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Abstract
Consistency plays an important role in learning
theory. However, in multiple kernel clustering
(MKC), the consistency of kernel weights has not
been sufficiently investigated. In this work, we
fill this gap with a non-asymptotic analysis on the
consistency of kernel weights of a novel method
termed SimpleMKKM. Under the assumptions
of the eigenvalue gap, we give an infinity norm
bound as Õ(k/

√
n), where k is the number of

clusters and n is the number of samples. On this
basis, we establish an upper bound for the excess
clustering risk. Moreover, we study the differ-
ence of the kernel weights learned from n sam-
ples and r points sampled without replacement,
and derive its upper bound as Õ(k ·

√
1/r − 1/n).

Based on the above results, we propose a novel
strategy with Nyström method to enable Sim-
pleMKKM to handle large-scale datasets with a
theoretical learning guarantee. Finally, extensive
experiments are conducted to verify the theoreti-
cal results and the effectiveness of the proposed
large-scale strategy.

1. Introduction
Multiple kernel clustering (MKC) (Zhao et al., 2009) is pro-
posed for better performance by searching for an optimal
kernel from several base kernels. In recent years, researchers
have made great progress in MKC. Huang et al. (2011)
propose the multiple kernel k-means algorithm (MKKM),
which unifies all base kernels into a consensus one based
on a linear combination. Subsequently, several works (Liu
et al., 2016; Du et al., 2015; Liu et al., 2021; Wang et al.,
2021) enhance MKKM from different perspectives. Among

1College of Computer, National University of Defense Technol-
ogy, Changsha, China 2Gaoling School of Artificial Intelligence,
Renmin University of China, Beijing, China 3Beijing Key Labo-
ratory of Big Data Management and Analysis Methods, Beijing,
China 4Zhejiang Laboratory, Hangzhou, China. Correspondence
to: Xinwang Liu <xinwangliu@nudt.edu.cn>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

them, Du et al. (2015) improve the robustness of MKKM
by using ℓ2,1-norm. Liu et al. (2016) introduce a matrix-
induced regularization to increase the diversity of the op-
timal kernel. Wang et al. (2021) improve the two-stage
strategy into a single step, further reducing redundancy
in kernel fusion. A recently proposed algorithm termed
SimpleMKKM (Liu, 2022) greatly promotes the clustering
performance by a minimization-maximization framework.

Although there are various improvements in MKC, some
vital statistical properties of it are not sufficiently studied,
especially the consistency of the kernel weights. We usu-
ally say that a learning algorithm is consistent, i.e., the
parameters learned from the training set will converge to the
parameters from the whole sample space when the training
sample number n → ∞. Consistency is an important prop-
erty in statistical learning, as we can estimate whether the
learned parameters are effective by studying the consistency
of a learning algorithm. In the existing literature, the consis-
tency of clustering centroids of k-means has been studied
in (Pollard, 1981a). Von Luxburg et al. (2008) establish
several important results about the consistency of spectral
clustering. The consistency of kernel weights in MKC is
also a key research problem, as it can be used to derive other
important statistical properties, such as excess risk bound.
In this paper, we attempt to address this issue. We bound the
difference of the weights learned from the training set and
the sample space with a non-asymptotic analysis. Under
some assumptions about the gap of eigenvalues of the kernel
matrix, we establish an infinity bound as Õ(k/

√
n)1, where

k is the number of clusters and n is the number of samples.
Based on the results of consistency, we derive the excess
risk bound of SimpleMKKM.

The difference of the kernel weights learned from the train-
ing set and its subset is another interesting problem. Uti-
lizing a concentration inequality for sampling without re-
placement (Bardenet & Maillard, 2015), this difference can
be bounded by Õ(k ·

√
1/r − 1/n), where r is the num-

ber of points sampled without placement from the training
set with size n. It is illustrated that the kernel weights
learned from the selected subset have a fast convergence
rate to the whole training set. Based on this, we propose a
new algorithm with Nyström method that can enable Sim-

1Õ(·) hides logarithmic terms.
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pleMKKM to handle large-scale datasets. Specifically, we
perform SimpleMKKM on the selected subset for a group
of approximated kernel weights. Then we make weighted
combinations of the base kernel similarity matrices consist-
ing of all n samples and the selected subset. Finally, we
use the standard Nyström method to obtain the clustering
results. Our algorithm can reduce the complexity of Sim-
pleMKKM from O(n3) to be linear with n. Thus it can
cluster large-scale datasets. In addition, we derive the ex-
cess risk bound of the proposed algorithm for a theoretical
learning guarantee. Consequently, when the number of the
selected samples is Θ(

√
n), the proposed algorithm will

have a favorable statistical and computational trade-off. By
the selection, the excess risk bound is the same as single
kernel clustering, which is O(k/

√
n).

To verify the proposed theoretical results, we conduct exper-
iments on commonly used datasets. The numerical exper-
iments substantiate the correctness of the derived bounds.
Moreover, we perform our algorithm on large-scale datasets
to verify its effectiveness and efficiency.

The contributions of this paper can be summarized as

1. This paper theoretically analyzes the consistency of the
kernel weights of an MKC algorithm, and derives its
excess risk bound.

2. This paper studies the difference of the kernel weights
learned from the whole training set and its subset.
Based on this, a method enabling MKC to handle large-
scale datasets is proposed. In addition, the generaliza-
tion ability of the proposed method is studied, and the
optimal number of the selected subset is also given by
theoretical analysis.

3. Extensive experiments are conducted to verify the cor-
rectness of our theoretical results, as well as the ef-
fectiveness and efficiency of the proposed large-scale
algorithm.

The paper is organized as follows. Section 2 introduces the
notations, general assumptions, and the problem of the con-
sistency of multiple kernel clustering. Section 4 states the
main results. Section 5 establishes the excess risk bound of
SimpleMKKM. Section 6 proposes the large-scale strategy
of SimpleMKKM and derives the corresponding excess risk
bound. Section 7 reports the experimental results. Section 8
summarizes the paper and discusses future works.

2. Preliminaries
In this section, we first introduce the main notations and gen-
eral assumptions. Then, we describe multiple kernel cluster-
ing and the consistency problem of the kernel weights.

2.1. Notations and General Assumptions

Mathematical notations. We introduce the used mathe-
matical notations across the whole paper for easy reading.
We use X to represent the sample space, and ρ(x) is the
corresponding probability measure. We use ρn(x) to denote
the empirical distribution, i.e., ρn(x) = 1

n if point x belongs
the training set, otherwise ρn(x) = 0. The definitions of
the asymptotic notations O,Θ, and Ω can be referred to in
Chapter 3 of (Cormen et al., 2022). g(n) = O(f(n)) means
g(n) ≤ cf(n) for some constant c, and we also write it as
g(n) ≾ f(n). g(n) = Ω(f(n)) indicates g(n) ≥ cf(n) for
some constant c. If there exist two constant c1, c2 such that
c1f(n) ≤ g(n) ≤ c2f(n), we denote that g(n) = Θ(f(n)).
∥A∥ is the operator norm if A is a matrix or a operator, and
if A is a vector, ∥A∥ denotes the 2-norm.

General Assumptions. The general assumptions partially
refer to (Von Luxburg et al., 2008). The sample space
X is supposed to be compact. The base kernel functions
{Kp(·, ·)}mp=1 are bounded, positive-definite, and conjugate
symmetric. We assume that Kp(x, y) ≤ 1, for any x, y ∈ X
and p ∈ [m]. The elements of training set Sn = {xi}ni=1

are drawn i.i.d. from X with the distribution ρ. The basic
notations used in this paper are summarized in Section C.

2.2. Multiple Kernel Clustering

Multiple kernel clustering (MKC) aims to combine several
base kernel matrices into a unified one for better clustering
performance. Assume that we have m base kernel func-
tions {Kp(·, ·)}mp=1, and the corresponding feature map of
Kp(·, ·) is ϕp(·). For any point x in sample space X , we
can obtain its feature map in multiple kernel scenarios as

[ϕ⊤
1 (x), · · · , ϕ⊤

m(x)]⊤.

To reflect the different importance of base kernels, we im-
pose kernel weights {αp}mp=1 on them as

[α1ϕ
⊤
1 (x), · · · , αmϕ⊤

m(x)]⊤,

where
∑m

p=1 αp = 1 and αp ≥ 0. Suppose that sample
set is Sn = {xi}ni=1 and the kernel matrix computed by
the p-th base kernel is 1

nKp. Then the combination of base
kernel matrices can be represented by

1

n
Kα =

1

n

m∑
p=1

α2
pKp.

In existing MKC algorithms, researchers mainly design an
objective function fn(α) w.r.t. the kernel weights α and
minimize it to obtain a group of desirable kernel weights.
There are two mainstream categories:

1. Coordinate descent based multiple kernel clustering:

fn(α) = min
H⊤H=Ik

1

n
Tr(Kα(Ik −HH⊤)),
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2. Kernel alignment based multiple kernel clustering:

fn(α) = max
H⊤H=Ik

1

n
Tr(KαHH⊤). (1)

The second method outperforms the first one in terms
of clustering performance. Thus we focus on studying
the consistency of kernel alignment based MKC, which
is termed SimpleMKKM (Liu, 2022). Next, we intro-
duce the objective function when the input training set
is the whole sample space X . As n → ∞, the empir-
ical kernel matrix will converge to an integral operator
LKg(x) :=

∫
X K(x, y)g(y)dρ(y), where K(·, ·) is the cor-

responding kernel function (Rosasco et al., 2010). Assume
that the first k non-zero eigenvalues of the integral operator
LK are {λj}kj=1, and the corresponding eigenvectors are
{hj}kj=1. Then, we have

hj(x) =
1

λj

∫
X
K(x, y)hj(y)dρ(y).

Moreover,

{hj}kj=1 = argmax
{gj}kj=1∈Γ

k∑
j=1

∫∫
X
K(x, y)gj(x)gj(y)dρ(x)dρ(y),

where Γ denotes the orthonormal constraint on L2(X , ρ)
space.

For any weights α, we assume that Kα(x, y) =∑m
p=1 α

2
pKp(x, y). When the training set is the sample

space X , the objective function of kernel alignment based
multiple kernel clustering is

f(α) = max
{hj}kj=1∈Γ

k∑
j=1

∫∫
X
Kα(x, y)hj(x)hj(y)dρ(x)dρ(y),

(2)
where {hj}kj=1 are termed clustering indicator functions.

We denote the first k eigenvalues of 1
nK as {λ̂j}kj=1, and the

corresponding eigenvectors are {hj}kj=1. By the definition
in (Bengio et al., 2004), the empirical eigenfunctions of
operator 1

nK are given by

ĥj(x) =
1

nλ̂j

n∑
i=1

K(x, xi)ĥj(xi),

where ĥj(xi) =
√
nhij , and hij is the i-the element of hj .

Consequently, the objective in Eq. (1) can be rewritten as

fn(α) = max
{ĥj}k

j=1

1

n2

n∑
i=1

n∑
t=1

k∑
j=1

Kα(xi, xt)ĥj(xi)ĥj(xt),

(3)
where ĥj(xi) =

√
nhij , hij is the i-th row and the j-th

column of H, and H⊤H = Ik. {ĥj}kj=1 are termed approx-
imated clustering indicator functions.

Key problems. In this paper, we focus on the following two
key problems:

1. We denote α̂n = argminα fn(α) and α∗ =
argminα f(α) in which fn, f are given by Eq.(3) and
Eq.(2), respectively. To study the consistency of kernel
weights, we try to establish a non-asymptotic bound of
∥α̂n −α∗∥∞.

2. Suppose that α̂r is the kernel weights learned from r
points, which are sampled from Sn without replace-
ment. We also aim to bound ∥α̂r − α̂n∥∞.

2.3. The Optimization of SimpleMKKM

Before stating our results, we first introduce how to optimize
the objective function fn in Eq.(3).

In (Liu, 2022), the author first proves the differentiability of
fn(α) and utilizes the reduced gradient descent method to
minimize it w.r.t. α. With some fixed u ∈ [m], ∀p ̸= u, its
reduced gradient is

[▽fn(α)]p =
∂fn(α)

∂αp
− ∂fn(α)

∂αu
.

To satisfy the simplex constraint, we know the gradient of
the u-th component is

[▽fn(α)]u =
∑
p ̸=u

(
∂fn(α)

∂αu
− ∂fn(α)

∂αp

)
,

where

∂fn(α)

∂αp
=

2αp

n(m− 1)
Tr
(
KpH

αHα⊤) ,
when the kernel weights are α and the corresponding cluster-
ing indicator matrix is Hα. Then, the final descent direction
is

d̂ =


0, if αp = 0 and [▽fn(α)]p ≥ 0,

− [▽fn(α)]p, if αp ≥ 0 and p ̸= u,

− [▽fn(α)]u, if p = u.

Denoting γ as the learning step length, we can update α by
α = α+ γd̂. For ease of analysis, we let γ ≤ c, where c is
some positive constant.

Similarly, because the eigenfunctions corresponding to the
first k eigenvalues of the operator LKα : LKαg(x) =∫
X Kα(x, y)g(y)dρ(y) are unique, we know that f(α) is

also differentiable by Theorem 4.1 in (Bonnans & Shapiro,
1998). Fixed some u ∈ [m], we can compute the reduced
gradient of Eq.(2) as follows,

[▽f(α)]p =
∂f(α)

∂αp
− ∂f(α)

∂αu
, (∀p ∈ [m], p ̸= u),
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and

[▽f(α)]u =
∑
p ̸=u

(
∂f(α)

∂αu
− ∂f(α)

∂αp

)
,

where ∀p ∈ [m],

∂f(α)

∂αp
=

2αp

m− 1

k∑
j=1

∫∫
X
Kα(x, y)h

α
j (x)h

α
j (y)dρ(x)dρ(y).

where hα
j (·) is the j-th clustering indicator function when

the kernel weights are α. The optimization of f(α) is
similar to fn(α).

3. Related Work
In the general setting of learning tasks, the training set is
drawn from an underlying probability distribution. In such
cases, clustering algorithms should satisfy the following
fundamental consistency criteria. When the sample number
goes to infinite, the parameters, such as clustering centroids
and eigenvectors of graph Laplacian matrices, constructed
by the clustering algorithm should converge to the parame-
ters of the whole underlying space. In the existing literature,
several studies are proposed to derive the consistency of
classic clustering algorithms.

3.1. Consistency of k-means

Pollard (1981b) shows the consistency of the global min-
imizer of the objective function for k-means clustering.
Specifically, given a set of points {xi}ni=1, the objective
function of k-means is

W (A, ρn) =

∫
X
min
a∈A

∥x− a∥2dρn(x),

where A = {a1, · · · , ak} is a group of clustering centriods.
For a fixed A, by the law of large numbers,

W (A, ρn) → W (A, ρ) :=

∫
X
min
a∈A

∥x− a∥2dρ(x).

Denote that An = argminA W (A, ρn) and A∗ =
argminA W (A, ρ). The author of (Pollard, 1981b) shows
that An can converge almost surely A∗. However, the con-
vergence rate is not studied in (Pollard, 1981b). Subse-
quently, variants of k-means are proven to have consistency
guarantees (Sun et al., 2012; Georgogiannis, 2016; Paul
et al., 2023).

3.2. Consistency of Spectral Clustering

Spectral clustering is another important algorithm for par-
titioning non-linear datasets. The consistency of spectral
clustering is studied in (Von Luxburg et al., 2008). The
authors in (Von Luxburg et al., 2008) show that the nor-
malized graph Laplacian matrix’s eigenfunctions converge

to a Laplacian operator’s eigenfunctions. In particular, as-
sume that K ∈ Rn×n is the data similarity matrix, and D
is a diagonal matrix with elements dii :=

∑n
j=1 Kij . The

normalized graph Laplacian is

Un = I−D−1/2KD−1/2.

Then, the corresponding Laplacian operator U is defined by

Uf(x) = f(x)−
∫
X
K(x, y)f(y)/

√
d(x)d(y)dρ(y),

where d(x) =
∫
X K(x, y)dρ(y). Then the spectra relation

between Un and U is theoretically derived in (Von Luxburg
et al., 2008), and the convergence rate is also given for the
Gaussian kernel. The consistency properties of other cate-
gories of algorithms based on spectral clustering are studied
in (Ghoshdastidar & Dukkipati, 2017; Zhixin Zhou;Amini,
2019).

Although the consistency of k-means and spectral clustering
is well studied in existing research, multiple kernel cluster-
ing (MKC) still lacks consistency guarantees. To fill this
gap, we theoretically study the consistency of kernel weights
of MKC and derive the corresponding convergence rate.

4. Main Results
In this section, we present our main results. Besides the
general assumptions, we need the following assumption.
Assumption 4.1. For any vector γ ∈ Rm, let δj(γ) be
the gap between the j-th eigenvalue and the (j + 1)-th
eigenvalue of 1

nKγ . For any j ∈ [k], there exists some
constant c ≥ 0 such that δj(γ) ≥ 1/c holds with any
γ ∈ △.

Remark. This assumption commonly appears in matrix per-
turbation theory (Stewart, 1990; Chen et al., 2016). In the
study of the perturbation of eigenvectors and orthogonal
projectors, the gaps of eigenvalues are usually regarded as
constants. For example, Mitz & Shkolnisky (2022) derive
the bounded difference of eigenvectors in Nyström approxi-
mation by assuming the eigen gaps are constants. We use
a similar technique of (Von Luxburg et al., 2008) to prove
our main results. Notice that Assumption 4.1 also implies
all the eigenvalues are separated as the assumption made in
(Von Luxburg et al., 2008).

The following two theorems are our main results. The first
is the difference between the kernel weights learned from
the training set Sn and the sample space X .
Theorem 4.2. Under Assumption 4.1, with the same initial-
ization and learning step length γ ≤ c, after convergence,
the solutions of SimpleMKKM on Sn and X are α̂n,α

∗,
respectively. Then

∥α̂n −α∗∥∞ ≾ k

√
log(k/δ)

n
,
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holds with probability at least 1− δ.

Remark. As far as we know, this is the first result about
the consistency of the kernel weights in MKC algorithms.
This result can be used to obtain some essential properties
of MKC algorithms. In the next section, we can obtain
the excess risk bound by utilizing this theorem, which is
the same as the single kernel clustering proposed in (Biau
et al., 2008). The proof can be found in Section B.3 of the
appendix.
Theorem 4.3. Under Assumption 4.1, with the same initial-
ization and learning step length γ ≤ c, after convergence,
the solutions of SimpleMKKM on Sn and its subset Sr (sam-
pling without replacement) are α̂n, α̂r, respectively. Then

∥α̂r − α̂n∥∞ ≾ k

√(
1

r
− 1

n

)
log

(
k

δ

)
,

holds with probability at least 1− δ.

Remark. Theorem 4.3 implies that the difference of the ker-
nel weights learned from Sn and Sr has a fast convergence
rate as r → n. Thus, we can approximate the kernel weights
learned from Sn when r is sufficiently large. Consequently,
we propose a large-scale extension with a learning guarantee
for SimpleMKKM, which will be described in Section 6.

5. The analysis of Excess Clustering Risk
In (Liu, 2022), the author gives an upper bound of the gener-
alization clustering risk. However, the objective function of
(Liu, 2022) being analyzed is not a standard clustering risk
function. Moreover, the excess risk bound of SimpleMKKM
has not been studied, which is a more general form than the
generalization bound.

We first define the loss function for any x ∈ X . When the
kernel weights are α ∈ Rm, the feature map of x is

ϕα(x) = [α1ϕ
⊤
1 (x), · · · , αmϕ⊤

m(x)]⊤.

We denote the Hilbert space that ϕα(x) belongs to as Hα.
For some clustering centroids C = {cj}kj=1 ∈ Hk

α, the loss
function of x is

l(x,C,α) = min
j∈[k]

∥ϕα(x)− cj∥2. (4)

Accordingly, the empirical clustering risk can be expressed
as

Wn(C,α, ρn) =
1

n

n∑
i=1

min
j∈[k]

∥ϕα(xi)− cj∥2,

and the expected clustering risk is denoted as

W(C,α, ρ) =

∫
X
min
j∈[k]

∥ϕα(x)− cj∥2dρ(x).

We denote that the kernel weights learned by performing
SimpleMKKM on the training set Sn are α̂n, and the homol-
ogous clustering centroids are Ĉ = {ĉj}kj=1 ∈ Hk

α̂n
. When

the input is the sample space, the output kernel weights are
denoted as α∗, and the clustering centroids are C∗ which
satisfies C∗ = argminC∈Hk W(C,α∗, ρ). To verify the
generalization ability of the learned kernel weights and clus-
tering centroids, we need to upper bound the following
formula

ESn
[W(Ĉ, α̂n, ρ)]−W(C∗,α∗, ρ). (5)

We must perform the standard k-means to obtain the clus-
tering centroids Ĉ. It is well known that finding the op-
timal solution of k-means is an NP-hard problem. This
paper does not discuss the relationship between the clus-
tering centroids obtained by standard k-means and the op-
timal ones. Consequently, we simply assume that Ĉ =
argminC∈Hk

α̂n
Wn(C, α̂n, ρn).

To bound Eq.(5), we process a decomposition as follows

ESn [W(Ĉ, α̂n, ρ)]−W(C∗,α∗, ρ)

=ESn
[W(Ĉ, α̂n, ρ)−Wn(Ĉ, α̂n, ρn)]︸ ︷︷ ︸

A

+ESn
[Wn(Ĉ, α̂n, ρn)−Wn(C

∗,α∗, ρn)]︸ ︷︷ ︸
B

+ESn
[Wn(C

∗,α∗, ρn)]−W(C∗,α∗, ρ)︸ ︷︷ ︸
C

.

Term A and Term C are the same as the generalization risk of
single kernel clustering, and their upper bound is O(k/

√
n)

(Biau et al., 2008).

Term B can be bounded by ∥α̂−α∗∥∞ multiplying a con-
stant. Combining with Theorem 4.2, we can obtain the
excess risk bound of SimpleMKKM by the following theo-
rem.
Theorem 5.1. The excess clustering risk of SimpleMKKM
can be upper bounded by Õ(k/

√
n).

Remark. Theorem 5.1 gives the upper bound of the excess
risk of SimpleMKKM with a standard clustering loss func-
tion as is represented in Eq. (4). Meanwhile, the objective
function analyzed in (Liu, 2022) is in the form of the inner
product, and it is uncommon among the studies of clustering
risk bound. Thus, the proposed risk bound is more rational
than the one in (Liu, 2022). The detailed proof of Theorem
5.1 is in Section B.5 of the appendix.

6. Large-Scale Extension with Nyström
Method

In this section, we use Nyström method to propose a large-
scale strategy for SimpleMKKM. Nyström method is usu-
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ally used to accelerate kernel k-means such that the time
complexity is linear with the sample number n (Calandriello
& Rosasco, 2018). However, existing works rarely apply
Nyström method to multiple kernel clustering. In a recent
paper (Lu et al., 2022), the authors make the first attempt
and propose a scalable multiple kernel k-means clustering.
However, their method lacks a theoretical learning guaran-
tee, and the number of sampled points will be an additional
hyperparameter. Selecting an optimal hyperparameter in the
unsupervised scenario is still an open problem. To address
the above issues, we propose a novel algorithm, and the
detailed process is listed as follows.

1. Sampling r points {yi}ri=1 (without replacement) from
n points {xi}ni=1.

2. Perform SimpleMKKM on {yi}ri=1, and the output
kernel weights are denoted as α̂r.

3. In the p-th kernel, we denote the kernel similarity ma-
trix consisting of all n samples and r selected samples
as Rp ∈ Rn×r, and the kernel matrix consisting of
r samples is Wp. We then use α̂r to make weighted
combinations of the above matrices which are denoted
as Rα̂r

and Wα̂r
, respectively.

4. Performing eigen decomposition on Wα̂r
, we have

Wα̂r
= UrΛrU

⊤
r .

5. Perform standard k-means on the rows of
Rα̂r

UrΛ
−1/2
r to obtain the final clustering re-

sults.

The above algorithm is simple but efficient and effective.
We then give an analysis of the complexity and its excess
risk bound.

Computational and storage complexity. In Step 2, per-
forming SimpleMKKM on m base kernel matrices of
size r × r costs O(Tr3 + Tmr2) time, and occupies
O(mr2) space, where T is the iteration number of Sim-
pleMKKM. In Step 3, the computations of Rα̂r

and Wα̂r

cost O((m− 1)(nr + r2)) time, and the space complexity
is O(mnr + mr2). Step 4 is the eigen decomposition of
Wα̂r

whose time consumption is O(r3). In Step 5, comput-
ing Rα̂r

UrΛ
−1/2
r costs O(nr2) time and the subsequent

k-means consumes O(nrkT1) time, where k is the cluster
number and T1 is the iteration number of k-means. Above
all, if r ≪ n, the computational and storage complexity is
linear with n. As a result, the proposed method can handle
large-scale datasets.

Excess risk bound. Besides the complexity analysis, to
illustrate the effectiveness of the proposed method, we also
give an upper bound of it. We assume that the clustering
centroids learned by our method are C̃n,r which belong

to the space Rr × · · · × Rr︸ ︷︷ ︸
k

2. Then, we can compute the

corresponding clustering centroids Ĉn,r in the Hilbert space
Hk

α̂r
by Ĉn,r = Φα̂r

r UrΛ
−1/2
r , where Φα̂r

r is the feature
map of r selected points when the kernel weights are α̂r.
Specifically, the i-th column of Φα̂r

r is

[α̂r(1)ϕ
⊤
1 (yi), · · · , α̂r(m)ϕ⊤

m(yi)]
⊤,

where α̂r(p) denotes the p-th component of α̂r.

We should give the upper bound of the following formula
to verify the generalization ability of the learned kernel
weights and clustering centroids.

ES [W(Ĉn,r, α̂r, ρ)]−W(C∗,α∗, ρ).

We can deduce Theorem 6.1 by our theoretical result about
the consistency of kernel weights.
Theorem 6.1. When the number of selected points is r, then

ESn [W(Ĉn,r, α̂r, ρ)]−W(C∗,α∗, ρ)

can be upper bounded by

Õ
(
k

r
+

k√
r
+

k√
n

)
.

Remark. Usually, we let r = Θ(
√
n). In this case, Theorem

6.1 gives an upper bound as Õ(kn−1/4), which is very loose
and unsatisfactory. Fortunately, we can further improve this
result.

Tighter risk bound. In (Yin et al., 2022a;b; 2020b), Yin et
al. give several randomized sketching methods for cluster-
ing, and provide a risk bound for the sketching dimension.
Surprisingly, we can use a similar technique of (Yin et al.,
2022a;b; 2020b) to establish the following theorem, provid-
ing a tighter bound than Theorem 6.1.
Theorem 6.2. When the number of selected points r ≥

log(2/δ)
ε−log(1+ε) ,

ESn [W(Ĉn,r, α̂r, ρ)]−W(C∗,α∗, ρ)

can be bounded by

Õ
(
k

r
+

k√
n
+ kε

)
.

Remark. Larger r can make the above bound tighter but
cost more time. To make a favorable statistical and com-
putational trade-off, we should select an appropriate r. In
Theorem 6.2, let ε = 1/

√
n, then r = Ω(

√
n) and the ex-

cess risk bound is Õ(k/
√
n). The proof of Theorem 6.2 is

in Section B.6 of the appendix.

2Rr × · · · × Rr︸ ︷︷ ︸
k

is the k-multiple Cartesian products of Rr .
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7. Experiments
The experiments compose of two parts. The first part vali-
dates the non-asymptotic bound of the difference between
the kernel weights learned from the whole dataset and its
subset as shown in Theorem 4.3. The second part is the
numerical experiment of the proposed large-scale algorithm.
All experiments are conducted on a laptop with Intel(R)
Core(TM)-i7-10870H CPU.

7.1. The Difference of Kernel Weights

Table 1. Benchmark datasets
Datasets Samples Kernels Clusters

Flo17 1360 7 17
Flo102 8189 4 102
DIGIT 2000 3 10
PFold 694 12 27
CCV 6773 3 20

Reuters 18758 5 6

We conduct experiments on 6 benchmark datasets, including
Flo17, Flo102, DIGIT, PFold, CCV and Reuters. We report
the detailed information in Table 1, and their URLs can be
found in Appendix D. For each dataset, we first perform
SimpleMKKM on the whole samples to obtain the kernel
weights α̂n. Then, we sample r points without replacement.
We run SimpleMKKM on these r samples and record the
corresponding kernel weights. To reduce the influence of
randomness, we repeat the above process 50 times and com-
pute the average kernel weights, denoted as α̂r. The number
of selected points r varies in [100, 200, · · · , 3000]. We let
r be smaller than the whole sample number for the small
datasets. In addition, for the datasets with large cluster num-
bers k, we let r be bigger than k. We compute the values of
∥α̂n − α̂r∥∞ for different r, and illustrate them in Figure
1.

In Figure 1, the blue points reflect the variation trend of
∥α̂n − α̂r∥∞ as r becomes larger. As seen, ∥α̂n − α̂r∥∞
tends to be smaller and converges to a small value when r
is large enough. As a reference, we plot the image of the
function f(r) = a

√
1/r − 1/n by a red curve, and report

the different a’s of all the 6 datasets in the right-hand corner
of Figure 1. It can be observed that the blue points are
bounded by the red curve. This verifies the correctness of
the bound in Theorem 4.3. Moreover, the difference of the
blue points and the red curve is small when r is small. It
shows the tightness of the proposed bound. Meanwhile, this
difference becomes larger as r is larger.

Table 2. Large-scale datasets used in the experiments

Dataset Samples Views Clusters
NUSWIDE 30000 5 31

AwA 30475 6 50
CIFAR10 50000 3 10
YtVideo 101499 5 31

Winnipeg 325834 2 7
Covertype 581012 2 10

7.2. Experiments on Large-Scale Datasets

In Section 6, we propose a method with Nyström that can
make SimpleMKKM able to deal with large-scale datasets.
Furthermore, we analyze the proposed method’s complexity
and excess risk bound in theory. We conduct experiments
on 6 large-scale datasets in this subsection to test the actual
clustering performance and running time. The used datasets
are NUSWIDE, AwA, CIFAR10, YtVideo, Winnipeg, and
Covertype. Their sample numbers, cluster numbers, and
view numbers can be found in Table 2. The number of
samples ranges from 30000 to 581012. Such large-scale
datasets are rarely seen in the research of kernel clustering,
especially for multiple kernel clustering. Despite this, the
proposed algorithm is still able to handle them. Due to
the limited space, the URLs of these datasets are listed in
Appendix D.

For each view, we use the Gaussian RBF kernel to construct
the kernel similarity matrix between the whole training set
Sn and the selected subset Sr, i.e.,

K(x, z) = exp

(
−∥x− z∥2

2σ2

)
,

where x ∈ Sn, z ∈ Sr, and σ is the square root of the
average interpoint distance between Sn and Sr, i.e.,

σ =

√
1

nr

∑
x∈Sn

∑
z∈Sr

∥x− z∥2.

As proven in Section 6, by setting r = Θ(
√
n), the proposed

algorithm can have a favorable statistical and computational
trade-off. For a sufficient r, we let r = 3 · ⌈

√
n⌉. Because

the used datasets are extra large, existing multiple kernel
clustering methods can rarely be performed on them. Thus,
we only perform single kernel clustering with Nyström on
each kernel for comparisons. Our experiments use three
frequently-used clustering metrics: accuracy (ACC), nor-
malized mutual information (NMI), and purity. We also
record the execution time of all experiments. The experi-
mental results are reported in Table 3. Notice that the best
results are in bold fonts, and we underline the second-best
results for each dataset.
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Figure 1. The difference of the kernel weights learned from 6 benchmark datasets and their respective subsets. The blue points record the
true difference of the numerical experiments, while the red curves are the image of f(r) = a

√
1/r − 1/n, where the value a differs in

all 6 datasets.

As seen from Table 3, the experimental results show that the
proposed method achieves the best clustering performance.
At the same time, the time consumption is slightly larger
than the single kernel k-means with Nyström. Specifically,
from this table, we have the following observations:

1. The proposed method outperforms the second-best results
by 1.36%, 1.83%, 15.42%, 1.72%, 8.27%, and 3.91% in
terms of NMI on all six datasets. On the other two clustering
metrics, the proposed method also performs best.

2. Notice that the sample numbers of the last three datasets
are enormous. Although such large-scale datasets are rarely
seen in the studies of kernel clustering, the proposed method
can also handle them within hundreds of seconds.

In summary, the proposed method demonstrates superior
clustering performance and has a high execution efficiency
on all benchmark datasets.

8. Conclusions and Future Works
In the paper, we study the consistency of multiple kernel
clustering. We have obtained two important bounds, i.e.,
the bounds of ∥α̂n − α∗∥∞ and ∥α̂r − α̂n∥∞, where
α̂r, α̂n,α

∗ are respectively the kernel weights learned
from Sr, Sn,X by SimpleMKKM. We then use the de-
rived bounds to obtain the excess risk bound of Sim-
pleMKKM. Moreover, we make a large-scale extension
of SimpleMKKM with a theoretical learning guarantee. Be-
sides the theoretical analysis, we conduct experiments to

verify the proposed results and the large-scale algorithm.

In the future, we will focus on the following three aspects
to improve our work.

1. The proposed bound of the kernel weights could be
further improved for a tighter excess risk bound. In our
proofs, we use the excess risk bound of single kernel cluster-
ing, which is Õ(k/

√
n) (Biau et al., 2008). However, Liu

(2021) improves the above bound as Õ(
√

k/n), and prove
its tightness. We want to know whether the proposed bound
of the difference of the kernel weights can be improved
from Õ(k/

√
n) to Õ(

√
k/n). Accordingly, the excess risk

bound of multiple kernel clustering can also be improved.

2. The proposed large-scale algorithm is effective and effi-
cient, but there is room for improvement in multiple kernel
clustering. We will try to design more large-scale algorithms
for better clustering performance and higher operating effi-
ciency.

3. As is well known, kernel clustering has a significant
connection with spectral clustering (Dhillon et al., 2004).
Meanwhile, this connection still exists among multiple ker-
nel clustering and multi-view spectral clustering (MVSC).
Although the consistency of spectral clustering has been
discovered by (Von Luxburg et al., 2008), the consistency of
MVSC needs to be further studied. We will explore whether
MVSC has consistency with the techniques proposed in this
paper.
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Table 3. The clustering performance on large-scale datasets.

(a) NUSWIDE

Method ACC NMI Purity Time(s)
View1 13.58 8.59 20.30 7.84
View2 12.67 9.23 20.97 7.87
View3 13.65 9.48 21.79 8.10
View4 16.16 12.08 24.69 8.26
View5 14.28 10.21 23.61 10.34

Proposed 16.64 13.44 25.19 12.09

(b) AwA

Method ACC NMI Purity Time(s)
View1 7.56 7.05 8.69 13.18
View2 7.65 7.79 8.79 13.33
View3 7.23 6.16 7.85 14.01
View4 7.82 8.08 9.04 17.47
View5 8.15 9.06 9.27 15.92
View6 8.09 8.21 9.44 13.47

Proposed 9.42 10.89 10.78 22.41

(c) CIFAR10

Method ACC NMI Purity Time(s)
View1 73.34 65.87 74.22 6.35
View2 71.54 62.36 73.50 6.57
View3 63.63 54.41 65.29 6.55

Proposed 81.36 81.29 85.53 12.35

(d) YtVideo

Method ACC NMI Purity Time(s)
View1 9.79 5.37 26.87 30.85
View2 17.81 15.32 29.09 29.27
View3 13.74 11.29 27.07 33.93
View4 18.29 16.51 29.76 33.75
View5 18.97 11.67 28.59 30.22

Proposed 18.97 17.04 29.36 60.26

(e) Winnipeg

Method ACC NMI Purity Time(s)
View1 60.20 47.72 71.84 188.79
View2 56.84 44.60 65.42 121.81

Proposed 68.93 55.99 76.33 164.81

(f) Covertype

Method ACC NMI Purity Time(s)
View1 36.34 10.64 54.23 391.18
View2 48.76 11.32 48.76 402.54

Proposed 45.26 15.23 55.21 485.52

9. Acknowledgments
This work was supported by the National Key R&D Program
of China 2020AAA0107100, Youth Foundation Project
of Zhejiang Lab (No. K2023PD0AA01), and the Na-
tional Natural Science Foundation of China (project no.
62002170, 61773392, 61872377, 61922088, 61976196, and
62006237).

References
Bardenet, R. and Maillard, O.-A. Concentration inequal-

ities for sampling without replacement. In Bernoulli,
volume 21, pp. 1361–1385, 2015.

Bengio, Y., Delalleau, O., Roux, N. L., Paiement, J.-F., Vin-
cent, P., and Ouimet, M. Learning eigenfunctions links
spectral embedding and kernel pca. Neural computation,
16(10):2197–2219, 2004.

Biau, G., Devroye, L., and Lugosi, G. On the performance
of clustering in hilbert spaces. In IEEE Transactions on
Information Theory (TIT), pp. 781–790, 2008.

Bonnans, J. F. and Shapiro, A. Optimization problems with
perturbations: A guided tour. In SIAM review, volume 40,
pp. 228–264. SIAM, 1998.

Calandriello, D. and Rosasco, L. Statistical and computa-
tional trade-offs in kernel k-means. In Advances in neural
information processing systems (NeurIPS), volume 31,
2018.

Chen, Y. M., Chen, X. S., and Li, W. On perturbation bounds
for orthogonal projections. In Numerical Algorithms, pp.
433–444, 2016.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C.
Introduction to algorithms. MIT press, 2022.

Dhillon, I. S., Guan, Y., and Kulis, B. Kernel k-means:
spectral clustering and normalized cuts. In Proceedings
of the tenth ACM SIGKDD international conference on
Knowledge discovery and data mining (KDD), pp. 551–
556, 2004.

Du, L., Zhou, P., Shi, L., Wang, H., Fan, M., Wang, W.,
and Shen, Y.-D. Robust multiple kernel k-means using
l21-norm. In Twenty-fourth international joint conference
on artificial intelligence (IJCAI), 2015.

Georgogiannis, A. Robust k-means: a theoretical revisit.
In Advances in Neural Information Processing Systems
(NeurIPS), volume 29, 2016.

Ghoshdastidar, D. and Dukkipati, A. Consistency of spectral
hypergraph partitioning under planted partition model. In
The Annals of Statistics, volume 45, pp. 289 – 315, 2017.

9



Consistency of Multiple Kernel Clustering

Huang, H.-C., Chuang, Y.-Y., and Chen, C.-S. Multiple
kernel fuzzy clustering. In IEEE Transactions on Fuzzy
Systems (TFS), pp. 120–134, 2011.

Liu, J., Liu, X., Wang, S., Zhou, S., and Yang, Y. Hierarchi-
cal multiple kernel clustering. In Proceedings of the AAAI
conference on artificial intelligence (AAAI), volume 35,
pp. 8671–8679, 2021.

Liu, X. Simplemkkm: Simple multiple kernel k-means.
In IEEE Transactions on Pattern Analysis and Machine
Intelligence. IEEE, 2022.

Liu, X., Dou, Y., Yin, J., Wang, L., and Zhu, E. Multiple
kernel k-means clustering with matrix-induced regulariza-
tion. In Proceedings of the AAAI Conference on Artificial
Intelligence (AAAI), pp. 1888–1894, 2016.

Liu, Y. Refined learning bounds for kernel and approximate
k-means. In Advances in Neural Information Processing
Systems (NeurIPS), 2021.

Lu, Y., Xin, H., Wang, R., Nie, F., and Li, X. Scalable
multiple kernel k-means clustering. In Proceedings of
the 31st ACM International Conference on Information &
Knowledge Management (CIKM), pp. 4279–4283, 2022.

McDiarmid, C. On the method of bounded differences.
In Surveys in combinatorics, volume 141, pp. 148–188.
Norwich, 1989.

Mitz, R. and Shkolnisky, Y. A perturbation-based kernel ap-
proximation framework. In Journal of Machine Learning
Research (JMLR), volume 23, pp. 1–26, 2022.

Paul, D., Chakraborty, S., Das, S., and Xu, J. Implicit
annealing in kernel spaces: A strongly consistent cluster-
ing approach. In IEEE Transactions on Pattern Analysis
and Machine Intelligence (TPAMI), volume 45, pp. 5862–
5871, 2023.

Pollard, D. Strong consistency of k-means clustering. In
The Annals of Statistics, pp. 135–140. JSTOR, 1981a.

Pollard, D. Strong consistency of k-means clustering. In
The Annals of Statistics, volume 9, pp. 135–140, 1981b.

Rosasco, L., Belkin, M., and Vito, E. D. On learning with
integral operators. In Journal of Machine Learning Re-
search (JMLR), pp. 905–934, 2010.

Stewart, G. W. Matrix perturbation theory. Citeseer, 1990.

Sun, W., Wang, J., and Fang, Y. Regularized k-means
clustering of high-dimensional data and its asymptotic
consistency. In Electronic Journal of Statistics, volume 6,
pp. 148 – 167, 2012.

Von Luxburg, U., Belkin, M., and Bousquet, O. Consistency
of spectral clustering. In The Annals of Statistics, pp.
555–586, 2008.

Wang, R., Lu, J., Lu, Y., Nie, F., and Li, X. Discrete
multiple kernel k-means. In Proceedings of the Thirtieth
International Joint Conference on Artificial Intelligence
(IJCAI), pp. 3111–3117, 2021.

Yin, R., Liu, Y., Wang, W., and Meng, D. Extremely
sparse johnson-lindenstrauss transform: From theory
to algorithm. In 2020 IEEE International Conference
on Data Mining (ICDM), pp. 1376–1381, 2020a. doi:
10.1109/ICDM50108.2020.00180.

Yin, R., Liu, Y., Wang, W., and Meng, D. Extremely sparse
johnson-lindenstrauss transform: From theory to algo-
rithm. In 2020 IEEE International Conference on Data
Mining (ICDM), pp. 1376–1381. IEEE, 2020b.

Yin, R., Liu, Y., Wang, W., and Meng, D. Randomized
sketches for clustering: Fast and optimal kernel k-means.
In Advances in Neural Information Processing Systems
(NeurIPS), 2022a.

Yin, R., Liu, Y., Wang, W., and Meng, D. Scalable kernel
k-means with randomized sketching: From theory to
algorithm. In IEEE Transactions on Knowledge and Data
Engineering (TKDE). IEEE, 2022b.

Yu, Y., Wang, T., and Samworth, R. J. A useful variant of
the davis-kahan theorem for statisticians. In Biometrika,
pp. 315–323, 2014.

Zhao, B., Kwok, J. T., and Zhang, C. Multiple kernel
clustering. In International Conference on Data Mining
(ICDM), pp. 638–649, 2009.

Zhixin Zhou;Amini, A. A. Analysis of spectral clustering
algorithms for community detection: the general bipar-
tite setting. In Journal of Machine Learning Research
(JMLR), volume 20, pp. 1–47, 2019.

Zwald, L. and Blanchard, G. On the convergence of
eigenspaces in kernel principal component analysis. In
Advances in Neural Information Processing Systems
(NeurIPS), volume 18, 2005.

10



Consistency of Multiple Kernel Clustering

A. Overview of the Proofs
In this section, we outline the proofs of the main results proposed in Section 4.

A.1. Proof Technique of Theorem 4.2

To study the difference between α̂n and α∗, we should quantify the difference of alignment of the p-th base kernel and the
clustering indicator functions, which are respectively defined as

ϵ̂(Kp, {ĥα
j }kj=1) =

1

n2

k∑
j=1

n∑
i=1

n∑
t=1

Kp(xi, xt)ĥ
α
j (xi)ĥ

α
j (xt),

ϵ(Kp, {hα
j }kj=1) =

k∑
j=1

∫∫
X
Kp(x, y)h

α
j (x)h

α
j (y)dρ(x)dρ(y),

where ĥα
j , h

α
j are the clustering indicator functions of the operators of 1

nKα and LKα .

In each iteration, we denote α is the kernel weights obtained from Sn, and the corresponding first k eigenfunctions are
{ĥα

j (·)}kj=1. Accordingly, we denote β as the kernel weights learned from the sample space X in the same iteration, and

{hβ
j (·)}kj=1. We then bound

∣∣∣ϵ̂(Kp, {ĥα
j }kj=1)− ϵ(Kp, {hβ

j }kj=1)
∣∣∣. By decoupling the kernel weights and alignment, we

can deduce that
ϵ̂(Kp, {ĥα

j }kj=1)− ϵ(Kp, {hβ
j }

k
j=1)

= ϵ̂(Kp, {ĥα
j }kj=1)− ϵ̂(Kp, {ĥβ

j }
k
j=1)︸ ︷︷ ︸

A

+ ϵ̂(Kp, {ĥβ
j }

k
j=1)− ϵ(Kp, {hβ

j }
k
j=1)︸ ︷︷ ︸

B

. (6)

By the assumption of the eigen gap of 1
nKα, we can use matrix perturbation theory to bound Term A as

A ≾ ∥α− β∥∞. (7)

The following lemma reflects how the alignment level of arbitrary kernel function K(·, ·) and {hj}kj=1 differs from the
alignment level of K(·, ·) and {ĥj}kj=1.

Lemma A.1. Under Assumption 4.1,

∣∣∣ϵ̂(K, {ĥj}kj=1)− ϵ(K, {hj}kj=1)
∣∣∣ ≾ k

√
log(k/δ)

n

holds with probability at least 1− δ.

By Lemma A.1, for any β, we have

B ≤ k

√
log(k/δ)

n
. (8)

Above all, we have the following theorem.

Theorem A.2. Under Assumption 4.1, for any α,β ∈ △,∣∣∣ϵ̂(Kp, {ĥα
j }kj=1)− ϵ(Kp, {hβ

j }
k
j=1)

∣∣∣
≾∥α− β∥∞ + k

√
log(k/δ)

n
,

holds with probability at least 1− δ.
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The sketching proof of Theorem 4.2. In all iterations, denote that the kernel weights learned from the training set are
respectively

α(0), · · · ,α(T ).

Meanwhile, the kernel weights obtained from the whole sample space are

β(0), · · · ,β(T ).

With the same initialization, we know α0 = β0. Then, it is easy to check that for any integer t ≥ 0,∥∥∥α(t+1) − β(t+1)
∥∥∥
∞

≾
∥∥∥α(t) − β(t)

∥∥∥
∞

+
∣∣∣ϵ̂p(α(t))− ϵp(β

(t))
∣∣∣ ,

where ϵ̂p(α
(t)) is a brief notation of ϵ̂(Kp, {ĥα(t)

j }kj=1) as well as for ϵp(β(t)).

With Theorem A.2, we then have∥∥∥α(t) − β(t)
∥∥∥
∞

≾
∥∥∥α(t−1) − β(t−1)

∥∥∥
∞

+ k

√
log(k/δ)

n
.

By repeating the above process and the convergence of the reduced gradient descent algorithm, the result of Theorem 4.2
follows. The detailed proof is in Section B.3 of the appendix.

A.2. Proof Technique of Theorem 4.3

The proof process is similar to Theorem 4.2. By the utilization of the similar notations as the above subsection, we define
the alignment level of the training set of n points as

ϵ̂(Kp, {ĥn,j}kj=1) =
1

n2

k∑
j=1

n∑
i=1

n∑
j=1

Kp(xi, xj)ĥn,j(xi)ĥn,j(xj),

where ĥn,j is the approximated clustering indicator function. Similar, the alignment level of r points (sampling from Sn

without replacement) can be defined as

ϵ̂(Kp, {ĥr,j}kj=1) =
1

r2

k∑
j=1

r∑
i=1

r∑
t=1

Kp(xi, xt)ĥr,j(xi)ĥr,j(xt).

We first quantify the difference between the above two terms by the concentration properties for sampling without
replacement, as shown in the following lemma.

Lemma A.3. Under Assumption 4.1,

∣∣∣ϵ̂(Kp, {ĥn,j}kj=1)− ϵ̂(Kp, {ĥr,j}kj=1)
∣∣∣ ≾ k

√(
1

r
− 1

n

)
log

(
k

δ

)
,

holds with probability at least 1− δ.

Let α be some kernel weights obtained from the training set Sn and β be the kernel weights from Sr. Similar to Theorem
A.2, we have the important undermentioned theorem.

Theorem A.4. Under Assumption 4.1,

∣∣∣ϵ̂(Kp, {ĥα
n,j}kj=1)− ϵ̂(Kp, {ĥβ

r,j}
k
j=1)

∣∣∣ ≾ ∥α− β∥∞ + k

√(
1

r
− 1

n

)
log

(
k

δ

)
,

holds with probability at least 1− δ.

By Theorem A.4, Theorem 4.3 can be obtained similarly as the proof of Theorem 4.2.
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B. Detailed Proof
B.1. The Proof of Lemma A.1

The proof is based on a concentration inequality and the bounded difference of two operators. We first introduce the two
lemmas which are important to our proof.

The first lemma is the famous McDiarmid’s inequality.
Lemma B.1. (McDiarmid, 1989) If f has c-bounded differences on the sample space X , then for all ε > 0:

Pr(|f(Sn)− E
Sn

[f(Sn)]| ≥ ε) ≤ 2 exp

(
− 2ε2

nc2

)
,

where f is some function of Sn.

The second lemma is about the bounded difference of an operator defined in Hilbert space and its empirical version.
Lemma B.2. (Rosasco et al., 2010) Define two operators as

Tn : H → H, Tn =
1

n

n∑
i=1

⟨·,Kxi
⟩Kxi

,

and
TH : H → H, TH =

∫
X
⟨·,Kx⟩Kxdρ(x).

The operators TH and Tn are Hilbert-Schmidt. Assume that K(x, x) ≤ 1, then

∥Tn − TH∥ ≤ 2
√
2 log(2/δ)√

n

holds with probability at least 1− δ.

Proof. By the triangle inequality, we have∣∣∣ϵ̂(K, {ĥj}kj=1)− ϵ(K, {hj}kj=1)
∣∣∣

≤
k∑

j=1

∣∣∣∣∣ 1n2

n∑
i=1

n∑
t=1

K(xi, xt)ĥj(xi)ĥj(xt)−
∫∫

X
K(x, y)hj(x)hj(y)dρ(x)dρ(y)

∣∣∣∣∣
For the j-th term, ∣∣∣∣∣ 1n2

n∑
i=1

n∑
t=1

K(xi, xt)ĥj(xi)ĥj(xt)−
∫∫

X
K(x, y)hj(x)hj(y)dρ(x)dρ(y)

∣∣∣∣∣
≤

∣∣∣∣∣∣∣∣∣
1

n2

n∑
i=1

n∑
t=1

K(xi, xt)ĥj(xi)ĥj(xt)−
∫∫

X
K(x, y)ĥj(x)ĥj(y)dρ(x)dρ(y)︸ ︷︷ ︸

C

∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣
∫∫

X
K(x, y)ĥj(x)ĥj(y)dρ(x)dρ(y)−

∫∫
X
K(x, y)hj(x)hj(y)dρ(x)dρ(y)︸ ︷︷ ︸

D

∣∣∣∣∣∣∣∣ .
In C, notice that the latter term is the expectation of the ahead one, so we can give an upper bound of it by McDiarmid’s
inequality. Denote that

G(Sn) =
1

n2

n∑
i=1

n∑
t=1

K(xi, xt)ĥj(xi)ĥj(xt).

13



Consistency of Multiple Kernel Clustering

We replace the l-th sample xl of Sn with x′
l and denote the new training set as S′

n. It can be checked that

G(Sn)−G(S′
n)

≤ 2

n2

n∑
t=1

∣∣∣K(xl, xt)ĥj(xl)ĥj(xt)−K(x′
l, xt)ĥj(x

′
l)ĥj(xt)

∣∣∣
≤ 4

n
.

(9)

By McDiarmid’s inequality (Lemma B.1), we know that there exists a constant c > 0 such that

C ≤ c

√
log(2/δ)

n
,

holds with probability at least 1− δ.

Then we bound Term D, we have

D =

∣∣∣∣∫∫
X
K(x, y)(ĥj(x)ĥj(y)− hj(x)hj(y))dρ(x)dρ(y)

∣∣∣∣
≤ sup

x,y
|ĥj(x)ĥj(y)− hj(x)hj(y)|.

We first define the following operator.

L̂Kf(x) :=
1

n

n∑
i=1

K(x, xi)f(xi).

ĥj is the eigenfunction of L̂K , because

L̂K ĥj(x) =
1

n

n∑
i=1

K(x, xi)ĥj(xi) = λ̂j ĥj(x).

The following proof is similar to the method in (Von Luxburg et al., 2008), which discusses the consistency of spectral
clustering. For completeness, we also give detailed proof. By Theorem 7 and Proposition 18 of (Von Luxburg et al., 2008),
we know that there exists a sequence {aj}j ∈ {1,−1} and a constant C such that

∥aj ĥj − hj∥∞ ≤2∥hj − Pj(K)hj∥∞
≤2C(∥(L̂K − LK)hj∥∞ + ∥(L̂K − LK)L̂K∥)
≤2C(∥L̂K − LK∥∥hj∥∞ + ∥L̂K − LK∥∥L̂K∥),

where Pj(K) is the orthogonal projector onto the subspace spanned by j-th eigenvector of the kernel function K.

Because

sup
∥f∥∞=1

∥L̂Kf∥∞ = sup
∥f∥∞=1

∣∣∣∣∣ 1n
n∑

i=1

K(x, xi)f(xi)

∣∣∣∣∣ ≤ sup
∥f∥∞=1

1

n

n∑
i=1

|K(x, xi)| |f(xi)| ≤ 1,

we can obtain ∥L̂K∥ ≤ 1.

14



Consistency of Multiple Kernel Clustering

By the definition of TH and Tn in Lemma B.2, we can scale ∥aj ĥj − hj∥∞ as

∥aj ĥj − hj∥∞
≤4C∥L̂K − LK∥

=4C sup
x∈X

∥f∥∞=1

∣∣∣∣∣ 1n
n∑

i=1

K(x, xi)f(xi)−
∫
X
K(x, y)f(y)dρ(y)

∣∣∣∣∣
≤4C sup

x∈X
∥f∥∞=1

∣∣∣∣∣∣
〈
Kx,

1

n

n∑
i=1

Kxif(xi)−
∫
X
Kyf(y)dρ(y)

〉
HK

∣∣∣∣∣∣
=4C sup

Kx,f∈HK
f ̸=0

|⟨Kx, (Tn − TH)f⟩HK
|

∥f∥∞

=4C sup
Kx,f∈HK

f ̸=0

|⟨Kx, (Tn − TH)f⟩HK
|

supx∈X |⟨Kx, f⟩HK
|

≤4C sup
Kx,f∈HK

f ̸=0

∣∣∣∣ ⟨Kx, (Tn − TH)f⟩HK

⟨f, f⟩HK

∣∣∣∣
≤4C sup

Kx,f∈HK
f ̸=0

∥Kx∥HK
∥(Tn − TH)f∥HK

∥f∥HK

≤4C∥Tn − TH∥.

Combining Lemma B.2, we know that there exists a constant c > 0 such that

∥aj ĥj − hj∥∞ ≤ c

√
log(2/δ)

n

holds with probability at least 1− δ.

On the other hand, we can obtain

D ≤ sup
x,y

|aj ĥj(x) · aj ĥj(y)− aj ĥj(x)hj(y) + aj ĥj(x)hj(y)− hj(x)hj(y)|

≤ sup
x,y

|aj ĥj(x)||aj ĥj(y)− hj(y)|+ |hj(y)||aj ĥj(x)− hj(x)|

≤ 2∥aj ĥj − hj∥∞.

Thus, there exists c > 0 such that

D ≤ c

√
log(2/δ)

n

holds with probability at least 1− δ.

Above all, there is also a constant c ≥ 0 such that

C +D ≤ c

√
log(4/δ)

n

holds with probability at least 1− δ.

Then, we can obtain the final bound as∣∣∣ϵ̂(K, {ĥj}kj=1)− ϵ(K, {hj}kj=1)
∣∣∣ ≤ ck

√
log(4k/δ)

n

holds with probability at least 1− δ. This because (1− δ/k)k ≥ 1− δ. The proof is complete.
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B.2. The Proof of Theorem A.2

The following lemma is about the perturbation of eigenvectors of Hermitian matrices, which is useful to our proof.

Lemma B.3. (Yu et al., 2014) Let A,B ∈ Rn×n be Hermitian, with eigenvalues λ1 ≥ · · ·λn and λ̂1 ≥ · · · λ̂n respectively.
Fixed 1 ≤ r ≤ s ≤ n and assume that min(λr−1 − λr, λs − λs+1) > 0, where λ0 := ∞ and λn+1 := −∞. Let
d := s − r + 1, let H = [hr,hr+1, · · · ,hs] ∈ Rn×d and Ĥ = [ĥr, ĥr+1, · · · , ĥs] ∈ Rn×d have orthonormal columns
satisfying Ahj = λjhj and Bĥj = λ̂jĥj for j = r, r + 1, · · · , s. Then

∥∥∥sinθ(H, Ĥ)
∥∥∥

F
≤

2min(d1/2∥A−B∥op, ∥A−B∥F)

min(λr−1 − λr, λs − λs+1)
,

where θ(H, Ĥ) ∈ Rd×d is the diagonal matrix whose j-th diagonal entry is the j-th principal angle, i.e., arccos(h⊤
j ĥj).

Proof. We make a decomposition as∣∣∣ϵ̂(Kp, {ĥα
j }kj=1)− ϵ(Kp, {hβ

j }
k
j=1)

∣∣∣
=
1

n
Tr
(
KpH

αHα⊤)− k∑
j=1

∫∫
X
Kp(x, y)h

β
j (x)h

β
j (y)dρ(x)dρ(y)

=
1

n
Tr
(
KpH

αHα⊤)− 1

n
Tr
(
KpH

βHβ⊤)︸ ︷︷ ︸
A

+
1

n2

k∑
j=1

n∑
i=1

n∑
t=1

Kp(xi, xt)ĥ
β
j (xi)ĥ

β
j (xt)−

k∑
j=1

∫∫
X
Kp(x, y)h

β
j (x)h

β
j (y)dρ(x)dρ(y)︸ ︷︷ ︸

B

.

It is sufficient to bound Term B by Lemma A.1. We will use matrix perturbation theory (Stewart, 1990) to bound Term A,
and we can deduce that

A =
1

n
Tr
(
KpH

αHα⊤)− 1

n
Tr
(
KpH

βHβ⊤)
≤
∥∥∥∥Kp

n

∥∥∥∥
F

∥∥HαHα⊤ −HβHβ⊤∥∥
F

≤
√

Tr(K2
p)

n2

∥∥HαHα⊤ −HβHβ⊤∥∥
F

≤

√
Tr2(Kp)

n2

∥∥HαHα⊤ −HβHβ⊤∥∥
F

≤
∥∥HαHα⊤ −HβHβ⊤∥∥

F

=

√√√√2

k∑
j=1

(1− (hα
j
⊤hβ

j )
2)

=

√√√√2

k∑
j=1

(1− cos2θ(hα
j ,h

β
j ))

=
√
2
∥∥sinθ(Hα,Hβ)

∥∥
F .

For any vector α ∈ Rm, denote that δ(α) is the gap of the k-th and (k + 1)-th eigenvalues of matrix 1
nKα. By the

assumption that there exists a constant c ≥ 0 such that for any α ∈ △, δ(α) ≥ 1/c. By Theorem B.3, letting r = 1, s = k,
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Consistency of Multiple Kernel Clustering

we have

A ≤
√
2
∥∥sinθ(Hα,Hβ)

∥∥
F

≤
2
√
2
∥∥ 1
nKα − 1

nKβ

∥∥
F

δ(α)

≤ 2
√
2c

√√√√ m∑
p=1

n∑
i=1

n∑
t=1

(α2
p − β2

p)
2
K2(xi, xt)

n2

≤ 2
√
2c

√√√√ m∑
p=1

(α2
p − β2

p)
2

= 2
√
2c

√√√√ m∑
p=1

(αp − βp)2(αp + βp)2

≤ 2
√
2c max

p∈[m]
|αp − βp|

√√√√ m∑
p=1

(αp + βp)2

≤ 2
√
2c max

p∈[m]
|αp − βp|

√√√√2

m∑
p=1

(αp + βp)

≤ 4
√
2c max

p∈[m]
|αp − βp|

= 4
√
2c∥α− β∥∞.

Above all, we know that

1

n
Tr
(
KpH

αHα⊤)− k∑
j=1

∫∫
X
Kp(x, y)h

β
j (x)h

β
j (y)dρ(x)dρ(y) ≤ c∥α− β∥∞ + ck

√
log(4k/δ)

n

holds with probability at least 1− δ. The proof is complete.

B.3. The Proof of Theorem 4.2

Proof. For ease of proof, we briefly denote ϵ(Kp, {hα(t)

j }kj=1) and ϵ̂(Kp, {ĥα(t)

j }kj=1) as ϵp(α(t)) and ϵ̂p(α
(t)) respectively.

When the training set is Sn, assume that the kernel weights of each iteration are

α(0), · · · ,α(T ),

Meanwhile, the kernel weights of each iteration learned from the sample space are denoted as

β(0), · · · ,β(T ).

where α0 = β0 due to the same initialization.

Because SimpleMKKM can obtain the globally optimal solution, after T iterations, we have

α(T ) = α̂n, β(T ) = α∗.
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For any integers t ≥ 1 and p ∈ [m], if p = u, we have∣∣∣α(t)
u − β(t)

u

∣∣∣− ∣∣∣α(t−1)
u − β(t−1)

u

∣∣∣
≾

1

m− 1

∣∣∣∣∣∣
∑
p ̸=u

(
α̂pϵ̂p(α

(t−1))− α̂uϵ̂u(α
(t−1))

)
−
∑
p ̸=u

(
βpϵp(β

(t−1))− βuϵu(β
(t−1))

)∣∣∣∣∣∣
=

1

m− 1

∣∣∣∣∣∣
∑
p ̸=u

(
α̂pϵ̂p(α

(t−1))− βpϵp(β
(t−1))

)
− (m− 1)

(
α̂uϵ̂u(α

(t−1))− βuϵu(β
(t−1))

)∣∣∣∣∣∣
≾

1

m− 1

∑
p ̸=u

∣∣∣(α̂pϵ̂p(α
(t−1))− βpϵp(β

(t−1))
)∣∣∣+ ∣∣∣(α̂uϵ̂u(α

(t−1))− βuϵu(β
(t−1))

)∣∣∣
≾ max

p∈[m]

∣∣∣α̂pϵ̂p(α
(t−1))− βpϵp(β

(t−1))
∣∣∣

= max
p∈[m]

∣∣∣α̂pϵ̂p(α
(t−1))− βpϵ̂p(α

(t−1)) + βpϵ̂p(α
(t−1))− βpϵp(β

(t−1))
∣∣∣

≾ max
p∈[m]

∣∣∣(α̂p − βp)ϵ̂p(α
(t−1))

∣∣∣+ βp

∣∣∣ϵ̂p(α(t−1))− ϵp(β
(t−1))

∣∣∣
≾
∥∥∥α(t−1) − β(t−1)

∥∥∥
∞

+
∣∣∣ϵ̂p(α(t−1))− ϵp(β

(t−1))
∣∣∣ .

By Theorem A.2, and ∣∣∣α(t−1)
u − β(t−1)

u

∣∣∣ ≤ ∥∥∥α(t−1) − β(t−1)
∥∥∥
∞

,

we have ∣∣∣α(t)
u − β(t)

u

∣∣∣ ≾ ∥∥∥α(t−1) − β(t−1)
∥∥∥
∞

+ k

√
log(k/δ)

n
.

Similarly, for p ̸= u, we have

∥∥∥α(t) − β(t)
∥∥∥
∞

≾
∥∥∥α(t−1) − β(t−1)

∥∥∥
∞

+ k

√
log(k/δ)

n
.

Finally, due to the convergence of the reduced gradient descent algorithm,

∥∥∥α(T ) − β(T )
∥∥∥
∞

≾ · · · ≾
∥∥∥α(0) − β(0)

∥∥∥
∞

+ k

√
log(k/δ)

n
.

It means that

∥α̂n −α∗∥∞ ≾ k

√
log(k/δ)

n
,

holds with probability at least 1− δ.

B.4. The Proof of Lemma A.3

Theorem B.4. (Zwald & Blanchard, 2005) Let A be a symmetric positive Hilbert-Schmidt operator of the Hilbert space with
simple positive eigenvalues λ1 > λ2 > · · · . For an integer j such that λj > 0, let σ̃j = σj∧σj+1 where σj =

1
2 (λj−λj+1).

Let B ∈ HS(H) be another symmetric operator such that ∥B∥ < σ̃j/2 and A+B is still a positive operator with simple
nonzero eigenvalues. Let Pj(A) be the orthogonal projector onto the subspace spanned by j-th eigenvector of A. Then,
these projectors satisfy the following:

∥Pj(A)− Pj(A+B)∥ ≤ 2∥B∥
σ̃j

.
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Theorem B.5. (Bardenet & Maillard, 2015) Let Sn = {xi}ni=1 be a finite sequence of real numbers, and Sr = {xi}ri=1 are
r points uniformly selected from it without replacement. Then, for any t > 0, the following probability inequality holds

Pr

(∣∣∣∣∣1r
r∑

i=1

xi −
1

n

n∑
i=1

xi

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
− 2rt2

(1− r/n)(1 + 1/r)(b− a)2

)
,

where a = mini∈[n] xi and b = maxi∈[n] xi.

Proof. Without loss of generality, we assume that the selected points are {xi}ri=1. Then for any kernel function K(·, ·), the
following inequality holds∣∣∣ϵ̂(K, {ĥn,j}kj=1)− ϵ̂(K, {ĥr,j}kj=1)

∣∣∣
≤

k∑
j=1

∣∣∣∣∣
n∑

i=1

n∑
t=1

K(xi, xt)ĥn,j(xi)ĥn,j(xt)−
r∑

i=1

r∑
t=1

K(xi, xt)ĥr,j(xi)ĥr,j(xt)

∣∣∣∣∣ .
The difference of j-th term in the above formula can be bounded by∣∣∣∣∣ 1n2

n∑
i=1

n∑
t=1

K(xi, xt)ĥn,j(xi)ĥn,j(xt)−
1

r2

r∑
i=1

r∑
t=1

K(xi, xt)ĥr,j(xi)ĥr,j(xt)

∣∣∣∣∣
≤

∣∣∣∣∣ 1n2

n∑
i=1

n∑
t=1

K(xi, xt)ĥn,j(xi)ĥn,j(xt)−
1

n2

n∑
i=1

n∑
t=1

K(xi, xt)ĥr,j(xi)ĥr,j(xt)

∣∣∣∣∣︸ ︷︷ ︸
C

+

∣∣∣∣∣ 1n2

n∑
i=1

n∑
t=1

K(xi, xt)ĥr,j(xi)ĥr,j(xt)−
1

r2

r∑
i=1

r∑
t=1

K(xi, xt)ĥr,j(xi)ĥr,j(xt)

∣∣∣∣∣︸ ︷︷ ︸
D

.

We first bound Term C as

C =

∣∣∣∣∣ 1n2

n∑
i=1

n∑
t=1

K(xi, xt)(ĥn,j(xi)ĥn,j(xt)− ĥr,j(xi)ĥr,j(xt))

∣∣∣∣∣
≤ 1

n2

n∑
i=1

n∑
t=1

∣∣∣K(xi, xt)(ĥn,j(xi)ĥn,j(xt)− ĥr,j(xi)ĥr,j(xt))
∣∣∣

≤ 1

n2

n∑
i=1

n∑
j=1

sup
x,y

∣∣∣K(x, y)(ĥn,j(x)ĥn,j(y)− ĥr,j(x)ĥr,j(y))
∣∣∣

≤ sup
x,y

∣∣∣ĥn,j(x)ĥn,j(y)− ĥr,j(x)ĥr,j(y)
∣∣∣

=sup
x,y

∣∣∣ĥn,j(x)ĥn,j(y)− ĥn,j(x)ĥr,j(y) + ĥn,j(x)ĥr,j(y)− ĥr,j(x)ĥr,j(y)
∣∣∣

≤ sup
x,y

|ĥn,j(x)|
∣∣∣ĥn,j(y)− ĥr,j(y)

∣∣∣+ sup
x,y

|ĥr,j(y)|
∣∣∣ĥn,j(x)− ĥr,j(x)

∣∣∣
≤2 sup

x

∣∣∣ĥn,j(x)− ĥr,j(x)
∣∣∣ .

Similar to the definition of Lemma B.2, we define the following two operators Tn, Tr : H → H:

Tn =
1

n

n∑
i=1

⟨·,Kxi
⟩Kxi

, Tr =
1

r

r∑
i=1

⟨·,Kxi
⟩Kxi

.
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According to (Rosasco et al., 2010), the above two operators are positive definite, and it can be checked that

Tnĥn,j(x) =
1

n

n∑
i=1

K(x, xi)ĥn,j(xi) = λ̂n,j .

Thus ĥn,j ∈ H is the eigenfunction of Tn, while ĥr,j is the eigenfunction of Tr, and their corresponding non-zero eigenvalues
are the same as the eigenvalues of 1

nKn and 1
rKr, respectively. We assume that the minimal gap of the first k+1 eigenvalues

of 1
nKn is σ̃.

By the reproducing property of the kernel function and Theorem B.4, we have

C =2 sup
x

∣∣∣ĥn,k(x)− ĥr,k(x)
∣∣∣

≤2 sup
x

∣∣∣〈Kx, ĥn,k − ĥr,k

〉
H

∣∣∣
≤2 sup

x
∥Kx∥ ·

∥∥∥ĥn,k − ĥr,k

∥∥∥
≤2
∥∥∥ĥn,k − ĥr,k

∥∥∥
≤2∥Tr − Tn∥

σ̃
.

(10)

We will give the conditions of the last inequality later. Before this, we aim to bound ∥Tr − Tn∥.

∥Tr − Tn∥
= sup

f∈H,∥f∥=1

∥Trf − Tnf∥

≤ sup
f,v∈H,

∥f∥=∥v∥=1

⟨Trf − Tnf, v⟩H

= sup
f,v∈H,

∥f∥=∥v∥=1

∣∣∣∣∣1r
r∑

i=1

f(xi)⟨Kxi , v⟩H − 1

n

n∑
i=1

f(xi)⟨Kxi , v⟩H

∣∣∣∣∣ .
By Theorem B.5, we have

Pr

(∣∣∣∣∣1r
r∑

i=1

f(xi)⟨Kxi , v⟩H − 1

n

n∑
i=1

f(xi)⟨Kxi , v⟩H

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
− rt2

2(1− r/n)(1 + 1/r)

)
.

Then the following inequality holds with probability 1− δ:

∥Tr − Tn∥ ≾

√(
1

r
− 1

n

)
log

(
2

δ

)
.

Now we find the establishment condition of the last inequality in Eq. (10). By the conditions of Theorem B.4, we know that
r should satisfy

r = Ω

(
n

1 + nσ̃2

)
.

We let n = Ω(1/σ̃2), and r will be Ω(1/σ̃2).

Above all, if σ̃ ≥ 1/c and r, n are Ω(1/σ̃2), then we have

C ≾

√(
1

r
− 1

n

)
log

(
2

δ

)
.
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In the next, we proceed to bound Term D. Notice that

1

n2

n∑
i=1

n∑
t=1

K(xi, xt)ĥr,j(xi)ĥr,j(xt) =

∥∥∥∥∥ 1n
n∑

i=1

ĥr,j(xi)ϕ(xi)

∥∥∥∥∥
2

.

Thus, we have

D =

∣∣∣∣∣
〈(

1

n

n∑
i=1

ĥr,j(xi)ϕ(xi)−
1

r

r∑
i=1

ĥr,j(xi)ϕ(xi)

)
,

(
1

n

n∑
i=1

ĥr,j(xi)ϕ(xi) +
1

r

r∑
i=1

ĥr,j(xi)ϕ(xi)

)〉
H

∣∣∣∣∣
≤

∥∥∥∥∥ 1n
n∑

i=1

ĥr,j(xi)ϕ(xi)−
1

r

r∑
i=1

ĥr,j(xi)ϕ(xi)

∥∥∥∥∥ ·
∥∥∥∥∥ 1n

n∑
i=1

ĥr,j(xi)ϕ(xi) +
1

r

r∑
i=1

ĥr,j(xi)ϕ(xi)

∥∥∥∥∥
≤2

∥∥∥∥∥ 1n
n∑

i=1

ĥr,j(xi)ϕ(xi)−
1

r

r∑
i=1

ĥr,j(xi)ϕ(xi)

∥∥∥∥∥
≤2 sup

∥v∥=1,v∈H

∣∣∣∣∣ 1n
n∑

i=1

ĥr,j(xi)⟨v, ϕ(xi)⟩H − 1

r

r∑
i=1

ĥr,j(xi)⟨v, ϕ(xi)⟩H

∣∣∣∣∣ .
For any v0 ∈ H, ∥v0∥ = 1, by Theorem B.5, we have

Pr

(∣∣∣∣∣ 1n
n∑

i=1

ĥr,j(xi)⟨v0, ϕ(xi)⟩H − 1

r

r∑
i=1

ĥr,j(xi)⟨v0, ϕ(xi)⟩H

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
− 2rt2

4(1− r/n)(1 + 1/r)

)
.

Then, we know that

D ≾

√(
1

r
− 1

n

)
log

(
2

δ

)
holds with probability at least 1− δ.

Combining all things together, the following inequality holds with probability 1− δ:

∣∣∣ϵ̂(Kp, {ĥn,j}kj=1)− ϵ̂(Kp, {ĥr,j}kj=1)
∣∣∣ ≾ k

√(
1

r
− 1

n

)
log

(
k

δ

)
.

B.5. The Proof of Theorem 5.1

Proof. We make a decomposition as follows:

ESn [W(Ĉ, α̂, ρ)]−W(C∗,α∗, ρ)

=ESn [W(Ĉ, α̂, ρ)−Wn(Ĉ, α̂, ρn)]︸ ︷︷ ︸
A

+ESn [Wn(Ĉ, α̂, ρn)−Wn(C
∗,α∗, ρn)]︸ ︷︷ ︸

B

+ ESn
[Wn(C

∗,α∗, ρn)]−W(C∗,α∗, ρ)︸ ︷︷ ︸
C

.

A and C can be bounded by the generalization risk of single kernel clustering (Biau et al., 2008), and their upper bounds are
all O(k/

√
n).

Then we bound Term B. Assume that the clustering indicator matrix corresponding to clustering centroids Ĉ is Ĥα̂ ∈ Rn×k,
whose element is hij = 1/

√
|Cj |. When xi belongs to the j-th cluster hij = 1/

√
|Cj |, otherwise hα̂

ij = 0. Similarly, we
denote the clustering indicator matrix corresponding to C∗ is Ĥα∗ ∈ Rn×k.
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Because Ĉ = argminC∈Hk
α̂
Wn(C, α̂, ρn), we have

B =ESn
[Wn(Ĉ, α̂, ρn)−Wn(C

∗,α∗, ρn)]

=ESn

[
1

n
Tr
(
Kα̂(In − Ĥα̂Ĥ

⊤
α̂)
)
− 1

n
Tr
(
Kα∗(In − Ĥα∗Ĥ⊤

α∗)
)]

=ESn

[
1

n
Tr
(
Kα̂(In − Ĥα̂Ĥ

⊤
α̂)
)
− 1

n
Tr
(
Kα̂(In − Ĥα∗Ĥ⊤

α∗)
)]

+ ESn

[
1

n
Tr
(
Kα̂(In − Ĥα∗Ĥ⊤

α∗)
)
− 1

n
Tr
(
Kα∗(In − Ĥα∗Ĥ⊤

α∗)
)]

≤ESn

[
1

n
Tr
(
(Kα̂ −Kα∗)(In − Ĥα∗Ĥ⊤

α∗)
)]

=ESn

[
m∑

p=1

(
α̂2
p − (α∗

p)
2
)
· 1
n
Tr
(
Kp(In − Ĥα∗Ĥ⊤

α∗)
)]

≤
m∑

p=1

(α̂p + α∗
p)|α̂p − α∗

p|

≤
m∑

p=1

(α̂p + α∗
p)∥α̂−α∗∥∞

=2∥α̂−α∗∥∞

≾k

√
log(k/δ)

n
.

The proof is complete.

B.6. The Proof of Theorem 6.1

Proof. When the kernel weights are α̂r, assume that the corresponding clustering centroids are Ĉn ∈ Hk
α̂r

. Then, we have

ESn
[W(Ĉn,r, α̂r, ρ)]−W(C∗,α∗, ρ)

=ESn [W(Ĉn,r, α̂r, ρ)−Wn(Ĉn,r, α̂r, ρn)]︸ ︷︷ ︸
A

+ESn [Wn(Ĉn,r, α̂r, ρn)−Wn(Ĉn, α̂r, ρn)]︸ ︷︷ ︸
B

+ ESn [Wn(Ĉn, α̂r, ρn)−Wn(Ĉ, α̂, ρn)]︸ ︷︷ ︸
C

+ESn [Wn(Ĉ, α̂, ρn)]−W(C∗,α∗, ρ)︸ ︷︷ ︸
D

.

According to (Biau et al., 2008), A can be bounded by Õ(k/
√
n). By Theorem 5.1, D has an upper bound as Õ(k/

√
n).

Moreover, by Theorem 1 in (Calandriello & Rosasco, 2018), when r = Ω(n/γ), B can be bounded by Õ(kγ/n), where γ is
a positive parameter.

Similar to the proof of Theorem 5.1, combining Theorem 4.3, we can bound C as

C = ESn
[Wn(Ĉα̂r

, α̂r, ρn)−Wn(Ĉ, α̂, ρn)]

≤ 2∥α̂r − α̂∥∞

≾ k

√(
1

r
− 1

n

)
log(k/δ)

Above all, we can conclude that ESn
[W(Ĉn,r, α̂r, ρ)]−W(C∗,α∗, ρ) can be bounded by

Õ
(
Kγ

n
+

K√
r
+

K√
n

)
.

22



Consistency of Multiple Kernel Clustering

Letting γ = Θ(n/r), the desirable result follows.

B.7. The Proof of Theorem 6.2

We first bound the difference of Tn and Tr by the following theorem.

Theorem B.6. When r ≥ log(2/δ)
ε−log(1+ε) , the following holds with probability 1− δ:

∥Tn − Tr∥ ≤ ε.

We introduce the following lemma and its corollary to prove Theorem B.6.
Lemma B.7. (Yin et al., 2020a) Suppose that G ∼ N (0, n), and a random matrix T = [t1, · · · , tm] ∈ Rn×m. The j-th
column tj of T has only a non-zero element with probability

Pr (tij = δ(i)n) =
1

n
, Pr(tij = 0) = 1− 1

n
,

where δ(i) = 1 or −1 with equal probability. Then for any vector b ∈ Rn and non-negative integer Sn, the following
inequality holds

E
[
(t⊤j b)

2s
]
≤ E

[
G2s

]
.

Corollary B.8. Let T ∼ N (0, 1/r), and a random matrix S = [s1, · · · , sr] ∈ Rn×r. Each column of S has only a non-zero
element with probability

Pr

(
sij = δ(i)

√
n

r

)
=

1

n
, Pr(sij = 0) = 1− 1

n
,

where δ(i) = 1 or −1 with equal probability. Then for any vector b ∈ Rn and non-negative integer Sn, the following
inequality holds

E
[
(s⊤j b)

2s
]
≤ E

[
T 2s
]
.

The proof of Corollary B.8 is as follows.

Proof. By construction, we know tij = sij
√
mn. According to Lemma B.7, we have

E
[
(s⊤j b)

2s
]
≤ E

[(
G√
mn

)2s
]
.

It is obvious that G√
mn

∼ N (0, 1/m), thus the corollary holds.

Now, we prove Theorem B.6. The technique is similar to (Yin et al., 2022a), but we give the detailed process of proof for
completeness.

Proof. For ease of proof, we rewrite Tn and Tr as matrix forms. Let Φn = [ϕ1, · · · , ϕn] ∈ Rd×n, where d denotes the
dimension of the Hilbert space corresponding to the kernel function. Then, Tn = 1

nΦnΦ
⊤
n . Similarly, we can rewrite Tr as

Tr = 1
rΦrΦ

⊤
r . By the notations of Corollary B.8, we have

∥Tn − Tr∥ =

∥∥∥∥ 1nΦnΦ
⊤
n − 1

r
ΦrΦ

⊤
r

∥∥∥∥
=

∥∥∥∥ 1nΦnΦ
⊤
n − 1

n
ΦnSS

⊤Φ⊤
n

∥∥∥∥
= max

∥x∥=1

∣∣∣∣ 1nx⊤ΦnΦ
⊤
nx− 1

n
x⊤ΦnSS

⊤Φ⊤
nx

∣∣∣∣
= max

∥x∥=1

∣∣∣∣∣
∥∥∥∥ 1√

n
Φ⊤

nx

∥∥∥∥2 − ∥∥∥∥ 1√
n
S⊤Φ⊤

nx

∥∥∥∥2
∣∣∣∣∣
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To bound the above formula, for any ∥x∥ = 1, we first give the bound of

Pr


∥∥∥ 1√

n
S⊤Φ⊤

nx
∥∥∥2 − ∥∥∥ 1√

n
Φ⊤

nx
∥∥∥2∥∥∥ 1√

n
Φ⊤

nx
∥∥∥2 ≥ ε

 = Pr


∥∥∥ 1√

n
S⊤Φ⊤

nx
∥∥∥2∥∥∥ 1√

n
Φ⊤

nx
∥∥∥2 ≥ 1 + ε

 .

Setting b = 1√
n
Φ⊤

nx/
∥∥∥ 1√

n
Φ⊤

nx
∥∥∥, for any λ < m/2, the following inequality holds according to Markov’s inequality.

Pr(∥S⊤b∥ ≥ 1 + ε) = Pr(exp(λ∥S⊤b∥2) ≥ exp(λ(1 + ε)))

≤ E
[
exp(λ∥S⊤b∥2)

]
exp(−λ(1 + ε))

= E
[
exp(λ∥S⊤b∥2)

]
exp(−λ(1 + ε))

= E

exp(λ m∑
j=1

(s⊤j b)
2)

 exp(−λ(1 + ε))

= exp(−λ(1 + ε))

m∏
j=1

E
[
exp(λ(s⊤j b)

2)
]
.

(11)

Furthermore, by Taylor’s formula and Corollary B.8, we have

E
[
exp(λT 2)

]
=

+∞∑
s=0

λs

s!
E[T 2s]

≥
∞∑
s=0

λs

s!
E[(s⊤j b)2s]

= E
[
exp(λ(s⊤j b)

2)
]
.

In addition, we have

E
[
exp(λT 2)

]
=

∫ +∞

−∞

√
m

2π
exp(−mx2/2) exp(λx2)dx

=

∫ +∞

−∞

1√
2π

exp(−t2/2) exp
(
λt2/m

)
dt

=
1√

1− 2λ/m
.

Thus, E
[
exp(λ(s⊤j b)

2)
]
≤ 1√

1−2λ/m
. Combining Eq. (11), we have

Pr(∥S⊤b∥ ≥ 1 + ε) ≤

(
1√

1− 2λ/m

)m

exp(−λ(1 + ε)).

Setting λ = ε
1+ε · m

2 , we can obtain

Pr(∥S⊤b∥ ≥ 1 + ε) ≤ (1 + ε)m/2 exp

(
−mε

2

)
. (12)

On the other hand, for any ∥x∥ = 1, we turn to bound

Pr


∥∥∥ 1√

n
S⊤Φ⊤

nx
∥∥∥2 − ∥∥∥ 1√

n
Φ⊤

nx
∥∥∥2∥∥∥ 1√

n
Φ⊤

nx
∥∥∥2 ≤ −ε

 = Pr


∥∥∥ 1√

n
S⊤Φ⊤

nx
∥∥∥2∥∥∥ 1√

n
Φ⊤

nx
∥∥∥2 ≤ 1− ε

 .
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Similar to the above procedures, for any λ < m/2, we have

Pr(∥S⊤b∥ ≤ 1− ε) = Pr(exp(λ(1− ε)) ≥ exp(λ∥S⊤b∥2))
≤ exp(λ(1− ε))E

[
exp(−λ∥S⊤b∥2)

]
= exp(λ(1− ε))E

[
exp(−λ∥S⊤b∥2)

]
= exp(λ(1− ε))E

exp(−λ

m∑
j=1

(s⊤j b)
2)


= exp(λ(1− ε))

m∏
j=1

E
[
exp(−λ(s⊤j b)

2)
]

≤ exp(λ(1− ε))

m∏
j=1

E

[
1− λ(s⊤j b)

2 +
λ2(s⊤j b)

4

2

]
.

(13)

Moreover, it can be checked that

E
[
(s⊤j b)

2
]
=

n∑
i=1

n∑
t=1

E [(sijbi)(stjbt)]

=

n∑
i=1

E
[
s2ijb

2
i

]
=

n∑
i=1

(
1

n

(√
n

m

)2

b2i

)

=
1

m
,

(14)

and

E
[
(s⊤j b)

4
]
≤ E

[
T 4
]
=

3

m2
. (15)

Substituting Eq. (14) and Eq. (15) into Eq. (13), we have

Pr(∥S⊤b∥ ≤ 1− ε) ≤ exp(λ(1− ε))

(
1− λ

m
+

3λ2

2m2

)m

. (16)

Setting λ = ε
1+ε · m

2 and w = ε
1+ε , we have

Pr(∥S⊤b∥ ≤ 1− ε) ≤ exp

(
ε(1− ε)

1 + ε
· m
2

)(
1− ε

2(1 + ε)
+

3ε2

8(1 + ε)2

)m

≤ exp
(
−mε

2

)
(1 + ε)

m/2
.

(17)

Combining Eq. (12) and Eq. (17), we can obtain

Pr


∣∣∣∣∣∣∣
∥∥∥ 1√

n
S⊤Φ⊤

nx
∥∥∥2 − ∥∥∥ 1√

n
Φ⊤

nx
∥∥∥2∥∥∥ 1√

n
Φ⊤

nx
∥∥∥2

∣∣∣∣∣∣∣ ≥ ε

 ≤ 2 exp

(
m log(1 + ϵ)−mε

2

)
. (18)

Above all, it can be deduced that if m ≥ log(2/δ)
ε−log(1+ε) ,∣∣∣∣∣

∥∥∥∥ 1√
n
S⊤Φ⊤

nx

∥∥∥∥2 − ∥∥∥∥ 1√
n
Φ⊤

nx

∥∥∥∥2
∣∣∣∣∣ ≤ ε

∥∥∥∥ 1√
n
Φ⊤

nx

∥∥∥∥2 ≤ ε
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holds with probability at least 1− δ.

Because of the arbitrariness of x, we have
∥Tn − Tr∥ ≤ ε.

Finally, we complete the proof of Theorem 6.2.

Proof. We can use Theorem B.6 to improve the result of Lemma A.3. In the proof of Lemma A.3, Term C can be bounded
by O(∥Tn − Tr∥), and Term D in Lemma A.3 also has the same upper bound. This is because

D ≤2

∥∥∥∥∥ 1n
n∑

i=1

ĥr,j(xi)ϕ(xi)−
1

r

r∑
i=1

ĥr,j(xi)ϕ(xi)

∥∥∥∥∥
=2
∥∥∥(Tn − Tr)ĥr,j

∥∥∥
≤2
∥∥∥ĥr,j

∥∥∥ · ∥Tn − Tr∥

≾ ∥Tn − Tr∥ .

By Theorem B.6, when r ≥ log(2/δ)
ε−log(1+ε) ,∣∣∣ϵ̂(Kp, {ĥn,j}kj=1)− ϵ̂(Kp, {ĥr,j}kj=1)

∣∣∣ ≾ k ∥Tn − Tr∥ ≤ kε.

By the same decomposition of the proof of Theorem 6.1, we can improve the bound of C in Theorem 6.1 as

C ≾ ∥α̂r − α̂∥∞ ≾ k ∥Tn − Tr∥ ≤ kε.

Combining all things together, we can conclude the conclusion.
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C. Notation Table

Table 4. Basic notations.
Notations Meaning

k Clustering number
n Sample number
X Sample space

Kp(·, ·) The p-th base kernel function
Kp The p-th base kernel matrix
ρ Real distribution
ρn Empirical distribution
H Clustering indicator matrix

{hj(·)}kj=1 Clustering indicator functions
{ĥj(·)}kj=1 Approximated clustering indicator functions

LK The integral operator associated with kernel function K.

D. URLs of the Used Datasets
In this section, we give a detailed introduction to the datasets used in our experiments. The URLs of the datasets in Table 1
are as follows:

1. Flo17: http://www.robots.ox.ac.uk/œvgg/data/flowers/17/,

2. Flo102: http://www.robots.ox.ac.uk/œvgg/data/flowers/102/,

3. DIGIT: http://ss.sysu.edu.cn/py/,

4. PFold: http://mkl.ucsd.edu/dataset/protein-fold-prediction,

5. CCV: http://www.ee.columbia.edu/ln/dvmm/CCV/,

6. Reuters: http://kdd.ics.uci.edu/databases/reuters21578/.

All the kernel matrices are pre-computed and available on websites. The large-scale datasets in Table 2 can be downloaded
from

1. NUSWIDE: http://lms.comp.nus.edu.sg/wp-content/uploads/2019/research/nuswide/
NUS-WIDE.html,

2. AwA: http://cvml.ist.ac.at/AwA/,

3. CIFAR10: http://www.cs.toronto.edu/˜kriz/cifar.html,

4. YtVideo: http://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+
Dataset,

5. Winnipeg: https://archive.ics.uci.edu/ml/datasets/Crop+mapping+using+fused+
optical-radar+data+set,

6. Covertype: http://archive.ics.uci.edu/ml/datasets/Covertype.
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