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Abstract
There has been growing interest in employing
neural network (NN) to directly solve constrained
optimization problems with low run-time com-
plexity. However, it is non-trivial to ensure NN
solutions strictly satisfying problem constraints
due to inherent NN prediction errors. Existing
feasibility-ensuring methods either are computa-
tionally expensive or lack performance guarantee.
In this paper, we propose homeomorphic projec-
tion as a low-complexity scheme to guarantee NN
solution feasibility for optimization over a gen-
eral set homeomorphic to a unit ball, covering all
compact convex sets and certain classes of non-
convex sets. The idea is to (i) learn a minimum
distortion homeomorphic mapping between the
constraint set and a unit ball using an invertible
NN (INN), and then (ii) perform a simple bisec-
tion operation concerning the unit ball so that the
INN-mapped final solution is feasible with respect
to the constraint set with minor distortion-induced
optimality loss. We prove the feasibility guar-
antee and bound the optimality loss under mild
conditions. Simulation results, including those
for non-convex AC-OPF problems in power grid
operation, show that homeomorphic projection
outperforms existing methods in solution feasi-
bility and run-time complexity, while achieving
similar optimality loss.

1. Introduction
Constrained Optimization (CO) has tremendous applications
in various engineering domains, including supply chain,
transportation, power systems, and resource allocation. A
large number of iterative algorithms have been developed
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and incorporated into commercial solvers (e.g., Gurobi and
MOSEK) to solve various CO problems exactly or approxi-
mately. While widely successful, iterative algorithms can
still fail to solve challenging CO problems in real-time, lim-
iting their usefulness in time-sensitive applications, such as
solving AC optimal power flow problems in real-time power
grid operations and semi-definite programming-based real-
time scheduling and coding operations in modern wireless
communication systems.

Recently, machine learning (ML) schemes have been devel-
oped for solving CO in real-time, including the end-to-end
(E2E) solution mapping (Kotary et al., 2021; Amos, 2022)
and the learning-to-optimize (L2O) iterative scheme (Khalil
et al., 2016; Chen et al., 2021b). Boosted by the universal
approximation capacity of neural networks (NN) (Hornik
et al., 1989; Leshno et al., 1993), the end-to-end approaches
learn the mapping between the input parameters and high-
quality solutions of CO. After the training procedure, NN
directly outputs the solution in real-time, which is much
faster than iterative solvers. For example, researchers have
developed NN-based approaches for optimal power flow
(OPF) problems, where NN predicts the optimal power gen-
eration schemes based on real-time power demand (Pan
et al., 2019; Guha et al., 2019; Pan et al., 2020; Fioretto
et al., 2020; Zamzam & Baker, 2020; Donti et al., 2021).

However, it is non-trivial to ensure NN solution feasibility
with respect to the problem constraints, due to inherent NN
prediction errors. Existing feasibility-ensuring methods are
either computationally expensive or lacking performance
guarantees. See Sec. 2 for detailed discussions.

In this paper, we develop homeomorphic projection (HP)
as a novel low-complexity approach to take an infeasible
NN solution and generate a feasible solution with bounded
optimality loss. We make the following contributions:

▷ After presenting the optimization problem over a general
ball-homeomorphic set in Sec. 3, we propose an HP frame-
work for ensuring NN solution feasibility in Secs. 4 and
5. The framework includes (i) training an invertible neural
network (INN) in an unsupervised manner to approximate
a minimum distortion homeomorphic (MDH) mapping be-
tween the constraint set and a unit ball, and (ii) performing

1



Homeomorphic Projection to Ensure NN Solution Feasibility for Optimization over (Non-)Convex Set

Table 1: Comparison of existing approaches for ensuring NN solution feasibility for constrained optimization problems.

Existing Study Input-Adaptive Solution Feasibility Bounded Optimality Low Run-Time Low Training
(see Sec. 2 for references) Constraint Set Guarantee Loss Complexity Complexity

Penalty approach 3 7 7 3 3
Projection approach 3 3 3 7 N/A
Sampling approach 7 3 3 7 7
Preventive learning 3 (linear) 3 7 3 7
Gauge mapping 3 (linear) 3 7 3 N/A
Homeomorphic Projection 3 3 3 3 3

simple bisection operation with respect to the unit ball so
that the corresponding �nal solution in the constraint set is
feasible with minor distortion-induced optimality loss.

B In Sec. 6, we prove that the HP framework can take
an infeasible solution and recover a feasible solution with
bounded overall optimality loss. We also discuss the run-
time complexity and training complexity of the framework.

B In Sec. 7, we carry out simulations, including for solving
non-convex AC-OPF problems in power grid operations,
to evaluate the performance of our HP approach. The re-
sults show that homeomorphic projection outperforms exist-
ing methods in feasibility and run-time complexity, while
achieving similar optimality loss.

To the best of our knowledge, this is the �rst work to guar-
antee NN solution feasibility for (fairly) general constrained
optimization problems, with bounded optimality loss and
low run-time complexity. Code is available at HPCode.

2. Related Work

Machine Learning (ML) driven optimization research can
be categorized into two main areas: L2O iterative scheme
(Khalil et al., 2016; Chen et al., 2021b) and E2E solution
mapping (Kotary et al., 2021; Amos, 2022). For both re-
search lines, guaranteeing the feasibility of the output solu-
tion by trained NN under input-dependent constraint is non-
trivial. Researchers have developed different approaches to
improve the feasibility, and a summary is in Table 1.

Penalty approach. To reduce the constraint violation of pre-
dicted solutions, different penalty functions (e.g., quadratic
function) are designed and augmented in the loss function
(Cheng et al., 2019; Pan et al., 2019; 2020; Zamzam &
Baker, 2020; Fioretto et al., 2020). Considering the opti-
mal condition of CO, Karush–Kuhn–Tucker (KKT) condi-
tions (a set of equations) are treated as equality constraints
to improve the performance of NN (Nellikkath & Chatzi-
vasileiadis, 2021a;b; Zhang et al., 2021). However, those
approaches do not guarantee feasibility over constraints set
due to the prediction error of NN.

Projection approach. To ensure feasibility, projection can
be applied for infeasible solutions. However, either solv-

ing projection problem by optimization solver (Diamond &
Boyd, 2016) or applying equivalent projection layers (Amos
& Kolter, 2017; Agrawal et al., 2019; Chen et al., 2021a) is
computationally expensive and inef�cient in real-time. Dif-
ferentiable gradient-based methods are proposed to correct
infeasible solutions (Donti et al., 2021). L2O-based methods
are also proposed to learn the iterative process of projec-
tion by different types of NN (Xia & Wang, 2000; Heaton
et al., 2021; 2022). However, those projection-equivalent ap-
proaches do not guarantee feasibility for general constraints.

Sampling approach. To guarantee feasibility, feasible
points are sampled and used to construct the inner approxi-
mation of the original constraint set. A convex combination
of vertexes and rays is adopted to ensure feasibility under
linear constraints (Frerix et al., 2020; Zheng et al., 2021).
For a general but input-invariant constraint sets, sampling-
based methods are theoretically studied in (Kratsios et al.,
2021). These methods work for simple linear constraints or
input-invariant constraints, and the number of required fea-
sible samples grows exponentially with the dimension of the
decision variable, which limits their potential for complex
CO problems.

Preventive learning and gauge mapping. These methods
are dedicated to �nding a feasibility-guaranteed NN and
then improving its optimality. A preventive learning frame-
work is proposed in (Zhao et al., 2023), which calibrates
inequality constraints and ensures the feasibility of NN by
solving mixed-integer programs at each iteration. Another
work utilizes a closed-form gauge mapping to constrain the
output within a polytopic set (Tabas & Zhang, 2021; 2022).
Those approaches only work for linear constraints, and there
lacks a general and computational tractable approach to re-
alizing feasibility over general constraints.

In summary, existing schemes to ensure NN solution feasi-
bility either incur high run-time complexity or lack feasibil-
ity/optimality guarantee. In this paper, we proposehomeo-
morphic projectionas a low run-time complexity scheme to
guarantee NN solution feasibility with bounded optimality
loss. Our scheme is conceptually related to the projection
approach and gauge mapping. But it is uniquely different
in its design, applicability to non-linear constraints, and
performance guarantee.
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3. Settings and Open Issue to Address

We consider a general constrained optimization problem:

min
x 2 Rn

f (x; � ) s.t. x 2 K � ; (1)

wherex 2 Rn is the decision variable and� 2 � � Rd

is the input parameter. The objective functionf (x; � ) is
continuous and can be non-convex. The optimal solution of
problem in(1), assumed to be unique, is denoted asx �

� =
arg minx 2K � f f (x; � )g. The constraint setK � is compact
and speci�ed bynineq inequalities1: K � = f xjgi (x; � ) �
0; i = 1 ; : : : ; nineqg, wheregi (x; � ) is a continuous function.

Figure 1: Homeomorphism between constraint sets and a
unit ball.

Assumption 1. 8� 2 � , K � is homeomorphic to the unit
ball2 in Rn , denoted asK �

�= B. See Fig. 1 for illustration.

Homeomorphic mapping (or homeomorphism) is a one-to-
one mapping between topological spaces (e.g.,K � andB)
that is continuous in both directions (Lee, 2013). In other
words, Assumption 1 means that the constraint set and unit
ball are topologically equivalent, and we can continuously
stretch a ball to the constraint set and vice versa.

We note that Assumption 1 is easy to satisfy, e.g., byany
compact convex set(Geschke, 2012), andcertain classes
of compact and simply-connected non-convex set(e.g., star
set and invex set) (Sapkota & Bhattarai, 2021). Thus, the
formulation in(1) under Assumption 1 is pretty general and
covers many continuous optimization problems in various
domains.

3.1. Open Issue: ensuring NN solution feasibility

As discussed in the introduction and related works, there
has been NN schemes that learn the input-solution mapping

1While we do not explicitly consider equality constraints in
the formulation, we remark that equality constraints with constant
rank (e.g., linear equations) can be exploited and removed without
losing optimality as discussed in Appendix A. We thus focus on
problems with only inequality constraints.

2Thep-norm ball is is de�ned asBp (x0 ; r ) = f x 2 Rn jkx �
x0kp � r g, we denote the zero-centered unit2-norm ball asB.

F : Rd ! Rn for a constrained problem and pass inputs
through the NN to obtain high-quality solutions instantly;
see e.g., (Pan et al., 2020; Donti et al., 2021; Amos, 2022).
However, it is non-trivial to ensure NN solution feasibility
with respect to the problem constraints due to inherent NN
prediction error, de�ned as� pre = sup � 2 � fk F (� ) � x �

� kg.
As discussed in Sec. 2, existing feasibility-ensuring meth-
ods are either computationally expensive or lacking perfor-
mance guarantees. To date, it remains largely open to ensure
NN solution feasibility to the problem in(1) with bounded
optimality loss and low run-time complexity.

Figure 2: Overview of the HP framework.

4. Our Homeomorphic Projection Framework

We develophomeomorphic projectionas a low-complexity
approach to take an infeasible solution to the problem in(1)
and generate a feasible solution with bounded optimality
loss. As shown in Fig. 2, the idea is to (i) learn a mini-
mum distortion homeomorphic (MDH) mapping between
the constraint setK � and a unit ballB as de�ned in Sec. 4.1,
and then (ii) perform a simple bisection operation with re-
spect to the unit ball so that the corresponding solution in
the constraint set is feasible with minor optimality loss, as
discussed in Sec. 4.2. We present a method to learn MDH
mappings using INN in Sec. 5 and carry out performance
analysis in Sec. 6.

4.1. Minimum distortion homeomorphic mapping

De�nition 4.1 (Distortion). Let  : Rn ! Rn be a home-
omorphic mapping. Its distortion over a compact setZ is
de�ned asD( ; Z ) = � 2=� 1 � 1, where

� 1 = inf
z1 ;z2 2Z ; z1 6= z2

fk  (z1) �  (z2)k=kz1 � z2kg; (2)

� 2 = sup
z1 ;z2 2Z ; z1 6= z2

fk  (z1) �  (z2)k=kz1 � z2kg: (3)

Distortion evaluates the variation of distance metrics in
different spaces transformed by a mapping . Small dis-
tortion, e.g., close to its minimum value 1, implies that
geometrical operation in one space, e.g., projection onto a
set, can be approximately done in its mapped space with
respect to distance measure and vice versa. Mappings with
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unit distortion are called isometric mappings. Mappings
with bounded distortion are also referred as bi-Lipschitz
mappings. The concept has been widely applied in the em-
bedding studies (Xiao et al., 2018; Agrawal et al., 2021)
and computational graphics (Schmidt et al., 2019; Liu et al.,
2022).

The �rst step in our framework is to learn an MDH mapping
 � betweenK � andB, critical for bounding optimality loss.

De�nition 4.2 (MDH mapping). The MDH mapping is
de�ned as the optimal solution for the following problem:

min
 � 2H n

log D( � 1
� ; X� ) s.t. K � =  � (B); (4)

whereH n is the set of alln-dim homeomorphic mappings,
and we denote the set of homeomorphic mappings satisfying
K � =  � (B) asH n (K � ; B). The setX� = K � + B(0; � pre)3

contains all possible outputs of the NN predictor.

Weremark that solving the problem in(4) gives (at least)
one homeomorphic mapping with the minimum distortion
among all such mappings betweenK � andB, as (i) it has
feasible solution according to Assumption 1 and (ii) the
distortion of a homeomorphic mapping over a compact set
X� is bounded (Behrmann et al., 2021). We then denote an
optimal solution as �

� .

In general, the problem in(4) is an in�nite-dimension one
and challenging to solve. We develop a method to learn an
optimal solution approximately by INN in Sec. 5, denoted
as� � . It is guaranteed to be a homeomorphic mapping,
i.e., � � 2 H n , with bounded distortion overX� . However,
� � may not lie inH n (K � ; B), i.e., � � (B) 6= K � , due to
INN approximation error, de�ned asdH (� � (@B); @K � )4;5.
Nevertheless, if� � is also valid, the second step in the
HP framework guarantees to “project” an infeasible NN
predicted solution back to the feasible setK � .

De�nition 4.3 (Valid mapping). The INN approximated
mapping� � 2 H n is valid for K � if � � (0) 2 K � , i.e., it
maps the origin in the unit ball to a feasible point inK � .

Figure 3: Illustration of homeomorphic bisection.

3Here+ denotes the Minkowski sum between two sets, de�ned
asX + Y = f x + yjx 2 X ; y 2 Yg.

4dH (�; �) represents the Hausdorff distance between two sets,
de�ned as dH (X ; Y) = max f dh (X ; Y); dh (Y; X )g, where
dh (X ; Y) = sup x 2X inf y 2Y fk x � ykg.

5Here@indicates the boundary of a set.

4.2. Homeomorphic bisection

Suppose for an input� , we are given an infeasible NN
solution ~x � 62 K� and a valid INN mapping� � . Then
we perform homeomorphic bisection to recover a feasible
solutionx̂ � as:

x̂ � = � � (� � � ~z� ); (5)

where~z� = � � 1
� (~x � ) and� � = sup

� 2 [0;1]
f � � (� � ~z� ) 2 K � g.

As illustrated in Fig. 3, homeomorphic bisection consists
of three steps: (i) map~x � to the homeomorphic space as
~z� = � � 1

� (~x � ) and set� = 1 , (ii) perform bisection search
on� in [0; 1] (trajectory shown as~z� ! ẑ1 ! ẑ� ) to �nd the
largest� , denoted as� � , such that̂x � = � � (� � � ~z� ) 2 K � ,
and (iii) return the feasiblêx � . The pseudo-code is in Alg. 1.
Such a low-complexity operation, observed with respect to
the constraint setK � , is to search along a curve connecting
the infeasible~x � and an internal point� � (0) until reach-
ing a boundary feasible point̂x � . As to be discussed in
Sec. 6, such operation incurs a minor optimality loss as the
homeomorphic mapping has a minimized distortion.

Algorithm 1 Homeomorphic bisection to recover feasibility.
Input: Infeasible solution~x � =2 K � and valid mapping� � .
Output: Feasible solution̂x � 2 K � .
1: initialize total iteration stepsk
2: calculate~z� = � � 1

� (~x � ), setn = 0 ; � l = 0 ; � u = 1
3: while n � k do
4: bisection:� n = ( � l + � u )=2
5: candidate:̂zn +1 = � n � ~z�

6: if � � (ẑn +1 ) 2 K � then
7: increase lower bound:� l  � n

8: else
9: decrease upper bound:� u  � n

10: end if
11: n  n + 1
12: end while
13: �nd optimal � � = � l and feasible point̂z� = � � � ~z�

14: return x̂ � = � � (ẑ� )

We make the followingremarks. First, in the ideal case
when� � =  �

� andB = � � 1
� (K � ), i.e., the INN learns the

MDH mapping perfectly, the homeomorphic bisection in(5)
is equivalent to projecting~z� onto the unit ball boundary,
with a closed-form expression̂z� = ~z� =k~z� k. Such an oper-
ation incurs very low complexity, thanks to the unit ball's
geometrical structure. Since� � =  �

� is an MDH mapping,
the correspondinĝx � = � � (ẑ� ) must be on the boundary of
the feasible setK � , and the projection distancejj ~x � � x̂ � jj
is small because (i)� � has a minimum distortion and (ii)
ẑ� is the closest point in the unit ball to~z� . These obser-
vations provide an intuitive justi�cation for the complexity
and performance of our framework.
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Second, in practice, the INN may not learn �
� exactly, i.e.,

B 6= � � 1
� (K � ) and the distortionD(� � 1

� ; X� ) is not the
minimum. In fact, we may not know the exact shape of
� � 1

� (K � ) to project~z� to its boundary directly. Instead,
we perform the operation in(5) to mimic the operation in
the ideal case described above, i.e., performing bisection
between~z� and the origin of the unit ball but evaluating
the feasibility with respect toK � . As long as the INN
mapping is valid and maps the origin of the unit ball to
an internal point inK � , such operation is guaranteed to
return a feasible point, with minor optimality loss, similar
to the discussion for the ideal case. We formally prove the
feasibility guarantee, bound the optimality loss, and discuss
the complexity of imperfect INN learning in Sec. 6.

5. Learning � -dependent MDH mappings

In this section, we propose an unsupervised learning method
to train one conditional INN to learn the MDH mapping �

�
for every� 2 � . We �rst introduce INN for learning homeo-
morphic mappings. We then reformulate the MDH mapping
problem in (4) and present the INN training procedure.

5.1. INN for homeomorphic mappings

INN is essentially an invertible NN owing to its design,
such that it is differentiable in forward and inverse direc-
tions (Papamakarios et al., 2021). It is thus a homeomorphic
mapping with tunable parameters; see Appendix C for more
INN background. It is well known that feed-forward neural
networks can approximate any continuous mapping arbitrar-
ily well (Hornik et al., 1989). Similarly, INN can also learn
any (piecewise) differentiable homeomorphic mapping arbi-
trarily well given a suf�cient number of neurons (Teshima
et al., 2020; Ishikawa et al., 2022). Therefore, we can utilize
INN to represent the homeomorphic mapping and train it to
approximate an optimal MDH mapping.

Further, we do not need to train separate INN� � for dif-
ferent input parameters� . Instead, we can leverage the
conditional INN (Winkler et al., 2019; Lyu et al., 2022),
which also takes� as input, to learn the augmented homeo-
morphism : Rn + d ! Rn + d such that8� 2 � ; [K � ; � ] =
 ([B; � ]). When given a new� , we have a corresponding
homeomorphism � 2 H n such thatK � =  � (B).

For ease of discussion later, we denote anm-layer INN as
� � = � m

� � ::: � � l
� � ::: � � 1

� , where each layer is an af�ne
coupling layer or an invertible linear layer (Papamakarios
et al., 2021). Such a composition is also a universal differen-
tiable homeomorphism approximator (Teshima et al., 2020).
Further, for these layers, owing to their invertible design,
the singular values for the Jacobian matrix of� l

� exist every-
where over its support set and have a closed-form expression
by its tunable parameters; see Appendix C for detailed for-

mulations. As will become clear later, such closed-form
singular values bring convenience for distortion approxi-
mation. We then denote the sorted singular values for the
Jacobian matrixJ of INN as� 1(J) � ::: � � n (J) > 0.

5.2. Reformulation of homeomorphism constraint

To facilitate INN learning, we �rst reformulate the MDH
mapping problem in(4). We have the following understand-
ing of its homeomorphism constraint � 2 H n (K � ; B) such
that � (B) = K � .

Proposition 5.1. The feasible setH n (K � ; B) is equivalent
to the set of optimal solutions of the problem:

max
 � 2H n

log V( � (B)) s.t.  � (B) � K � : (6)

The complete proof is in Appendix E.

V(  � (B)) evaluates the volume of set � (B). The con-
straint means that the set � (B) is a subset ofK � . Intu-
itively, the proposition says that any feasible homeomorphic
mapping must maximize the volume of mapped set � (B)
while keeping it within the constraint setK � , and vice versa.

Thus, the MDH mapping problem in(4) is equivalent to
the following bi-level problem of minimizing the distortion
among the optimal solutions of the problem in (6):

min
 � 2H n

log D( � 1
� ; X� ) (7)

s.t.  � 2 arg maxf Problem in (6)g: (8)

As will become clear later, such a reformulation opens the
door for unsupervised learning for INN training.

5.3. Unsupervised INN training

We employ the following loss function and maximize it to
train an INN� � with m layers for learning an optimal solu-
tion to the problem in (7)-(8) in an unsupervised manner:

L (� � ) = bV(� � (B)) � � 1P(� � (B)) � � 2 bD(� � 1
� ; X� ); (9)

where� 1 and� 2 are positive coef�cients to balance among
the three terms.bV(� � (B)) is a computable approximation
of the log-volume termlog V(� � (B)) in (6) as:

bV(� � (B)) =
1

V(B)

Z

B

nX

k=1

mX

l =1

log � k (J � l
�
(zl ))dz

+ log V( B); (10)

wherezl = � l � 1
� (zl � 1) for l = 2 ; ::; m, andz1 = z 2 B,

J� l
�
(zl ) denotes the Jacobian matrix of� l

� (�) atzl , and� k (�)
returns thek-th largest singular value of a matrix, which has
a closed-form expression as discussed earlier in Sec. 5.1.
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P(� � (B)) is the penalty term for representing the constraint
violation of � � (B) � K � in (6) as:

P(� � (B)) =
Z

B
k ReLU(g(� � (z); � ))k1dz; (11)

where g(� � (z); � ) calculates the residual for each in-
equality constraint as[g1(� � (z); � ); : : : ; gn ineq(� � (z); � )].
bD(� � 1

� ; X� ) is a computable approximation of the log-
distortion termlog D(� � 1

� ; X� ) in (7) as:

bD(� � 1
� ; X� ) = sup

z2Z �

f
X m

l =1
log � 1(J � l

�
(zl ))g

� inf
z2Z �

f
X m

l =1
log � n (J � l

�
(zl ))g; (12)

wherezl = � l � 1
� (zl � 1) for l = 2 ; ::; m, andz1 = z 2

Z � = � � 1
� (X� ).

We have the following observations for the approximations.
Proposition 5.2. The two approximation terms in
(10) and (12) satisfy log V(� � (B) � bV(� � (B)) and
log D(� � 1

� ; X� ) � bD(� � 1
� ; X� ). The complete proof is in

Appendix E.

The above proposition implies that the loss function in(9)
is actually a lower bound to the Lagrangian of the problem
in (7)-(8). Therefore, we can maximize the loss function in
(9) to approximate the MDH mapping under the equivalent
reformulation in(7)-(8). Further, to train one conditional
INN � 2 H n + d to learn the� -dependent MDH mappings
for any� 2 � , we generalize the loss in (9) to

L (�) = E� [L (� � )]; (13)

where� 2 � is uniformly sampled. For the INN training,
we prepare quasi Monte Carlo (QMC)6 samplesf zi gN

i =1 �
B to approximate the integration in(10) and(11). When
evaluating the distortion in(12), since we may not know
Z � in advance, we sample fromZ � = � � 1

� (X� ) � B (0; R)
over a larger ball asf R � zi gN

i =1 , whereR � 1 is a hyper-
parameter as discussed in Appendix E.3. In each iteration,
we sample a batch of collected data and employ the Adam
optimizer to maximize the loss functionL (�) , similar to
training standard NNs (Kingma & Ba, 2014).

6. Performance analysis

In this section, we formally prove the feasibility guarantee
and bound the optimality loss of homeomorphic projection.
We also characterize its run-time complexity and a condition
for the trained INN to be universally valid over the input-
parameter set. Finally, we discuss its training complexity,
scalability, and limitations.

6The integration error for the QMC approach is
O

�
(log N )n � 1=N

�
, which is faster in the rate of conver-

gence than Monte Carlo using a pseudorandom sequence (Dick &
Pillichshammer, 2010).

6.1. Feasibility, optimality, and run-time complexity

Theorem 1. For compact constraint setK � of di-
ameter diam(K � ), given an infeasible NN prediction
~x � = F (� ) =2 K � with bounded prediction error
� pre = sup � 2 � kF (� ) � x �

� k, and a validm-layer trained
INN mapping � � with bounded approximation error
� inn = sup � 2 � f dH (� � (@B); @K � )g, the bisection proce-
dure shown in Alg. 1 with maximumk steps will return a
solutionx̂k

� such that:
• it is guaranteed to be feasible, i.e.,x̂k

� 2 K � ;

• it has a bounded optimality loss as

kx̂k
� � x �

� k � � pre + D(� � 1
� ; Y� )(2� inn + � pre + � k

bis);

whereY� = K � + B(0; maxf � pre; � inng) and � k
bis =

2� k (diam(K � ) + � pre);

• it has a run-time complexity asO(k(mn2 + G)) , where
G is the complexity for verifying the inequality con-
straints.

The complete proof is in Appendix F.

First, given a valid INN, the bisection algorithm always
returns a feasible solution because there exists at least one
feasible solution along the curve connecting� � (0) and~x � ,
as shown in Fig. 3. Second, the optimality gap depends
on the prediction error� pre, the approximation error� inn,
the distortionD(� � 1

� ; Y� ), and thek-step bisection-induced
error� k

bis. The prediction error� pre is dominated by the given
predictor. The approximation error� inn evaluates the quality
of the trained INN in reaching the constraintK � = � � (B).
Therefore, our training scheme attempts to minimize it under
the reformulation in Prop. 5.1. The distortion in our training
scheme is evaluated and regularized over the setB(0; R),
whereR � 1 is a hyperparameter without knowingY� in
advance. However, when the prediction and approximation
errors are small such that the infeasible solution~z� in the
homeomorphic space is nearB, the bisection algorithm is
robust under different selections of the hyperparameterR.
Nevertheless, considering a poor-quality NN predictor, we
can sample and regulate the distortion over a larger ball to
reduce the optimality gap. The bisection error� k

bis can be
exponentially reduced by increasing the maximum stepsk,
as shown in Alg. 1. Note that the results above are analyzed
under the worst cases. In practice, the optimality loss of the
homeomorphic projection can be much better.

Under an optimal MDH mapping �
� in Problem (4),

the approximation error� inn = 0 and the distortion
D( � 1;�

� ; Y� ) = D(  � 1;�
� ; X� ) is minimized, such that the

upper bound of the optimality gap is also minimized. In
summary, the distortion and the approximation error play a
signi�cant role in the optimality gap, which justi�es our de-
sign in the MDH mapping problem in(4) and the proposed
INN loss function in (9).

6



Homeomorphic Projection to Ensure NN Solution Feasibility for Optimization over (Non-)Convex Set

The overall run-time complexity, i.e., the number of arith-
metic operations, when executing Alg. 1 isO(k(mn2 + G)) ,
includes the INN forward calculationO(mn2) and the con-
straint calculationO(G). If the inequality constraintgi (x; � )
is a linear function, thenG = n � nineq.

6.2. Universal validity condition of INN

Theorem 2. Let D1 = f � i ; i = 1 ; : : : ; M g � � be an
r c-covering training dataset, i.e.,8� 2 � , 9� 0 2 D 1

such thatk� � � 0k � r c. Suppose the trained INN
mapping � � is valid for the interior of constraint set
on datasetD1, i.e., 8� 0 2 D 1; � � 0 (0) 2 K �

� 0 . If
(C0 + C1)r c � C2, then8� 2 � ; � � (0) 2 K � , i.e., � �

will also be valid for any input parameter in� . Here
C0 = sup � 1 ;� 2 2 � ;� 1 6= � 2

f dH (@K � 1 ; @K � 2 )=k� 1 � � 2kg,
C1 = L(�(0 ; �); �) , C2 = arg supr> 0fB (� � 0 (0); r ) �
K � 0 ; 8� 0 2 D 1g.

The complete proof is in Appendix G.

C0 represents the ”Lipschitz” of the constraint set over� ,
C1 indicates the Lipschitz of the trained INN mapping over
� , andC2 denotes the radius of the largest inner approxima-
tion ball for the constraint set under datasetD1.

Theorem 2 provides a suf�cient condition for the trained
INN to be universally valid over the entire input-parameter
set� , which is the premise for Theorem 1. First, we need to
make the INN valid for �nite samples, i.e.,� � 0 (0) 2 K �

� 0 ,
where� 0 2 D 1 in the training dataset. In the empirical
study in Sec. 7, we observe that this condition is easy to
achieve by proper training. This observation is perhaps not
surprising, as we penalize constraint violationsP(� � 0 (B))
in (11) for all points inB. Naturally, the origin0 2 B is
likely mapped to an internal point� � 0 (0) 2 K �

� 0 .

To generalize the valid condition to any input parameter
� 2 � , a suf�cient condition is(C0 + C1)r c � C2. These
constantsC0, C1, andC2 depend on the geometric structure
of the constraint set. For example, if the constraint set is
very “thin”, i.e.,C2 is small, or the constraint set varies dra-
matically according to the input parameters, i.e.,C0 is large,
we needr c to be small to satisfy the condition. Meanwhile,
r c is directly related to the data size and covering number,
such that the number of collected input parameters for the
r c-covering set, i.e.,M , has an order asO((diam(�) =rc)d).
Therefore, facing a highly irregular or input-sensitive con-
straint set, we may need to sample more input parameters�
to train an INN so that the trained INN will be universally
valid over the entire input-parameter set� .

6.3. Training complexity, scalability, and limitation

First, we need QMC samples in a unit ballf zi gN
i =1 � B

to approximate the integration in(9) and uniform samples
for the input parametersf � j gM

j =1 � � to train the INN.

Both of these can be easily prepared using SciPy (Virtanen
et al., 2020). Afterward, we sample a batch ofz and� sep-
arately at each iteration and train the INN using the Adam
optimizer implemented in PyTorch (Kingma & Ba, 2014;
Paszke et al., 2019). Due to the closed-form expressions of
(13)by INN parameters, the training computation depends
on the forward-backward propagation of the INN, which
can be executed ef�ciently on a GPU.

The scalability of the HP framework depends on the INN
structure, where both input and output have dimensions cor-
responding to the constraint set, and only invertible layers
can be applied. Existing works have demonstrated its scala-
bility, especially in generative models where both input and
output are high-dimensional matrices (Kingma & Dhariwal,
2018; Papamakarios et al., 2021). Nevertheless, more �exi-
ble network structures, such as Neural ODEs (Chen et al.,
2018), will be explored in future work. The limitation of the
HP framework also lies in Assumption 1, which assumes
the constraint set to be homeomorphic to a unit ball. To
consider more general constraints, such as disconnected sets
or manifold constraints, we discuss them in Appendix B.

7. Numerical Experiments

We carry out simulations to (i) evaluate whether our pro-
posed INN unsupervised-learning scheme can approximate
MDH mappings between constraint sets and a unit ball, and
(ii) compare the performance of homeomorphic projection
with existing methods in ensuring NN solution feasibility for
constrained optimization problems, including non-convex
AC-OPF problems in power grid operation. The detailed
setting of hyper-parameters, INN implementation, and NN
predictor implementation are in Appendix H.

7.1. Approximating MDH mappings

We �rst investigate the learning of MDH mapping� for
a 2-dimension constraint approximation. The parametric
constraint set is de�ned by a quadratic inequality as:

K � = f x 2 R2 j xT Qx + qT x + b � 0; � = [ Q; q; b]gg;

whereQ 2 R2� 2; q 2 R2; b 2 R. By changing the input
parameters� such that assumption 1 is valid, the constraint
setK � can be convex or non-convex.

We train two MDH mappings from different norm ballB to
the parametric constraint setK � following the loss function
in (13). The log-volume, constraint violation, and aver-
age log-distortion during iterations are shown in Figure
4(a) and 5(a). We �nd that the volume is maximized, and
the constraint violation is converged to zero, which shows
that the approximated homeomorphism between two sets is
achieved. The log-distortion decreases to0 over iterations,
demonstrating the effectiveness of our training scheme.
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