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Abstract

Early stopping based on hold-out data is a popu-
lar regularization technique designed to mitigate
overfitting and increase the predictive accuracy of
neural networks. Models trained with early stop-
ping often provide relatively accurate predictions,
but they generally still lack precise statistical guar-
antees unless they are further calibrated using in-
dependent hold-out data. This paper addresses the
above limitation with conformalized early stop-
ping: a novel method that combines early stop-
ping with conformal calibration while efficiently
recycling the same hold-out data. This leads to
models that are both accurate and able to provide
exact predictive inferences without multiple data
splits nor overly conservative adjustments. Prac-
tical implementations are developed for different
learning tasks—outlier detection, multi-class clas-
sification, regression—and their competitive per-
formance is demonstrated on real data.

1. Introduction
Deep neural networks can detect complex data patterns
and leverage them to make accurate predictions in many
applications, including computer vision, natural language
processing, and speech recognition, to name a few exam-
ples. These models can sometimes even outperform skilled
humans (Silver et al., 2016), but they still make mistakes.
Unfortunately, the severity of these mistakes is compounded
by the fact that the predictions computed by neural net-
works are often overconfident (Guo et al., 2017), partly
due to overfitting (Thulasidasan et al., 2019; Ovadia et al.,
2019). Several training strategies have been developed to
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mitigate overfitting, including dropout (Srivastava et al.,
2014), batch normalization (Ioffe & Szegedy, 2015), weight
normalization (Salimans & Kingma, 2016), data augmen-
tation (Shorten & Khoshgoftaar, 2019), and early stopping
(Prechelt, 1998); the latter is the focus of this paper.

Early stopping consists of continuously evaluating after each
batch of stochastic gradient updates (or epoch) the predictive
performance of the current model on hold-out independent
data. After a large number of gradient updates, only the
intermediate model achieving the best performance on the
hold-out data is utilized to make predictions. This strategy
is often effective at mitigating overfitting and can produce
relatively accurate predictions compared to fully trained
models, but it does not fully resolve overconfidence because
it does not lead to models with finite-sample guarantees.

A general framework for quantifying the predictive uncer-
tainty of any black-box machine learning model is that of
conformal inference (Vovk et al., 2005). The key idea of
conformal inference is to apply a pre-trained model to a cal-
ibration set of hold-out observations drawn at random from
the target population. If the calibration data are exchange-
able with the test point of interest, the model performance
on the calibration set can be translated into statistically rig-
orous predictive inferences. This framework is flexible and
can accommodate different learning tasks, including out-of-
distribution testing (Smith et al., 2015), classification (Vovk
et al., 2003), and regression (Vovk et al., 2005). For exam-
ple, in the context of classification, conformal inference can
give prediction sets that contain the correct label for a new
data point with high probability. In theory, the quality of the
trained model has no consequence on the average validity of
conformal inferences, but it does affect their reliability and
usefulness on a case-by-case level. In particular, conformal
uncertainty estimates obtained after calibrating an overcon-
fident model may be too conservative for some test cases
and too optimistic for others (Romano et al., 2020b). The
goal of this paper is to combine conformal calibration with
standard early stopping training techniques as efficiently
as possible, in order to produce more reliable predictive
inferences with a finite amount of available data.

Achieving high accuracy with deep learning often requires
large training sets (Marcus, 2018), and conformal inference
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makes the overall pipeline even more data-intensive. As
high-quality observations can be expensive to collect, in
some situations practitioners may naturally wonder whether
the advantage of having principled uncertainty estimates
is worth a possible reduction in predictive accuracy due to
fewer available training samples. This concern is relevant
because the size of the calibration set cannot be too small if
one wants stable and reliable conformal inferences (Vovk,
2012; Sesia & Candès, 2020). In fact, very large calibra-
tion sets may be necessary to obtain stronger conformal
inferences that are valid not only on average but also con-
ditionally on some important individual features; see Vovk
et al. (2003); Romano et al. (2020a); Barber et al. (2021a).

This paper resolves the above dilemma by showing that
conformal inferences for deep learning models trained with
early stopping can be obtained almost “for free”—without
spending precious data. More precisely, we present an inno-
vative method that blends model training with early stopping
and conformal calibration using the same hold-out samples,
essentially obtaining rigorous predictive inferences at no
additional data cost compared to standard early stopping. It
is worth emphasizing this result is not trivial. In fact, naively
applying existing conformal calibration methods using the
same hold-out samples utilized for early stopping would not
lead to theoretically valid inferences, at least not without
resorting to very conservative corrections.

The paper is organized as follows. Section 2 develops our
conformalized early stopping (CES) method, starting from
outlier detection and classification, then addressing regres-
sion. Section 3 demonstrates the advantages of CES through
numerical experiments. Section 4 concludes with a discus-
sion and some ideas for further research. Additional details
and results, including a theoretical analysis of the naive
benchmark mentioned above, can be found in the Appen-
dices, along with all mathematical proofs.

Related Work

Conformal inference (Saunders et al., 1999; Vovk et al.,
1999; 2005) has become a very rich and active area of re-
search (Lei et al., 2013; Lei & Wasserman, 2014; Lei et al.,
2018b; Barber et al., 2021b). Many prior works studied
the computation of efficient conformal inferences starting
from pre-trained black-box models, including for exam-
ple in the context of outlier detection (Smith et al., 2015;
Guan & Tibshirani, 2022; Liang et al., 2022; Bates et al.,
2023), classification (Vovk et al., 2003; Hechtlinger et al.,
2018; Romano et al., 2020b; Angelopoulos et al., 2021;
Bates et al., 2021), and regression (Vovk et al., 2005; Lei
& Wasserman, 2014; Romano et al., 2019). Other works
have studied the general robustness of conformal inferences
to distribution shifts (Tibshirani et al., 2019; Sesia et al.,
2022) and, more broadly, to failures of the data exchange-

ability assumption (Barber et al., 2022; Gibbs & Candès,
2022). Our research is orthogonal, as we look inside the
black-box model and develop a novel early-stopping train-
ing technique that is naturally integrated with conformal
calibration. Nonetheless, the proposed method could be
combined with those described in the aforementioned pa-
pers. Other recent research has explored different ways of
bringing conformal inference into the learning algorithms
(Colombo & Vovk, 2020; Bellotti, 2021; Stutz et al., 2021;
Einbinder et al., 2022), and some of those works apply stan-
dard early stopping techniques, but they do not address our
problem.

This paper is related to Yang & Kuchibhotla (2021), which
proposed a general theoretical adjustment for conformal
inferences computed after model selection. That method
could be utilized to account for early stopping without fur-
ther data splits, as detailed in Appendix A1. However, we
will demonstrate that even an improved version of such anal-
ysis remains overly conservative in the context of model
selection via early stopping, and the alternative method de-
veloped in this paper performs much better in practice. Our
solution is inspired by Mondrian conformal inference (Vovk
et al., 2003) as well as by the integrative conformal method
of Liang et al. (2022). The latter deals with the problem of
selecting the best model from an arbitrary machine learning
toolbox to obtain the most powerful conformal p-values
for outlier testing. The idea of Liang et al. (2022) extends
naturally to the early stopping problem in the special cases
of outlier detection and classification, but the regression set-
ting requires substantial technical innovations. The work of
Liang et al. (2022) is also related to Marandon et al. (2022),
although the latter is more distant from this paper because
it focuses on theoretically controlling the false discovery
rate (Benjamini & Hochberg, 1995) in multiple testing prob-
lems. Finally, this paper draws inspiration from Kim et al.
(2020), which shows that machine learning models trained
with bootstrap (or bagging) techniques can also lead to valid
conformal inferences essentially for free.

2. Methods
2.1. Standard Conformal Inference and Early Stopping

Consider n data points, Zi for i ∈ D = [n] = {1, . . . , n},
sampled exchangeably (e.g., i.i.d.) from an unknown distri-
bution PZ with support on some space Z . Consider also
an additional test sample, Zn+1. In the context of outlier
detection, one wishes to test whether Zn+1 was sampled
exchangeably from PZ . In classification or regression, one
can write Zi = (Xi, Yi), where Xi is a feature vector while
Yi is a discrete category or a continuous response, and the
goal is to predict the unobserved value of Yn+1 given Xn+1

and the data in D.
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The standard pipeline begins by randomly splitting the data
in D into three disjoint subsets: Dtrain,Des,Dcal ⊂ [n].
The samples in Dtrain are utilized to train a model M via
stochastic gradient descent, in such a way as to (approxi-
mately) minimize the desired loss L, while the observations
in Des and Dcal are held out. We denote by Mt the model
learnt after t epochs of stochastic gradient descent, for any
t ∈ [tmax], where tmax is a pre-determined maximum num-
ber of epochs. For simplicity, L is assumed to be an addi-
tive loss, in the sense that its value calculated on the train-
ing data after t epochs is Ltrain(Mt) =

∑
i∈Dtrain

`(Mt;Zi),
for some appropriate function `. For example, a typi-
cal choice for regression would be the squared-error loss:
`(Mt;Zi) = [Yi − µ̂(Xi;Mt)]

2, where µ̂(Xi;Mt) indi-
cates the value of the regression function at Xi, as estimated
by Mt. Similarly, the loss evaluated on Des is denoted
as Les(Mt) =

∑
i∈Des

`(Mt;Zi). After training for tmax

epochs, early stopping selects the model M̂es that mini-
mizes the loss onDes: M̂es = arg minMt : 0≤t≤tmax Les(Mt).
Conformal calibration of M̂es is then conducted using the in-
dependent hold-out data set Dcal, as sketched in Figure 1 (a).
This pipeline requires a three-way data split because: (i)
Dtrain and Des must be disjoint to ensure the early stopping
criterion is effective at mitigating overfitting; and (ii) Dcal
must be disjoint from Dtrain ∪Des to ensure the performance
of the selected model M̂es on the calibration data gives us
an unbiased preview of its future performance at test time.

2.2. Preview of our Contribution

This paper develops a novel method to jointly carry out
both early stopping and conformal inference using a single
hold-out data set, denoted in the following as Des-cal. The
advantage of this approach is that it allows more samples to
be allocated to Dtrain. This is not a straightforward problem.
For example, one cannot naively apply standard conformal
inference methods using the same hold-out set Des-cal previ-
ously used for early stopping, as detailed in Appendix A1.
In that case, the early stopping decision would invalidate
the conformal inferences by breaking the exchangeability
between the calibration data and the test point, as the latter is
not used to select the predictive model. As explained in Ap-
pendix A1.2, it is possible to correct conformal inferences
obtained with this naive approach by adjusting the nominal
coverage level conservatively, leveraging suitable concen-
tration inequalities (Yang & Kuchibhotla, 2021). However,
such theoretical corrections tend to be overly pessimistic in
practice and may often be too conservative to be useful; this
is demonstrated by the numerical experiments described in
Section 3 and previewed here in Figure 2.

By contrast, the CES method proposed in this paper is based
on the following idea inspired by Liang et al. (2022). Valid
conformal inferences can be obtained by calibrating M̂es

using the same data set Des-cal used for model selection, as
long as the test sample Zn+1 is also involved in the early
stopping rule exchangeably with all other samples in Des-cal.
This concept, illustrated schematically in Figure 1 (b), is
not obvious to translate into a practical method, however,
for two reasons. First, the ground truth for the test point
(i.e., its outlier status or its outcome label) is unknown.
Second, the method may need to be repeatedly applied for
a large number of distinct test points in a computationally
efficient way, and one cannot re-train the model separately
for each test point. In the next section, we will explain how
to overcome these challenges in the special case of early
stopping for outlier detection; then, the solution will be
extended to the classification and regression settings.

2.3. CES for Outlier Detection

Consider testing whether Zn+1, is an inlier, in the sense that
it was sampled from PZ exchangeably with the data in D.
Following the notation of Section 2.1, consider a partition of
D into two subsets,Dtrain andDes-cal, chosen at random inde-
pendently of everything else, such that D = Dtrain ∪ Des-cal.
The first step of CES consists of training a deep one-class
classifier M using the data in Dtrain via stochastic gradient
descent for tmax epochs, storing all parameters characteriz-
ing the intermediate model after each τ epochs. We refer
to τ ∈ [tmax] as the storage period, a parameter pre-defined
by the user. Intuitively, a smaller τ increases the memory
cost of CES but may also lead to the selection of a more
accurate model. While the memory cost of this approach
is higher compared to that of standard early-stopping train-
ing techniques, which only require storing one model at
a time, it is not prohibitively expensive. In fact, the can-
didate models do not need to be kept in precious RAM
memory but can be stored on a relatively cheap hard drive.
As reasonable choices of τ may typically be in the order of
T = btmax/τc ≈ 100, the cost of CES is not excessive in
many real-world situations. For example, it takes approx-
imately 100 MB to store a pre-trained standard ResNet50
computer vision model, implying that CES would require
approximately 10 GB of storage in such applications—today
this costs less than $0.25/month in the cloud.

After pre-training and storing T candidate models, namely
Mt1 , . . . ,MtT for some sub-sequence (t1, . . . , tT ) of [tmax],
the next step is to select the appropriate early-stopped model
based on the hold-out data in Des-cal as well as the test point
Zn+1. Following the notation of Section 2.1, define the
value of the one-class classification loss L for model Mt,
for any t ∈ [T ], evaluated on Des-cal as: Les-cal(Mt) =∑
i∈Des-cal

`(Mt;Zi). Further, for any z ∈ Z , define also
L+1

es-cal(Mt, z) as:

L+1
es-cal(Mt, z) = Les-cal(Mt) + `(Mt; z). (1)
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(a) Conformal inference after early stopping.
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(b) Conformalized early stopping (CES).

Figure 1. Conformal inference for models trained with early stopping. (a) Conventional pipeline requiring a three-way sample split. (b)
Conformalized early stopping, requiring a two-way split.
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Figure 2. Average performance, as a function of the sample size,
of conformal inferences based on neural networks trained and cali-
brated with different methods, on the bio regression data (dat, b).
Ideally, the coverage of the conformal prediction intervals should
be close to 90% and their width should be small. All methods
shown here guarantee 90% marginal coverage. See Table A3 for
more detailed results and standard errors.

Therefore,L+1
es-cal(Mt, Zn+1) can be interpreted as the cumu-

lative value of the loss function calculated on an augmented
hold-out data set including also Zn+1. Then, we select the
model M̂ces(Zn+1) minimizing L+1

es-cal(Mt, Zn+1):

M̂ces(Zn+1) = arg min
Mtj

: 1≤j≤T
L+1

es-cal(Mtj , Zn+1). (2)

Note that the computational cost of evaluating (2) is negligi-
ble compared to that of training the models.

Next, the selected model M̂ces(Zn+1) is utilized to com-
pute a conformal p-value (Bates et al., 2023) to test whether
Zn+1 is an inlier. In particular, M̂ces(Zn+1) is utilized to
compute nonconformity scores Ŝi(Zn+1) for all samples
i ∈ Des-cal ∪ {n + 1}. These scores rank the observations
in Des-cal ∪ {n + 1} based on how the one-class classifier
M̂ces(Zn+1) perceives them to be similar to the training
data; by convention, a smaller value of Ŝi(Zn+1) suggests
Zi is more likely to be an outlier. Suitable scores are typi-
cally included in the output of standard one-class classifica-
tion models, such as those provided by the Python library
PyTorch. For simplicity, we assume all scores are almost-
surely distinct; otherwise, ties can be broken at random by

adding a small amount of independent noise. Then, the
conformal p-value û0(Zn+1) is given by the usual formula:

û0(Zn+1) =
1 + |i ∈ Des-cal : Ŝi ≤ Ŝn+1|

1 + |Des-cal|
, (3)

making the dependence of Ŝi on Zn+1 implicit in the in-
terest of space. This method, outlined by Algorithm A4 in
Appendix A2, gives p-values that are exactly valid in finite
samples, in the sense that they are stochastically dominated
by the uniform distribution under the null hypothesis.

Theorem 2.1. Assume Z1, . . . , Zn, Zn+1 are exchangeable
random samples, and let û0(Zn+1) be the output of Algo-
rithm A4, as given in (3). Then, P [û0(Zn+1) ≤ α] ≤ α for
any α ∈ (0, 1).

2.4. CES for Classification

The above CES method will now be extended to deal withK-
class classification problems, for anyK ≥ 2. Consider n ex-
changeable pairs of observations (Xi, Yi), for i ∈ D = [n],
and a test point (Xn+1, Yn+1) whose label Yn+1 ∈ [K] has
not yet been observed. The goal is to construct an infor-
mative prediction set for Yn+1 given the observed features
Xn+1 and the rest of the data, assuming (Xn+1, Yn+1) is
exchangeable with the observations indexed by D. An ideal
goal would be to construct the smallest possible prediction
set with guaranteed feature-conditional coverage at level
1− α, for any fixed α ∈ (0, 1). Formally, a prediction set
Ĉα(Xn+1) ⊆ [K] has feature-conditional coverage at level
1−α if P[Yn+1 ∈ Ĉα(Xn+1) | Xn+1 = x] ≥ 1−α, for any
x ∈ X , where X is the feature space. Unfortunately, perfect
feature-conditional coverage is extremely difficult to achieve
unless the feature space X is very small. Therefore, in prac-
tice, one must be satisfied with obtaining relatively weaker
guarantees, such as label-conditional coverage and marginal
coverage. Formally, Ĉα(Xn+1) has 1−α label-conditional
coverage if P[Yn+1 ∈ Ĉα(Xn+1) | Yn+1 = y] ≥ 1 − α,
for any y ∈ [K], while marginal coverage corresponds to
P[Yn+1 ∈ Ĉα(Xn+1)] ≥ 1 − α. Label-conditional cover-
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age is stronger than marginal coverage, but both criteria are
useful because the latter is easier to achieve with smaller
(and hence more informative) prediction sets.

We begin by focusing on label-conditional coverage, as
this follows most easily from the results of Section 2.3.
This solution will be extended in Appendix A3 to tar-
get marginal coverage. The first step of CES consists of
randomly splitting D into two subsets, Dtrain and Des-cal,
as in Section 2.3. The samples in Des-cal are further di-
vided into subsets Dyes-cal with homogeneous labels; that is,
Dyes-cal = {i ∈ Des-cal : Yi = y} for each y ∈ [K]. The data
in Dtrain are utilized to train a neural network classifier via
stochastic gradient descent, storing the intermediate candi-
date models Mt after each τ epochs. This is essentially the
same approach as in Section 2.3, with the only difference
being that the neural network is now designed to perform
K-class classification rather than one-class classification.
Therefore, this neural network should have a soft-max layer
withK nodes near its output, whose values corresponding to
an input data point with features x are denoted as π̂y(x), for
all y ∈ [K]. Intuitively, we will interpret π̂y(x) as approx-
imating (possibly inaccurately) the true conditional data-
generating distribution; i.e., π̂y(x) ≈ P [Y = y | X = x].

For any model Mt, any x ∈ X , and any y ∈ [K], define the
augmented loss L+1

es-cal(Mt, x, y) as:

L+1
es-cal(Mt, x, y) = Les-cal(Mt) + `(Mt;x, y). (4)

Concretely, a typical choice for ` is the cross-entropy loss:
`(Mt;x, y) = − log π̂ty(x), where π̂t denotes the soft-max
probability distribution estimated by model Mt. Intuitively,
L+1

es-cal(Mt, x, y) is the cumulative value of the loss func-
tion calculated on an augmented hold-out data set includ-
ing also the imaginary test sample (x, y). Then, for any
y ∈ [K], CES selects the model M̂ces(Xn+1, y) minimizing
L+1

es-cal(Mt, Xn+1, y) among the T stored models:

M̂ces(Xn+1, y) = arg min
Mtj

: 1≤j≤T
L+1

es-cal(Mtj , Xn+1, y). (5)

The selected model M̂ces(Xn+1, y) is then utilized to com-
pute a conformal p-value for testing whether Yn+1 = y. In
particular, we compute nonconformity scores Ŝyi (Xn+1) for
all i ∈ Dyes-cal∪{n+1}, imagining that Yn+1 = y. Different
types of nonconformity scores can be easily accommodated,
but in this paper, we follow the adaptive strategy of Romano
et al. (2020b). The computation of these nonconformity
scores based on the selected model M̂ces is reviewed in
Appendix A4. Here, we simply note the p-value is given by:

ûy(Xn+1) =
1 + |i ∈ Dyes-cal : Ŝyi ≤ Ŝyn+1|

1 + |Dyes-cal|
, (6)

again making the dependence of Ŝyi on Xn+1 implicit. Fi-
nally, the prediction set Ĉα(Xn+1) is constructed by in-
cluding all possible labels for which the corresponding null
hypothesis cannot be rejected at level α:

Ĉα(Xn+1) = {y ∈ [K] : ûy(Xn+1) ≥ α} . (7)

This method, outlined by Algorithm A5 in Appendix A2,
guarantees label-conditional coverage at level 1− α.

Theorem 2.2. Assume (X1, Y1), . . . , (Xn+1, Yn+1) are ex-
changeable, and let Ĉα(Xn+1) be the output of Algo-
rithm A5, as given in (7), for any given α ∈ (0, 1). Then,
P[Yn+1 ∈ Ĉα(Xn+1) | Yn+1 = y] ≥ 1 − α for any
y ∈ [K].

2.5. CES for Regression

This section extends CES to regression problems with a
continuous outcome. As in the previous sections, consider
a data set containing n exchangeable observations (Xi, Yi),
for i ∈ D = [n], and a test point (Xn+1, Yn+1) with a
latent label Yn+1 ∈ R. The goal is to construct a reasonably
narrow prediction interval Ĉα(Xn+1) for Yn+1 that is guar-
anteed to have marginal coverage above some level 1− α,
i.e., P[Yn+1 ∈ Ĉα(Xn+1)] ≥ 1 − α, and can also practi-
cally achieve reasonably high feature-conditional coverage.
Developing a CES method for this problem is more difficult
compared to the classification case studied in Section 2.4
due to the infinite number of possible values for Yn+1. In
fact, a naive extension of Algorithm A5 would be compu-
tationally unfeasible in the regression setting, for the same
reason why full-conformal prediction (Vovk et al., 2005) is
generally impractical. The novel solution described below
is designed to leverage the particular structure of an early
stopping criterion based on the squared-error loss evaluated
on hold-out data. Focusing on the squared-error loss makes
CES easier to implement and explain using classical abso-
lute residual nonconformity scores (Vovk et al., 2005; Lei
et al., 2018a). However, similar ideas could also be repur-
posed to accommodate other scores, such as those based on
quantile regression (Romano et al., 2019), conditional dis-
tributions (Chernozhukov et al., 2021; Izbicki et al., 2020),
or conditional histograms (Sesia & Romano, 2021).

As usual, we randomly split D into Dtrain and Des-cal. The
data in Dtrain are utilized to train a neural network via
stochastic gradient descent, storing the intermediate models
Mt after each τ epoch. The approach is similar to those in
Sections 2.3–2.4, although now the output of a model Mt

applied to a sample with features x is denoted by µ̂t(x) and
is designed to approximate (possibly inaccurately) the con-
ditional mean of the unknown data-generating distribution;
i.e., µ̂t(x) ≈ E [Y | X = x]. (Note that we will omit the
superscript t unless necessary to avoid ambiguity). For any
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model Mt and any x ∈ X , y ∈ R, define

L+1
es-cal(Mt, x, y) = Les-cal(Mt) + [y − µ̂t(x)]2. (8)

Consider now the following optimization problem,

M̂ces(Xn+1, y) = arg min
Mtj

: 1≤j≤T
L+1

es-cal(Mtj , Xn+1, y), (9)

which can be solved simultaneously for all y ∈ R thanks
to the amenable form of (8). In fact, each L+1

es-cal(Mt, x, y)
is a simple quadratic function of y; see the sketch in Fig-
ure 3. This implies M̂ces(Xn+1, y) is a step function, whose
parameters can be computed at cost O(T log T ) with an
efficient divide-and-conquer algorithm designed to find the
lower envelope of a family of parabolas (Devillers & Golin,
1995; Nielsen & Yvinec, 1998); see Appendix A5.

y

L+1
es-cal(Mt, x, y)

M1

M2

M3

𝑘! 𝑘" 𝑘#

Figure 3. Squared-error loss on test-augmented hold-out data for
three alternative regression models M1,M2 and M3, as a function
of the place-holder outcome y for the test point. The CES method
utilizes the best model for each possible value of y, which is
identified by the lower envelope of these three parabolas. In this
case, the lower envelope has two finite knots at k1 and k3.

Therefore, M̂ces(Xn+1, y) has L distinct steps, for some
L = O(T log T ) that may depend on Xn+1, and it can be
written as a function of y as:

M̂ces(Xn+1, y) =

L∑
l=1

ml(Xn+1)1 [y ∈ (kl−1, kl]] , (10)

where ml(Xn+1) ∈ [T ] represents the best model se-
lected within the interval (kl−1, kl] such that ml(Xn+1) 6=
ml−1(Xn+1) for all l ∈ [L]. Above, k1 ≤ k2 ≤ · · · ≤ kL
denote the knots of M̂ces(Xn+1, y), which also depend on
Xn+1 and are defined as the boundaries in the domain of
y between each consecutive pair of steps, with the under-
standing that k0 = −∞ and kL+1 = +∞. Then, for each
step l ∈ [L], let Bl indicate the interval Bl = (kl−1, kl]
and, for all i ∈ Des-cal, evaluate the nonconformity score
Ŝi(Xn+1,Bl) for observation (Xi, Yi) based on the regres-

sion model indicated by ml(Xn+1); i.e.,

Ŝi(Xn+1,Bl) = |Yi − µ̂ml(Xn+1)(Xi)|. (11)

Let Q̂1−α(Xn+1,Bl) denote the d(1 − α)(1 + |Des-cal|)e-
th smallest value among all nonconformity scores
Ŝi(Xn+1,Bl), assuming for simplicity that there are no ties;
otherwise, ties can be broken at random. Then, define the
interval Ĉα(Xn+1,Bl) as that obtained by applying the stan-
dard conformal prediction method with absolute residual
scores based on the regression model µ̂ml(Xn+1)(Xn+1):

Ĉα(Xn+1,Bl) = µ̂ml(Xn+1)(Xn+1)± Q̂1−α(Xn+1,Bl).
(12)

Finally, the prediction interval Ĉα(Xn+1) is given by:

Ĉα(Xn+1) = Convex
(
∪Ll=1{Bl ∩ Ĉα(Xn+1,Bl)}

)
,

(13)

where Convex(·) denotes the convex hull of a set. This pro-
cedure is summarized in Algorithm A6 and it is guaranteed
to produce prediction sets with valid marginal coverage.

Theorem 2.3. Assume (X1, Y1), . . . , (Xn+1, Yn+1) are ex-
changeable, and let Ĉα(Xn+1) be the output of Algo-
rithm A6, as given by (13), for any given α ∈ (0, 1). Then,
P[Yn+1 ∈ Ĉα(Xn+1)] ≥ 1− α.

The intuition behind the above method is as follows. Each
intermediate interval Ĉα(Xn+1,Bl), for l ∈ [L], may be
thought of as being computed by applying, under the null
hypothesis that Yn+1 ∈ Bl, the classification method from
Section 2.4 for a discretized version of our problem based
on the partition {Bl}Ll=1. Then, leveraging the classical du-
ality between confidence intervals and p-values, it becomes
clear that taking the intersection of Bl and Ĉα(Xn+1,Bl)
essentially amounts to including the “label” Bl in the out-
put prediction if the null hypothesis Yn+1 ∈ Bl cannot be
rejected. The purpose of the final convex hull operation is
to generate a contiguous prediction interval, which is what
we originally stated to seek.

One may intuitively be concerned that this method may out-
put excessively wide prediction interval if the location of
{Bl ∩ Ĉα(Xn+1,Bl)} is extremely large in absolute value.
However, our numerical experiments will demonstrate that,
as long as the number of calibration data points is not too
small, the selected models in general provide reasonably
concentrated predictions around the true test response re-
gardless of the placeholder value y. Therefore, the interval
Ĉα(Xn+1,Bl) tends to be close to the true y even if Bl is
far away, in which case Ĉα(Xn+1,Bl) ∩ Bl = ∅ does not
expand the final prediction interval Ĉα(Xn+1).
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Although it is unlikely, Algorithm A6 may sometimes pro-
duce an empty set, which is an uninformative and potentially
confusing output. A simple solution consists of replacing
any empty output with the naive conformal prediction in-
terval computed by Algorithm A3 in Appendix A1, which
leverages an early-stopped model selected by looking at
the original calibration data set without the test point. This
approach is outlined by Algorithm A10 in Appendix A6. As
the intervals given by Algorithm A10 always contain those
output by Algorithm A6, it follows that Algorithm A10 also
enjoys guaranteed coverage; see Corollary A1.

2.6. CES for Quantile Regression

The CES method for regression described in Section 2.5
relies on classical nonconformity scores (Vovk et al., 2005;
Lei et al., 2018a) that are not designed to deal efficiently
with heteroscedastic data (Romano et al., 2019; Sesia &
Candès, 2020). However, the idea can be extended to ac-
commodate other nonconformity scores, including those
based on quantile regression (Romano et al., 2019), condi-
tional distributions (Izbicki et al., 2020; Chernozhukov et al.,
2021), or conditional histograms (Sesia & Romano, 2021).
The reason why we have so far focused on the classical ab-
solute residual scores is that they are more intuitive to apply
in conjunction with an early stopping criterion based on the
squared-error loss. The extension of the CES method to
the conformalized quantile regression (CQR) method of Ro-
mano et al. (2019) is developed explicitly in Appendix A7.

2.7. Implementation Details and Computational Cost

Beyond the cost of training the neural network (which is
relatively expensive but does not need to be repeated for
different test points) and the storage cost associated with
saving the candidate models (which we have argued to be
feasible in many applications), CES is quite computationally
efficient. Firstly, CES treats all test points individually and
could process them in parallel, although many operations
do not need to be repeated. In particular, one can recycle the
evaluation of the calibration loss across different test points;
e.g., see (4). Thus, the model selection component can be
easily implemented at costO((nes-cal+ntest)·T+ntest·nes-cal)
for classification (of which outlier detection is a special
case) and O((nes-cal + ntest) · T · log T + ntest · nes-cal) for
regression, where nes-cal = |Des-cal| and T is the number of
candidate models. Note that the T · log T dependence in
the regression setting comes from the divide-and-conquer
algorithm explained in Appendix A5.

It is possible that the cost of CES may become a barrier in
some applications, particularly if T is very large, despite the
slightly more than linear scaling. Hence, we recommend
employing moderate values of T (e.g., 100 or 1000).

3. Numerical Experiments
3.1. Outlier Detection

The use of CES for outlier detection is demonstrated using
the CIFAR10 data set (Krizhevsky, 2009), a collection of
60,000 32-by-32 RGB images from 10 classes including
common objects and animals. A convolutional neural net-
work with ReLU activation functions is trained on a subset
of the data to minimize the cross-entropy loss. The maxi-
mum number of epochs is set to be equal to 50. The trained
classification model is then utilized to compute conformity
scores for outlier detection with the convention that cats
are inliers and the other classes are outliers. In particular, a
nonconformity score for each Zn+1 is defined as 1 minus
the output of the soft-max layer corresponding to the label
“cat”. This can be interpreted as an estimated probability of
Zn+1 being an outlier. After translating these scores into a
conformal p-value û0(Zn+1), the null hypothesis that Zn+1

is a cat is rejected if û0(Zn+1) ≤ α = 0.1.

The total number of samples utilized for training, early stop-
ping, and conformal calibration is varied between 500 and
2000. In each case, CES is applied using 75% of the sam-
ples for training and 25% for early stopping and calibration.
Note that the calibration step only utilizes inliers, while
the other data subsets also contain outliers. The empirical
performance of CES is measured in terms of the probability
of falsely rejecting a true null hypothesis—the false posi-
tive rate (FPR)—and the probability of correctly rejecting
a false null hypothesis—the true positive rate (TPR). The
CES method is compared to three benchmarks. The first
benchmark is naive early stopping with the best (hybrid) the-
oretical correction for the nominal coverage level described
in Appendix A1.2. The second benchmark is early stopping
based on data splitting, which utilizes 50% of the available
samples for training, 25% for early stopping, and 25% for
calibration. The third benchmark is full training without
early stopping, which simply selects the model obtained
after the last epoch. The test set consists of 100 indepen-
dent test images, half of which are outliers. All results are
averaged over 100 trials based on independent data subsets.

Figure 4 summarizes the performance of the four meth-
ods as a function of the total sample size; see Table A1 in
Appendix A8 for the corresponding standard errors. All
methods control the FPR below 10%, as expected, but CES
achieves the highest TPR. The increased power of CES com-
pared to data splitting is not surprising, as the latter relies on
a less accurate model trained on less data. By contrast, the
naive benchmark trains a model more similar to that of CES,
but its TPR is not as high because the theoretical correction
for the naive conformal p-values is overly pessimistic. Fi-
nally, full training is the least powerful competitor for large
sample sizes because its underlying model becomes more
and more overconfident as the training set grows.
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Figure 4. Average performance, as a function of the sample size,
of conformal inferences for outlier detection based on neural net-
works trained and calibrated with different methods, on the CI-
FAR10 data (Krizhevsky, 2009). Ideally, the TPR should be as large
as possible while maintaining the FPR below 0.1. See Table A1
for more detailed results and standard errors.

Note that Table A1 also includes the results obtained with
the naive benchmark detailed in Appendix A1, applied
without the theoretical correction necessary to guarantee
marginal coverage. Remarkably, the results show that the
naive benchmark performs similarly to the CES method,
even though only the latter has the advantage of enjoying
rigorous finite-sample guarantees.

3.2. Multi-class Classification

The same CIFAR10 data (Krizhevsky, 2009) are utilized
here to demonstrate the performance of CES for a 10-class
classification task. These experiments are conducted simi-
larly to those in Section 3.1. The only difference is that now
the soft-max output of the convolutional neural network
is translated into conformal prediction sets, as explained
in Appendix A4, instead of conformal p-values. The CES
method is compared to the same three benchmarks adopted
in Section 3.1. All prediction sets are calibrated to guar-
antee 90% marginal coverage, and their performances are
evaluated based on cardinality.

Coverage (marginal) Cardinality

500 1000 2000 500 1000 2000
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1.0

Sample size

Method

CES

Naive + theory

Data splitting

Full training

Figure 5. Average performance, as a function of the sample size,
of conformal prediction sets for multi-class classification based
on neural networks trained and calibrated with different methods,
on the CIFAR10 data (Krizhevsky, 2009). Ideally, the coverage
should be close to 90% and the cardinality should be small. See
Table A2 for more detailed results and standard errors.

Figure 5 summarizes the results averaged over 100 indepen-
dent realizations of these experiments, while Table A2 in
Appendix A8 reports on the corresponding standard errors.

While all approaches always achieve the nominal coverage
level, the CES method is able to do so with the smallest,
and hence most informative, prediction sets. As before, the
more disappointing performance of the data splitting bench-
mark can be explained by the more limited amount of data
available for training, that of the naive benchmark by the
excessive conservativeness of its theoretical correction, and
that of the full training benchmark by overfitting. Note that
Table A2 also includes the results obtained with the naive
benchmark without the theoretical correction, which again
performs similarly to CES.

3.3. Regression

We now apply the CES method to the following 3 public-
domain regression data sets from the UCI Machine Learning
repository (Pınar Tüfekci, 2012): physicochemical proper-
ties of protein tertiary structure (bio) (dat, b), hourly and
daily counts of rental bikes (bike) (dat, a), and concrete
compressive strength (concrete) (dat, c). These data sets
were previously also considered by Romano et al. (2019),
to which we refer for further details. As in the previous
sections, we compare CES to the usual three benchmarks:
naive early stopping with the hybrid theoretical correction
for the nominal coverage level, early stopping based on data
splitting, and full model training without early stopping. All
methods utilize the same neural network with two hidden
layers of width 128 and ReLU activation functions, trained
for up to 1000 epochs. The models are calibrated in such a
way as to produce conformal prediction sets with guaranteed
90% marginal coverage for a test set of 100 independent data
points. The total sample size available for training, early
stopping and calibration is varied between 200 and 2000.
These data are allocated for specific training, early-stopping,
and calibration operations as in Sections 3.1–3.2. The per-
formance of each method is measured in terms of marginal
coverage, worst-slab conditional coverage (Cauchois et al.,
2021)—estimated as described in Sesia & Candès (2020)—
and average width of the prediction intervals. All results are
averaged over 100 independent experiments, each based on
a different random sample from the original raw data sets.

Figure 2 summarizes the performance of the four alternative
methods on the bio data, as a function of the total sample
size; see Table A10 in Appendix A8 for the corresponding
standard errors. These results show that all methods reach
90% marginal coverage in practice, as anticipated by the
mathematical guarantees, although the theoretical correction
for the naive early stopping method appears to be overly
conservative. The CES method clearly performs best, in the
sense that it leads to the shortest prediction intervals while
also achieving approximately valid conditional coverage.
By contrast, the conformal prediction intervals obtained
without early stopping have significantly lower conditional
coverage, which is consistent with the prior intuition that
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fully trained neural networks can sometimes suffer from
overfitting. More detailed results from these experiments
can be found in Table A3 in Appendix A8. Analogous re-
sults corresponding to the bike and concrete data sets can
be found in Figures A10–A11 and Tables A4–A5 in Ap-
pendix A8. Tables A3–A5 also include the results obtained
with the naive benchmark applied without the necessary
theoretical correction, which performs similarly to CES.

Finally, it must be noted that the widths of the prediction
intervals output by the CES method in these experiments are
very similar to those of the corresponding intervals produced
by naively applying early stopping without data splitting and
without the theoretical correction described in Appendix A1.
This naive approach was not taken as a benchmark because
it does not guarantee valid coverage, unlike the other meth-
ods. Nonetheless, it is interesting to note that the rigorous
theoretical properties of the CES method do not come at the
expense of a significant loss of power compared to this very
aggressive heuristic, and in this sense, one may say that the
conformal inferences computed by CES are “almost free”.

3.4. Quantile Regression

Appendix A8 contains the results of additional numerical
experiments investigating the performance of the CES quan-
tile regression method mentioned in Section 2.6 and ex-
plained in Appendix A7. These experiments are carried out
using the following publicly available and commonly inves-
tigated regression data sets from the UCI Machine Learn-
ing repository (Pınar Tüfekci, 2012): medical expenditure
panel survey number 21 (MEPS 21) (mep); blog feedback
(blog data) (blo); Tennessee’s student teacher achievement
ratio (STAR) (Achilles et al., 2008); community and crimes
(community) (com); physicochemical properties of protein
tertiary structure (bio) (dat, b); house sales in King County
(homes) (hom); and hourly and daily counts of rental bikes
(bike) (dat, a). These data sets were previously also consid-
ered by Romano et al. (2019). The results demonstrate that
the CES method compares favorably, in terms of the condi-
tional coverage and average length of the output prediction
intervals, to the analogous quantile regression versions of
the benchmark approaches considered above.

4. Discussion
This paper has focused on early stopping and conformal
calibration because these are two popular techniques, re-
spectively designed to mitigate overfitting and reduce over-
confidence, that were previously combined without much
thought. However, the relevance of our methodology ex-
tends well beyond the problem considered in this paper. In
fact, related ideas have already been utilized in the context
of outlier detection to tune hyper-parameters and select the
most promising candidate from an arbitrary toolbox of ma-

chine learning models (Liang et al., 2022). The techniques
developed in this paper also allow one to calibrate, without
further data splits, the most promising model selected in a
data-driven way from an arbitrary machine learning toolbox
in the context of multi-class classification and regression.

As detailed in Appendix A1, the naive benchmark that uses
the same hold-out data twice, both for standard early stop-
ping and standard conformal calibration, is not theoretically
valid without conservative corrections. Nonetheless, our
numerical experiments have shown that this naive approach
often performs similarly to CES in practice. Of course, the
naive benchmark may sometimes fail, and thus we would ad-
vise practitioners to apply the theoretically principled CES
whenever its additional memory costs are not prohibitive.
However, the empirical evidence suggests the naive bench-
mark may not be a completely unreasonable heuristic when
CES is not applicable.

Software implementing the algorithms and data experi-
ments are available online at https://github.com/
ZiyiLiang/Conformalized_early_stopping.
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A1. Naive Early Stopping Benchmarks
A1.1. Detailed Implementation of the Naive Benchmarks

We detail here the implementation of the naive benchmark considered in this paper, which consist of performing standard
conformal calibration using the same hold-out samples utilized by standard early stopping techniques. This does not yield
theoretically valid conformal inferences in finite samples because greedily utilizing the same hold-out data set twice, both to
evaluate the early stopping criterion and to perform conformal calibration, will break the necessary exchangeability with
the test point. Nonetheless, this approach can serve as an informative benchmark and it becomes useful in Appendix A6
to extend our rigorous conformalized early stopping method for regression problems in such as way as to explicitly avoid
returning empty prediction intervals. For completeness, we present the implementation of the naive benchmark separately
for outlier detection, multi-class classification, and regression, respectively in Algorithms A1, A2 and A3. Note that
Algorithm A2 also allows for the possibility of computing prediction sets seeking (approximate) marginal coverage instead
of (approximate) label-conditional coverage for multi-class classification problems; see Appendix A3 for further details on
multi-class classification with marginal coverage.

Algorithm A1 Naive conformal outlier detection benchmark with greedy early stopping
1: Input: Exchangeable data points Z1, . . . , Zn; test point Zn+1.
2: Input: Maximum number of training epochs tmax; storage period hyper-parameter τ .
3: Input: One-class classifier trainable via (stochastic) gradient descent.
4: Randomly split the exchangeable data points into Dtrain and Des-cal.
5: Train the one-class classifier for tmax epochs and save the intermediate models Mt1 , . . . ,MtT .
6: Pick the most promising model t∗ ∈ [T ] minimizing Les-cal(Mt) in (1), using the data in Des-cal.
7: Compute nonconformity scores Ŝi(Zn+1) for all i ∈ Des-cal ∪ {n+ 1} using model t∗.
8: Output: Naive conformal p-value ûnaive

0 (Zn+1) given by (3).

Algorithm A2 Naive conformal multi-class classification benchmark with greedy early stopping
1: Input: Exchangeable data points (X1, Y1), . . . , (Xn, Yn) with labels Yi ∈ [K].
2: Input: Test point with features Xn+1. Desired coverage level 1− α.
3: Input: Maximum number of training epochs tmax; storage period hyper-parameter τ .
4: Input: K-class classifier trainable via (stochastic) gradient descent.
5: Randomly split the exchangeable data points into Dtrain and Des-cal.
6: Train the K-class classifier for tmax epochs and save the intermediate models Mt1 , . . . ,MtT .
7: Pick the most promising model t∗ ∈ [T ] minimizing Les-cal(Mt) in (4), using the data in Des-cal.
8: for y ∈ [K] do
9: if Label-conditional coverage is desired then

10: Define Dyes-cal = {i ∈ Des-cal : Yi = y}.
11: Compute scores Ŝyi (Xn+1) for all i ∈ Dyes-cal ∪ {n+ 1} using model t∗; see Appendix A4.
12: Compute the naive conformal p-value ûnaive

y (Xn+1) according to (6).
13: else
14: Compute scores Ŝyi (Xn+1) for all i ∈ Des-cal ∪ {n+ 1} using model t∗; see Appendix A4.
15: Compute the naive conformal p-value ûnaive

y (Xn+1) according to

ûnaive
y (Xn+1) =

1 + |i ∈ Des-cal : Ŝyi (Xn+1) ≤ Ŝyn+1(Xn+1)|
1 + |Des-cal|

.

16: end if
17: end for
18: Output: Naive prediction set Ĉnaive

α (Xn+1) given by (7).
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Algorithm A3 Naive conformal regression benchmark with greedy early stopping
1: Input: Exchangeable data points (X1, Y1), . . . , (Xn, Yn) with outcomes Yi ∈ R.
2: Input: Test point with features Xn+1. Desired coverage level 1− α.
3: Input: Maximum number of training epochs tmax; storage period hyper-parameter τ .
4: Input: Regression model trainable via (stochastic) gradient descent.
5: Randomly split the exchangeable data points into Dtrain and Des-cal.
6: Train the regression model for tmax epochs and save the intermediate models Mt1 , . . . ,MtT .
7: Pick the most promising model t∗ ∈ [T ] minimizing Les-cal(Mt) in (8).
8: Evaluate nonconformity scores Ŝi(Xn+1) = |Yi − µ̂t∗(Xi)| for all i ∈ Des-cal.
9: Compute Q̂1−α(Xn+1) = d(1− α)(1 + |Des-cal|)e-th largest value in Ŝi(Xn+1) for i ∈ Des-cal.

10: Output: Naive prediction interval Ĉnaive
α (Xn+1) = µ̂t∗(Xn+1)± Q̂1−α(Xn+1).

A1.2. Theoretical Analysis of the Naive Benchmark

Although the naive benchmarks described above often perform similarly to CES in practice, they do not enjoy the same
desirable theoretical guarantees. Nonetheless, we can study their behaviour in sufficient detail as to prove that their inferences
are too far from being valid. Unfortunately, as demonstrated in Section 3, these theoretical results are still not tight enough
to be very useful in practice. For simplicity, we will begin by focusing on outlier detection.

Review of existing results based on the DKW inequality. Yang & Kuchibhotla (2021) have recently studied the finite-
sample coverage rate of a conformal prediction interval formed by naively calibrating a model selected among T possible
candidates based on its performance on the calibration data set itself, which we denote by Des-cal. Although Yang &
Kuchibhotla (2021) focus on conformal prediction intervals, here we find it easier to explain their ideas in the context of
conformal p-values for outlier detection.

Let Ŝi(Zn+1; t), for all i ∈ Des-cal and t ∈ [T ], denote the nonconformity scores corresponding to model t, and denote the
bα(1 + |Des-cal|)c-th largest value in Ŝi(Xn+1; t) as Q̂α(Zn+1; t). Let t∗ indicate the selected model. As we are interested
in constructing a conformal p-value ûnaive

0 (Zn+1), the goal is to bound from above the tail probability

P
(
ûnaive
0 (Zn+1) > α

)
= E

[
P
(
Ŝi(Xn+1; t∗) > Q̂α(Zn+1; t∗) | Des-cal

)]
. (A14)

Intuitively, if nes-cal = |Des-cal| is sufficiently large, the conditional probability inside the expected value on the right-hand-
side above can be well-approximated by the following empirical quantity:

1

n

∑
i∈Des-cal

1

{
Ŝi(Xn+1; t∗) > Q̂α(Zn+1; t∗)

}
=
d(1 + nes-cal)(1− α)e

nes-cal
≥
(

1 +
1

nes-cal

)
(1− α).

The quality of this approximation in finite samples can be bound by the DKW inequality, which holds for any ε ≥ 0:

P

(
sup
s∈R

∣∣∣∣∣ 1

nes-cal

∑
i∈Des-cal

1

{
Ŝi(Xn+1; t∗) > s

}
− P

(
Ŝi(Xn+1; t∗) > s | Des-cal

)∣∣∣∣∣ > ε

)
≤ 2e−2nes-calε

2

. (A15)

Starting from this, Theorem 1 in Yang & Kuchibhotla (2021) shows that

P(ûnaive
0 (Zn+1) > α) ≥

(
1 +

1

nes-cal

)
(1− α)−

√
log(2T )/2 + c(T )√

nes-cal
, (A16)

where c(T ) is a constant that can be computed explicitly and is generally smaller than 1/3. Intuitively, the [
√

log(2T )/2 +
c(T )]/

√
nes-cal term above can be interpreted as the worst-case approximation error among all possible models t ∈ [T ].

One limitation with this result is that is gives a worst-case correction that does not depend on the chosen level α, and one
would intuitively expect this bound to be tighter for α = 1/2 and overly conservative for the small α values (e.g., α = 0.1)
that are typically interesting in practice. (This intuition will be confirmed empirically in Figure A7.) This observation
motivates the following alternative analysis, which can often give tighter results.
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Alternative probabilistic bound based on Markov’s inequality. Define Wt = P
[
ûnaive
0 (Zn+1; t) > α | Des-cal

]
.

Lemma 3 in Vovk (2012) tells us that Wt follows a Beta distribution, assuming exchangeability among Des-cal and the test
point. That is,

Wt ∼ Beta(nes-cal + 1− l, l), l = bα(nes-cal + 1)c.

In the following, we will denote the corresponding inverse Beta cumulative distribution function as I−1(x;nes-cal + 1− l, l).
This result can be used to derive an alternative upper bound for P(ûnaive

0 (Zn+1) > α) using the Markov’s inequality.

Proposition A1. Assume Z1, . . . , Zn, Zn+1 are exchangeable random samples, and let ûnaive
0 (Zn+1) be the output of

Algorithm A1, for any given α ∈ (0, 1). Then, for any fixed α ∈ (0, 1) and any b > 1, letting l = bα(nes-cal + 1)c,

P
[
ûnaive
0 (Zn+1) > α

]
≥ I−1

(
1

bT
;nes-cal + 1− l, l

)
· (1− 1/b).

Note that this bound depends on α in a more complex way compared to that of Yang & Kuchibhotla (2021). However, its
asymptotic behaviour in the large-T limit remains similar, as shown below.

Lemma A2. Denote I−1(x;nes-cal + 1− l, l) as the inverse Beta cumulative distribution function. For any fixed b > 1 and
α ∈ (0, 1) , letting l = bα(nes-cal + 1)c, for sufficiently large T and nes-cal, we have:

I−1
(

1

bT
;nes-cal + 1− l, l

)
= (1− α)−

√
α(1− α)

nes-cal + 1
·
√

2 log(bT ) +O

(
1√

nes-cal log(T )

)
.

In simpler terms, Lemma A2 implies that the coverage lower bound in Proposition A1 is approximately equal to(1− α)−
√
α(1− α)

nes-cal + 1
·
√

2 log(bT )

 · (1− 1

b

)
,

which displays an asymptotic behaviour similar to that of the bound from Yang & Kuchibhotla (2021). Further, the Markov
bound is easy to compute numerically and often turns out to be tighter as long as b is moderately large (e.g., b = 100), as we
shall see below. Naturally, the same idea can also be applied to bound the coverage of naive conformal prediction sets or
intervals output by Algorithm A2 or Algorithm A3, respectively.

Corollary A3. Assume (X1, Y1), . . . , (Xn, Yn), (Xn+1, Yn+1) are exchangeable random sample, and let Ĉnaive
α (Xn+1) be

the output of Algorithm A2, for any given α ∈ (0, 1). Then, for any b > 1, letting l = bα(nes-cal + 1)c,

P
[
Yn+1 ∈ Ĉnaive

α (Xn+1)
]
≥ I−1

(
1

bT
;nes-cal + 1− l, l

)
· (1− 1/b).

Corollary A4. Assume (X1, Y1), . . . , (Xn, Yn), (Xn+1, Yn+1) are exchangeable random samples, and let Ĉnaive
α (Xn+1)

be the output of Algorithm A3, for any α ∈ (0, 1). Then, for any b > 1, letting l = bα(nes-cal + 1)c,

P
[
Yn+1 ∈ Ĉnaive

α (Xn+1)
]
≥ I−1

(
1

bT
;nes-cal + 1− l, l

)
· (1− 1/b).

Hybrid probabilistic bound. Since neither the DKW nor the Markov bound described above always dominate the other
for all possible combinations of T , nes-cal, and α, it makes sense to combine them to obtain a uniformly tighter hybrid bound.
For any fixed b > 1 and any T , nes-cal, and α, define H(T, nes-cal, α) as

H(T, nes-cal, α) = max

{
I−1

(
1

bT
;nes-cal + 1− l, l

)
· (1− 1/b),

(
1 +

1

nes-cal

)
(1− α)−

√
log(2T )/2 + c(T )√

nes-cal

}
.

It then follows immediately from Yang & Kuchibhotla (2021) and Proposition A1 that, under the same conditions of
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Figure A6. Numerical comparison of different theoretical lower bounds for the marginal coverage of conformal prediction sets computed
with a naive early stopping benchmark (e.g., Algorithm A2). Left: lower bounds for the marginal coverage as a function of the number of
candidate models T , when α = 0.1 and nes-cal = 8000. Right: lower bounds for the marginal coverage as a function of the number of
hold-out data points, nes-cal, when α = 0.1 and T = 100. Higher values correspond to tighter bounds.

Figure A7. Numerical comparison of different theoretical lower bounds for the marginal coverage of conformal prediction sets computed
with a naive early stopping benchmark (e.g., Algorithm A2), as a function of the nominal significance level α. Left: lower bounds
for the marginal coverage as a function of α, when T = 1000 and nes-cal = 1000. Right: theoretically corrected significance level
necessary needed to achieve the marginal coverage guarantees expected at the nominal α level, as a function of α when T = 1000 and
nes-cal = 1000. The dashed grey lines indicate the ideal values corresponding to standard conformal inferences based on calibration data
that are independent of those used for early stopping. Higher values correspond to tighter bounds.

Proposition A1, for any fixed b > 1,

P
[
ûnaive
0 (Zn+1) > α

]
≥ H(T, nes-cal, α).

Of course, the same argument can also be utilized to tighten the results of Corollaries A3–A4.

Numerical comparison of different probabilistic bounds. Figure A6 compares the three probabilistic bounds described
above (DKW, Markov, and hybrid) as a function of the number of candidate models T and of the number of hold-out data
points nes-cal, in the case of α = 0.1. For simplicity, the Markov and hybrid bounds are evaluated by setting b = 100, which
may not be the optimal choice but appears to work reasonably well. These results show that Markov bound tends to be
tighter than the DKW bound for large values of T and for small values of nes-cal, while the hybrid bound generally achieves
the best of both worlds. Lastly, Figure A7 demonstrates that the Markov bound tends to be tighter when α is small. The
Markov and hybrid bounds here are also evaluated using b = 100.
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A2. Main Algorithms

Algorithm A4 Conformalized early stopping for outlier detection
1: Input: Exchangeable data points Z1, . . . , Zn; test point Zn+1.
2: Input: Maximum number of training epochs tmax; storage period hyper-parameter τ .
3: Input: One-class classifier trainable via (stochastic) gradient descent.
4: Randomly split the exchangeable data points into Dtrain and Des-cal.
5: Train the one-class classifier for tmax epochs and save the intermediate models Mt1 , . . . ,MtT .
6: Pick the most promising model M̂ces(Zn+1) according to (2), using the data in Des-cal ∪ {n+ 1}.
7: Compute nonconformity scores Ŝi(Zn+1) for all i ∈ Des-cal ∪ {n+ 1} using model M̂ces(Zn+1).
8: Output: Conformal p-value û0(Zn+1) given by (3).

Algorithm A5 Conformalized early stopping for multi-class classification
1: Input: Exchangeable data points (X1, Y1), . . . , (Xn, Yn) with labels Yi ∈ [K].
2: Input: Test point with features Xn+1. Desired coverage level 1− α.
3: Input: Maximum number of training epochs tmax; storage period hyper-parameter τ .
4: Input: K-class classifier trainable via (stochastic) gradient descent.
5: Randomly split the exchangeable data points into Dtrain and Des-cal.
6: Train the K-class classifier for tmax epochs and save the intermediate models Mt1 , . . . ,MtT .
7: for y ∈ [K] do
8: Define Dyes-cal = {i ∈ Des-cal : Yi = y} and imagine Yn+1 = y.
9: Pick the model M̂ces(Xn+1, y) according to (5), using the data in Des-cal ∪ {n+ 1}.

10: Compute scores Ŝyi (Xn+1) for all i ∈ Dyes-cal ∪ {n+ 1} using M̂ces(Xn+1, y); see Appendix A4.
11: Compute the conformal p-value ûy(Xn+1) according to (6).
12: end for
13: Output: Prediction set Ĉα(Xn+1) given by (7).

Algorithm A6 Conformalized early stopping for regression
1: Input: Exchangeable data points (X1, Y1), . . . , (Xn, Yn) with outcomes Yi ∈ R.
2: Input: Test point with features Xn+1. Desired coverage level 1− α.
3: Input: Maximum number of training epochs tmax; storage period hyper-parameter τ .
4: Input: Regression model trainable via (stochastic) gradient descent.
5: Randomly split the exchangeable data points into Dtrain and Des-cal.
6: Train the regression model for tmax epochs and save the intermediate models Mt1 , . . . ,MtT .
7: Evaluate M̂ces(Xn+1, y) as in (10), using Algorithm A8.
8: Partition the domain of Y into L intervals Bl, for l ∈ [L], based on the knots of M̂ces(Xn+1, y).
9: for l ∈ [L] do

10: Evaluate nonconformity scores Ŝi(Xn+1,Bl) for all i ∈ Des-cal as in (11).
11: Compute Q̂1−α(Xn+1,Bl) as the d(1− α)(1 + |Des-cal|)e-th largest value among Ŝi(Xn+1,Bl).
12: Construct the interval Ĉα(Xn+1,Bl) according to (12).
13: end for
14: Output: Prediction interval Ĉα(Xn+1) given as a function of {Ĉα(Xn+1,Bl)}Ll=1 by (13).

A3. Classification with Marginal Coverage
The conformalized early stopping method presented in Section 2.4 can be easily modified to produce prediction sets with
marginal rather than label-conditional coverage, as outlined in Algorithm A7. The difference between Algorithm A5 and
Algorithm A7 is that the latter utilizes all calibration data in Des-cal to compute each conformal p-value ûy(Xn+1), not only
the samples with true label y. An advantage of this approach is that conformal p-values based on a larger calibration samples
are less aleatoric (Bates et al., 2023) and require less conservative finite-sample corrections (i.e., the “+1” term the numerator
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of the p-value formula becomes more negligible as the calibration set size increases). In turn, this tends to lead to smaller
prediction sets with potentially more stable coverage conditional on the calibration data (Sesia & Candès, 2020; Bates et al.,
2023) Of course, the downside of these prediction sets is that they can only be guaranteed to provide marginal coverage,
although they can sometimes also perform well empirically in terms of label-conditional coverage (Romano et al., 2020b).

Theorem A1. Assume (X1, Y1), . . . , (Xn, Yn), (Xn+1, Yn+1) are exchangeable random samples, and let Ĉα(Xn+1) be
the output of Algorithm A7, for any α ∈ (0, 1). Then, P[Yn+1 ∈ Ĉα(Xn+1)] ≥ 1− α.

Algorithm A7 Conformalized early stopping for multi-class classification with marginal coverage
1: Input: Exchangeable data points (X1, Y1), . . . , (Xn, Yn) with labels Yi ∈ [K].
2: Input: Test point with features Xn+1. Desired coverage level 1− α.
3: Input: Maximum number of training epochs tmax; storage period hyper-parameter τ .
4: Input: K-class classifier trainable via (stochastic) gradient descent.
5: Randomly split the exchangeable data points into Dtrain and Des-cal.
6: Train the K-class classifier for tmax epochs and save the intermediate models Mt1 , . . . ,MtT .
7: for y ∈ [K] do
8: Imagine Yn+1 = y.
9: Pick the model M̂ces(Xn+1, y) according to (5), using the data in Des-cal ∪ {n+ 1}.

10: Compute scores Ŝi(Xn+1, y) for all i ∈ Des-cal ∪ {n+ 1} using M̂ces(Xn+1, y); see Appendix A4.
11: Compute the conformal p-value ûmarg

y (Xn+1) according to

ûmarg
y (Xn+1) =

1 + |i ∈ Des-cal : Ŝyi (Xn+1) ≤ Ŝyn+1(Xn+1)|
1 + |Des-cal|

. (A17)

12: end for
13: Output: Prediction set Ĉα(Xn+1) given by (7), with ûmarg

y (Xn+1) instead of ûy(Xn+1).

A4. Review of Nonconformity Scores for Classification
This section reviews the relevant background on the adaptive nonconformity scores for classification developed by Romano
et al. (2020b). For any x ∈ X and y ∈ [K], let π̂y(x) denote any (possibly very inaccurate) estimate of the true
P[Y = y | X = x] corresponding to the unknown data-generating distribution. Concretely, a typical choice of π̂ may be
given by the output of the final softmax layer of a neural network classifier, for example. For any x ∈ X and τ ∈ [0, 1],
define the generalized conditional quantile function L, with input x, π̂, τ , as:

L(x; π̂, τ) = min{k ∈ [K] : π̂(1)(x) + π̂(2)(x) + . . .+ π̂(k)(x) ≥ τ}, (A18)

where π̂(1)(x) ≤ π̂(2)(x) ≤ . . . π̂(K)(x) are the order statistics of π̂1(x) ≤ π̂2(x) ≤ . . . π̂K(x). Intuitively, L(x; π̂, τ) gives
the size of the smallest possible subset of labels whose cumulative probability mass according to π̂ is at least τ . Define also
a function S with input x, u ∈ (0, 1), π̂, and τ that computes the set of most likely labels up to (but possibly excluding) the
one identified by L(x; π̂, τ):

S(x, u; π̂, τ) =

{
‘y’ indices of the L(x; π̂, τ)− 1 largest π̂y(x), if u ≤ V (x; π̂, τ),

‘y’ indices of the L(x; π̂, τ) largest π̂y(x), otherwise,
(A19)

where

V (x; π̂, τ) =
1

π̂(L(x;π̂,τ))(x)

L(x;π̂,τ)∑
k=1

π̂(k)(x)− τ

 .
Then, define the generalized inverse quantile nonconformity score function s, with input x, y, u; π̂, as:

s(x, y, u; π̂) = min {τ ∈ [0, 1] : y ∈ S(x, u; π̂, τ)} . (A20)
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Intuitively, s(x, y, u; π̂) is the smallest value of τ for which the set S(x, u; π̂, τ) contains the label y. Finally, the nonconfor-
mity score for a data point (Xi, Yi) is given by:

Ŝi = s(Xi, Yi, Ui; π̂), (A21)

where Ui is a uniform random variable independent of anything else. Note that this can also be equivalently written more
explicitly as:

Ŝi = π̂(1)(Xi) + π̂(2)(Xi) + . . .+ π̂(r(Yi,π̂(Xi)))(Xi)− Ui · π̂(r(Yi,π̂(Xi)))(Xi), (A22)

where r(Yi, π̂(Xi)) is the rank of Yi among the possible labels y ∈ [K] based on π̂y(Xi), so that r(y, π̂(Xi)) = 1 if
π̂y(Xi) = π̂(1)(Xi). The idea motivating this construction is that the nonconformity score Ŝi defined above is guaranteed to
be uniformly distributed on [0, 1] conditional on X if the model π̂ estimates the true unknown P[Y = y | X = x] accurately
for all x ∈ X . This is a desirable property in conformal inference because it leads to statistically efficient prediction sets that
can often achieve relatively high feature-conditional coverage in practice, even if the true data-generating distribution is
such that some observations are much noisier than others; see Romano et al. (2020b) for further details.

Finally, we conclude this appendix by noting that the nonconformity scores in Section 2.4 are written as Ŝi(Xn+1, y), instead
of the more compact notation Ŝi adopted here, simply to emphasize that they are computed based on class probabilities π̂
estimated by a data-driven model M̂ that depends on the test features Xn+1 as well as on the placeholder label y for Yn+1.

A5. Efficient Computation of the Lower Envelope
This section explains how to implement a computationally efficient divide-and-conquer algorithm for finding the lower
envelope of a family of T parabolas or a family of shifted pinball loss functions at cost O(T log T ) (Devillers & Golin,
1995; Nielsen & Yvinec, 1998). This solution, outlined in Algorithm A8 and Algorithm A9, is useful to implement the
proposed CES method for regression problems, as detailed in Algorithm A6 and Algorithm A11.

Algorithm A8 Divide-and-conquer algorithm for finding the lower envelope of many parabolas
1: Input: A set of parabolas L = {l1, l2, . . . , lT } of forms li = aix

2 + bix+ ci for i = 1, . . . , T .
2: Randomly split L into two subsets. Repeat splitting until each subset only contains one parabola or is empty.
3: For each subset with only one parabola, set the parabola itself as the lower envelope and set the initial breakpoint list to

[−∞,+∞].
4: for each interval constructed by adjacent breakpoints do
5: Within the interval, identify the two parabolas contributing to the previous lower envelopes, denoted as P1, P2.
6: Evaluate P1 and P2 at the current interval endpoints.
7: Calculate the intersection point p of P1 and P2. There exists at most one such p because ai = 1,∀i, by (8).
8: if p not exists or p exists but lies outside the current interval then
9: Set the new lower envelope as the parabola with smaller values computed at the interval endpoints.

10: else
11: Add p as a breakpoint.
12: Within the current interval, set the new lower envelope below and above p based on evaluations of the parabolas at

the interval endpoints.
13: end if
14: Update and sort the breakpoint list and update the new lower envelope.
15: end for
16: Recursively merge two lower envelopes to form a new lower envelope by repeating Lines 4–15.
17: Output: A sorted dictionary of breakpoints and parabola indices characterizing the lower envelope of L.
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Algorithm A9 Divide-and-conquer algorithm for finding the lower envelope of many pinball loss functions
1: Input: A set of shifted pinball loss functions L = {l1, l2, . . . , lT } of forms li = ci + ρβ(y, ŷ) for i = 1, . . . , T .
2: Randomly split L into two subsets. Repeat splitting until each subset only contains one pinball loss function or is empty.
3: For each subset with only one pinball loss function, set the function itself as the lower envelope and set the initial

breakpoint list to [−∞,+∞].
4: for each interval constructed by adjacent breakpoints do
5: Within the interval, identify the two pinball loss functions contributing to the previous lower envelopes; i.e., P1, P2.
6: Evaluate P1 and P2 at the current interval endpoints.
7: Calculate the intersection point p of P1 and P2. There exists at most one such p because β is the same ∀i, by (A29).
8: if p not exists or p exists but lies outside the current interval then
9: Set the new lower envelope as the pinball loss function with smaller values computed at the interval endpoints.

10: else
11: Add p as a breakpoint.
12: Within the current interval, set the new lower envelope below and above p based on evaluations of the pinball loss

functions at the interval endpoints.
13: end if
14: Update and sort the breakpoint list and update the new lower envelope.
15: end for
16: Recursively merge two lower envelopes to form a new lower envelope by repeating Lines 4–15.
17: Output: A sorted dictionary of breakpoints and pinball loss function indices characterizing the lower envelope of L.

A6. Avoiding Empty Predictions in CES for Regression
This section presents Algorithm A10, which extends Algorithm A6 from Section 2.5 in such a way as to explicitly avoid
returning empty prediction intervals.

Algorithm A10 Conformalized early stopping for regression, avoiding empty predictions
1: Input: Exchangeable data points (X1, Y1), . . . , (Xn, Yn) with outcomes Yi ∈ R.
2: Input: Test point with features Xn+1. Desired coverage level 1− α.
3: Input: Maximum number of training epochs tmax; storage period hyper-parameter τ .
4: Input: Regression model trainable via (stochastic) gradient descent.
5: Randomly split the exchangeable data points into Dtrain and Des-cal.
6: Train the regression model for tmax epochs and save the intermediate models Mt1 , . . . ,MtT .
7: Evaluate Ĉα(Xn+1) using Algorithm A6.
8: if Ĉα(Xn+1) = ∅ then
9: Evaluate Ĉnaive

α (Xn+1) using Algorithm A3. Set Ĉα(Xn+1) = Ĉnaive
α (Xn+1).

10: end if
11: Output: A non-empty prediction interval Ĉα(Xn+1).

Corollary A1. Assume (X1, Y1), . . . , (Xn, Yn), (Xn+1, Yn+1) are exchangeable random samples, and let Ĉα(Xn+1) be
the output of Algorithm A10, for any α ∈ (0, 1). Then, P[Yn+1 ∈ Ĉα(Xn+1)] ≥ 1− α.

A7. CES for Quantile Regression
A limitation of the CES method for regression described in Section 2.5 is that it is not adaptive to heteroscedasticity because
it produces prediction intervals with constant length regardless of the input features (Romano et al., 2019). However, this
limitation can be easily addressed by extending CES to the conformalized quantile regression (CQR) method of Romano
et al. (2019), which is briefly reviewed below.

A7.1. Review of Conformalized Quantile Regression

This section reviews the relevant background on conditional quantile regression (Koenker & Bassett, 1978) and conformalized
quantile regression (CQR) (Romano et al., 2019). In contrast to the classical regression models that estimate the conditional
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mean of the test response Yn+1 given the test feature Xn+1 = x, the quantile regression estimates the conditional quantile
qβ of Yn+1 given Xn+1 = x defined as

qβ(x) = inf{y ∈ R : P(Yn+1 ≤ y|Xn+1 = x) ≥ β} (A23)

This can be formulated as solving the optimization problem:

q̂β(x) = f(x, θ̂), θ̂ = arg min
θ

1

n

n∑
i=1

ρβ(Yi, f(Xi, θ)) (A24)

where f(x, θ) represents the quantile regression function (Koenker & Bassett, 1978) and ρβ is the convex “pinball loss”
function (Steinwart & Christmann, 2011), geometrically illustrated in Figure A8 and mathematically defined by

ρβ(y, ŷ) =

{
β(y − ŷ) if y − ŷ > 0,

(1− β)(ŷ − y) otherwise
(A25)

y − ŷ

ρβ(y, ŷ)

(1− β)(ŷ − y)
β(y − ŷ)

Figure A8. Visualization of the pinball loss function in (A25).

To construct an efficient prediction interval Ĉ(Xn+1) whose length is adaptive to the local variability of Xn+1 and satisfies
the marginal coverage validity, i.e. P(Yn+1 ∈ Ĉ(Xn+1)) ≥ 1 − α for any α ∈ (0, 1), Yaniv Romano, Evan Patterson,
and Emmanuel J. Candès developed CQR that combines conformal inference (Vovk et al., 1999) (Vovk et al., 2005) and
conditional quantile regression (Koenker & Bassett, 1978). As in split conformal prediction, firstly the available data is
randomly split into a proper training set, indexed by I1, and a calibration set, indexed by I2. Given any quantile regression
algorithm A, two conditional quantile functions q̂αlo , q̂αhi are fitted on I1, where αlo = α/2 and αhi = 1− α/2:

{q̂αlo , q̂αhi} ← A({(Xi, Yi) : i ∈ I1}) (A26)

In the next step, we compute the conformity scores on the calibration data set I2 as

Ei = max{q̂αlo(Xi)− Yi, Yi − q̂αhi(Xi)} for i ∈ I2 (A27)

The conformity score designed in Equation A27 accounts for both undercoverage and overcoverage in the following sense:
If Yi is below the lower endpoint of the interval or above the upper endpoint of the interval, then Ei is the magnitude of the
undercoverage error. Similarly, if Yi correctly belongs to the interval, then Ei is non-positive. Finally, CQR constructs the
prediction interval for the test response value Yn+1 as

Ĉ(Xn+1) = [q̂αlo(Xn+1)−Q1−α(E, I2), q̂αhi(Xn+1) +Q1−α(E, I2)] (A28)

where Q1−α(E, I2) is the (1− α)(1 + 1
|I2| )-th empirical quantile of {Ei : i ∈ I2}
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A7.2. CES for Quantile Regression

As in the previous section, consider a data set containing n exchangeable observations (Xi, Yi), for i ∈ D = [n], and a test
point (Xn+1, Yn+1) with a latent label Yn+1 ∈ R. First, the data in D are randomly split into two subsets, Dtrain and Des-cal.
The data in Dtrain are utilized to train a neural network quantile regression model (Taylor, 2000) by seeking to minimize
the pinball loss instead of the squared error loss, for each target level β = βlow and β = βhigh (e.g., βlow = α/2 and
βhigh = 1−α/2). Note that the same neural network, with two separate output nodes, can be utilized to estimate conditional
quantiles at two different levels; e.g., as in Romano et al. (2019). For any t ∈ [tmax], let Mβ,t denote the intermediate neural
network model stored after t epochs of stochastic gradient descent, following the same notation as in Section 2.5. For each
target level β and any x ∈ X , let q̂β,t(x) denote the approximate β−th conditional quantile of the unknown conditional
distribution of Y | X = x estimated by Mβ,t.

Similarly to Section 2.5, for any model Mβ,t and any x ∈ X , y ∈ R, define the augmented loss evaluated on the calibration
data including also a dummy test point (x, y) as:

L+1
es-cal(Mβ,t, x, y) = Les-cal(Mβ,t) + L(Mβ,t, x, y)

=
∑

i∈Des-cal

ρβ(Yi, q̂β,t(Xi)) + ρβ(y, q̂β,t(x)), (A29)

where ρβ denotes the pinball loss function defined in (A25). For any model Mβ,t, the augmented loss is equal to a constant
plus a convex function of y, namely ρβ(y, q̂β,t(x)). Therefore, for any fixed x, the quantity in (A29) can be sketched as a
function of Mβ,t and y as shown in Figure A9. This is analogous to Figure 3 from Section 2.5, with the difference that now
the quadratic functions have been replaced by piece-wise linear “pinball” functions.

y

L+1
es-cal(M�,t, x, y)

M�,1 M�,2
M�,3

!" !!

Figure A9. Pinball loss functions on test-augmented hold-out data for three alternative regression models, M1,M2 and M3, as a function
of the place-holder outcome y for the test point. The CES method utilizes the best model for each possible value of y, which is identified
by the lower envelope of these three pinball loss functions. In this case, the lower envelope has a single finite knot at k2.

After pre-training and storing T candidate models, namely Mβ,t1 , . . . ,Mβ,tT for some sub-sequence (t1, . . . , tT ) of [tmax],
consider the following optimization problem,

M̂β,ces(Xn+1, y) = arg min
Mβ,tj

: 1≤j≤T
L+1

es-cal(Mβ,tj , Xn+1, y). (A30)

This problem is equivalent to identifying the lower envelope of a family of shifted pinball loss functions, similarly to
Section 2.5; see Figure A9 for a schematic visualization. Again, this lower envelope can be found at computational cost
O(T log T ), with the same divide-and-conquer algorithm described in Appendix A5. In particular, M̂β,ces(Xn+1, y) is a
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step function with respect to y with L distinct steps, for some L = O(T log T ), and it can be written as:

M̂β,ces(Xn+1, y) =

L∑
l=1

mβ,l(Xn+1)1
[
y ∈ (kβl−1, k

β
l ]
]
, (A31)

where mβ,l(Xn+1) ∈ [T ] represents the best model selected within the interval (kβl−1, k
β
l ] such that mβ,l(Xn+1) 6=

mβ,l−1(Xn+1) for all l ∈ [L]. Above, kβ1 ≤ kβ2 ≤ · · · ≤ kβL denote the knots of M̂β,ces(Xn+1, y), which also depend on
Xn+1 and are defined as the boundaries in the domain of y between each consecutive pair of steps, with the understanding
that kβ0 = −∞ and kβL+1 = +∞; see Figure A9 for a schematic visualization.

After computing M̂β,ces(Xn+1, y) in (A30) for both βlow and βhigh, we concatenate the respective knots
klow
1 , . . . , klow

L1
, khigh

1 , . . . , khigh
L2

and sort them into k1 ≤ k2 ≤ kL1+L2 , so that within each interval Bl = (kl−1, kl] for
step l ∈ [L1 + L2], there exist exactly one best model for βlow and exactly one best model for βhigh. Then, for each interval
Bl = (kl−1, kl] associated with step l ∈ [L1 +L2], evaluate the nonconformity score Êi(Xn+1,Bl) for all i ∈ Des-cal, based
on the regression model indicated by mβlow,l(Xn+1) and mβhigh,l(Xn+1); i.e.,

Êi(Xn+1,Bl) = max
{
q̂mβlow,l(Xn+1)(Xi)− Yi, Yi − q̂mβhigh,l(Xn+1)(Xi)

}
. (A32)

Let Q̂1−α(Xn+1,Bl) denote the d(1− α)(1 + |Des-cal|)e-th smallest value among all nonconformity scores Êi(Xn+1,Bl),
assuming for simplicity that there are no ties; otherwise, ties can be broken at random. Then, define the interval Ĉα(Xn+1,Bl)
as that obtained by applying the conformal prediction method of Romano et al. (2019) with nonconformity scores (A32)
based on the estimated conditional quantiles q̂mβlow,l(Xn+1)(Xn+1) and q̂mβhigh,l(Xn+1)(Xn+1); that is,

Ĉα(Xn+1,Bl) = [q̂mβlow,l(Xn+1)(Xn+1)− Q̂1−α(Xn+1,Bl), q̂mβhigh,l(Xn+1)(Xn+1) + Q̂1−α(Xn+1,Bl)]. (A33)

Finally, the output prediction interval Ĉα(Xn+1) is given by:

Ĉα(Xn+1) = Convex
(
∪Ll=1{Bl ∩ Ĉα(Xn+1,Bl)}

)
, (A34)

where Convex(·) denotes the convex hull of a set. This procedure is summarized in Algorithm A11 and it is guaranteed to
produce prediction sets with valid marginal coverage.

Algorithm A11 Conformalized early stopping for quantile regression
1: Input: Exchangeable data points (X1, Y1), . . . , (Xn, Yn) with outcomes Yi ∈ R.
2: Input: Test point with features Xn+1. Desired coverage level 1− α.
3: Input: Maximum number of training epochs tmax; storage period hyper-parameter τ .
4: Input: Quantile regression model trainable via (stochastic) gradient descent. Target quantiles [βlow, βhigh].
5: Randomly split the exchangeable data points into Dtrain and Des-cal.
6: Train for tmax epochs and save the intermediate models Mβlow,t1 , . . . ,Mβlow,tT , Mβhigh,t1 , . . . ,Mβhigh,tT .
7: Evaluate M̂βlow,ces(Xn+1, y) and M̂βhigh,ces(Xn+1, y) as in (A31), using Algorithm A9.
8: Partition the domain of Y into L1 + L2 intervals Bl, for l ∈ [L1 + L2], based on the knots of M̂βlow,ces(Xn+1, y) and
M̂βhigh,ces(Xn+1, y).

9: for l ∈ [L1 + L2] do
10: Evaluate nonconformity scores Êi(Xn+1,Bl) for all i ∈ Des-cal as in (A32).
11: Compute Q̂1−α(Xn+1,Bl) as the d(1− α)(1 + |Des-cal|)e-th largest value among Êi(Xn+1,Bl).
12: Construct the interval Ĉα(Xn+1,Bl) according to (A33).
13: end for
14: Output: Prediction interval Ĉα(Xn+1) given as a function of {Ĉα(Xn+1,Bl)}Ll=1 by (A34).

Theorem A2. Assume (X1, Y1), . . . , (Xn+1, Yn+1) are exchangeable, and let Ĉα(Xn+1) be the output of Algorithm A11,
as given by (A34), for any given α ∈ (0, 1). Then, P[Yn+1 ∈ Ĉα(Xn+1)] ≥ 1− α.
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A7.3. Avoiding Empty Predictions

Similarly to Section 2.5, it is possible (although unlikely) that Algorithm A11 may sometimes produce an empty prediction
set. Therefore, we presents Algorithm A12, which extends Algorithm A11 in such a way as to explicitly avoid returning
empty prediction intervals. As the intervals given by Algorithm A12 always contain those output by Algorithm A11, it
follows from Theorem A2 that Algorithm A12 also enjoys guaranteed coverage; see Corollary A3.

Algorithm A12 Conformalized early stopping for quantile regression, avoiding empty predictions
1: Input: Exchangeable data points (X1, Y1), . . . , (Xn, Yn) with outcomes Yi ∈ R.
2: Input: Test point with features Xn+1. Desired coverage level 1− α.
3: Input: Maximum number of training epochs tmax; storage period hyper-parameter τ .
4: Input: Quantile regression model trainable via (stochastic) gradient descent. Target quantiles [βlow, βhigh].
5: Randomly split the exchangeable data points into Dtrain and Des-cal.
6: Train for tmax epochs and save the intermediate models Mβlow,t1 , . . . ,Mβlow,tT , Mβhigh,t1 , . . . ,Mβhigh,tT .
7: Evaluate Ĉα(Xn+1) using Algorithm A11.
8: if Ĉα(Xn+1) = ∅ then
9: Evaluate Ĉnaive

α (Xn+1) using Algorithm A13. Set Ĉα(Xn+1) = Ĉnaive
α (Xn+1).

10: end if
11: Output: A non-empty prediction interval Ĉα(Xn+1).

Corollary A3. Assume (X1, Y1), . . . , (Xn, Yn), (Xn+1, Yn+1) are exchangeable random samples, and let Ĉα(Xn+1) be
the output of Algorithm A12, for any α ∈ (0, 1). Then, P[Yn+1 ∈ Ĉα(Xn+1)] ≥ 1− α.

A7.4. Implementation of the Naive Benchmark

Algorithm A13 Naive conformal quantile regression benchmark with greedy early stopping
1: Input: Exchangeable data points (X1, Y1), . . . , (Xn, Yn) with outcomes Yi ∈ R.
2: Input: Test point with features Xn+1. Desired coverage level 1− α.
3: Input: Maximum number of training epochs tmax; storage period hyper-parameter τ .
4: Input: Quantile regression model trainable via (stochastic) gradient descent minimizing the pinball loss.
5: Input: Target quantiles [βlow, βhigh].
6: Randomly split the exchangeable data points into Dtrain and Des-cal.
7: Train for tmax epochs and save the intermediate models Mβlow,t1 , . . . ,MβlowtT , Mβhigh,t1 , . . . ,MβhightT .
8: Pick the most promising models t∗low, t

∗
high ∈ [T ] minimizing Les-cal(Mt) in (A29).

9: Evaluate nonconformity scores Êi(Xn+1) = max{q̂t∗low
(Xi)− Yi, Yi − q̂t∗high

(Xi)} for all i ∈ Des-cal.

10: Compute Q̂1−α(Xn+1) = d(1− α)(1 + |Des-cal|)e-th largest value in Êi(Xn+1) for i ∈ Des-cal.
11: Output: Naive prediction interval Ĉnaive

α (Xn+1) = [q̂t∗low
(Xn+1)− Q̂1−α(Xn+1), q̂t∗high

(Xn+1) + Q̂1−α(Xn+1)].
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A8. Additional Results from Numerical Experiments
A8.1. Outlier Detection, Classification, and Regression

Coverage (marginal) Coverage (conditional) Width

200 500 1000 2000 200 500 1000 2000 200 500 1000 2000

400

600

800

0.7

0.8

0.9

1.0

0.7

0.8

0.9

1.0

Sample size

Method

CES

Naive + theory

Data splitting

Full training

Figure A10. Performance of conformal prediction intervals based on regression models trained with different methods, on the bike data
set (dat, a). The results are shown as a function of the total sample size. The nominal marginal coverage level is 90%. See Table A4 for
additional details and standard errors.
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Figure A11. Performance of conformal prediction intervals based on regression models trained with different methods, on the concrete
data set (dat, c). The results are shown as a function of the total sample size. The nominal marginal coverage level is 90%. See Table A5
for additional details and standard errors.
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Table A1. Performance of outlier detection based on classification models trained with different methods, on the CIFAR10 data
set (Krizhevsky, 2009). Other details are as in Figure 4. The numbers in parenthesis indicate standard errors. The numbers in
bold highlight TPR values within 1 standard error of the best TPR across all methods, for each sample size.

Sample size Method TPR FPR

500
500 CES 0.296 (0.008) 0.098 (0.003)
500 Naive 0.295 (0.008) 0.097 (0.003)
500 Naive + theory 0.114 (0.006) 0.016 (0.001)
500 Data splitting 0.234 (0.008) 0.091 (0.003)
500 Full training 0.217 (0.011) 0.072 (0.004)

1000
1000 CES 0.401 (0.007) 0.100 (0.004)
1000 Naive 0.401 (0.007) 0.100 (0.004)
1000 Naive + theory 0.237 (0.006) 0.030 (0.002)
1000 Data splitting 0.337 (0.009) 0.094 (0.003)
1000 Full training 0.189 (0.013) 0.055 (0.004)

2000
2000 CES 0.450 (0.005) 0.100 (0.003)
2000 Naive 0.450 (0.005) 0.100 (0.003)
2000 Naive + theory 0.337 (0.006) 0.048 (0.002)
2000 Data splitting 0.404 (0.007) 0.095 (0.003)
2000 Full training 0.050 (0.009) 0.017 (0.003)

Table A2. Performance of multi-class classification based on classification models trained with different methods, on the CIFAR10 data
set (Krizhevsky, 2009). Other details are as in Figure 5. The numbers in parenthesis indicate standard errors. The numbers in bold
highlight cardinality values within 1 standard error of the best cardinality across all methods, for each sample size.

Sample size Method Cardinality Marignal coverage

500
500 CES 6.754 (0.074) 0.908 (0.003)
500 Naive 6.735 (0.072) 0.906 (0.003)
500 Naive + theory 9.193 (0.052) 0.988 (0.001)
500 Data splitting 7.022 (0.077) 0.900 (0.004)
500 Full training 6.759 (0.091) 0.909 (0.004)

1000
1000 CES 5.902 (0.060) 0.902 (0.003)
1000 Naive 5.908 (0.059) 0.901 (0.003)
1000 Naive + theory 7.767 (0.064) 0.972 (0.002)
1000 Data splitting 6.294 (0.063) 0.900 (0.004)
1000 Full training 6.270 (0.092) 0.897 (0.004)

2000
2000 CES 5.352 (0.045) 0.903 (0.003)
2000 Naive 5.347 (0.045) 0.902 (0.003)
2000 Naive + theory 6.609 (0.049) 0.955 (0.002)
2000 Data splitting 5.674 (0.040) 0.904 (0.003)
2000 Full training 7.776 (0.194) 0.934 (0.006)

26



Conformalized early stopping

Table A3. Performance of conformal prediction intervals based on regression models trained with different methods, on the bio data
set (dat, b). Other details are as in Figure 2. The numbers in parenthesis indicate standard errors. The numbers in bold highlight width
values within 1 standard error of the best width across all methods, for each sample size. The numbers in red highlight coverage values
below 0.85.

Coverage

Sample size Data Method Width Marginal Conditional

200
200 bio CES 18.740 (0.123) 0.924 (0.005) 0.898 (0.014)
200 bio Naive 18.544 (0.133) 0.917 (0.005) 0.899 (0.015)
200 bio Naive + theory 20.942 (0.006) 1.000 (0.000) 1.000 (0.000)
200 bio Data splitting 19.068 (0.113) 0.925 (0.005) 0.902 (0.015)
200 bio Full training 18.673 (0.125) 0.919 (0.004) 0.890 (0.018)

500
500 bio CES 17.435 (0.125) 0.914 (0.004) 0.909 (0.013)
500 bio Naive 17.363 (0.134) 0.910 (0.004) 0.890 (0.017)
500 bio Naive + theory 20.391 (0.061) 0.993 (0.001) 0.996 (0.001)
500 bio Data splitting 18.076 (0.123) 0.911 (0.004) 0.888 (0.015)
500 bio Full training 18.245 (0.129) 0.918 (0.003) 0.890 (0.019)

1000
1000 bio CES 16.251 (0.081) 0.901 (0.003) 0.885 (0.015)
1000 bio Naive 16.219 (0.084) 0.900 (0.003) 0.890 (0.012)
1000 bio Naive + theory 19.167 (0.073) 0.977 (0.002) 0.976 (0.006)
1000 bio Data splitting 16.728 (0.089) 0.903 (0.003) 0.887 (0.016)
1000 bio Full training 17.962 (0.141) 0.902 (0.004) 0.814 (0.022)

2000
2000 bio CES 15.812 (0.042) 0.899 (0.003) 0.893 (0.015)
2000 bio Naive 15.805 (0.042) 0.899 (0.003) 0.897 (0.014)
2000 bio Naive + theory 17.691 (0.047) 0.957 (0.002) 0.963 (0.006)
2000 bio Data splitting 16.043 (0.059) 0.900 (0.003) 0.903 (0.015)
2000 bio Full training 17.014 (0.113) 0.902 (0.003) 0.829 (0.019)
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Table A4. Performance of conformal prediction intervals based on regression models trained with different methods, on the bike data
set (dat, a). Other details are as in Figure A10. The numbers in parenthesis indicate standard errors. The numbers in bold highlight width
values within 1 standard error of the best width across all methods, for each sample size. The numbers in red highlight coverage values
below 0.85.

Coverage

Sample size Data Method Width Marginal Conditional

200
200 bike CES 412.534 (6.439) 0.922 (0.004) 0.900 (0.018)
200 bike Naive 392.474 (6.019) 0.908 (0.005) 0.878 (0.016)
200 bike Naive + theory 913.440 (3.737) 1.000 (0.000) 1.000 (0.000)
200 bike Data splitting 427.964 (7.282) 0.920 (0.004) 0.910 (0.016)
200 bike Full training 444.656 (6.760) 0.920 (0.005) 0.905 (0.013)

500
500 bike CES 354.180 (4.183) 0.913 (0.004) 0.896 (0.017)
500 bike Naive 343.641 (4.220) 0.902 (0.004) 0.889 (0.018)
500 bike Naive + theory 622.837 (8.381) 0.990 (0.001) 0.989 (0.004)
500 bike Data splitting 371.079 (3.777) 0.912 (0.004) 0.908 (0.014)
500 bike Full training 381.951 (5.175) 0.913 (0.004) 0.881 (0.018)

1000
1000 bike CES 303.516 (3.047) 0.905 (0.004) 0.876 (0.017)
1000 bike Naive 300.091 (3.127) 0.903 (0.004) 0.894 (0.015)
1000 bike Naive + theory 484.565 (4.958) 0.977 (0.002) 0.982 (0.003)
1000 bike Data splitting 333.939 (2.891) 0.905 (0.003) 0.895 (0.018)
1000 bike Full training 308.981 (3.760) 0.901 (0.004) 0.891 (0.016)

2000
2000 bike CES 234.322 (1.935) 0.902 (0.003) 0.894 (0.018)
2000 bike Naive 231.571 (1.956) 0.897 (0.003) 0.893 (0.018)
2000 bike Naive + theory 334.724 (2.988) 0.957 (0.002) 0.954 (0.012)
2000 bike Data splitting 272.589 (2.532) 0.899 (0.003) 0.880 (0.019)
2000 bike Full training 240.714 (2.389) 0.901 (0.003) 0.901 (0.015)
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Table A5. Performance of conformal prediction intervals based on regression models trained with different methods, on the concrete data
set (dat, c). Other details are as in Figure A11. The numbers in parenthesis indicate standard errors. The numbers in bold highlight width
values within 1 standard error of the best width across all methods, for each sample size. The numbers in red highlight coverage values
below 0.85.

Coverage

Sample size Data Method Width Marginal Conditional

200
200 concrete CES 26.948 (0.515) 0.928 (0.005) 0.904 (0.016)
200 concrete Naive 24.793 (0.520) 0.903 (0.006) 0.856 (0.021)
200 concrete Naive + theory 79.089 (0.130) 1.000 (0.000) 1.000 (0.000)
200 concrete Data splitting 29.021 (0.564) 0.924 (0.004) 0.888 (0.018)
200 concrete Full training 28.676 (0.568) 0.926 (0.005) 0.878 (0.021)

500
500 concrete CES 19.232 (0.263) 0.913 (0.004) 0.867 (0.018)
500 concrete Naive 18.340 (0.276) 0.896 (0.004) 0.829 (0.022)
500 concrete Naive + theory 39.492 (0.861) 0.989 (0.002) 0.990 (0.003)
500 concrete Data splitting 22.876 (0.323) 0.919 (0.003) 0.841 (0.023)
500 concrete Full training 19.857 (0.300) 0.903 (0.004) 0.824 (0.024)

930
930 concrete CES 14.399 (0.134) 0.908 (0.002) 0.863 (0.014)
930 concrete Naive 13.738 (0.127) 0.899 (0.002) 0.863 (0.011)
930 concrete Naive + theory 26.596 (0.334) 0.978 (0.001) 0.967 (0.004)
930 concrete Data splitting 16.659 (0.122) 0.906 (0.002) 0.864 (0.014)
930 concrete Full training 14.998 (0.143) 0.908 (0.002) 0.834 (0.016)
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A8.2. Quantile Regression

We apply the CES quantile regression method extensively to the following publicly available and commonly investigated
regression data sets from the UCI Machine Learning repository (Pınar Tüfekci, 2012): medical expenditure panel survey
number 21 (MEPS 21) (mep); blog feedback (blog data) (blo); Tennessee’s student teacher achievement ratio (STAR)
(Achilles et al., 2008); community and crimes (community) (com); physicochemical properties of protein tertiary structure
(bio) (dat, b); house sales in King County (homes) (hom); and hourly and daily counts of rental bikes (bike) (dat, a). These
data sets were previously also considered by Romano et al. (2019).

As in the previous sections, we compare CES to the usual three benchmarks, now implemented based on quantile regression:
naive early stopping with the hybrid theoretical correction for the nominal coverage level, early stopping based on data
splitting and full model training without early stopping. We follow the same model architecture and data preprocessing
steps as in Romano et al. (2019). To be specific, the input features are standardized to have zero mean and unit variance,
and the response values are rescaled by diving the absolute mean of the training responses. All methods utilize the same
neural network with three hidden layers and ReLU activation functions between layers, trained for up to 2000 epochs. The
parameters are trained minimizing the pinball loss function A24 with Adam optimizer (Kingma & Ba, 2014), minibatches of
size 25, 0 weight decay and dropout, and fixed learning rate (0.001 for STAR, homes, bike, and bio, 0.0001 for community,
and 0.00005 for MEPS 21 and blog data).

The models are calibrated in such a way as to produce conformal prediction sets with guaranteed 90% marginal coverage for
a test set of 1000 independent data points. The total sample size available for training, early stopping and calibration is
varied between 200 and 2000 (200 and 1000 for small data sets such as community and STAR). These data are allocated for
specific training, early-stopping, and calibration operations as in Sections 3.1–3.2. Again, the performance of each method
is measured in terms of marginal coverage, worst-slab conditional coverage (Cauchois et al., 2021), and average width of the
prediction intervals. All results are averaged over 25 independent experiments, each based on a different random sample
from the original raw data sets.

Figure A12 summarizes the performance of the four alternative methods on the homes data, as a function of the total
sample size; The error bar corresponding to standard errors are plotted around each data point. These results show that all
methods reach 90% marginal coverage in practice, as anticipated by the mathematical guarantees, although the theoretical
correction for the naive early stopping method appears to be overly conservative. Full training, though producing the smallest
prediction bands, has very low conditional coverage, which indicates that fully trained neural network models can suffer
from overfitting and therefore is not appealing. Data splitting method beats full training as it gives higher approximated
conditional coverage, and CES further beats data splitting in terms of conditional coverage, meanwhile producing prediction
intervals of similar length as data splitting. These patterns hold true in general for additional data sets, as illustrated by
Figures A13–A18 and by Tables A6–A12. Tables A6–A12 also include the results obtained with the naive benchmark
applied without the necessary theoretical correction, which performs similarly to CES.
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Figure A12. Average performance, as a function of the sample size, of conformal prediction sets for quantile regression based on neural
networks trained and calibrated with different methods, on the homes data (hom). The marginal coverage is theoretically guaranteed to be
above 90%. Ideally, the conditional coverage should high and the prediction intervals should be tight. See Table A6 for additional details
and standard errors.
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Figure A13. Performance of conformal prediction intervals based on quantile regression models trained with different methods, on the
community data set (com). The results are shown as a function of the total sample size with error bars corresponding to standard error.
The nominal marginal coverage level is 90%. See Table A7 for additional details and standard errors.
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Figure A14. Performance of conformal prediction intervals based on quantile regression models trained with different methods, on the bio
data set (dat, b). The results are shown as a function of the total sample size with error bars corresponding to standard error. The nominal
marginal coverage level is 90%. See Table A8 for additional details and standard errors.
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Figure A15. Performance of conformal prediction intervals based on quantile regression models trained with different methods, on the
meps 21 data set (mep).The results are shown as a function of the total sample size with error bars corresponding to standard error. The
nominal marginal coverage level is 90%. See Table A9 for additional details and standard errors.

Coverage (marginal) Coverage (conditional) Width

200 500 1000 2000 200 500 1000 2000 200 500 1000 2000
3

10

30

0.7

0.8

1.0

0.7

0.8

1.0

Sample size

Method

CES

Naive + theory

Data splitting

Full training

Figure A16. Performance of conformal prediction intervals based on quantile regression models trained with different methods, on the
blog data data set (blo). The results are shown as a function of the total sample size with error bars corresponding to standard error. The
nominal marginal coverage level is 90%. See Table A10 for additional details and standard errors.
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Figure A17. Performance of conformal prediction intervals based on quantile regression models trained with different methods, on the
STAR data set (Achilles et al., 2008). The results are shown as a function of the total sample size with error bars corresponding to standard
error. The nominal marginal coverage level is 90%. See Table A11 for additional details and standard errors.
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Figure A18. Performance of conformal prediction intervals based on quantile regression models trained with different methods, on the
bike data set (dat, a). The results are shown as a function of the total sample size with error bars corresponding to standard error. The
nominal marginal coverage level is 90%. See Table A12 for additional details and standard errors.
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Table A6. Performance of conformal prediction intervals based on quantile regression models trained with different methods, on the
homes data set (hom). Other details are as in Figure A12. The numbers in parenthesis indicate standard errors. The numbers in bold
highlight width values within 1 standard error of the best width across all methods, for each sample size. The numbers in red highlight
coverage values below 0.85.

Coverage

Sample size Data Method Width Marginal Conditional

200
200 homes CES 1.396 (0.047) 0.924 (0.007) 0.804 (0.016)
200 homes Naive 1.171 (0.048) 0.904 (0.009) 0.761 (0.029)
200 homes Naive + theory 2.607 (0.222) 0.983 (0.004) 0.931 (0.015)
200 homes Data splitting 1.329 (0.049) 0.907 (0.006) 0.730 (0.029)
200 homes Full training 1.195 (0.053) 0.919 (0.008) 0.674 (0.030)

500
500 homes CES 0.997 (0.022) 0.909 (0.007) 0.842 (0.016)
500 homes Naive 0.940 (0.026) 0.899 (0.007) 0.798 (0.018)
500 homes Naive + theory 2.698 (0.308) 0.989 (0.003) 0.950 (0.017)
500 homes Data splitting 0.985 (0.019) 0.896 (0.006) 0.810 (0.020)
500 homes Full training 0.940 (0.043) 0.913 (0.007) 0.710 (0.019)

1000
1000 homes CES 0.858 (0.015) 0.910 (0.005) 0.827 (0.017)
1000 homes Naive 0.824 (0.017) 0.894 (0.006) 0.784 (0.015)
1000 homes Naive + theory 1.229 (0.039) 0.969 (0.004) 0.917 (0.015)
1000 homes Data splitting 0.926 (0.020) 0.905 (0.004) 0.786 (0.021)
1000 homes Full training 0.755 (0.019) 0.902 (0.005) 0.698 (0.019)

2000
2000 homes CES 0.726 (0.016) 0.902 (0.005) 0.824 (0.013)
2000 homes Naive 0.667 (0.013) 0.891 (0.003) 0.799 (0.016)
2000 homes Naive + theory 0.865 (0.013) 0.949 (0.003) 0.880 (0.013)
2000 homes Data splitting 0.779 (0.011) 0.900 (0.003) 0.804 (0.013)
2000 homes Full training 0.653 (0.013) 0.889 (0.005) 0.686 (0.019)
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Table A7. Performance of conformal prediction intervals based on quantile regression models trained with different methods, on the
community data set (com). Other details are as in Figure A13. The numbers in parenthesis indicate standard errors. The numbers in bold
highlight width values within 1 standard error of the best width across all methods, for each sample size. The numbers in red highlight
coverage values below 0.85.

Coverage

Sample size Data Method Width Marginal Conditional

200
200 community CES 2.226 (0.057) 0.905 (0.006) 0.835 (0.018)
200 community Naive 2.100 (0.065) 0.891 (0.009) 0.814 (0.018)
200 community Naive + theory 3.876 (0.193) 0.980 (0.004) 0.963 (0.008)
200 community Data splitting 2.250 (0.081) 0.902 (0.007) 0.811 (0.017)
200 community Full training 2.345 (0.070) 0.903 (0.007) 0.752 (0.023)

500
500 community CES 1.957 (0.033) 0.902 (0.006) 0.849 (0.014)
500 community Naive 1.866 (0.043) 0.889 (0.007) 0.830 (0.012)
500 community Naive + theory 4.312 (0.254) 0.990 (0.002) 0.971 (0.008)
500 community Data splitting 2.041 (0.037) 0.904 (0.006) 0.843 (0.011)
500 community Full training 2.084 (0.067) 0.898 (0.007) 0.770 (0.018)

994
994 community CES 1.717 (0.016) 0.911 (0.003) 0.850 (0.007)
994 community Naive 1.601 (0.019) 0.902 (0.003) 0.853 (0.008)
994 community Naive + theory 2.486 (0.049) 0.971 (0.002) 0.943 (0.005)
994 community Data splitting 1.818 (0.013) 0.910 (0.002) 0.865 (0.008)
994 community Full training 1.784 (0.029) 0.901 (0.003) 0.797 (0.011)
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Table A8. Performance of conformal prediction intervals based on quantile regression models trained with different methods, on the bio
data set (dat, b). Other details are as in Figure A14. The numbers in parenthesis indicate standard errors. The numbers in bold highlight
width values within 1 standard error of the best width across all methods, for each sample size. The numbers in red highlight coverage
values below 0.85.

Coverage

Sample size Data Method Width Marginal Conditional

200
200 bio CES 2.732 (0.074) 0.926 (0.006) 0.848 (0.022)
200 bio Naive 2.018 (0.064) 0.876 (0.011) 0.805 (0.025)
200 bio Naive + theory 3.392 (0.254) 0.971 (0.005) 0.954 (0.010)
200 bio Data splitting 2.334 (0.083) 0.902 (0.010) 0.803 (0.029)
200 bio Full training 2.848 (0.124) 0.899 (0.010) 0.844 (0.016)

500
500 bio CES 2.154 (0.034) 0.921 (0.004) 0.872 (0.010)
500 bio Naive 1.900 (0.032) 0.892 (0.007) 0.839 (0.014)
500 bio Naive + theory 3.893 (0.161) 0.995 (0.001) 0.996 (0.002)
500 bio Data splitting 2.015 (0.024) 0.903 (0.004) 0.840 (0.013)
500 bio Full training 2.579 (0.057) 0.890 (0.011) 0.819 (0.032)

1000
1000 bio CES 1.997 (0.019) 0.918 (0.004) 0.890 (0.013)
1000 bio Naive 1.871 (0.018) 0.894 (0.005) 0.838 (0.018)
1000 bio Naive + theory 2.318 (0.033) 0.969 (0.002) 0.943 (0.010)
1000 bio Data splitting 1.895 (0.018) 0.898 (0.006) 0.811 (0.018)
1000 bio Full training 2.381 (0.035) 0.877 (0.010) 0.786 (0.037)

2000
2000 bio CES 1.869 (0.018) 0.906 (0.004) 0.867 (0.016)
2000 bio Naive 1.763 (0.017) 0.890 (0.004) 0.834 (0.016)
2000 bio Naive + theory 1.998 (0.017) 0.948 (0.003) 0.922 (0.014)
2000 bio Data splitting 1.830 (0.013) 0.898 (0.004) 0.852 (0.015)
2000 bio Full training 2.219 (0.029) 0.874 (0.008) 0.781 (0.035)
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Table A9. Performance of conformal prediction intervals based on quantile regression models trained with different methods, on the
MEPS 21 data set (mep). Other details are as in Figure A15. The numbers in parenthesis indicate standard errors. The numbers in bold
highlight width values within 1 standard error of the best width across all methods, for each sample size. The numbers in red highlight
coverage values below 0.85.

Coverage

Sample size Data Method Width Marginal Conditional

200
200 meps 21 CES 4.442 (0.468) 0.927 (0.007) 0.844 (0.020)
200 meps 21 Naive 3.602 (0.452) 0.901 (0.010) 0.786 (0.025)
200 meps 21 Naive + theory 17.470 (2.874) 0.979 (0.003) 0.943 (0.012)
200 meps 21 Data splitting 3.239 (0.212) 0.909 (0.008) 0.780 (0.021)
200 meps 21 Full training 6.070 (0.509) 0.906 (0.009) 0.654 (0.030)

500
500 meps 21 CES 3.453 (0.074) 0.912 (0.004) 0.845 (0.015)
500 meps 21 Naive 3.077 (0.068) 0.898 (0.005) 0.802 (0.012)
500 meps 21 Naive + theory 35.882 (4.705) 0.991 (0.002) 0.974 (0.008)
500 meps 21 Data splitting 3.147 (0.109) 0.906 (0.006) 0.832 (0.012)
500 meps 21 Full training 6.038 (0.305) 0.913 (0.005) 0.709 (0.021)

1000
1000 meps 21 CES 3.447 (0.068) 0.896 (0.005) 0.833 (0.012)
1000 meps 21 Naive 3.102 (0.073) 0.888 (0.006) 0.825 (0.014)
1000 meps 21 Naive + theory 6.054 (0.443) 0.970 (0.002) 0.930 (0.009)
1000 meps 21 Data splitting 3.231 (0.093) 0.901 (0.005) 0.817 (0.016)
1000 meps 21 Full training 5.183 (0.188) 0.902 (0.004) 0.646 (0.019)

2000
2000 meps 21 CES 3.666 (0.054) 0.907 (0.004) 0.867 (0.012)
2000 meps 21 Naive 3.454 (0.047) 0.902 (0.004) 0.875 (0.013)
2000 meps 21 Naive + theory 4.242 (0.069) 0.951 (0.003) 0.925 (0.010)
2000 meps 21 Data splitting 3.485 (0.060) 0.902 (0.003) 0.847 (0.009)
2000 meps 21 Full training 4.349 (0.128) 0.897 (0.003) 0.651 (0.018)
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Table A10. Performance of conformal prediction intervals based on quantile regression models trained with different methods, on the
blog data data set (blo). Other details are as in Figure A16. The numbers in parenthesis indicate standard errors. The numbers in bold
highlight width values within 1 standard error of the best width across all methods, for each sample size. The numbers in red highlight
coverage values below 0.85.

Coverage

Sample size Data Method Width Marginal Conditional

200
200 blog data CES 4.658 (0.194) 0.911 (0.007) 0.779 (0.021)
200 blog data Naive 3.427 (0.210) 0.897 (0.008) 0.766 (0.021)
200 blog data Naive + theory 22.166 (5.645) 0.973 (0.004) 0.917 (0.017)
200 blog data Data splitting 4.049 (0.359) 0.892 (0.013) 0.720 (0.034)
200 blog data Full training 7.524 (0.544) 0.910 (0.007) 0.662 (0.026)

500
500 blog data CES 4.538 (0.291) 0.924 (0.005) 0.819 (0.017)
500 blog data Naive 3.986 (0.333) 0.917 (0.005) 0.796 (0.014)
500 blog data Naive + theory 58.965 (11.745) 0.992 (0.002) 0.987 (0.004)
500 blog data Data splitting 3.443 (0.139) 0.905 (0.005) 0.751 (0.020)
500 blog data Full training 9.364 (0.535) 0.927 (0.003) 0.719 (0.019)

1000
1000 blog data CES 4.313 (0.088) 0.903 (0.004) 0.812 (0.016)
1000 blog data Naive 3.559 (0.073) 0.896 (0.004) 0.816 (0.016)
1000 blog data Naive + theory 7.336 (0.620) 0.973 (0.002) 0.951 (0.007)
1000 blog data Data splitting 3.525 (0.119) 0.896 (0.003) 0.788 (0.015)
1000 blog data Full training 7.784 (0.427) 0.919 (0.003) 0.694 (0.018)

2000
2000 blog data CES 4.169 (0.066) 0.906 (0.003) 0.808 (0.013)
2000 blog data Naive 3.671 (0.047) 0.899 (0.003) 0.783 (0.018)
2000 blog data Naive + theory 4.486 (0.074) 0.954 (0.002) 0.911 (0.009)
2000 blog data Data splitting 3.625 (0.069) 0.899 (0.003) 0.805 (0.011)
2000 blog data Full training 5.323 (0.274) 0.909 (0.003) 0.718 (0.014)
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Table A11. Performance of conformal prediction intervals based on quantile regression models trained with different methods, on the
STAR data set (Achilles et al., 2008). Other details are as in Figure A17. The numbers in parenthesis indicate standard errors. The numbers
in bold highlight width values within 1 standard error of the best width across all methods, for each sample size. The numbers in red
highlight coverage values below 0.85.

Coverage

Sample size Data Method Width Marginal Conditional

200
200 star CES 0.567 (0.023) 0.933 (0.006) 0.891 (0.012)
200 star Naive 0.421 (0.031) 0.904 (0.008) 0.847 (0.012)
200 star Naive + theory 0.656 (0.038) 0.984 (0.002) 0.960 (0.006)
200 star Data splitting 0.502 (0.022) 0.911 (0.009) 0.862 (0.013)
200 star Full training 0.323 (0.008) 0.914 (0.006) 0.872 (0.012)

500
500 star CES 0.318 (0.007) 0.929 (0.004) 0.893 (0.012)
500 star Naive 0.288 (0.008) 0.902 (0.007) 0.848 (0.016)
500 star Naive + theory 0.520 (0.025) 0.992 (0.001) 0.978 (0.005)
500 star Data splitting 0.328 (0.009) 0.910 (0.006) 0.860 (0.015)
500 star Full training 0.224 (0.005) 0.909 (0.006) 0.874 (0.013)

1000
1000 star CES 0.252 (0.005) 0.914 (0.003) 0.864 (0.012)
1000 star Naive 0.236 (0.007) 0.897 (0.003) 0.862 (0.011)
1000 star Naive + theory 0.323 (0.007) 0.967 (0.003) 0.929 (0.009)
1000 star Data splitting 0.269 (0.007) 0.903 (0.003) 0.846 (0.012)
1000 star Full training 0.182 (0.002) 0.898 (0.004) 0.848 (0.012)

1161
1161 star CES 0.237 (0.005) 0.920 (0.004) 0.882 (0.012)
1161 star Naive 0.220 (0.005) 0.900 (0.005) 0.860 (0.012)
1161 star Naive + theory 0.308 (0.007) 0.969 (0.002) 0.944 (0.007)
1161 star Data splitting 0.254 (0.007) 0.903 (0.004) 0.864 (0.014)
1161 star Full training 0.174 (0.003) 0.896 (0.004) 0.863 (0.013)
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Table A12. Performance of conformal prediction intervals based on quantile regression models trained with different methods, on the bike
data set (dat, a). Other details are as in Figure A18. The numbers in parenthesis indicate standard errors. The numbers in bold highlight
width values within 1 standard error of the best width across all methods, for each sample size. The numbers in red highlight coverage
values below 0.85.

Coverage

Sample size Data Method Width Marginal Conditional

200
200 bike CES 2.690 (0.065) 0.923 (0.006) 0.895 (0.014)
200 bike Naive 2.535 (0.053) 0.905 (0.008) 0.868 (0.015)
200 bike Naive + theory 4.106 (0.192) 0.979 (0.003) 0.958 (0.008)
200 bike Data splitting 2.663 (0.056) 0.899 (0.008) 0.832 (0.018)
200 bike Full training 2.843 (0.095) 0.910 (0.006) 0.870 (0.012)

500
500 bike CES 2.244 (0.039) 0.913 (0.004) 0.886 (0.014)
500 bike Naive 2.137 (0.047) 0.901 (0.006) 0.880 (0.012)
500 bike Naive + theory 4.284 (0.152) 0.991 (0.002) 0.984 (0.005)
500 bike Data splitting 2.275 (0.032) 0.902 (0.004) 0.859 (0.014)
500 bike Full training 2.265 (0.062) 0.908 (0.004) 0.839 (0.014)

1000
1000 bike CES 1.978 (0.036) 0.911 (0.004) 0.872 (0.013)
1000 bike Naive 1.779 (0.057) 0.893 (0.004) 0.821 (0.016)
1000 bike Naive + theory 2.590 (0.061) 0.968 (0.002) 0.955 (0.007)
1000 bike Data splitting 1.996 (0.040) 0.903 (0.004) 0.852 (0.013)
1000 bike Full training 1.625 (0.045) 0.901 (0.005) 0.858 (0.013)

2000
2000 bike CES 1.262 (0.030) 0.902 (0.003) 0.854 (0.012)
2000 bike Naive 1.113 (0.029) 0.884 (0.004) 0.847 (0.012)
2000 bike Naive + theory 1.570 (0.033) 0.948 (0.003) 0.933 (0.009)
2000 bike Data splitting 1.517 (0.033) 0.893 (0.003) 0.853 (0.011)
2000 bike Full training 1.061 (0.019) 0.887 (0.004) 0.839 (0.013)
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A9. Mathematical Proofs
Proof of Theorem 2.1. It suffices to show that the nonconformity scores Ŝi for i ∈ {n + 1} ∪ Des-cal are exchangeable.
In fact, if the nonconformity scores are almost-surely unique, this implies the rank of Ŝn+1 is uniformly distributed
over {Ŝi}i∈{n+1}∪Des-cal , and in that case the conformal p-value is uniformly distributed over {1/(1 + |Des-cal|), 2/(1 +
|Des-cal|), . . . , 1}. If the nonconformity scores are not almost-surely unique and ties are not broken at random, then the
distribution of the conformal p-value becomes stochastically larger than uniform, in which case the result still holds. To
prove the exchangeability of the nonconformity scores, let σ be any permutation of {n+ 1} ∪ Des-cal, and imagine applying
Algorithm A4, with the same random seed, to the shuffled data set indexed by σ({n+ 1} ∪ Des-cal), which has the same
distribution as the original data set. To clarify the notation, we will refer to quantities computed under this data shuffling
scenario with their usual symbol followed by an apostrophe; i.e., M ′t1 instead of Mt1 . As the gradient updates only involve
the unperturbed observations in Dtrain and the maximum number of epochs tmax is fixed, the sequence of saved models
remains exactly the same under this scenario: (M ′t1 , . . . ,M

′
tT ) = (Mt1 , . . . ,MtT ). Further, the loss function in (1) is also

invariant to permutations of {n+ 1} ∪ Des-cal, in the sense that L+1′

es-cal = L+1
es-cal, because L is additive. Therefore, the model

selected according to (2) is also invariant, M̂ ′ces = M̂ces, which implies the nonconformity scores are simply re-ordered:
Ŝ′σ(i) = Ŝi. Therefore, we have:

σ({Ŝi}i∈{n+1}∪Dcal) = {Ŝ′i}i∈{n+1}∪Dcal

d
= {Ŝi}i∈{n+1}∪Dcal ,

where the last equality follows from the initial data exchangeability assumption.

Proof of Theorem 2.2. Note that, conditional on Yn+1 = y, the miscoverage event Yn+1 6∈ Ĉα(Xn+1) occurs if and only if
ûy(Xn+1) ≤ α, where ûy(Xn+1) is defined as in (6). Therefore, it suffices to show P [ûy(Xn+1) ≤ α | Yn+1 = y] ≤ α
for any α ∈ (0, 1). However, this is directly implied by Theorem 2.1, because the ûy(Xn+1) calculated by Algorithm A5
is equivalent to the conformal p-value û0(Zn+1) given by Algorithm A4 applied to the subset of the data in Des-cal with
Yi = y, with the understanding that Zi = (Xi, Yi) for all i ∈ {n+ 1} ∪ Des-cal.

Proof of Theorem A1. Note that Yn+1 6∈ Ĉm
α (Xn+1) if and only if ûmarg(Xn+1;Yn+1) ≤ α, where ûmarg(Xn+1;Yn+1)

is defined as in (A17). Hence it suffices to show that P [ûmarg(Xn+1;Yn+1) ≤ α] ≤ α for any α ∈ (0, 1). This can be
established using the same approach as in the proof of Theorem 2.1, setting Zi = (Xi, Yi) for all i ∈ {n+1}∪Des-cal. In fact,
the maximum number of epochs tmax is fixed, the sequence of saved models is invariant to permutations of {n+ 1} ∪Des-cal,
and the model M̂ces selected according to (5) is also invariant. Thus, it follows that the nonconformity scores Ŝi are
exchangeable with one another for all i ∈ {n+ 1} ∪ Des-cal.

Proof of Theorem 2.3. Consider an imaginary oracle algorithm producing an interval Ĉoracle
α (Xn+1) defined as

Ĉoracle
α (Xn+1) = Bl∗(Yn+1)

⋂
Ĉα(Xn+1,Bl∗(Yn+1)), where l∗(Yn+1) is the exact index of the bin Bl to which the true

Yn+1 belongs. Clearly, this oracle is just a theoretical tool, not a practical method because the outcome value for the
test point is unknown. However, this oracle is useful because it is easier to analyze, and it suffices to establish that
P[Yn+1 ∈ Ĉoracle

α (Xn+1)] ≥ 1 − α, for any α ∈ (0, 1), since Ĉα(Xn+1) ⊇ Ĉoracle
α (Xn+1) almost-surely. The coverage

property for the oracle can be established using an approach similar to that of the proof of Theorem 2.1, setting Zi = (Xi, Yi)
for all i ∈ {n+ 1} ∪Des-cal. In fact, the maximum number of epochs tmax is fixed, the sequence of saved models is invariant
to permutations of {n+ 1} ∪ Des-cal, and the model M̂ces selected by the oracle according to (10) is also invariant. Thus,
it follows that the oracle nonconformity scores Ŝ∗i = Ŝi(Xn+1,Bl∗(Yn+1)) are exchangeable with one another for all
i ∈ {n + 1} ∪ Des-cal. Further, by construction of the prediction intervals (12), we know that the miscoverage event
Yn+1 6∈ Ĉoracle

α (Xn+1) occurs if and only if Ŝ∗i > Q̂∗1−α, where Q̂∗1−α is the d(1−α)(1 + |Des-cal|)e-th largest value among
all nonconformity scores Ŝi(Xn+1,Bl). However, it is a well-known exchangeability result that P[Ŝ∗i ≤ Q̂∗1−α] ≥ 1− α;
see for example Lemma 1 in Romano et al. (2019).

Proof of Theorem A2. Same as the proof of Theorem 2.3.

Proof of Corollary A1. This corollary follows immediately from Theorem 2.3 because the prediction interval given by
Algorithm A10 is always contained in that output by Algorithm A6.
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Proof of Corollary A3. Same as the proof of Corollary A1.

Proof of Proposition A1. Note that ûnaive
0 (Zn+1) = ûnaive

0 (Zn+1; t∗), hence

P
[
ûnaive
0 (Zn+1) > α

]
= E

[
P
[
ûnaive
0 (Zn+1; t∗) > α | Des-cal

]]
≥ E

[
min
t∈[T ]

Wt

]
≥ sup
a∈[0,1]

a · P
[

min
t∈[T ]

Wt ≥ a
]

= sup
a∈[0,1]

a

(
1− P

[
min
t∈[T ]

Wt ≤ a
])

≥ sup
a∈[0,1]

a (1− T · P [Wt ≤ a]) ,

where the last inequality follows from a union bound. To simplify the right-hand-side term above, let a =
I−1

(
1
bT ;nes-cal + 1− l, l

)
, where b is any large constant. Hence we obtain

P
[
ûnaive
0 (Zn+1) > α

]
≥ I−1

(
1

bT
;nes-cal + 1− l, l

)
· (1− 1/b).

Proof of Corollary A3. Note that Yn+1 ∈ Ĉnaive
α (Xn+1) if and only if ûnaive

Yn+1
(Xn+1; t∗) > α. Let Wt denote the calibration

conditional coverage P
[
ûnaive
Yn+1

(Xn+1; t) > α | Des-cal

]
. Then, we have

P
[
Yn+1 ∈ Ĉnaive

α (Xn+1)
]

= E
[
P
[
ûnaive
Yn+1

(Xn+1; t∗) > α | Des-cal

]]
= E [Wt∗ ] ≥ E

[
min
t∈[T ]

Wt

]
.

The rest of the proof follows the same argument as in the proof of Proposition A1.

Proof of Corollary A4. Let Ŝi(Xn+1, t) = |Yi − µ̂t(Xi)| denote the residual score calculated with model t ∈ [T ], for
all i ∈ Des-cal. Note that Yn+1 ∈ Ĉnaive

α (Xn+1) if and only if ŜXn+1(Xn+1, t
∗) ≤ Q̂1−α. Then, we just need to

bound Wt = P
[
ŜXn+1

(Xn+1, t
∗) ≤ Q̂1−α | Des-cal

]
, and the rest of the proof follows the same steps as the proof of

Proposition A1.

Proof of Lemma A2. Recall that l = bα(nes-cal + 1)c, and define the following helpful notations:

Beta (nes-cal + 1− l, l) := Beta (nes-cal · c, nes-cal · d) , where c =
nes-cal + 1− l

nes-cal
, d =

l

nes-cal
.

Denote Gamma(k, θ) as the gamma distribution with shape parameter k and scale parameter θ. It is a well known fact that
the beta distribution can be expressed as a ratio of gamma distributions as:

Beta (nes-cal · c, nes-cal · d) =
Gamma(nes-cal · c, 1)

Gamma(nes-cal · c, 1) + Gamma(nes-cal · d, 1)
.

Further, Gamma(nes-cal · c, 1) can be seen as the distribution of a sum of nes-cal · c independent exponentially distributed
random variables with mean equal to 1; therefore, by the central limit theorem, Gamma(nes-cal · c, 1) has an asymptotic
Gaussian distribution as nes-cal → ∞. Denote Φ(x, µ, σ2) as the cumulative distribution function of a Gaussian random
variable with mean µ and variance σ2. Applying the delta method, it follows that, in the limit of large nes-cal,

I (x;nes-cal · c, nes-cal · d) = Φ

(
x;

c

c+ d
,

1

nes-cal
· cd

(c+ d)3

)
+O

(
1

nes-cal

)
, for any x ∈ [0, 1].
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Since I and Φ are continuous and strictly increasing over [0, 1], letting Φ−1 be the inverse Gaussian CDF, we have

I−1
(

1

bT
;nes-cal · c, nes-cal · d

)
= Φ−1

(
1

bT
;

c

c+ d
,

1

nes-cal
· cd

(c+ d)3

)
+O

(
1

nes-cal

)
= Φ−1

(
1

bT
; 1− α, α(1− α)

nes-cal + 1

)
+O

(
1

nes-cal

)

= (1− α) +

√
α(1− α)

nes-cal + 1
· Φ−1

(
1

bT
; 0, 1

)
+O

(
1

nes-cal

)

= (1− α)−
√
α(1− α)

nes-cal + 1
·
√

2 log(bT ) +O

(
1√

nes-cal log(T )

)
,

where the second equality is obtained by substituting c and d with their defined values and the last inequality follows from
Equation 26.2.23 in Abramowitz & Stegun (1964) for sufficiently large T .
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