsios et al.,

low run-time complexity. Code is available at HFbde. 2021). These methods work for simple linear constraints or
input-invariant constraints, and the number of required fea-
2 Related Work sible samples grows exponentially with the dimension of the

decision variable, which limits their potential for complex
Machine Learning (ML) driven optimization research canCO problems.

be categorized into two main areas: L20 iterative SChem%reventive learning and gauge mappingThese methods

(Khalil et al., 2016; Chen et al., 2021b) and E2E solution . . L
) i are dedicated to nding a feasibility-guaranteed NN and
mapping (Kotary et al., 2021; Amos, 2022). For both re- . o R . :
; . S then improving its optimality. A preventive learning frame-
search lines, guaranteeing the feasibility of the output soly- . . . .
. ) . T work is proposed in (Zhao et al., 2023), which calibrates
tion by trained NN under input-dependent constraint is nons ) : o
o : nequality constraints and ensures the feasibility of NN by

trivial. Researchers have developed different approaches {0

. . L solving mixed-integer programs at each iteration. Another
improve the feasibility, and a summary is in Table 1. o ) .

work utilizes a closed-form gauge mapping to constrain the
Penalty approach To reduce the constraint violation of pre- output within a polytopic set (Tabas & Zhang, 2021; 2022).
dicted solutions, different penalty functions (e.g., quadraticThose approaches only work for linear constraints, and there
function) are designed and augmented in the loss functiofacks a general and computational tractable approach to re-
(Cheng et al., 2019; Pan et al., 2019; 2020; Zamzam &lizing feasibility over general constraints.
Baker, 2020; Fioretto et al,, 2020). Considering the Opti'In summary, existing schemes to ensure NN solution feasi-
mal condition of CO, Karush—Kuhn—Tucker (KKT) condi- '

. | ) ) Pility either incur high run-time complexity or lack feasibil-
tions (a set of equations) are treated as equality constralnIF Joptimality quarantee. In this baper. we bronhSeEneo-
to improve the performance of NN (Nellikkath & Chatzi- yiop Y9 : Paper, prop

S . morphic projectioras a low run-time complexity scheme to
vasileiadis, 2021a;b; Zhang et al., 2021). However, thosg uarantee NN solution feasibility with bounded optimality

approaches do not guarantee feasibility over constraints s?t : o
- 0ss. Our scheme is conceptually related to the projection
due to the prediction error of NN.

approach and gauge mapping. But it is uniquely different
Projection approach. To ensure feasibility, projection can in its design, applicability to non-linear constraints, and
be applied for infeasible solutions. However, either solvperformance guarantee.

2
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3. Settings and Open Issue to Address F :RY1 R" for a constrained problem and pass inputs
i i L through the NN to obtain high-quality solutions instantly;

We consider a general constrained optimization problem: see e.g., (Pan et al., 2020; Donti et al., 2021; Amos, 2022).
However, it is non-trivial to ensure NN solution feasibility
with respect to the problem constraints due to inherent NN
prediction error, de ned asye =sup , fkF() x kg
As discussed in Sec. 2, existing feasibility-ensuring meth-
Ends are either computationally expensive or lacking perfor-

ance guarantees. To date, it remains largely open to ensure
NN solution feasibility to the problem ifiL) with bounded
optimality loss and low run-time complexity.

Xrgkrl f(x; ) stx2K; Q)

wherex 2 R" is the decision variable and 2 Rd

is the input parameter. The objective functibfx; ) is
continuous and can be non-convex. The optimal solution o
problem in(1), assumed to be unique, is denotekas
argminygok ff(X; )g. The constraint sé is compact
and speci ed bynineq inequalities: K = fxjgi(x; )

Figure 2: Overview of the HP framework.

Figure 1: Homeomorphism between constraint sets and 4. Our Homeomorphic Projection Framework

unit ball. We develophomeomorphic projectioas a low-complexity

approach to take an infeasible solution to the probleifi)n
and generate a feasible solution with bounded optimality
loss. As shown in Fig. 2, the idea is to (i) learn a mini-

Homeomorphic mapping (or homeomorphism) is a one-to[num distor_tion homeomorphic (MDH) mapping between
P pping ( P ) the constraint sé and a unit balB as de ned in Sec. 4.1,

one mapping between topological spaces (&g.andB) and then (ii) perform a simple bisection operation with re-

that is continuous in both directions (Lee, 2013). In other . . oo
words, Assumption 1 means that the constraint set and un pect to the unit ball so that the corresponding solution in
’ e constraint set is feasible with minor optimality loss, as

ball are topologically equivalent, and we can continuously[ . .
stretch a ball to the constraint set and vice versa. discussed in Sec. 4.2. We present a method to learn MDH

mappings using INN in Sec. 5 and carry out performance
We note that Assumption 1 is easy to satisfy, e.g.aby  analysis in Sec. 6.
compact convex s¢Geschke, 2012), anckrtain classes
of compact and simply-connected non-convexXeset, star  4.1. Minimum distortion homeomorphic mapping
set and invex set) (Sapkota & Bhattarai, 2021). Thus, the ) )
formulation in(1) under Assumption 1 is pretty general and D€ nition 4.1 (Distortion). Let :R"! R" be a home-
covers many continuous optimization problems in various®morphic mapping. Its distortion over a compactzes

Assumption 1. 8 2 , K is homeomorphic to the unit
bal? in R", denoted a& = B. See Fig. 1 for illustration.

domains. denedasD(; Z)= =1 1, where
3.1. Open Issue: ensuring NN solution feasibility 1= zl;ZZZ'Qf; 2.6 szk (z)  ()kskzr kg (2)
As discussed in the introduction and related works, there 2 = sup fk (z1) (z2)k=kz1  z2kg: (3)

. . . 12227 ;216
has been NN schemes that learn the input-solution mapping et i

'While we do not explicitly consider equality constraints in Distortion evaluates the variation of distance metrics in

the formulation, we remark that equality constraints with constanlifferent spaces transformed by a mappingSmall dis-
rank (e.g., linear equations) can be exploited and removed Witho%rtion e close to its minimum value 1. implies that
losing optimality as discussed in Appendix A. We thus focus on » €9, » IMp

problems with only inequality constraints. geometrical operati.on in one space, e.g., projection ontq a
2Thep-norm ball is is de ned a8, (xo;r) = fx 2 R"jkx set, can be approximately done in its mapped space with
XoKp  rg, we denote the zero-centered uihorm ball asB. respect to distance measure and vice versa. Mappings with
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unit distortion are called isometric mappings. Mappings4.2. Homeomorphic bisection
with bounded distortion are also referred as bi-Lipschitz f inout . infeasible NN
mappings. The concept has been widely applied in the en§uppose or an input, we are given an Infeasible

bedding studies (Xiao et al., 2018; Agrawal et al., 2021solut|on>e 62 K and a Ya“q lNN mapping . Then .
and computational graphics (Schmidt et al., 2019; Liu et al. e perform homeomorphic bisection to recover a feasible

2022). Solution® as:
The rst step in our framework is to learn an MDH mapping 2= z); ®)
betweerK andB, critical for bounding optimality loss. \yherez = *)and = sup f ( z)2K g.

De nition 4.2 (MDH mapping) The MDH mapping is 2[0:1]

de ned as the optimal solution for the following problem:  As illustrated in Fig. 3, homeomorphic bisection consists
min logdD( LX) st K = (B): (4) of threelsteps: (i) mag to th_e homeom_orphic space as
2H z = (¢ ) and set =1, (ii) perform bisection search

whereH" is the set of alh-dim homeomorphic mappings, °" in[0; 1] (trajectory shown az ! _21 !' 2)to ndthe

and we denote the set of homeomorphic mappings satisfyin{g'9est . denoted as , suchthag = () 2K,

K = (B)asH"(K ;B). TheseX = K + B(0; pro)° and (iii) return the fee_lsiblé .The pseudo-code_isin Alg. 1.

Such a low-complexity operation, observed with respect to
the constraint sef , is to search along a curve connecting
Weremark that solving the problem it4) gives (at least) the infeasibles and an internal point (0) until reach-
one homeomorphic mapping with the minimum distortioning a boundary feasible poitt . As to be discussed in
among all such mappings betwelén andB, as (i) it has  Sec. 6, such operation incurs a minor optimality loss as the
feasible solution according to Assumption 1 and (ii) thehomeomorphic mapping has a minimized distortion.
distortion of a homeomorphic mapping over a compact set
X is bounded (Behrmann et al., 2021). We then denote aftlgorithm 1 Homeomorphic bisection to recover feasibility.
optimal solution as . Input: Infeasible solutione 2K and valid mapping
Output: Feasible solutio 2 K .

contains all possible outputs of the NN predictor.

In general, the problem i(#) is an in nite-dimension one o _ :
and challenging to solve. We develop a method to learn an®: initialize total |ter:i1t|on stepk
optimal solution approximately by INN in Sec. 5, denoted 2 calculatez = (x ), setn=0; ;=0; =1
as . Itis guaranteed to be a homeomorphic mapping, > whilen kdo
i.e., 2 H", with bounded distortion ovet . However, bisection: n =( 1+ y)=2

may not lie inH"(K ;B), i.e., (B) 6 K , due to candidatezy+, = , 2
INN approximation error, de ned ad(  (@B); @ )*°. if  (2h+1) 2K then

S

Nevertheless, if is also valid, the second step in the increase lower bound:, n

HP framework guarantees to “project” an infeasible NN else _

predicted solution back to the feasible Ket 19_ ?je_;:rease upper bound, n

De nition 4.3 (Valid mapping) The INN approximated 11: ﬁn In +1

mapping 2 H"isvalid forK if (0) 2K ,i.e., it 12: end while

maps the origin in the unit ball to a feasible pointin. 13j ndoptimal = | and feasible poirt = 2
14:retun 8 = (2)

We make the followingemarks. First, in the ideal case
when = andB = (K ), i.e., the INN learns the
MDH mapping perfectly, the homeomorphic bisectiorf5i
is equivalent to projecting onto the unit ball boundary,
with a closed-form expressiah = # =kz k. Such an oper-
ation incurs very low complexity, thanks to the unit ball's
Figure 3: lllustration of homeomorphic bisection. geometrical structure. Since = is an MDH mapping,
— _ _ the corresponding = (2 ) must be on the boundary of
ast+er\((a+:dfe>?iteysj>t<h(2? )I\éll'nI;O\évﬂ(ésum between two sets, de nethe feasible set | gnd the proj_eqtion dis_tanq'je_e R i "
“dn( ;) represents thé Hausdérf‘f distance between two sets> small because (i) has a minimum distortion and (if)
H\ > . . . .
dened asdu(X:Y) = maxfdn(X:Y):dn(Y:X)g where 2 IS the closest pointin the unit ball ®. These obser-
dn(X;Y) =sup,,x infyay fkx  ykg. vations provide an intuitive justi cation for the complexity
°*Here@indicates the boundary of a set. and performance of our framework.
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Second, in practice, the INN may not learn exactly, i.e., mulations. As will become clear later, such closed-form

B 6 (K ) and the distortioD( ;X ) is not the  singular values bring convenience for distortion approxi-

minimum. In fact, we may not know the exact shape ofmation. We then denote the sorted singular values for the
1(K ) to projectz to its boundary directly. Instead, Jacobian matrid of INN as 1(J) :: n(d) > 0.

we perform the operation ifb) to mimic the operation in

the ideal case described above, i.e., performing bisectioB.2. Reformulation of homeomorphism constraint

betweenz and the origin of the unit ball but evaluating - )
the feasibility with respect t& . As long as the INN To facilitate INN learning, we rst reformulate the MDH

mapping is valid and maps the origin of the unit ball to MaPPIng problem ir4). We have the following understand-
an internal point inK , such operation is guaranteed to N9 Of its homeomorphism constraint 2 H " (K ;B) such
return a feasible point, with minor optimality loss, similar that (B)= K .
to the discussion for the ideal case. We formally prove theProposition 5.1. The feasible seti" (K ; B) is equivalent
feasibility guarantee, bound the optimality loss, and discusso the set of optimal solutions of the problem:
the complexity of imperfect INN learning in Sec. 6.

mzaxn logV( (B)) st (B) K : (6)
5. Learning -dependent MDH mappings

. . . _ The complete proof is in Appendix E.
In this section, we propose an unsupervised learning method

to train one conditional INN to learn the MDH mapping  V(  (B)) evaluates the volume of set (B). The con-
forevery 2 . We rstintroduce INN for learning homeo- straint means that the set (B) is a subset oK . Intu-
morphic mappings. We then reformulate the MDH mappingitively, the proposition says that any feasible homeomorphic
problem in (4) and present the INN training procedure.  mapping must maximize the volume of mapped s€B)
while keeping it within the constraint skt , and vice versa.

5.1. INN for homeomorphic mappings Thus, the MDH mapping problem i) is equivalent to

INN is essentially an invertible NN owing to its design, the following bi-level problem of minimizing the distortion
such that it is differentiable in forward and inverse direc-among the optimal solutions of the problem in (6):
tions (Papamakarios et al., 2021). Itis thus a homeomorphic _ L
mapping with tunable parameters; see Appendix C for more min logD( % X)) (7)
INN background. It is well known that feed-forward neural
networks can approximate any continuous mapping arbitrar-
ily well (Hornik et al., 1989). Similarly, INN can also learn . .
. : . ; ; : .As will become clear later, such a reformulation opens the

any (piecewise) differentiable homeomorphic mapping arbi- . : L

. . ) . ~"door for unsupervised learning for INN training.
trarily well given a suf cient number of neurons (Teshima
etal., 2020; Ishikawa et al., 2022). Therefore, we can utilize

INN to represent the homeomorphic mapping and train it t05'3' Unsupervised INN training

approximate an optimal MDH mapping. We employ the following loss function and maximize it to
Further, we do not need to train separate INNfor dif- ~ rainanINN with m layers for learning an optimal SO'“'_
ferent input parameters Instead, we can leverage the tion to the problem in (7)-(8) in an unsupervised manner:
conditional INN (Winkler et al., 2019; Lyu et al., 2022), _ 1. )
which also takes as input, to learn the augmented homeol‘( )= b( (B) 1PC (B) 29( X): (9)
morphism :R"d1 R"dgychtha8 2 ;K ; ]=
(I[B; 1. When given a new, we have a corresponding

s.t. 2 argmaxf Problem in (6): (8)

where ; and , are positive coef cients to balance among
the three termsb( (B)) is a computable approximation

1 n —
homeomorphism 2 H" suchthak = (B). of the log-volume ternbog V(  (B)) in (6) as:
For ease of discussion later, we denoterafayer INN as 7
= m I = 1 where each layer is an af ne 1 |
coupling layer or an invertible linear layer (Papamakarios  (B)= V(B) 5., ., log «(J 1 (z))az

etal., 2021). Such a composition is also a universal differen-
tiable homeomorphism approximator (Teshima et al., 2020).
Further, for these layers, owing to their invertible design, L 11 L .
the singular values for the Jacobian matrix 6fexist every- Wherelz = (z' %)forl=2;:m, andzl =228,
where over its support set and have a closed-form expressioh ' (Z) denotes the Jacobian matrix of () atz!,and ()

by its tunable parameters; see Appendix C for detailed forreturns thek-th largest singular value of a matrix, which has
a closed-form expression as discussed earlier in Sec. 5.1.

+log V( B); (20)
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P(
violation of (B)ZK in (6) as:

P( (B)= BkReLU(g( (2); Nkidz;  (11)

where g(
equality constraint afg; (

B(

(z); ) calculates the residual for each in-
(2); )l

1:X ) is a computable approximation of the log-

distortion termlog D( ;X ) in (7) as:
X m
B( HX)=supf log 1(3 1 (z')g
222 1=1
m
; 1Y -
Jnff o log n( 1 (Z)g  (12)
wherez! = ' (' Y)forl = 2;:;:m, andz! = z 2
zZ =  Yx).

We have the following observations for the approximations.

Proposition 5.2. The two approximation terms in
(10) and (12) satisfy logV( (B) Y( (B)) and
logD( ;X ) B( ;X ). The complete proofis in
Appendix E.

The above proposition implies that the loss functio@n

is actually a lower bound to the Lagrangian of the problem

in (7)-(8). Therefore, we can maximize the loss function in

(9) to approximate the MDH mapping under the equivalent

reformulation in(7)-(8). Further, to train one conditional

INN 2 H"*dto learn the -dependent MDH mappings
forany 2 ,we generalize the loss in (9) to

LO= EILC )L (13)
where 2 is uniformly sampled. For the INN training,

we prepare quasi Monte Carlo (QMQampled z g\,

B to approximate the integration {10) and(11). When
evaluating the distortion il2), since we may not know
Z in advance, we sample frodh = 1X) B (0;R)
over a larger ball abR z g\, , whereR 1is a hyper-
parameter as discussed in Appendix E.3. In each iteratio

we sample a batch of collected data and employ the Adarf{

optimizer to maximize the loss functidn( ) , similar to
training standard NNs (Kingma & Ba, 2014).
6. Performance analysis

In this section, we formally prove the feasibility guarantee
and bound the optimality loss of homeomorphic projection

We also characterize its run-time complexity and a conditionunder an optimal MDH mapping

for the trained INN to be universally valid over the input-

parameter set. Finally, we discuss its training complexityD(

scalability, and limitations.

5The integration error for the QMC approach is
O (logN)" =N , which is faster in the rate of conver-
gence than Monte Carlo using a pseudorandom sequence (Dick
Pillichshammer, 2010).

(B)) is the penalty term for representing the constraint6.1. Feasibility, optimality, and run-time complexity

Theorem 1. For compact constraint seK of di-
ameter diam(K ), given an infeasible NN prediction
F() 2 K with bounded prediction error

pre=SUP » KF( ) x k, and a validm-layer trained
INN mapping with bounded approximation error
inn = sup , fdu( (@B); @ )g, the bisection proce-

dure shown in Alg. 1 with maximuknsteps will return a
solution®¥ such that:

« itis guaranteed to be feasible, i.& 2 K ;
« it has a bounded optimality loss as
KRk x k pre t D( l; Y )2 im+ pre Iéis);

whereY K + B(0;maxf pe inng) and lk()is =
2 "(diam(K )+ pre);

« it has a run-time complexity @8(k(mn2+ G)), where
G is the complexity for verifying the inequality con-
straints.

The complete proof is in Appendix F.

First, given a valid INN, the bisection algorithm always
returns a feasible solution because there exists at least one
feasible solution along the curve connecting0) andx ,

as shown in Fig. 3. Second, the optimality gap depends
on the prediction errorye, the approximation errofiy,

the distortionD( ;Y ), and thek-step bisection-induced
error K. The prediction errorpe is dominated by the given
predictor. The approximation errof, evaluates the quality

of the trained INN in reaching the constraltt = (B).
Therefore, our training scheme attempts to minimize it under
the reformulation in Prop. 5.1. The distortion in our training
scheme is evaluated and regularized over th&§&tR),
whereR  1is a hyperparameter without knowing in
advance. However, when the prediction and approximation
errors are small such that the infeasible soluéotn the
lt;omeomcrphic: space is ney the bisection algorithm is
Obust under different selections of the hyperparanieter
Nevertheless, considering a poor-quality NN predictor, we
can sample and regulate the distortion over a larger ball to
reduce the optimality gap. The bisection errfy can be
exponentially reduced by increasing the maximum skeps
as shown in Alg. 1. Note that the results above are analyzed
under the worst cases. In practice, the optimality loss of the
homeomorphic projection can be much better.

in Problem (4),
the approximation errorij,, = 0 and the distortion
Yy )y=D( Y ;X ) is minimized, such that the
upper bound of the optimality gap is also minimized. In
summary, the distortion and the approximation error play a
signi cant role in the optimality gap, which justi es our de-
gign in the MDH mapping problem i#) and the proposed
INN loss function in (9).
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The overall run-time complexity, i.e., the number of arith-Both of these can be easily prepared using SciPy (Virtanen
metic operations, when executing Alg. 10¢k(mn?+ G)), et al., 2020). Afterward, we sample a batctzaind sep-
includes the INN forward calculatio® (mn?) and the con- arately at each iteration and train the INN using the Adam
straint calculatior®(G). If the inequality constrairg; (x; )  optimizer implemented in PyTorch (Kingma & Ba, 2014;

is a linear function, the = N Njneq Paszke et al., 2019). Due to the closed-form expressions of
(13) by INN parameters, the training computation depends

6.2. Universal validity condition of INN on the forward-backward propagation of the INN, which

) can be executed ef ciently on a GPU.

Theorem 2. LetD; = f ;i = 1;:::;Mg be an

re-covering training dataset, ie8 2 ,9° 2 D, The scalability of the HP framework depends on the INN

such thatk Ok re. Suppose the trained INN structure, where both input and output have dimensions cor-

mapping is valid for the interior of constraint set responding to the constraint set, and only invertible layers

on datasetDq, i.e., 8° 2 Dy; 0(0) 2 K ,. If can be applied. Existing works have demonstrated its scala-

(Co+ C)re  Cy, then8 2 (0) 2K ,ie., bility, especially in generative models where both input and

will also be valid for any input parameter in. Here oOutputare high—dimensional matrices (Kingma & Dhariwal,.

Co = sup . ,, .,6,f0n(@ ;@ ,)=k1 kg, 2018; Papamakarios et al., 2021). Nevertheless, more exi-

C: = L((0O ;);),Cy = argsup,s ofB( 0(0);r) ble network structures, such as Neural ODEs (Chen et al.,

Ko; 892D4g. 2018), will be explored in future work. The limitation of the

HP framework also lies in Assumption 1, which assumes
the constraint set to be homeomorphic to a unit ball. To
Co represents the "Lipschitz” of the constraint set over ~ consider more general constraints, such as disconnected sets
C. indicates the Lipschitz of the trained INN mapping over Of manifold constraints, we discuss them in Appendix B.

, andC, denotes the radius of the largest inner approxima-
tion ball for the constraint set under dataBet 7. Numerical Experiments

The complete proof is in Appendix G.

Theorem 2 provides a suf cient condition for the trained s carry out simulations to (i) evaluate whether our pro-
INN to bg unjversally va}lid over the entire in_put-parameterposed INN unsupervised-learning scheme can approximate
set , whichis the premise for Theorem 1. First, we need to\)pH mappings between constraint sets and a unit ball, and
make the INN valid for nite samples, i.e., 0(0) 2K o, (i) compare the performance of homeomorphic projection
where ° 2 Dy in the training dataset. In the empirical \yith existing methods in ensuring NN solution feasibility for
study in Sec. 7, we observe that this condition is €asy @ gnstrained optimization problems, including non-convex
achieve by proper training. This observation is perhaps nokc_opg problems in power grid operation. The detailed
surprising, as we penalize constraint violati#ts +(B))  setting of hyper-parameters, INN implementation, and NN

in (11) for all points 'inB. Naturally, the origin0 2 B is predictor implementation are in Appendix H.
likely mapped to an internal point o(0) 2 K .

To generalize the valid condition to any input parameter?.1. Approximating MDH mappings

coznstérigs:m gen;r?ggdlct;gnéj ngn+thil)recome(t:r2i.c ;r; E(S:ti o We rst investigate the learning of MDH mapping for
0, 1 2 dep °9 : . a 2-dimension constraint approximation. The parametric
of the constraint set. For example, if the constraint set is

very “thin”, i.e., C, is small, or the constraint set varies dra- constraint set s de ned by a quadratic inequality as:
matically according to the input parameters, i&is large, K =fx2R2jx"Qx+ q'x+b 0, =[Q:q;Hyg

we need ¢ to be small to satisfy the condition. Meanwhile,

rc is directly related to the data size and covering numbeiyhereQ 2 R?2 2;q 2 R2;b 2 R. By changing the input
such that the number of collected input parameters for thgarameters such that assumption 1 is valid, the constraint
re-covering set, i.eM , has an order a®((diam() =rc)?).  setK can be convex or non-convex.

Therefore, facing a highly irregular or input-sensitive con- . ) )

straint set, we may need to sample more input parameters Ve rain two MDH mappings from different norm bl to

to train an INN so that the trained INN will be universally (€ parametric constraint st following the loss function

valid over the entire input-parameter set in (13). The log-volume, constraint violation, and aver-

age log-distortion during iterations are shown in Figure
4(a) and 5(a). We nd that the volume is maximized, and

6.3. Training complexity, scalability, and limitation o T .
9 plexity y the constraint violation is converged to zero, which shows

First, we need QMC samples in a unit be#igl\; B that the approximated homeomorphism between two sets is
to approximate the integration {@) and uniform samples achieved. The log-distortion decrease$ twver iterations,
for the input parameters gj’\":l to train the INN. demonstrating the effectiveness of our training scheme.






