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Abstract
We initiate the study of statistical inference
and A/B testing for first-price pacing equilibria
(FPPE). The FPPE model captures the dynamics
resulting from large-scale first-price auction mar-
kets where buyers use pacing-based budget man-
agement. Such markets arise in the context of in-
ternet advertising, where budgets are prevalent.

We propose a statistical framework for the FPPE
model, in which a limit FPPE with a continuum
of items models the long-run steady-state behav-
ior of the auction platform, and an observable
FPPE consisting of a finite number of items pro-
vides the data to estimate primitives of the limit
FPPE, such as revenue, Nash social welfare (a
fair metric of efficiency), and other parameters of
interest. We develop central limit theorems and
asymptotically valid confidence intervals. Fur-
thermore, we establish the asymptotic local min-
imax optimality of our estimators. We then show
that the theory can be used for conducting statisti-
cally valid A/B testing on auction platforms. Nu-
merical simulations verify our central limit theo-
rems, and empirical coverage rates for our confi-
dence intervals agree with our theory.

1. Introduction
A/B testing is a form of randomized controlled experiment,
where each sample is assigned to one of two groups: the
‘A’ group or ‘B’ group, and a different treatment is ap-
plied to each group. For example, say a social media site
wants to test whether a new layout will increase user en-
gagement. A subset of users are sampled, and each user in
the subset is randomly assigned the current layout (group
A), or the new layout (group B). Now, if we ignore network
effects, then we can measure whether the new layout in-
creases user engagement by checking whether engagement
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in group B is higher than in group A with statistical sig-
nificance. As of 2017, large internet companies such as
Google and Microsoft each conduct more than 10,000 A/B
tests annually (Kohavi & Thomke, 2017).

However, now consider a setting where advertisers also bid
on their ads being shown to users. If we randomly assign
users to groups A and B, then we get interference because
an advertiser’s outcomes in group A affect their behavior
when buying ads in group B. This is especially problematic
if we are trying to measure something that directly pertains
to ads (e.g. revenue changes, or user interest in the ads they
are shown). In practice, a popular solution to this issue is
to create two separate markets, one for group A and one for
group B. Then, each advertiser participates in both markets,
with half of their budget assigned to each market, and those
budgets are then treated as separate budget constraints. We
will refer to this as budget splitting. Despite the practical
popularity of budget splitting, its statistical properties are
not well-understood. A major obstacle to statistical infer-
ence with budget splitting is that we can no longer think of
the mean user behavior as a sum of independent samples.
Instead, we essentially have only two samples: a sample
of a market under condition A, and a sample of a market
under condition B. Thus, we need to understand when ran-
domized assignment of users (which act as the supply of
impressions) into separate markets can be used to make sta-
tistical inferences about market outcomes, given the effects
of competition.

As stated at the beginning, we study this phenomenon
in two important contexts: first-price pacing equilibria
(FPPE), and Fisher markets. We will focus the majority
of our writing on FPPE, because FPPE model the advertis-
ing auction setting faced by large internet companies. All
our results carry over to Fisher markets, except results on
revenue, which are not meaningful in the standard Fisher
market model.

In an FPPE, a set of buyers compete in a set of first-price
auctions, and each buyer has a budget. This models how
impressions are sold in practice, where first or second-price
auction generalizations are used: When a user shows up, an
auction is run in order to determine which ads to show, be-
fore the page is returned to the user. This auction must run
extremely fast. This is typically achieved by having each
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advertiser specify their target audience, their willingness-
to-pay for an impression (or values per click, which are
then multiplied by platform-supplied click-through-rate es-
timates), and a budget ahead of time. The control of the
bids for individual impressions is then ceded to proxy bid-
ders that are controlled by the ad platform. As a concrete
example, to create an ad campaign on Meta Ads Manager,
advertisers need to specify the following parameters: (1)
the conversion location (how do you want people to reach
out to you, via say website, apps, Messenger and so on), (2)
optimization and delivery (target your ads to users with spe-
cific behavior patterns, such as those who are more likely to
view the ad or click the ad link), (3) audience (age, gender,
demographics, interests and behaviors), and (4) how much
money do you want to spend (budget).

Given the above parameters reported by the advertiser, the
(algorithmic) proxy bidder supplied by the platform is then
responsible for bidding in individual auctions so as to max-
imize advertiser utility, while respecting the budget con-
straint. Two prevalent budget management methods are
throttling and pacing. Throttling tries to enforce budget
constraints by adaptively selecting which auctions the ad-
vertiser should participate in. Pacing, on the other hand,
modifies the advertiser’s bids by applying a shading factor,
referred to as a multiplicative pacing multiplier. Tuning the
pacing multiplier changes the spending rate: the larger the
pacing multiplier, the more aggressive the bids. The goal
of the proxy bidder is to choose this pacing multiplier such
that the advertiser exactly exhausts their budget (or alterna-
tively use a multiplier of one in the case where their budget
is not exhausted by using unmodified bids). In this paper
we focus on pacing-based budget management systems.

In the case where each individual auction is a first-price auc-
tion, FPPE capture the outcomes of pacing-based budget-
management systems. Conitzer et al. (2022a) introduced
the FPPE notion, and showed that FPPE always exists and
is unique. Moreover, FPPE enjoys lots of nice proper-
ties such as being revenue-maximizing among all budget-
feasible pacing strategies, shill-proof (the platform does
not benefit from adding fake bids under first-price auc-
tion mechanism) and revenue-monotone (revenue weakly
increases when adding bidders, items or budget). Cru-
cially for us, FPPE are fully characterized by a quasi-linear
Eisenberg-Gale convex program (Conitzer et al., 2022a;
Chen et al., 2007).

We remark that all the theory in the paper (CLT, inferential
theory, and local asymptotic minimax theory) can be ex-
tended to Fisher market with quasilinear utility (Cole et al.,
2017) given its equivalence to FPPE.

Given the above motivation, we study the question:

Suppose the auction platform operates at FPPE,
i.e., at a market equilibrium. How can we quan-
tify the variability in quantities of interest, and
use this to perform A/B testing?

Our contributions are as follows.

A statistical model for first-price pacing equilibrium
and A/B testing in auction markets. We leverage the
FPPE model of Conitzer et al. (2022a) and the infinite-
dimensional Fisher market model of Gao & Kroer (2022)
in order to propose a statistical model for first-price auc-
tion markets. In this model, we observe market equilibria
formed with a finite number of items that are i.i.d. draws
from some distribution, and aim to make inferences about
several primitives of the limit market, such as revenue,
Nash social welfare (a fair metric of efficiency), and other
quantities of interest. More importantly, we lay the theoret-
ical foundations for A/B testing in auction markets, which
is a difficult statistical problem because buyers interfere
with each other through the supply and the budget con-
straints, the first-price auction allocation, and so on. With
the presence of equilibrium effects, traditional statistical
approaches which rely on the i.i.d. or the SUTVA (stable
unit treatment value assumption, Imbens & Rubin (2015))
assumption fail. The key lever we use to approach this
problem is a convex program characterization of the first-
price pacing equilibrium, called the Eisenberg-Gale (EG)
program. With the EG program, the inference problem re-
duces to an M -estimation problem (Shapiro et al., 2021;
Van der Vaart, 2000) on a constrained non-smooth convex
optimization problem.

Convergence and inference results for the limit market.
The technical challenges for developing inferential theory
for FPPE are two-fold: (1) Nonsmoothness. The sample
function in the convex program is non-differentiable on the
constraint set almost surely as it involves the max opera-
tor (cf. Eq. (P-DualEG)). Such nonsmoothness results from
the fact that the allocation produced by first-price auction
is highly nonsmooth w.r.t. buyer’s pacing strategy. (2) The
parameter-on-boundary issue: the optimal population solu-
tion might be on the boundary of the constraint set. Asymp-
totic convergence is established by showing that the EG
convex program satisfies a set of regularity conditions from
Theorem 3.3 by Shapiro (1989). The hardest condition
to verify is stochastic equicontinuity (Cond. 8.c), which
we establish by leveraging empirical process theory (Vaart
& Wellner, 1996; Kosorok, 2008). For constrained M -
estimators, the asymptotic distribution might not be nor-
mal, causing challenges for inference. We discover suffi-
cient conditions to ensure normality of the limit distribu-
tions. We also establish that the observed market is an op-
timal estimator of the limit market in the asymptotic local
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minimax sense (Van der Vaart, 2000; Le Cam et al., 2000;
Duchi & Ruan, 2021). Finally, we provide consistent vari-
ance estimators, whose consistency is proved by a uniform
law-of-large-numbers over certain function classes.

Statistically-valid inference for A/B testing. Applying
our theory, we develop an A/B testing design for item-
side randomization that resembles practical A/B testing
methodology. In the proposed design treatment and control
markets are formed, and buyer’s budgets are split propor-
tionally between them, while items are randomly assigned.
Then, based on the equilibrium outcomes, we construct es-
timators and confidence intervals that enable statistical in-
ference. A recipe for applying our theory is presented in
Algorithm 1.

Notations. For a measurable space (Θ,dθ), we let Lp

(and Lp
+, resp.) denote the set of (nonnegative, resp.) Lp

functions on Θ w.r.t the integrating measure dθ for any
p ∈ [1,∞] (including p =∞). Given x ∈ L∞ and v ∈ L1,
we let ⟨v, x⟩ =

∫
Θ
v(θ)x(θ) dθ. We treat all functions that

agree on all but a measure-zero set as the same. Denote by
ej the j-th unit vector. For a sequence of random variables
{Xn}, we say Xn = Op(1) if for any ϵ > 0 there exists
a finite Mϵ and a finite Nϵ such that P(|Xn| > Mϵ) < ϵ
for all n ≥ Nϵ. We say Xn = op(1) if Xn converges to
zero in probability. We say Xn = Op(an) (resp. op(an))
if Xn/an = Op(1) (resp. op(1)). The subscript i is for in-
dexing buyers and superscript τ is for items. Furthermore,
we let A† be the Moore-Penrose pseudo inverse of a matrix
A. Given vectors a and b, let a ⊙ b be the element-wise
product.

In App. B we survey related works on A/B testing in two-
sided markets, pacing equilibrum, M -estimation when the
parameter is on the boundary, and statistical inference with
equilibrium effects.

2. Statistical Model for First-Price Pacing
Equilibrium

Following Gao & Kroer (2022); Conitzer et al. (2022a), we
consider a single-slot auction market with n buyers and a
possibly continuous set of items Θ with an integrating mea-
sure dθ. For example, one could take Θ = [0, 1] and dθ =
the Lebesgue measure on [0, 1]. Defining first price pacing
equilibrium requires the following elements.

• The budget bi of buyer i. Let b = (b1, . . . , bn).

• The valuation for buyer i is a function vi ∈ L1
+,

i.e., buyer i has valuation vi(θ) (value per unit sup-
ply) of item θ ∈ Θ. Let v : Θ → Rn,
v(θ) = [v1(θ), . . . , vn(θ)]. We assume v̄ =
maxi supθ vi(θ) <∞.

• The supplies of items are given by a function s ∈ L∞
+ ,

i.e., item θ ∈ Θ has s(θ) unit of supply. Without loss
of generality, we assume a unit total supply

∫
Θ
sdθ =

1. Given g : Θ→ R, we let E[g] =
∫
g(θ)s(θ) dθ and

Var[g] = E[g2]− (E[g])2.

For buyer i, an allocation of items xi ∈ L∞
+ gives a utility

of ⟨vi, sxi⟩. Let x = (x1, . . . , xn). The prices of items are
modeled as p ∈ L1

+; the price of item θ ∈ Θ is p(θ).

2.1. Definition and Interpretation of limit FPPE

Central to the notion of an FPPE is the pacing multiplier,
which is a scalar βi ∈ [0, 1] such that buyer i bids their
“paced” value βi · vi(θ) on a given item θ.

Definition 1 (Limit FPPE). Given (b, v, s), a limit FPPE
(denoted FPPE(b, v, s)) is a tuple (β, p, x1, . . . , xn) ∈
[0, 1]n × L1

+ × (L∞
+ )n such that

1.1 (First-price) For all item θ ∈ Θ, p(θ) =
maxi βivi(θ). Moreover, xi(θ) > 0 implies βivi(θ) =
maxk βkvk(θ) for all i and θ.

1.2 (Supply and budget feasible) For all i,∫
xi(θ)p(θ)s(θ) dθ ≤ bi. For all θ,

∑n
i=1xi(θ) ≤ 1.

1.3 (Market clearing) For all i,
∫
xi(θ)p(θ)s(θ) dθ <

bi implies βi = 1. For all θ, p(θ) > 0 implies∑n
i=1xi(θ) = 1.

By Conitzer et al. (2022a), the limit FPPE exists and is
unique. Next we unpack Def. 1. The βi ∈ [0, 1] con-
straint is natural since a rational buyer should not bid more
than their value. Cond. 1.1 captures the fact that FPPE is
a model for first-price auctions, where pacing is used to
manage budgets. The scalar βi controls the expenditure of
buyer i, and the constraint ensures that the price is equal to
the highest bid, and that only buyers tied for highest are al-
located a non-zero amount. Cond. 1.2 ensures that the bud-
get and supply constraints are satisfied. Cond. 1.3 ensures
that the solution satisfies no unnecessary pacing, meaning
that we should only scale down a buyer’s bids in case their
budget constraint is binding. Secondly, it ensures that if
a good is demanded by any buyers, then it must be fully
allocated.

Fact 1 (Buyer’s satisfaction, Theorem 2 from Conitzer
et al. (2022a)). Let (β, p, x) ∈ FPPE(b, v, s). For all i,
it holds xi ∈ argmaxx{ui(x) : 0 ≤ x ≤ 1, ⟨p, sx⟩ ≤ bi}
where the utility of a buyer is

ui(xi) ≡ ⟨vi, sxi⟩+ (bi − ⟨p, sxi⟩) ,

where the first term is utility from the allocated items, the
second term is the leftover budget.
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This means FPPE is a competitive equilibrium. In the first-
price auction context, each buyer’s allocated items maxi-
mize their utility (item utility + leftover budget) among all
budget-feasible allocations, given the price.

From now on we use (.)∗ to denote limit FPPE quantities.
Given an FPPE (β∗, p∗, x∗), we define by

δ∗i ≡ bi − ⟨p∗, sx∗i ⟩ , µ̄∗
i ≡ ⟨vi, sx∗i ⟩ ,

u∗i ≡ µ̄∗
i + δ∗i = ui(x

∗
i ) . (1)

the leftover budget, the item utility and the total utility of
buyer i. Let δ∗, µ̄∗, u∗ be the vectors that collect these quan-
tities for all buyers. It is well-known that (p∗, u∗, β∗) are
unique in equilibrium, but (x∗, δ∗, µ̄∗) might not be unique.
Later we will see that for statistical inference we need con-
ditions to ensure uniqueness of x∗. The following equa-
tions about limit FPPE (Gao & Kroer, 2022) are important.

u∗i = bi/β
∗
i , (β∗

i − 1)δ∗i = 0 . (2)

We want to estimate the following quantities in the limit
FPPE. (1) Revenue. The revenue in the limit FPPE is
REV∗ ≡

∫
p∗(θ)s(θ) dθ . It measures the profitability of

the auction platform. When the platform operates at the
limit FPPE, REV∗ is the maximum revenue the platform
could extract from the buyers over the space of budget-
feasible pacing strategies Conitzer et al. (2022a). (2) Nash
social welfare (NSW). The (logarithm of) NSW is defined
as NSW∗ ≡

∑n
i=1bi log u

∗
i . The NSW at equilibrium mea-

sures total utility of the buyers and, when used as a sum-
mary metric of the efficiency of the auction platform, is
able to promote fairness better than the utilitarian social
welfare, that is, the sum of buyer utilities (Bertsimas et al.,
2012; Caragiannis et al., 2019). (3) Individual utilities at
limit FPPE, u∗i . (4) Pacing multipliers β∗

i . Pacing multi-
plier has a two-fold interpretation. First, through the equa-
tion β∗

i = bi/u
∗
i , it is the ratio of budget and utility. Second,

β∗ is the pacing policy employed by the buyers in first-price
auctions, a quantity of natural interest.

As we will see next, counterparts of these quantities in the
observed market are good estimators of the limit quantities.

2.2. The Observed FPPE

Let γ = (θ1, . . . , θt) be a sequence of observed items
drawn from the distribution s in an i.i.d. manner. Assume
each item has the same supply of σ ∈ R+ units. Most of
the time we take σ = 1

t to ensure total supply agrees with
the limit market.

Definition 2 (Observed FPPE, informal). Given (b, v, σ, γ),
the observed FPPE F̂PPE(b, v, σ, γ) contains tu-
ples (β, p, x1, . . . , xn) ∈ [0, 1]n × Rt

+ × ([0, 1]t)n

such that the conditions in Def. 1 hold with the

following modifications: limit item space Θ →
observed item set γ and limit supply distribution s(·) →
weighted observed item distribution σ

∑t
τ=1δθτ (·) where

δθ(·) is a point mass on θ.

A formal definition and further properties of FPPE can be
found in App. C. Here xτi ∈ [0, 1] is the fractional alloca-
tion of item θτ to buyer i. The mechanism of forming the
observed FPPE is exactly the same as the limit FPPE in
Def. 1, except now the price p, the supply s and the alloca-
tion xi reduce to vectors in Rt as opposed to functions.

To emphasize dependence on the item sequence γ, we use
(.)γ to denote equilibrium quantities in F̂PPE(b, v, t−1, γ).
We let (βγ , pγ , xγ) be an observed FPPE with xγ =
(xγ1 , . . . , x

γ
n). The leftover budget δγi ≡ bi − σ⟨pγ , xγi ⟩,

item utility µ̄γ
i ≡ σ⟨vi, xγi ⟩ and total utility uγi ≡ δγi + µ̄γ

i

are defined similarly. Let δγ , µ̄γ , uγ be the vectors that
collect these quantities for all buyers. The observed rev-
enue is REVγ ≡ σ

∑t
τ=1p

γ(θτ ), and NSW is NSWγ ≡∑n
i=1bi log u

γ
i .

Having observed an FPPE with a finite number of items,
our goal is to estimate the quantities of interest in the limit
FPPE.

2.3. Convex Programs for FPPE

Before we present the main statistical theories for FPPE,
we review convex program characterization of FPPE,
which are at the core of the paper. These convex charac-
terization results reduce the FPPE inference problem to the
one on a constrained nonsmooth convex program.

The limit FPPE pacing multiplier β can be recovered
through the population dual Eisenberg-Gale (EG) program

min
B

H(β) ≡ E[F (θ, β)] (P-DualEG)

where B ≡ (0, 1]n, F ≡ f +Ψ,

f(θ, β) ≡ max
i∈[n]

βivi(θ) , Ψ(β) ≡ −
n∑

i=1

bi log βi .

It is known that the FPPE β∗ is the unique solution to Eq. (P-
DualEG), and any FPPE (x∗, u∗, δ∗) belongs to the set of
optimal solutions to the population primal EG program (to
be presented in App. C).

The observed FPPE has a similar convex program charac-
terization. By taking σ = 1

t and replacing s with the empir-
ical measure 1

t

∑t
τ=1δθτ in Eq. (P-DualEG), it can be shown

that the observed FPPE pacing multiplier solves the sample
dual EG program

min
β∈B

Ht(β) ≡
1

t

t∑
τ=1

F (θτ , β) . (S-DualEG)
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To develop inferential theory for FPPE, we study the con-
centration of the dual EG programs. The study of the con-
vergence F̂PPE(b, v, t−1, γ)“ =⇒ ”FPPE(b, v, s) reduces
to the one of

min
β∈B

Ht(β) “ =⇒ ” min
β∈B

H(β) .

As mentioned previously, the difficulty of analyzing the
above convex programs lies in the nonsmoothness of the
sample function F and that the population optimum could
lie on the boundary of B. We define the set of constraints
that are active/inactive at β∗ by

I ≡ {i : β∗
i = 1} , Ic ≡ {i : β∗

i < 1} . (3)

3. Statistical Inference
For statistical inference we need the limit market to behave
smoothly around the the optimal pacing multipliers β∗. To
that end, we make the following assumption.

Assumption 1 (SMO). Assume the map β 7→
Es[maxi βivi(θ)] is C2 in a neighborhood of the limit
FPPE pacing multiplier β∗.

For a given β ∈ Rn
+, the quantity maxi βivi(θ) is the price

of item θ in the first-price auction. The assumption requires
that the revenue, Es[maxi βivi(θ)], when viewed as a func-
tion of β, changes smoothly around β∗. The assumption
implies that H , defined in Eq. (P-DualEG), is also C2 at β∗.

Assumption 1 implies a number of nice regularity condi-
tions. One is that the set of items that are tied at the
limit FPPE is s-measure zero. The set of tied items is
Θtie ≡ {θ ∈ Θ : β∗

i vi(θ) = β∗
kvk(θ) for some i ̸= k} .

Lemma 1. Under SMO, the set Θtie is s-zero measure (up
to a measure-zero set), and the equilibrium allocation x∗,
the leftover budget δ∗ and the item utility µ̄∗ are all unique.
Moreover, there is a neighborhood Ndiff of β∗ such that
each pacing strategy in this neighborhood results in no tie.
Proof in App. C.

SMO is a joint assumption on value functions v and the sup-
ply function s. Lower level conditions on v and s that imply
SMO were derived by Liao et al. (2022b). For example, if
the distribution of the values vi is smooth, then SMO holds.
If we impose functional structure on v, such as Θ = [0, 1]
and vi = aiθ+ bi with E[vi] = 1, bi’s distinct, and s is uni-
form, then SMO also holds. If the gap between the highest
and the second-highest bid is large for most items in the
limit FPPE, SMO also holds. For a precise statement, we
refer readers to Theorem 7 from Liao et al. (2022b).

In order to state our main CLT results, we define

µ∗(θ) ≡ x∗(θ)⊙ v(θ) , H ≡ ∇2H(β∗) . (4)

Under SMO, µ∗(·) is unique and well-defined. Clearly
µ̄∗ = E[µ∗(θ)].

In the unconstrained case, classical M -estimation the-
ory says that, under regularity conditions, an M -
estimator is asymptotically normal with covariance matrix
H−1Var(gradient)H−1 (Van der Vaart, 2000, Chap. 5).
However, in the case of FPPE which is characterized by
a constrained convex problem, the Hessian matrix needs
to be adjusted to take into account the geometry of the
constraint set B = (0, 1]n at the optimum β∗. We let
P ≡ diag(1(i ∈ Ic )) be an “indicator matrix” of buyers
whose β∗

i < 1, and define the projected Hessian

HB ≡ PHP . (5)

It will be shown that the asymptotic variance of βγ is
H†

BVar(gradient)H†
B .

Assumption 2 (SCS). Strict complementary slackness
holds: β∗

i = 1 implies δ∗i > 0.

SCS can be viewed as a non-degeneracy condition from a
convex programming perspective, since δi corresponds to a
Lagrange multiplier on βi ≤ 1. From a market perpective,
SCS requires that if a buyer’s bids are not paced (β∗

i = 1),
then the leftover budget δ∗i must be strictly positive. This
can again be seen as a market-based non-degeneracy con-
dition: if δ∗i = 0 then the budget constraint of buyer i is
binding, yet β∗

i = 1 would imply that they have no use for
additional budget. If SCS fails, one could slightly increase
the budgets of buyers for which SCS fails, i.e., those who
do not pace yet have exactly zero leftover budget, and ob-
tain a market instance with the same equilibrium, but where
SCS holds.

From a technical viewpoint, SCS is a stronger form of the
first-order optimality condition. Note ∇H(β∗) = −δ∗ (cf.
App. C). The usual first-order optimality condition is

−∇H(β∗) ∈ NB(β
∗) , (6)

where NB(β) =
∏n

i=1 Ji(β) is the normal cone with
Ji(β) = [0,∞) if βi = 1 and Ji(β) = {0} if βi < 1
for β ∈ Rn

++. Then Eq. (6) translates to the condition that
β∗
i = 1 implies δ∗i ≥ 0. On the other hand, when writ-

ten in the form that resembles optimality condition, SCS is
equivalent to

−∇H(β∗) ∈ relint(NB(β
∗)) .1

Given that relint(NB(β
∗)) ⊂ NB(β

∗), SCS is obviously a
stronger form of first-order condition. The SCS condition is
commonly seen in the study of statistical properties of con-
strained M -estimators (Duchi & Ruan (2021, Assumption

1 The relative interior of a set is relint(S) ≡ {x ∈ S : there
exists ϵ > 0 such that Nϵ(x) ∩ aff(S) ⊆ S} where aff(S) is the
affine hull of S, and Nϵ(x) is a ball of radius ϵ centered on x.
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B) and Shapiro (1989)). In the proof of Thm. 1, SCS forces
the critical cone to reduce to a hyperplane and thus ensures
asymptotic normality of the estimates. Without SCS, the
asymptotic distribution of βγ could be non-normal.

3.1. Central Limit Theorems

We now show that the observed pacing multipliers βγ and
the observed revenue REVγ converge to the limit market
quantities in probability, and satisfy central limit theorems.
Define the influence functions

Dβ(θ) ≡ −(HB)
†(µ∗(θ)− µ̄∗),

DREV(θ) ≡ p∗(θ)− REV∗ + (µ̄∗)⊤Dβ(θ).
(7)

Recall µ∗ is defined in Eq. (4), HB in Eq. (5). Clearly
E[Dβ ] = 0 and E[DREV] = 0.

Theorem 1. It holds that βγ p→β∗ and REVγ p→ REV∗.
Furthermore, if SCS and SMO hold, then

√
t(βγ − β∗) = t−1/2

t∑
τ=1

Dβ(θ
τ ) + op(1) ,

√
t(REVγ − REV∗) = t−1/2

t∑
τ=1

DREV(θ
τ ) + op(1) .

Consequently,
√
t(βγ − β∗) and

√
t(REVγ − REV∗) are

asymptotically normal with means zero and variances
Σβ ≡ E[D⊗2

β ] = (HB)
†Var(µ∗)(HB)

† and σ2
REV ≡

E[DREV(θ)
2]. Proof in App. F.1.

The functions Dβ and DREV are called the influence func-
tions of the estimates βγ and REVγ because they measure
the change in the estimates caused by adding a new item to
the market (asymptotically).

Thm. 1 implies fast convergence rate of βγ
i for i whose

constraint is tight in the limit market. To see this, we sup-
pose wlog. that I = [k], i.e. the first k buyers are the ones
with βi = 1. Then the pseudo-inverse of projected Hessian
(HB)

† = diag(0k×k, (HIcIc)−1) whereHIcIc is the lower
right (n− k)× (n− k) block ofH. Consequently, entries
of Σu (resp. Σβ) are zeros except those on the lower right
(n− k)× (n− k) blocks (Σu)IcIc (resp. (Σβ)IcIc ). This
result shows that the constraint setB “improves” the covari-
ance by zeroing out the entries corresponding to the active
constraints I . Consequently,

√
t(βγ

i −β∗
i ) and

√
t(uγi −u∗i )

are of order op(1) for i ∈ I , and thus converging faster than
the usual Op(1) rate. The fast rate phenomenon is empiri-
cally investigated in App. G.1.

By SCS we have I = {i : δ∗i > 0}, i.e., I is the set of buy-
ers with positive leftover budgets, and Ic = {i : δ∗i = 0},
i.e., Ic is the set of buyers who exhaust their budgets. 2

2Without SCS, it only holds Ic ⊂ {i : δ∗i = 0} and {i : δ∗i >
0} ⊂ I by complementary slackness Eq. (2).

In the context of first-price auctions, the fast rate op(t−1/2)
implies that the platform can identify buyers that are un-
paced in the limit FPPE even when the market size is small.

The proof of Thm. 1 proceeds by showing that FPPE sat-
isfy a set of regularity conditions that are sufficient for
asymptotic normality (Shapiro, 1989, Theorem 3.3); the
conditions are stated in Lemma 8 in the appendix. Maybe
the hardest condition to verify is the so called stochastic
equicontinuity condition (Cond. 8.c), which we establish
with tools from the empirical process literature. In partic-
ular, we show that the function class whose functions map
an item to the first-price auction allocation of items, is VC-
subgraph, which implies stochastic equicontinuity. SCS is
used to ensure normality of the limit distribution.

Finally, we remark that the CLT result for revenue holds
true even if I = ∅. If βγ

i < 1 for all i, then all buyers’ bud-
gets are exhausted in the observed FPPE, and so we have
REVγ = REV∗ =

∑n
i=1bi if I = ∅ . By the convergence

βγ p→β∗, we know that REVγ = REV∗ with high probabil-
ity for all large t if I = ∅. In that case, it must be that the
asymptotic variance of revenue equals zero. Our result cov-
ers this case because one can show σ2

REV = 0 using Euler’s
identify for homogenous functions and that Hβ∗ = µ∗ if
I = ∅; see Lemma 6.

By applying the delta method based on Thm. 1, we can de-
rive a CLT for individual utilities uγ , leftover budget δγ and
Nash social welfare NSWγ since they are smooth functions
of βγ ; see Lemma 4.

Corollary 1. Under the same conditions as Thm. 1,√
t(uγ − u∗),

√
t(δγ − δ∗) and

√
t(NSWγ − NSW∗) are

asymptotically normal with means zero and (co)variances
defined in App. F.2.

3.2. Asymptotic Local Minimax Optimality

Given the asymptotic normality of observed FPPE, it is de-
sirable to understand the best possible statistical procedure
for estimating the limit FPPE. One way to discuss the op-
timality is to measure the difficulty of estimating the limit
FPPE when the supply distribution varies over small neigh-
borhoods of the true supply s, asymptotically. When an es-
timator achieves the best worst-case risk over these small
neighborhoods, we say it is asymptotically locally mini-
max optimal. For general references, see Vaart & Wellner
(1996); Le Cam et al. (2000). More recently Duchi & Ruan
(2021, Sec. 3.2) develop asymptotic local minimax theory
for constrained convex optimization, and we rely on their
results.

Given the central limit results for β, u,NSW and REV, we
will show that the observed FPPE estimates are optimal in
a asymptotic local minimax sense. To make this precise
we introduce a few more notations to parametrize neigh-
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borhoods of the supply s. Let g ∈ Gd = {g : Θ → Rd :
E[g] = 0,E[∥g∥2] < ∞} be a direction along which we
wish to perturb the supply s. Given a vector α ∈ Rd signi-
fying the magnitude of perturbation, we want to scale the
original supply of item θ by exp(α⊤g(θ)) and then obtain a
perturbed supply distribution by appropriate normalization.
To do this we define the perturbed supply by 3

sα,g(θ) ≡ C−1[1 + α⊤g(θ)]s(θ) (8)

with a normalizing constant C = 1+
∫
α⊤g(θ)s(θ) dθ. As

α→ 0, the perturbed supply sα,g effectively approximates
sα,g(θ) ∝ exp(α⊤g(θ))s(θ).

Asymptotic local minimax optimality for β. We first fo-
cus on estimation of pacing multipliers. For a given pertur-
bation (α, g), we let β∗

α,g , p∗α,g and REV∗
α,g be the limit

FPPE pacing multiplier, price and revenue under supply dis-
tribution sα,g . Clearly β∗ = β∗

0,g for any g and similarly
for p∗α,g and REVα,g . Let L : Rn → R be any symmetric
quasi-convex loss. 4 In asymptotic local minimax theory
we are interested in the local asymptotic risk: given a se-
quence of estimators {β̂t : Θt → Rn}t, LARβ({β̂t}t) ≡

sup
g∈Gd,d∈N

lim
c→∞

lim inf
t→∞

sup
∥α∥2≤ c√

t

Es⊗t
α,g

[L(
√
t(β̂t − β∗

α,g))] .

If we ignore the limits and consider a fixed t, then LARβ

roughly measures the worst-case risk for the estimators
{β̂t}. Note that α is a d-dimensional vector, and thus the
shrinking norm-balls depend on the choice of d, and the ex-
pectation is taken w.r.t. the t-fold product of the perturbed
supply. As an immediate application of Theorem 1 from
Duchi & Ruan (2021), it holds that

inf
{β̂t}t

LARβ({β̂t}t) ≥ E[L(N (0, (HB)
†Var(µ∗)(HB)

†))] .

where the expectation is taken w.r.t. a normal specified
above. Moreover, the lower bound is achieved by the ob-
served FPPE pacing multipliers βγ according to the CLT
result in Thm. 1.

Asymptotic local minimax optimality for revenue es-
timation. More interesting is the asymptotic minimax
result of revenue estimation. Given a symmetric quasi-
convex loss L : R → R, we define the local asymptotic
risk for any procedure {r̂t : Θt → R} that aims to estimate
the revenue: LARREV({r̂t}) ≡

sup
g∈Gd,d∈N

lim
c→∞

lim inf
t→∞

sup
∥α∥2≤ c√

t

Es⊗t
α,g

[L(
√
t(r̂t − REV∗

α,g))] .

3 In Duchi & Ruan (2021) they allow more general classes of
perturbations, we specialize their results for our purposes.

4A function is quasi-convex if its sublevel sets are convex.

Theorem 2 (Asymptotic local minimaxity for revenue). If
SMO and SCS hold, then

inf
{r̂t}

LARREV({r̂t}) ≥ E[L(N (0, σ2
REV))] .

Proof in App. F.3. In the proof we calculate the deriva-
tive of revenue w.r.t. α, which in turns uses a perturbation
result for constrained convex program from Duchi & Ruan
(2021); Shapiro (1989). Again, the lower bound is achieved
by the observed FPPE revenue REVγ according to the CLT
result in Thm. 1. Similar optimality statements can be made
for u and NSW by finding the corresponding derivative ex-
pressions.

3.3. Inference

In order to perform inference, we need to construct estima-
tors for the influence functions Eq. (7). We show how each
component can be estimated by the observed FPPE.

Given a sequence of smoothing parameters εt = o(1), we
estimate P by P̂ ≡ diag(1(βγ

i < 1 − εt)) . For the same
sequence εt, we introduce a numerical difference estimator
Ĥ for the Hessian matrixH, whose (i, j)-th entry is Ĥij ≡
[Ht(β

γ
++)−Ht(β

γ
+−)−Ht(β

γ
−+) +Ht(β

γ
−−)]/4ε

2
t with

βγ
±± ≡ βγ ± eiεt ± ejεt, and Ht is defined in Eq. (S-

DualEG). Then ĤB = P̂ĤP̂ is a natural estimator of HB .
Also, x∗, p∗ will be estimated by xγ , pγ . Let xγi (θ

τ ) ≡
(xγi )

τ ∈ [0, 1] be the proportion of θτ allocated to buyer i
and pγ(θτ ) ≡ (pγ)τ be the price.

Mirroring the definitions in Eq. (7), we define the following
influence function estimators

D̂τ
β ≡ −(ĤB)

†(xγ(θτ )⊙ v(θτ )− µ̄γ) ,

D̂τ
REV ≡ pγ(θτ )− REVγ + (µ̄γ)⊤D̂τ

β .

Given that the asymptotic variance of βγ (resp. REVγ)
is E[D⊗2

β ] (resp. E[D2
REV]), plug-in estimators of the

(co)variance are naturally

Σ̂β ≡
1

t

t∑
τ=1

D̂τ
β(D̂

τ
β)

⊤ , σ̂2
REV ≡

1

t

t∑
τ=1

(D̂τ
REV)

2 . (9)

For any α ∈ (0, 1), the (1 − α)-confidence region/interval
for β∗ and REV∗ are

CRβ ≡ βγ + (χn,α/
√
t)Σ̂

1/2
β B , (10)

CIREV ≡ [REVγ ± zα/2σ̂REV/
√
t] . (11)

where χn,α is the (1 − α)-th quantile of a chi-square dis-
tribution with degree n, B is the unit ball in Rn, and zα/2
is the (1 − α

2 )-th quantile of a standard normal distribu-
tion. The coverage rate of CIREV is empirically verified in
App. G.3.
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Theorem 3. Under the conditions of Thm. 1, let εt
√
t →

∞ and εt ↓ 0. Then Σ̂β
p→Σβ and σ̂2

REV
p→σ2

REV. Conse-
quently, for any α ∈ (0, 1), P(β∗ ∈ CRβ) → 1 − α and
P(REV∗ ∈ CIREV)→ 1− α. Proof in App. F.4.

The theorem suggests choosing smoothing parameter εt =
t−d for 0 < d < 1

2 ; see App. G.2 for a numerical study on
how d affects Hessian estimation. Variance estimators for
u, δ and NSW can be constructed similarly.

4. A/B Testing for First-Price Auction
Platforms

Consider an auction market with n buyers with a contin-
uum of items Θ with supply function s. To model treatment
application we introduce the potential value functions

v(0) ≡ (v1(0, ·), . . . , vn(0, ·)), v(1) ≡ (v1(1, ·), . . . , vn(1, ·)).

If item θ is exposed to treatment w ∈ {0, 1}, then its value
to buyer i will be vi(w, θ).

Suppose we are interested in estimating the change in the
auction market when treatment 1 is deployed to the entire
item set Θ. In this section we describe how to do this using
A/B testing, specifically for estimating the treatment effect
on revenue. We discuss other quantities like Nash social
welfare in App. D. Formally, we wish to look at the differ-
ence in revenues between the markets

FPPE(b, v(0), s) and FPPE(b, v(1), s),

where FPPE(b, v(0), s) is the market with treatment 1, and
FPPE(b, v(1), s) is the one with treatment 0. The treatment
effects on revenue is defined as

τREV ≡ REV∗(1)− REV∗(0) ,

where REV∗(w) is revenue in the equilibrium
FPPE(b, v(w), s).

We will refer to the experiment design as budget splitting
with item randomization. Step 1. Budget splitting. We
replicate buyers by splitting their budgets and form two
markets with the same set of buyers. For each buyer i we
allocate πbi of their budget to the market with treatment
w = 1, and the remaining budget, (1 − π)bi, to the mar-
ket with treatment w = 0. Step 2. Item randomization.
Let (θ1, θ2, . . . ) be i.i.d. draws from the supply distribu-
tion s. For each sampled item, it is applied treatment 1
with probability π and treatment 0 with probability 1 − π.
The total A/B testing horizon is t. When the end of hori-
zon is reached, two observed FPPEs are formed. Assume
each item has a supply of π/t1 in the 1-treated market and
(1 − π)/t0 in the 0-treated market. The 1/t1 is the scaling
required for our CLTs and the π factor ensures the budget-
supply ratio agrees with the limit market; see Lemma 5
regarding scale-invariance of FPPE.

Let t0 be the number of 0-treated items, and t1 be the
number of 1-treated items. Conditional on the total num-
ber of items t = t1 + t0, the random variable t1 is a
binomial random variable with mean πt. Let γ(0) =
(θ1,1, . . . , θ1,t1) be the set of 0-treated items, and simi-
larly γ(1) = (θ0,1, . . . , θ0,t0). The total item set γ =
γ(0) ∪ γ(1). Compactly, the observables in the described
A/B testing experiment are

F̂PPE
(
πb, v(1), π

t1
, γ(1)

)
, F̂PPE

(
(1−π)b, v(0), 1−π

t0
, γ(0)

)
,

both defined in Def. 2. Let REVγ(w) denote the observed
revenue in the w-treated market. The estimator of revenue
treatment effect is

τ̂REV ≡ REVγ(1)− REVγ(0).

For fixed (b, s), the variance σ2
REV in Thm. 1 is a functional

of the value functions. We will use σ2
REV(w) to represent

the revenue variance in the equilibrium FPPE(b, v(w), s).
Each variance can be estimated using Eq. (9).
Theorem 4 (Revenue treatment effects CLT). Suppose
SMO and SCS hold in the limit markets FPPE(b, v(1), s)

and FPPE(b, v(0), s). Then
√
t(τ̂REV − τREV)

d→N(
0,

σ2
REV(1)
π +

σ2
REV(0)
(1−π)

)
. Proof in App. F.5.

Based on the theorem, an A/B testing procedure is the fol-
lowing. Compute the revenue variance as Eq. (9) for each
market, obtaining σ̂2

REV(1) and σ̂2
REV(0), and form the con-

fidence interval

τ̂REV ± zα/2
(
σ̂2

REV(1)

π
+
σ̂2

REV(0)

(1− π)

)
(12)

If zero is on the left (resp. right) of the CI Eq. (17), we
conclude that the new feature increases (resp. decreases)
revenue with (1− α)× 100% confidence. If zero is inside
the interval, the effect of new feature is undecided. See
App. G.4 for a numerical study verifying the validity of this
procedure. Algorithm 1 presents a step-by-step procedure
for using the above results.

5. Experiment
In App. G we conduct simulations to investigate asymptotic
normality for i /∈ I and fast convergence rate for i ∈ I , the
effect of smoothing parameter on Hessian estimation, the
coverage rate of the CI for revenue, and the coverage rate
of the treatment effect CI for revenue. Through these exper-
iments, we confirm that the finite sample of β converges to
a normal distribution, with fast convergence in the entries
whose constraints are tight. We confirm that for Hessian
estimation, a suitable choice of εt of smoothing parameter
sequence is t−d for d ∈ (.3, .5). Finally, the revenue con-
fidence intervals in Thm. 3 and Eq. (17) attain the nominal
coverage rate.
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A. Notations
Symbol Meaning

Notations in First-Price Pacing Equilibrium
β∗, βγ pacing multiplier

p∗(·), pγ , REV∗, REVγ price and revenue
µ∗(·), µγ , µ̄∗, µ̄γ utility generated from items

δ∗, δγ leftover budget
u∗, uγ total utility = utility from items + leftover budgets

x∗(·), xγ allocation
s(·) supply (a probability density)
b budget

v, vi valuations
Notations in Eisenberg-Gale Grogram

F (θ, β), Ψ(β), and f(θ, β) see Eq. (P-DualEG)
H,Ht objective function of Eisenberg-Gale convex programs

B B = (0, 1]n the domain of H and Ht

H the Hessian matrix of H at β∗

P matrix whose diagonal = 1(β∗
i < 1)

HB = PHP
I , Ic partition of buyers into those with β∗

i = 1 (I) and those not (Ic)

B. Related Works
A/B testing in two-sided markets. Empirical studies by Blake & Coey (2014); Fradkin (2019) demonstrate bias in
experiments due to marketplace interference. Basse et al. (2016) study the bias and variance of treatment effects under two
randomization schemes for auction experiments. Bojinov & Shephard (2019) study the estimation of causal quantities in
time series experiments. Some recent state-of-the-art designs are the multiple randomization designs (Liu et al., 2021b;
Johari et al., 2022; Bajari et al., 2021) and the switch-back designs (Sneider et al., 2018; Hu & Wager, 2022; Li et al.,
2022; Bojinov et al., 2022; Glynn et al., 2020). The surveys by Kohavi & Thomke (2017); Bojinov & Gupta (2022) contain
detailed accounts of A/B testing in internet markets. See Larsen et al. (2022) for an extensive survey on statistical challenges
in A/B testing. Our paper focuses on A/B testing in first-price auction markets with the consideration of equilibrium effects,
to the best of our knowledge this is the first work to consider market equilibrium effects in A/B testing.

Pacing equilibrium. Pacing and throttling are two prevalent budget-management methods on ad auction platforms. Here
we focus on pacing methods since that is our setting. In the first-price setting, Borgs et al. (2007) study first price auctions
with budget constraints in a perturbed model, whose limit prices converge to those of an FPPE. Building on the work of
Borgs et al. (2007), Conitzer et al. (2022a) introduce the FPPE model and discover several properties of FPPE such as
shill-proofness and monotonicity in buyers, budgets and goods. There it is also established that FPPE is closely related to
the quasilinear Fisher market equilibrium (Chen et al., 2007; Cole et al., 2017). Gao & Kroer (2022) propose an infinite-
dimensional variant of the quasilinear Fisher market, which lays the probability foundation of the current paper. Gao et al.
(2021); Liao et al. (2022a) study online computation of the infinite-dimensional Fisher market equilibrium. In the second-
price setting, Balseiro et al. (2015) investigate budget-management in second-price auctions through a fluid mean-field
approximation; Balseiro & Gur (2019) study adaptive pacing strategy from buyers’ perspective in a stochastic continuous
setting; Balseiro et al. (2021) study several budget smoothing methods including multiplicative pacing in a stochastic
context; Conitzer et al. (2022b) study second price pacing equilibrium, and shows that the equilibria exist under fractional
allocations.

M -estimation when the parameter is on the boundary There is a long literature on the statistical properties of M -
estimators when the parameter is on the boundary (Geyer, 1994; Shapiro, 1990; 1988; 1989; 1991; 1993; 2000; Andrews,
1999; 2001; Knight, 1999; 2001; 2006; 2010; Dupacová & Wets, 1988; Dupačová, 1991; Self & Liang, 1987). Some
recent works on the statistical inference theory for constrained M -estimation include Li (2022); Hong & Li (2020); Hsieh
et al. (2022). Our work leverages Shapiro (1989), which develops a general set of conditions for CLTs of constrained
M -estimators when the sample function is nonsmooth. Working under the specific model of FPPE, we build on and go
beyond these contributions by deriving sufficient condition for asymptotic normality in FPPE, establishing local asymptotic
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minimax theory and developing valid inferential procedures.

Statistical learning and inference with equilibrium effects Wager & Xu (2021); Munro et al. (2021); Sahoo & Wager
(2022) take a mean-field game modeling approach and perform policy learning with a gradient descent method. Liao et al.
(2022b) consider statistical inference in the Fisher market equilibrium which is useful for fair and efficient resource allo-
cations. Statistical learning and inference has been investigated for other equilibrium models, such as general exchange
economy (Guo et al., 2021; Liu et al., 2022) and matching markets (Cen & Shah, 2022; Dai & Jordan, 2021; Liu et al.,
2021a; Jagadeesan et al., 2021; Min et al., 2022). Our work is also related to the rich literature of inference under in-
terference (Hudgens & Halloran, 2008; Aronow & Samii, 2017; Athey et al., 2018; Leung, 2020; Hu et al., 2022; Li &
Wager, 2022). In the FPPE model, the interference among buyers is caused by the supply and budget constraint and the
revenue-maximizing incentive of the platform. In the economic literature, researchers have studied how to estimate auction
market primitives from bid data; see (Athey & Haile, 2007) for a survey.

C. Omitted properties of FPPE
Definition 3 (Observed FPPE, formal). Given (b, v, σ, γ), an observed FPPE is a tuple (β, x1, . . . , xn) ∈ [0, 1]n ×
([0, 1]t)n such that

• (First-price) For all θτ , pj(θτ ) = maxi βivi(θ
τ ). Moreover, xi(θτ ) > 0 implies βivi(θ) = maxi βixi(θ

τ ) for all i
and θτ .

• (Supply and budget feasible) For all i, σ
∑t

τ=1xi(θ
τ )p(θτ ) ≤ bi. For all θτ ,

∑n
i=1xi(θ

τ ) ≤ 1.

• (Revenue maximizing and market clearing) For all i, σ
∑t

τ=1xi(θ
τ )p(θτ ) < bi implies βi = 1. For all θτ , p(θτ ) > 0

implies
∑n

i=1xi(θ
τ ) = 1.

We start by listing a number of known properties of the limit FPPE that we will use in our proofs.

A limit FPPE allocation x and the limit FPPE pacing multiplier β can be recovered through the convex programs, the
population primal EG

max
x∈L∞

+ (Θ),u,δ≥0

n∑
i=1

(bi log(ui)− δi) (P-EG)

s.t. ui ≤ ⟨vi, sxi⟩+ δi,

n∑
i=1

xi(θ) ≤ 1

and the population dual EG

min
0<βi≤1,i∈[n]

H(β) = E[F (θ, β)] = E[f(β, θ)] + Ψ(θ) (P-DualEG)

where F (θ, β) = f(β, θ) + Ψ(θ), f(θ, β) = maxi∈[n] βivi(θ) and Ψ(β) = −
∑n

i=1bi log βi.

Lemma 2 (FPPE⇔ EG). The limit FPPE β∗ is the unique solution to Eq. (P-DualEG), and any limit FPPE (x∗, u∗, δ∗)
belongs to the set of optimal solutions to Eq. (P-EG) (Gao & Kroer, 2022).

Lemma 3 (First-order conditions of limit FPPE, Theorem 10 from Gao & Kroer (2022)). Given (b, v, s), the limit FPPE
satisfies the following.

• u∗i = bi/β
∗
i all i.

• β∗
i vi(θ) ≤ p∗(θ) all i, θ.

• x∗i (θ), δ∗i , β∗
i , p

∗(θ) ≥ 0 all i, θ.

• p∗(θ) > 0 =⇒
∑n

i=1x
∗
i (θ) = 1 all θ.

• δ∗i > 0 =⇒ β∗
i = 1 all i.

• x∗i (θ) > 0 =⇒ β∗
i = p∗(θ)/vi(θ) all i, θ.
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Lemma 4 (From EG to FPPE). Recall the definition of H in Eq. (P-DualEG). Under SMO

δ∗ = −∇H(β∗),

p∗(θ) = f(θ, β∗),

µ∗(θ) = x∗(θ)⊙ v(θ) = ∇βf(θ, β
∗),

µ̄∗ = E[∇f(θ, β∗)] = ∇f̄(β∗),

REV∗ = f̄(β∗), and

NSW∗ = Ψ(β∗) +

n∑
i=1

bi log bi.

Lemma 5 (Scale-invariance). Scaling the budget and values at the same time does not change the market equilibrium.
Scaling the value and the supply inversely does not change the market equilibrium. That is, given a positive scalar α, if
(x, β, p) ∈ FPPE(b, v, s), then

(x, β, αp) ∈ FPPE(αb, αv, s) ,

(x, β, p) ∈ FPPE(b, αv, 1
αs) .

Similarly, for a given observed FPPE F̂PPE(b, v, σ, γ) defined in Def. 2, and any positive scalar α, if (x, β, p) ∈
F̂PPE(b, v, σ, γ), then

(x, β, αp) ∈ F̂PPE(αb, αv, σ, γ), (13)

(x, β, p) ∈ F̂PPE(b, αv, 1
ασ, γ) (14)

Lemma 6. Let (x∗, β∗, p∗) = FPPE(b, v, s). Assume SMO holds. Then β∗
i < 1 for all i implies p∗(θ) = (µ̄∗)⊤H−1µ∗(θ).

Proof. If β∗
i < 1 for all i, then µ̄∗ = u∗. By definition and SMO, µ∗

i (θ) = x∗i (θ)vi(θ) and p∗(θ) = maxi β
∗
i vi(θ) =∑n

i=1x
∗
i (θ)β

∗
i vi(θ). It suffices to show (µ̄∗)⊤H−1 = (β∗)⊤, or equivalently Hβ∗ = u∗. Recall f̄(β) = E[maxi βivi(θ)]

is homogenous, i.e., f̄(αβ) = αf̄(β) for any positive scalar α ≥ 0. By the Euler’s identity for homogenous functions, we
have

∇f̄(β) =
n∑

i=1

βi∇if̄(β)

Taking derivative again, we have ∇2f̄(β)β = 0 for all β. Finally, note H = ∇2f̄(β∗) + ∇2Ψ(β∗), we have Hβ∗ =
∇2Ψ(β∗)β∗ = u∗ = µ̄∗, where the second equality holds by the first-order condition that u∗i = bi/β

∗
i , and the third by the

fact that β∗
i < 1 for all i implies δ∗i = 0. So (µ̄∗)⊤H−1µ∗(θ) = (β∗)⊤µ∗(θ) =

∑n
i=1β

∗
i µ

∗
i (θ) = p∗(θ).

As for the limit FPPE, the observed FPPE F̂PPE(b, v, σ, γ) is characterized by primal and dual convex programs:

max
x,δ,u≥0

{ n∑
i=1

(bi log(ui)− δi)
∣∣ ui ≤ σ⟨vi(γ), xi⟩+ δi ∀i,

n∑
i=1

xτi ≤ 1 ∀τ
}
, (15)

min
1t≥β>0

{
Ht(β) ≡ σ

t∑
τ=1

max
i∈[n]

βivi(θ
τ )−

n∑
i=1

bi log βi

}
. (16)

See Conitzer et al. (2022a, Sec. 5) and Gao & Kroer (2022) for more details on the convex program characterization of
observed FPPE. As with the limit FPPE, the observed FPPE has an analogous set of properties.

Lemma 7 (First-order conditions of observed FPPE, from EG to FPPE). Given (b, v, γ), the observed FPPE
F̂PPE(b, v, 1t , γ) satisfies the following.

• uγi = bi/β
γ
i all i.

• βγ
i vi(θ) ≤ pγ(θτ ) all i, θτ .
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• xγi (θτ ), δ
γ
i , β

γ
i , p

γ(θτ ) ≥ 0 all i, θτ .

• pγ(θτ ) > 0 =⇒
∑n

i=1x
γ
i (θ

τ ) = 1 all θτ .

• δγi > 0 =⇒ βγ
i = 1 all i.

• xγi (θτ ) > 0 =⇒ βγ
i = pγ(θτ )/vi(θ

τ ) all i, θτ .

Moreover, recall the definition of Ht in Eq. (S-DualEG). Then

δγ ∈ −∂Ht(β
γ), µ̄γ ∈ ∂

(
1

t

t∑
τ=1

f(θτ , βγ)

)
, pγ(θτ ) = f(θτ , βγ),

µγ(θτ ) = xγ(θτ )⊙ v(θτ ) ∈ ∂βf(θτ , βγ)

REVγ =
1

t

t∑
τ=1

f(θτ , βγ),NSWγ = Ψ(βγ) +

n∑
i=1

bi log bi.

C.1. Proof of Lemma 1

Proof of Lemma 1. The proof follows a similar argument as in Liao et al. (2022b) for non-quasilinear Fisher market (recall
that an FPPE is a quasilinear Fisher market). Recall f(θ, β) = maxi βivi(θ). We define

ϵ(θ, β) = max
i
{βivi(θ)} − secondmax

i
{βivi(θ)}

where secondmax is the second-highest entry (which could possibly be equal to the highest entry). For example,
secondmax(1, 1, 2) = 1.

Note f(θ, ·) is differentiable at β if and only if ϵ(θ, β) > 0, since this holds if and only if the subdifferential is a singleton
at β. Let Θdiff(β) ≡ {θ : f(θ, β) differentiable at β} and Θtie(β) = {θ : βivi(θ) = βkvk(θ) for some k ̸= i}. Then

Θdiff(β) = {θ : ϵ(θ, β) > 0} ,Θtie(β) = {θ : ϵ(θ, β) = 0}.

By Proposition 2.3 from Bertsekas (1973) we know f̄(β) = E[f(θ, β)] is differentiable at β if and only if Θdiff(β) is
measure one.

Proof of Θtie is measure zero. Recall Θtie = Θtie(β
∗). The claim follows from the fact that the SMO assumption implies

differentiability, which implies that the complement of Θtie is measure one.

Proof of uniqueness of x∗, µ∗, δ∗. By Lemma 3, we know x∗i (θ) > 0 only if β∗
i vi(θ) ≥ β∗

kvk(θ) for all other k. Under
the pacing profile β∗, for all (but a measure-zero set of) items there is only one winning bidder, i.e., for almost all θ there
is a unique i such that x∗i (θ) > 0 and x∗k(θ) = 0 for all k ̸= i. Coupled with the limit FPPE first-order condition that∑n

i=1x
∗
i (θ) = 1 we know x∗ is unique. This immediately implies uniqueness of µ∗, δ∗ as well.

Proof of existence of Ndiff. By the assumption that f̄ is twice continuously differentiable at β∗, there is a neighborhood
Ndiff such that f̄ is continuously differentiable on Ndiff. By the same argument as for Θtie(β

∗) being measure zero, Θtie(β)
is measure zero for each β ∈ Ndiff.

D. More A/B testing estimands
We remark that the potential value functions are suitable for modeling either item-side or buyer-side treatments. In the
context of ad auctions, item-size treatment are, for example, positions of the ads in the browser, whether links are attached
to the ads and so on. Buyer-side treatments are, for example, a new layout of the ad campaign setup portal for the advertisers.
The following discussion centers around item-side treatments since they are more prominent in practice, but readers should
keep in mind that our theory extends to buyer-side treatments.

As discussed in Sec. 2.3, each FPPE has a convex program characterization. If the market is given treatment w ∈ {0, 1},
then the limit FPPE pacing multipliers can be recovered by maxβ∈B

∫
maxi βivi(w, θ)s(θ) dθ −

∑n
i=1bi log βi . Let
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β∗(w) be the unique solution to the above program and also the unique FPPE pacing multiplier. The FPPE prices and
revenue are p∗(w, θ) ≡ maxi vi(w, θ)β

∗
i (w) and REV∗(w) ≡

∫
p∗(w, θ)s(θ) dθ. The utility vector under treatment w is

u∗i (w) ≡ bi/β∗(w). The NSW is NSW∗(w) ≡
∑n

i=1bi log u
∗
i (w).

Other metrics of treatment effects could be (i) treatment effects on revenue: τREV ≡ REV∗(1) − REV∗(0), (ii) treatment
effects on Nash social welfare: τNSW ≡

∑n
i=1bi log u

∗
i (1)−

∑n
i=1bi log u

∗
i (0), (iii) treatment effects on pacing multiplier:

τβ ≡ β∗(1) − β∗(0), and (vi) treatment effects on utilities: τu ≡ u∗(1) − u∗(0). The estimators of treatment effects are
τ̂REV ≡ REVγ(1)− REVγ(0) , τ̂β ≡ βγ(1)− βγ(0) , τ̂NSW ≡ NSWγ(1)− NSWγ(0) , and τ̂u ≡ uγ(1)− uγ(0) .

For given (b, s), the (co)variances Σβ ,Σu, σ
2
NSW, σ

2
REV in Thm. 1 and Corollary 1 are functionals of the value functions.

We will use Σβ(w),Σu(w), σ
2
NSW(w), σ2

REV(w) to represents the (co)variances in the market formed with value functions
{vi(w, ·)}i. Each variance can be estimated the same way as in Sec. 3.3. Let βγ(w), uγ(w), REVγ(w) and NSWγ(w)
denote the observed FPPE quantities for treatment w ∈ {0, 1}.
Theorem 5 (Treatment effects CLT). Suppose SMO and SCS hold in the limit markets FPPE(b, v(1), s) and

FPPE(b, v(0), s). Then
√
t(τ̂REV − τREV)

d→N
(
0,

σ2
REV(1)
π +

σ2
REV(0)
(1−π)

)
,
√
t(τ̂NSW − τNSW)

d→N
(
0,

σ2
NSW(1)
π +

σ2
NSW(0)
(1−π)

)
,

√
t(τ̂β − τβ)

d→N
(
0, 1

πΣβ(1) +
1

(1−π)Σβ(0)
)
, and

√
t(τ̂u − τu)

d→N
(
0, 1

πΣu(1) +
1

(1−π)Σu(0)
)
. Proof in App. F.5.

Algorithm 1 A/B test effect of a new feature on revenue
Step 1. Experiment. Choose the new feature assignment probability π. Perform A/B testing with budget splitting and
item randomization. Form two first-price pacing equilibria.
Step 2. Collect data. Observe the equilibrium data from the two markets, including prices, item allocations, pacing
multipliers, leftover budgets, and values of the observed items.
Step 3. Compute CI. Compute the revenue variance as Eq. (11) for each market, obtaining σ̂2

REV(1) and σ̂2
REV(0), and

form the confidence interval

τ̂REV ± zα/2
(
σ̂2

REV(1)

π
+
σ̂2

REV(0)

(1− π)

)
(17)

E. Technical Lemmas
E.1. A CLT for constrained M -estimator

We introduce a CLT result from (Shapiro, 1989) that handles M -estimation when the true parameter is on the boundary of
the constraint set. Throughout this section, when we refer to assumptions A1, A2, B2, etc, we mean those assumptions in
Shapiro (1989).

Let (Θ, P ) be a probability space. Consider f : Θ×Rn → R and a setB ⊂ Rn. Let θ1, . . . , θt be a sample of independent
random variables with values in Θ having the common probability distribution P . Let ϕ(β) = Pf(·, β) = E[f(θ, β)], and
ψt(β) = Ptf(·, β) = 1

t

∑t
i=1 f(θi, β). Let β0 be the unique minimizer of ϕ over B (Assumption A4 in Shapiro (1989)).

Let ϑt = infB ψt and β̂ be an optimal solution.

We begin with some blanket assumptions. Suppose the geometry of B at β0 is given by functions gi(β) (Assumption B1),
i.e., there exists a neighborhood N such that

B ∩N = {β ∈ N : gi(β) = 0, i ∈ K; gi(β) ≤ 0, i ∈ J} ,

where K and J are finite index sets and the constraints in J are active at β0, meaning gi (β0) = 0 for all i ∈ J . Assume
the functions gi, i ∈ K ∪ J , are twice continuously differentiable in a neighborhood of β0 (Assumption B2). Define the
Lagrangian function by l(β, λ) = ϕ(β)+

∑
i∈K∪J λigi(β). Let Λ0 be the set of optimal Lagrange multipliers, i.e., λ ∈ Λ0

iff∇l (β0, λ) = 0 (assuming differentiability) and λi ≥ 0, i ∈ J .

Lemma 8 (Theorems 3.1 and 3.2 from Shapiro (1989)). Assume there exists a neighborhood N of β0 such that the
following holds.

8.a Conditions on the sample function f and the distribution P .
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• (Assumption A1 in the original paper) For almost every θ, f(θ, β) is a continuous function of β, and for all
β ∈ B, f(θ, β) is a measurable function of θ.

• (Assumption A2) The family {f(θ, β)}, β ∈ B, is uniformly integrable.
• (Assumption A4) For all θ, there exist a positive constant K(θ) such that |f(θ, w) − f(θ, β)| ≤ K(θ)∥w − β∥

for all β,w ∈ N .
• (Assumption A5) For each fixed β ∈ N, f(θ, ·) is continuously differentiable at β for almost every θ.
• (Assumption A6) The family {∇f(θ, β)}β∈N , is uniformly integrable.

• (Assumption D) The expectation E[∥∇f (θ, β0)∥2] is finite.
• (Assumption B4) The function ϕ is twice continuously differentiable in a neighborhood of β0.

8.b Conditions on the optimal solution.

• (Assumption B3) A constraint qualification, the Mangasarian-Fromovitz condition: The gradient vectors
∇gi (β0) , i ∈ K, are linearly independent, and there exists a vector w such that w⊤∇gi (β0) = 0, i ∈ K
and w⊤∇gi (β0) < 0, i ∈ J.

• (Assumption B5) Second-order sufficient conditions: Let C be the cone of critical directions

C =
{
w : w⊤∇gi (β0) = 0, i ∈ K;w⊤∇gi (β0) ≤ 0, i ∈ J ;w⊤∇ϕ (β0) ≤ 0

}
. (18)

The assumption requires that for all nonzero w ∈ C, maxλ∈Λ0 w
⊤∇2l (β0, λ)w > 0,

8.c Stochastic equicontinuity, a modified version of Assumption C1 in the original paper. For any sequence δt = o(1), the
variable

sup
β:∥β−β0∥≤δt

∥(∇ψt −∇ϕ)(β)− (∇ψt −∇ϕ)(β0)∥
t−1/2 + ∥β − β0∥

= op(1) (19)

as t→∞. Here the supremum is taken over β such that ∇ψt(β) exists.

Then it holds that β̂
p→β0. Let

ζt = ∇ψt (β0)−∇ϕ (β0) , (20)

and

q(w) = max
λ∈Λ0

{w⊤∇2l (β0, λ)w}. (21)

Then
ϑt ≡ inf

B
ψt = ψt (β0) + min

w∈C
{w⊤ζt +

1

2
q(w)}+ op(t

−1).

Furthermore, suppose for all ζ the function w 7→ w⊤ζ + 1
2q(w) has a unique minimizer ω̄(ζ) over C. Then

∥β̂ − β0 − ω̄(ζt)∥ = op(t
−1/2).

Remark 1 (The stochastic equicontinuity condition). By inspecting the proof, the original Assumption C1,
supβ∈B∩N ∥∇ψt(β)−∇ϕ(β)−∇ψt (β0) +∇ϕ (β0)∥/[t−1/2 + ∥β − β0∥] = op(1), which requires uniform conver-
gence over a fixed neighborhood N , can be relaxed to the uniform convergence in a shrinking neighborhood of β0. The
shrinking neighborhood condition is in fact standard, see, e.g., Pakes & Pollard (1989); Newey & McFadden (1994).

Remark 2. The limit distribution of the minimizer is characterized by three objects: the limit distribution of ζt defined in
Eq. (20), the critical cone C defined in Eq. (18) and the piecewise quadratic function q defined in Eq. (21).

Hessian matrix estimation at the optimum β0 can be done via the numerical difference method.

Lemma 9 (Hessian estimation via numerical difference, adapted from Theorem 7.4 from Newey & McFadden (1994)).
Recall ϕ(β) = Pf(·, β), ψt(β) = Ptf(·, β) and ζt = ∇ψt(β0) − ∇ϕ(β0). We are interested in the Hessian matrix
H = ∇2ϕ(β0). Let β0 be any point and let β̂ be an estimate of β0. Assume
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9.a β̂ − β0 = Op(t
−1/2);

9.b ϕ is twice differentiable at β0 with non-singular Hessian matrix H;

9.c
√
tζt

d→N(0,Ω) for some matrix Ω;

9.d for any positive sequence δt = o(1), the stochastic equicontinuity condition Eq. (19) holds.

Suppose εt → 0 and εt
√
t→∞. Then Ĥ

p→H , where Ĥ is the numerical difference estimator whose (i, j)-th entry is

Ĥij =[ψt(β̂ + eiεt + ejεt)− ψt(β̂ − eiεt + ejεt)− ψt(β̂ + eiεt − ejεt).

+ ψt(β̂ − eiεt − ejεt)]/4ε2t .

Proof of Lemma 9. We provide a proof sketch following Theorem 7.4 from Newey & McFadden (1994) and Lemma 3.3 in
Shapiro (1989). By Cond. 9.a and t−1/2 = o(εt) we know for any vector a ∈ Rn, it holds ∥β̂ + εta− β0∥ = Op(εt). Let
β = β̂ + aεt. By a mean value theorem for locally Lipschitz functions (see Clarke (1990); the lemma is also used in the
proof of Lemma 3.3 in Shapiro (1989)), there is a (sample-path dependent) β′ on the segment joining β and β0 such that

(ψt − ϕ)(β)− (ψt − ϕ)(β0) = (ζ∗t )
⊤(β − β0).

for some ζ∗t ∈ ∂ψt(β
′)−∇ϕ(β′). Then

|(ψt − ϕ)(β)− (ψt − ϕ)(β0)| ≤ ∥ζt∥∥β − β0∥+ ∥ζ∗t − ζt∥∥β − β0∥
= ∥ζt∥∥β − β0∥+ op(t

−1/2 + ∥β′ − β0∥)∥β − β0∥ (by Cond. 9.d)

= Op(t
−1/2)Op(εt) + op(t

−1/2 +Op(εt))Op(εt) (by Cond. 9.c)

= op(ε
2
t ) (22)

Next by Cond. 9.b we have a quadratic expansion

ϕ(β)− ϕ(β0)−∇ϕ(β0)⊤(β − β0)−
1

2
(β − β0)⊤H(β − β0) = op(ε

2
t ). (23)

Let a±± = ±eiεt ± ejεt, β̂±± = β̂ + a±± and d±± = β̂±± − β0. Then d±± = Op(εt) and d±± = a±± + op(εt).
Applying the above bounds with β ← β̂±±, recalling the definition of Ĥij , we have

Ĥij = [ψt(β̂++)− ψt(β̂−+)− ψt(β̂+−) + ψt(β̂−−)]/(4ε
2
t )

= [ϕ(β̂++)− ϕ(β̂−+)− ϕ(β̂+−) + ϕ(β̂−−) + op(ε
2
t )]/(4ε

2
t ) (by Eq. (22))

= [∇ϕ(β0)⊤(d++ − d−+ − d+− + d−−)

+
1

2
(d⊤++Hd++ − d⊤+−Hd+− − d⊤−+Hd−+ + d⊤−−Hd−−) + op(ε

2
t )]/(4ε

2
t ) (by Eq. (23))

= [0 +
1

2
(a⊤++Ha++ − a⊤−+Ha−+ − a⊤+−Ha+− + a⊤−−Ha−−) + op(ε

2
t )]/(4ε

2
t )

= [4ε2tHij + op(ε
2
t )]/(4ε

2
t )

= Hij +
op(ε

2
t )

ε2t
= Hij + op(1).

In the above we use d⊤++Hd++ = (d++ − a++)
⊤Hd++ + (d++ − a++)

⊤Ha++ + a⊤++Ha++ = op(ε
2
t ) + a⊤++Ha++,

and similarly for other terms. This completes the proof of Lemma 9.

The original conditions for Lemma 9 in Newey & McFadden (1994) require the true parameter β0 to lie in the interior ofB.
However, this condition is only used to derive the bound β̂ − β0 = Op(t

−1/2), which is assumed in our adapted version.
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E.2. Showing stochastic equicontinuity via VC-subgraph function classes

Next we review classical results from the empirical process literature (Vaart & Wellner, 1996; Giné & Nickl, 2021).

We begin with the notions of Donsker function class and stochastic equicontinuity.

Let (Θ, P ) be a probability space. Let F be a class of measurable functions of finite second moment. The class F is called
P -Donsker if a certain central limit theorem holds for the class of random variables {

√
t(Pt − P )f : f ∈ F}, where

Ptf = 1
t

∑t
i=1 f(Xi) where Xi’s are i.i.d. draws from P . Because Donskerness will be used as an intermediate step that

we will not actually need to show directly or utilize directly, we refer the reader to Definition 3.7.29 from Giné & Nickl
(2021) for a precise definition.

Lemma 10 (Donskerness⇔ stochastic equicontinuity, Theorem 3.7.31 from Giné & Nickl (2021)). Let d2P (f, g) = P (f−
g)2−(P (f−g))2 and consider the pseudo-metric space (F , dP ). AssumeF satisfies the condition supf∈F |f(x)−Pf | <
∞ for all x ∈ Θ. Then the following are equivalent

• F is P -Donsker.

• (F , dP ) is totally bounded, and stochastic equicontinuity under the L2 function norm holds, i.e., for any δt = o(1),

sup
(f,g)∈[δt]L2

|
√
t (Pt − P ) (f − g)| = op(1)

as t→∞, where [δt]L2 = {(f, g) : f, g ∈ F , dP (f, g) ≤ δt}.

Lemma 10 reduces the problem of showing stochastic equicontinuity under the L2 function norm to showing Donskerness.
In order to show Donskerness, we will show that our function class is VC-subgraph, which implies Donskerness. At the
end, we will connect stochastic equicontinuity under the L2 function norm to the stochastic equicontinuity that we need
(see Lemma 16).

Let C be a class of subsets of a set Θ. Let A ⊆ Θ be a finite set. We say that C shatters A if every subset of A is the
intersection of A with some set C ∈ C. The subgraph of a real function f on Θ is the set Gf = {(s, t) : s ∈ Θ, t ∈ R, t ≤
f(s)}.
Definition 4 (VC-subgraph function classes, Definition 3.6.1 and 3.6.8 from Giné & Nickl (2021)). A collection of sets C
is a Vapnik-Červonenkis class (C is V C) if there exists k <∞ such that C does not shatter any subsets of Θ of cardinality
k. A class of functions F is V C-subgraph if the class of sets C = {Gf : f ∈ F} is V C.

Lemma 11 (VC subgraph + envelop square integrability =⇒ Donskerness, Theorem 3.7.37 from Giné & Nickl (2021)).
IfF is VC-subgraph, and there exists a measurable F such that f ≤ F for all f ∈ F with PF 2 <∞, thenF is P -Donsker.

Since VC-subgraph implies Donskerness which is equivalent to stochastic equicontinuity, our problem reduces to showing
the VC-subgraph property. The following lemmas show how to construct complex VC-subgraph function classes from
simpler ones, and will be used in our proof.

Lemma 12 (Preservation of VC class of sets, Lemma 2.6.17 from Vaart & Wellner (1996)). If C and D are VC classes of
sets. Then C ∩ D = {C ∩D : C ∈ C, D ∈ D} is VC.

Lemma 13 (Preservation of VC-subgraph function classes, Lemma 2.6.18 from Vaart & Wellner (1996)). Let F and G be
V C-subgraph classes of functions on a set Θ and g : Θ 7→ R be a fixed function. Then F ∨ G = {f ∨ g : f ∈ F , g ∈ G},
F + g = {f + g : f ∈ F}, F ◦ ϕ = {f ◦ ϕ : f ∈ F} is VC-subgraph for fixed ϕ : X → Θ, and F · g = {fg : f ∈ F} are
VC-subgraph;

Lemma 14 (Problem 9 Section 2.6 from Vaart & Wellner (1996)). If a collection of sets C is a VC-class, then the collection
of indicators of sets in C is a VC-subgraph class of the same index.

In general, the VC-subgraph property is not preserved by multiplication, whereas Donskerness is. Thus, our proof will use
the VC-subgraph property up until a final step where we need to invoke multiplication, which will instead be applied on
the Donskerness property.

Lemma 15 (Corollary 9.32 from Kosorok (2008)). Let F and G be Donsker, then F · G is Donsker if both F and G are
uniformly bounded.
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For parametric function classes, if the parametrization is continuous in a certain sense, then stochastic equicontinuity holds
w.r.t. the norm in the parameter space.

Lemma 16 (From L2-norm to parameter norm, Lemma 2.17 from Pakes & Pollard (1989); see also Lemma 1 from Chen
et al. (2003)). Suppose the function class F = {f(·, β), β ∈ B}, B ⊂ Rn, is P -Donsker, with an envelope F such that
PF 2 <∞. Suppose

∫
[f(·, β)− f (·, β0)]2 dP → 0 as β → β0. Then for any positive sequence δt = o(1), it holds

sup
β:∥β−β0∥<δt

|
√
t (Pt − P ) (f(·, β)− f (·, β0))| = op(1). (24)

Lemma 17 (Andrews (1994)). If for any δt = o(1) Eq. (24) holds, then for any random elements βt such that ∥βt−β0∥2 =
op(1), it holds

√
t(Pt − P )(f(·, βt)− f(·, β0)) = op(1).

Lemma 18. Given any n fixed functions vi : Θ→ R, i ∈ [n], the following two function classes

F1 = {θ 7→ max
i
{β1v1(θ), . . . , βnvn(θ)} : β ∈ B}

F2 = {θ 7→ [g1, . . . , gn](θ, β) : β ∈ B}

are VC-subgraph and Donsker. Here gi(θ, β) = vi(θ)
∏n

k=1 1(βivi(θ) ≥ βkvk(θ)) and B = [0, 1]n

Proof of Lemma 18. We show F1 is VC-subgraph. For each i, the class {θ 7→ vi(θ)βi : βi ∈ [0, 1]} is VC-subgraph
(Proposition 4.20 from Wainwright (2019), and Example 19.17 from Van der Vaart (2000)). By the fact the VC-subgraph
function classes are preserved by pairwise maximum (Lemma 13), we know F1 is VC-subgraph. Moreover, the required
envelop condition holds since ess supθ f ≤ v̄ for all f ∈ F1, so F1 is Donsker by Lemma 11.

We now show F2 is VC-subgraph. For a vector-valued function class, we say it is VC-subgraph if each coordinate is
VC-subgraph. First, the class of sets {{v ∈ Rn : βivi ≥ βkvk} ⊂ Rn : β ∈ B} is VC, for all k ̸= i. By Lemma 12,
we know the class of sets {{v ∈ Rn : βivi ≥ βkvk,∀k ̸= i} ⊂ Rn : β ∈ B} is VC. By Lemma 14, we obtain that the
class {θ 7→

∏n
k=1 1(βivi(θ) ≥ βkvk(θ)) : β ∈ B} is VC-subgraph. Finally, multiplying all functions by a fixed function

preserves VC-subgraph classes (Lemma 13), and so {θ 7→ vi(θ)
∏n

k=1 1(βivi(θ) ≥ βkvk(θ)) : β ∈ B} is VC-subgraph.
Repeat the argument for each coordinate, and we obtain that F2 is VC-subgraph. Moreover, the required envelop condition
holds since ess supθ ∥g(θ, β)∥2 ≤ nv̄ for all g ∈ F2, and so F2 is Donsker by Lemma 11. We conclude the proof of
Lemma 18.

F. Proofs for Main Theorems
F.1. Proof of Thm. 1

Proof of Thm. 1. We verify all the conditions in Lemma 8. Recall I = {i : β∗
i = 1} is the set of active constraints. The

local geometry of B at β∗ is described by the |I| constraint functions gi(β) = e⊤i β − 1, i ∈ I .

First, we verify the conditions on the probability distribution and the sample function. A1 holds obviously for the map
β 7→ maxi βivi(θ). A2 holds by f ≤ v̄. A4 holds with Lipschitz constant v̄. A5 holds since by SMO there is a
neighborhood Ndiff of β∗ such that for all β ∈ Ndiff, the set {θ : f(θ, ·) not differentiable at β} is measure zero (cf.
Lemma 1). A6 holds by ∥∇f(θ, β)∥2 ≤ nv̄. B4 holds by SMO.

Second, we verify the conditions on the optimality. B3 holds since the constraint functions are gi(β) = e⊤i β − 1, i ∈ I ,
whose gradient vectors are obviously linear independent. Moreover, the set {β : βi > 0, i ∈ I} is nonempty. B5 holds by
∇2H(β∗) = ∇2f̄(β∗) + diag(bi/β

∗
i
2) ≽ diag(bi/β

∗
i
2) being positive definite.

Finally, we verify the stochastic equicontinuity condition. Recall the definitions of the following two function classes from
Lemma 18

F1 = {θ 7→ max
i
{β1v1(θ), . . . , βnvn(θ)} : β ∈ B},

F2 = {θ 7→ g(θ, β) = [g1, . . . , gn](θ, β) : β ∈ B}.

Here gi(θ, β) = vi(θ)
∏n

k=1 1(βivi(θ) ≥ βkvk(θ)) and B = [0, 1]n. For any β ∈ Ndiff we have ∇f(·, β) = g(·, β) ∈ F2.
In Lemma 18 we show that F2 is VC-subgraph and Donsker. By Lemma 11 we know that a stochastic equicontinuity
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condition w.r.t. the L2 norm holds, i.e.,

sup
β∈[δt]L2

νt(g(·, β)− g(·, β∗)) = op(1) (25)

where [δt]L2 = {β : β ∈ Ndiff,
∫
∥g(·, β) − g(·, β∗)∥22 dS ≤ δt},

∫
g dS =

∫
gs dθ, νtg = t−1/2(Pt − P )g =

t−1/2
∑t

τ=1(g(θ
τ )−

∫
g dS). Next, we note for (almost every) fixed θ, limβ→β∗ ∥g(θ, β)− g(θ, β∗)∥2 = 0 by Θtie(β

∗) is
measure zero (a condition implied by SMO). Moreover, note

lim
β→β∗

E[∥g(θ, β)− g(θ, β∗)∥22] = E
[
lim

β→β∗
∥g(θ, β)− g(θ, β∗)∥22

]
= 0

where the exchange of limit and expectation is justified by bounded convergence theorem, and by Lemma 16, we can
replace [δt]L2 with [δt] = {β : β ∈ Ndiff, ∥β − β∗∥2 ≤ δt} in Eq. (25). Finally, note ∇f̄(β∗) = E[g(θ, β∗)], and if Ht is
differentiable at β ∈ Ndiff, then ∇f(θτ , β) = g(θτ , β) for all τ ∈ [t]. Then

sup
[δt]∩{∇Ht(β) exists}

∥(∇Ht −∇H)(β)− (∇Ht −∇H)(β∗)∥2
t−1/2 + ∥β − β∗∥2

= sup
[δt]∩{∇Ht(β) exists}

∥(Pt − P )g(·, β)− (Pt − P )g(·, β∗)∥2
t−1/2 + ∥β − β∗∥2

(26)

≤ sup
[δt]

√
t∥(Pt − P )g(·, β)− (Pt − P )g(·, β∗)∥2 = op(1) (by Eq. (25))

and thus the required stochastic equicontinuity condition holds.

Now we are ready to invoke Lemma 8. We need to find the three objects, C, q, ζt as in the lemma that characterize the limit
distribution. The critical cone C is

C = {w ∈ Rn : w⊤ei = 0 if i ∈ I and δ∗i > 0, w⊤ei ≤ 0 if i ∈ I and δ∗i = 0}
= {w : Aw = 0} (SCS)

where A ∈ R|I|×n whose rows are {e⊤i , i ∈ I}. From here we can see the role of SCS is to ensure the critical cone is a
hyperplane, which ensures asymptotic normality of βγ .

If |I| = 0, i.e., β∗ lies in the interior of B, then P is identity matrix, and the limit distribution is ture.

Now assume |I| ≥ 1. Note AA⊤ is an identity matrix of size |I| and A⊤A = diag(1(i ∈ I)) = diag(1(β∗
i = 1)). The

optimal Lagrangian multiplier is unique and so the piecewise quadratic function q is q(w) = w⊤Hw. Finally, the gradient
error term is

ζt =
1

t

t∑
τ=1

(
x∗(θτ )⊙ v(θτ )− µ̄∗). (27)

The unique minimizer of w 7→ 1
2w

⊤Hw + ζw over {w : Aw = 0} is −(PHP)†ζ where

P = In −A⊤(AA⊤)†A = diag(1(i ∈ Ic)) = diag(1(β∗
i < 1)).

For completeness, we provide details for solving this quadratic problem. By writing down the KKT conditions, the opti-
mality condition is[

H A⊤

A 0

] [
w
λ

]
=

[
−ζ
0

]
=⇒

[
w
λ

]
=

[
−(H−1 −H−1A⊤(AH−1A⊤)−1AH−1)ζ

−((AH−1A⊤)−1AH−1)ζ

]
where λ ∈ R|I| is the Lagrangian multiplier. By a matrix equality, for any symmetric positive definite H of size n and
A ∈ R|I|×n of rank |I|, it holds

H−1 −H−1A⊤(AH−1A⊤)−1AH−1 = PA(PAHPA)
†PA = (PAHPA)

† (28)
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with PA = In −A⊤(AA⊤)†A. We conclude that the asymptotic expansion

√
t(βγ − β∗) =

1√
t

t∑
τ=1

Dβ(θ
τ ) + op(1) (29)

holds, where
Dβ(θ) = −(PHP)†(x∗(θ)⊙ v(θ)− µ̄∗),

and that the asymptotic distribution of
√
t(βγ − β∗) is N (0,Σβ) with Σβ = E[DβD

⊤
β ]. Note E[Dβ ] = 0.

One could further write out the expression. Assume I = {1, . . . , k}. Let Ω ≡ Cov[µ∗] = diag(Var[x∗i vi]). Then the
matrix (PHP)† = diag(0k×k, (HIcIc)−1) and Var[x∗(θ) ⊙ v(θ) − µ̄∗] = E[(x∗(θ) ⊙ v(θ) − µ̄∗)⊗2] = diag((Ω∗

i )
2)

where (Ω∗
i )

2 =
∫
(x∗i vi)

2 dS − (
∫
x∗i vi dS)

2 is the variance of winned item value of buyer i.

Proof of βγ p→β∗. This follows from Lemma 8.

Proof of CLT for pacing multiplier β. This follows from the above discussion.

Proof of CLT for revenue REV. We use a stochastic equicontinuity argument. Given the item sequence γ = (θ1, θ2 . . . ),
define the (random) operator

νtg =
√
t(Pt − P )g =

1√
t

t∑
τ=1

(g(θτ )− E[g]) .

where g : Θ→ R, E[g] =
∫
g dS. Note p∗(θ) = maxi β

∗
i vi(θ) = f(θ, β∗), REV∗ = Pf(·, β∗), pγ(θτ ) = f(θτ , βγ) and

REVγ = Ptf(·, βγ) we obtain the decomposition

√
t(REVγ − REV∗) =

1√
t

t∑
τ=1

(
f(θτ , β∗)− f̄(β∗)

)
︸ ︷︷ ︸

=:It

+ νt(f(·, βγ)− f(·, β∗))︸ ︷︷ ︸
=:IIt

+
√
t(f̄(βγ)− f̄(β∗))︸ ︷︷ ︸

=:IIIt

For the term It, it can be written as It = νt(p
∗(·)− REV∗). By the linear representation for βγ − β∗ in Eq. (29), applying

the delta method, we get the linear representation result

IIIt =
1√
t

t∑
τ=1

∇f̄(β∗)⊤Dβ(θ
τ ) + op(1) =

1√
t

t∑
τ=1

(µ̄∗)⊤Dβ(θ
τ ) + op(1)

We will show IIt = op(1). The difficulty lies in that the operator νt and the pacing multiplier βγ depend on the same
batch of items. This can be handled with the stochastic equicontinuity argument. The desired claim IIt = op(1) follows
by verifying that the function class F1 = {θ 7→ f(·, β) : β ∈ B} (same as that defined in Lemma 18) is VC-subgraph and
Donsker. This is true by Lemma 18. By Lemma 10 we know for any δt ↓ 0,

sup
w∈[δt]L2

νt(f(·, w)− f(·, β∗)) = op(1) (30)

where [δt]L2 = {β : β ∈ B,
∫
(f(·, β) − f(·, β∗))2 dS ≤ δt}. Noting that for all β,w, θ, it holds |f(θ, β) − f(θ, w)| ≤

v̄∥β − w∥∞, we know that
∫
[f(·, β)− f (·, β∗)]

2
dS → 0 as β → β∗. Then by Lemma 16, we know Eq. (30) holds with

[δt]L2 replaced with [δt] = {β : β ∈ B, ∥β − β∗∥2 ≤ δt}. Combined with the fact that βγ p→β∗, by Lemma 17 we know
IIt = op(1).

To summarize, we obtain the linear expansion

√
t(REVγ − REV∗) =

1√
t

t∑
τ=1

(p∗(θτ )− REV∗ + (µ̄∗)⊤Dβ(θ
τ )) + op(1). (31)
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We complete the proof of Thm. 1.

F.2. Proof of Corollary 1

Full statement of Corollary 1. Under the same conditions as Thm. 1,
√
t(uγ − u∗),

√
t(δγ − δ∗) and

√
t(NSWγ − NSW∗)

are asymptotically normal with (co)variances Σu ≡ diag(bi/(β
∗
i )

2)Σβdiag(bi/(β
∗
i )

2), Σδ ≡ (In − H(HB)
†)Ω(In −

H(HB)
†)⊤, and σ2

NSW ≡ Vec(bi/β
∗
i )

⊤ΣβVec(bi/β
∗
i ), respectively.

Proof of Corollary 1. Proof of CLT for individual utility u. We use the delta method; see Theorem 3.1 from Van der Vaart
(2000). Note u∗ = g(β∗) with g : Rn → Rn, g(β) = [b1/β1, . . . , bn/βn]

⊤. By Eq. (29), it holds

√
t(uγ − u∗) = 1√

t

t∑
τ=1

∇g(β∗)Dβ(θ
τ ) + op(1). (32)

Finally, noting ∇g(β∗) = diag(−bi/(β∗
i )

2) we complete the proof.

Proof of CLT for Nash social welfare NSW. We use the delta method. Note NSW∗ = g(β∗) with g : Rn → R, g(β) =∑n
i=1bi log(bi/βi). By Eq. (29) it holds

√
t(NSWγ − NSW∗) =

1√
t

t∑
τ=1

∇g(β∗)⊤Dβ(θ
τ ) + op(1). (33)

Finally, noting ∇g(β∗) = Vec(bi/β
∗
i ) we complete the proof of Corollary 1.

Proof of CLT for leftover budget δ. This is a direct consequence of Theorem 4.1 in Shapiro (1989). By that theorem, it
holds that

√
t

[
βγ − β∗

δγI − δ∗I

]
d→N (0,Σjoint)

with

Σjoint =

[
H A⊤

A 0

]−1 [
Ω 0
0 0

] [
H A⊤

A 0

]−1

=

[
(HB)

†Ω(HB)
† [QΩ(HB)

†]⊤

QΩ(HB)
† QΩQ⊤

]
where Q = (AH−1A⊤)−1AH−1 ∈ R|I|×n and Ω = Cov[x∗ ⊙ v − µ̄∗]. By a matrix equality, noting matrix A’s rows are
distinct basis vectors, it holds

(AH−1A⊤)−1AH−1 = A(In −H(HB)
†)

Moreover, for other entries of δγ , i.e., δγIc , their asymptotic variance will be zero. The matrix (In − H(HB)
†)Ω(In −

H(HB)
†)⊤ is zero at the (i, j)-th entry if i or j ∈ Ic. Summarizing, the asymptotic variance of

√
t(δγ − δ∗) is (In −

H(HB)
†)Ω(In −H(HB)

†)⊤.

An alternative proof is by the delta method and a stochastic equicontinuity argument. It holds
√
t(δγ − δ∗) d→N (0, (In −

H(HB)
†)Ω(In −H(HB)

†)⊤) and the linear expansion

√
t(δγ − δ∗) = t−1/2

t∑
τ=1

(In −H(HB)
†)(µ∗(θτ )− µ̄∗) + op(1) (34)

holds. In the case where I = ∅, i.e., δ∗i = 0 for all i, we haveHB = H and so In −H(HB)
† = 0.
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F.3. Proof of Thm. 2

Proof of Thm. 2. Based on Le Cam’s local asymptotic normality theory (Le Cam et al., 2000), to establish the local asymp-
totic minimax optimality of a statistical procedure, one needs to verify two things. First, the class of perturbed distributions
(the class {sα,g}α,g in our case) satisfies the locally asymptotically normal (LAN) condition (Vaart & Wellner, 1996;
Le Cam et al., 2000). This part is completed by Lemma 8.3 from Duchi & Ruan (2021) since our construction of perturbed
supply distributions follows theirs. Second, one should verify the asymptotic variance of the statistical procedure equals
to the minimax optimal variance. To calculate this quantity, one needs to find the derivative of the map α 7→ REV∗

α,g at
α = 0. For this part we present a formal derivation below.

For a given perturbation (α, g), we let p∗α,g and REV∗
α,g be the limit FPPE price and revenue under supply distribution sα,g .

Let Sα,g(θ) = ∇α log sα,g(θ) be the score function. Obviously with our parametrization of sα,g we have S0,g(θ) = g(θ)
by Eq. (8). We next find the derivative of α 7→ REV∗

α,g at α = 0. Recall f is defined in Eq. (P-DualEG) and the price is
produced by the highest bid, i.e., p∗α,g(θ) = maxi β

∗
α,gvi(θ) = f(θ, β∗

α,g).

∇αREV∗
α,g = ∇α

∫
f(θ, β∗

α,g)sα,g(θ) dθ

=

∫
[∇βf(θ, β

∗
α,g)∇αβ

∗
α,g + f(θ, β∗

α,g)Sα,g(θ)]sα,g(θ) dθ .

Above we exchange the gradient and the expectation and then apply the chain rule. By a perturbation result by Lemma 8.1
and Prop. 1 from Duchi & Ruan (2021), under SMO and SCS,

∇αβ
∗
α,g|α=0 = −(HB)

†Σµ∗,g

with Σµ∗,g = Es[(µ
∗(θ)− µ̄∗)g(θ)⊤]. Plugging in Es[∇βf(θ, β

∗
0,g)] = µ̄∗, f(θ, β∗

0,g) = p∗(θ) (see App. C) and S0,g = g,
we obtain

∇αREV∗
α,g|α=0 = −(µ̄∗)⊤(HB)

†Σµ∗,g + Es[(p
∗(θ)− REV∗)g(θ)]

= E
[(
− (µ̄∗)⊤(HB)

†(µ∗(θ)− µ̄∗) + (p∗(θ)− REV∗)
)
g(θ)

]
= E[DREV(θ)g(θ)].

Now we have the two components required to invoke the local minimax result. Given a symmetric quasi-convex loss
L : R→ R, we recall the local asymptotic risk for any procedure {r̂t : Θt → R} that aims to estimate the revenue:

LARREV({r̂t}) =
sup

g∈Gd,d∈N
lim
c→∞

lim inf
t→∞

sup
∥α∥2≤ c√

t

Es⊗t
α,g

[L(
√
t(r̂t − REV∗

α,g))] .

Following the argument in Duchi & Ruan (2021, Sec. 8.3) it holds

inf
{r̂t}

LARREV({r̂t}) ≥ E[L(N (0,E[D2
REV(θ)]))] .

We complete the proof of Thm. 2.

F.4. Proof of Thm. 3

Proof of Thm. 3. We first show Ĥ p→H by verifying conditions in Lemma 9. All conditions are easy to verify except the
stochastic equicontinuity condition. By Lemma 18 we know the SE condition holds. We conclude Ĥ p→H.

Next we show P(P̂ = P) → 1. Recall P = diag(1(β∗
i < 1)) indicates the set of inactive constraints. For i such that

β∗
i = 1, we know βγ

i −1 = Op(
1√
t
) by the central limit theorem results Thm. 1 (actually the strong result βγ

i −1 = op(
1√
t
)

holds). Then

P(βγ
i < 1− εt) = P(Op(1) >

√
tεt)→ 0, (by εt

√
t→∞)
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using the smoothing rate condition
√
tεt → ∞. For i such that β∗

i < 1, we know βγ − β∗
i = op(1) by consistency of βγ .

Then

P(βγ
i < 1− εt) = P(op(1) < (1− β∗

i )− εt)→ 1. (by εt = o(1) and 1− β∗
i > 0)

We conclude P(P̂ = P)→ 1.

We now show (P̂ĤP̂)† p→ (PHP)†. For any ϵ > 0,

P(∥(P̂ĤP̂)† − (PHP)†∥F > ϵ)

≤ P(∥(P̂ĤP̂)† − (PHP)†∥F > ϵ, P̂ = P) + P(P̂ ̸= P)

= P(∥[ĤIcIc ]−1 − [HIcIc ]−1∥F > ϵ) + P(P̂ ≠ P)→ 0 (by Ĥ p→H)

Next we show Ω = E[(x∗ ⊙ v − µ̄∗)⊗2] can be consistently estimated by

Ω̂ =
1

t

t∑
τ=1

(xγ(θτ )⊙ v(θτ )− µ̄γ)⊗2

Define for β ∈ Ndiff

Ω̂(β) =
1

t

t∑
τ=1

(
d(θτ , β)− 1

t

t∑
s=1

d(θs, β)
)⊗2

Ω(β) = E[(∇f(θ, β)−∇f̄(β))⊗2]

where
d(θ, β) ∈ ∂f(θ, β) = convexhull{eivi : i such that βivi(θ) = max

k
βkvk(θ)}

is a fixed selection of an element from the subgradient set, Ndiff is a neighborhood of β∗ such that for all β ∈ N , the set
{θ : f(θ, ·) not differentiable at β} is measure zero; see Lemma 1. 5 We also assume the subgradient selection coincides
with the observed FPPE allocation selection, i.e.,

d(θτ , βγ) = xγ(θτ )⊙ v(θτ ) ∈ ∂f(θτ , βγ).

Noting E[x∗ ⊙ v] = ∇f̄(β∗) = µ̄∗ and 1
t

∑t
τ=1d(θ

τ , βγ) = 1
t

∑t
τ=1x

γ(θτ ) ⊙ v(θτ ) = µ̄γ , we see that Ω̂(·) and Ω(·)
are constructed so that Ω̂(βγ) = Ω̂ and Ω(β∗) = Ω. Moreover, for any fixed β ∈ Ndiff, it holds E[d(θ, β)] = ∇f̄(β)
(Bertsekas, 1973, Prop. 2.2). Next we use a decomposition of Ω̂(β)

Ω̂(β) =
1

t

t∑
τ=1

(
d(θτ , β)−∇f̄(β)

)⊗2

︸ ︷︷ ︸
I(β)

−
(
1

t

t∑
τ=1

d(θτ , β)−∇f̄(β)
)⊗2

︸ ︷︷ ︸
II(β)

We now argue that both terms converges in probability uniformly on Ndiff. For the first term, consider a fixed β ∈ Ndiff, we
know

{θ : d(θ, ·) not continuous at β} = Θtie(β)

which is measure zero, and that∇f̄ is continuous onNdiff by SMO. By Theorem 7.53 of Shapiro et al. (2021) (a uniform law
of large number result for continuous random functions), it holds supβ∈Ndiff

∥ 1t
∑t

τ=1(d(θ
τ , β)−∇f̄(β))⊗2 −Ω(β)∥ p→ 0

and supβ∈Ndiff
II(β)

p→ 0. To summarize we have

sup
β∈Ndiff

∥Ω̂(β)− Ω(β)∥ p→ 0.

5 Note this is different from the condition there is a neighborhood N such that the set {θ : f(θ, ·) is differentiable on N} is measure
one. The map (θ, β) 7→ ∇f(θ, β) is defined on (

∩
β∈N Θtie(β))×N , and yet the set

∩
β∈N Θtie(β) might not be measure one. This is

the reason we use subgradients in the definition of Ω̂(·).
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Combined with the fact that βγ p→β∗ we have Ω̂(βγ)
p→Ω(β∗). From this we conclude Ω̂

p→Ω.

Proof of Σ̂β
p→Σβ . We rewrite Σ̂β as

Σ̂β = (P̂ĤP̂)†
(
1

t

t∑
τ=1

(xγ(θτ )⊙ v(θτ )− µ̄γ)⊗2

)
(P̂ĤP̂)†

= (P̂ĤP̂)†Ω̂(P̂ĤP̂)†
p→ (PHP)†Ω(PHP)† = Σβ

Proof of σ̂2
REV

p→σ2
REV. In Lemma 18 we have shown both F1 and F2 are VC-subgraph, and thus a uniform law of large

number holds. We rewrite

σ2
REV = E[(p∗ − REV∗)2]︸ ︷︷ ︸

It

+(µ̄∗)⊤(PHP)†Ω(PHP)†µ̄∗︸ ︷︷ ︸
IIt

+2E[(p∗ − REV∗)(x∗ ⊙ v − µ̄∗)]⊤(PHP)†µ̄∗︸ ︷︷ ︸
IIIt

and

σ̂2
REV =

1

t

t∑
τ=1

(pγ(θτ )− REVγ)2︸ ︷︷ ︸
Ît

+(µ̄γ)⊤(P̂ĤP̂)†Ω̂(P̂ĤP̂)†µ̄γ︸ ︷︷ ︸
ÎIt

+2

(
1

t

t∑
τ=1

(pγ(θτ )− REVγ)(xγ(θτ )⊙ v(θτ )− µ̄γ)

)⊤

(P̂ĤP̂)†µ̄γ

︸ ︷︷ ︸
ˆIIIt

We have Ît
p→ It by invoking Lemma 18, applying a uniform LLN and using the fact that βγ p→β∗. And ÎIt

p→ II holds by
µ̄γ p→ µ̄∗, (P̂ĤP̂)† p→ (PHP)† and Ω̂

p→Ω, and applying Slutsky’s theorem. Finally, ˆIIIt
p→ III by F1 · F2 is Donsker by

Lemma 15 and thus a uniform law of large number holds, and that βγ p→β∗.

We complete the proof of Thm. 3.

F.5. Proof of Thm. 4

Proof of Thm. 4. By the EG characterization of FPPE, we know that βγ(1), the pacing multiplier of the observed FPPE
F̂PPE

(
πb, v(1), π

t1
, γ(1)

)
, solves the following dual EG program

min
B

1

t1

t1∑
τ=1

max
i
vi(θ

τ )βi −
n∑

i=1

bi log(βi) (35)

The major technical challenge is that the number of summands in the first summation is also random. Given a fixed integer
k and a sequence of items (θ1,1, . . . , θ1,k), define

βlin,k(1) = β∗(1) +
1

k

k∑
τ=1

Dβ(1, θ
1,τ ),

βk(1) = the unique pacing multiplier in F̂PPE(b, v(1), k−1, (θ1,1, . . . , θ1,k))

HereDβ(1, ·) = −(HB(1))
†(µ∗(1, ·)− µ̄∗(1)) whereHB(1), µ

∗(1, ·) and µ̄∗(1) are the projected Hessian in Eq. (5), item
utility function in Eq. (4), and total item utility vector in Eq. (1) in the limit market FPPE(b, v(1), s). Note E[Dβ(1, ·)] = 0.
Note βγ(1) = βt1 since scaling the supply and the budget at the same time does not change the equilibrium pacing
multiplier. We introduce the following asymptotic equivalence results:
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Lemma 19. Recall t1 ∼ Bin(π, t). If SCS and SMO hold for the limit market FPPE(b, v(1), s), then

•
√
t(βγ(1)− βlin,t1) = op(1) as t→∞.

•
√
t(βlin,t1 − βlin,⌊πt⌋) = op(1) as t→∞.

Here ⌊a⌋ is the greatest integer less than or equal to a ∈ R. A similar result holds for the market limit FPPE(b, v(0), s)
and the influence function Dβ(0, ·) is defined similarly.

With Lemma 19, we write
√
t(τ̂β − τβ)

=
√
t(βγ(1)− β∗(1))−

√
t(βγ(0)− β∗(0))

=
√
t

(
1√
⌊πt⌋

⌊πt⌋∑
τ=1

Dβ(1, θ
1,τ )− 1√

⌊(1− π)t⌋

⌊(1−π)t⌋∑
τ=1

Dβ(0, θ
0,τ )

)
+ op(1) (Lemma 19)

d→N
(
0,

1

π
Var[Dβ(1, ·)] +

1

(1− π)
Var[Dβ(0, ·)]

)
. (independence between {θ1,τ}τ and {θ0,τ}τ )

Proof of CLT for τβ . It follows from the above discussion.

Proof of CLT for τu. We begin with the linear expansion Eq. (32) and repeat the same argument.

Proof of CLT for τREV. We begin with the linear expansion Eq. (31) and repeat the same argument.

Proof of CLT for τNSW. We begin with the linear expansion Eq. (33) and repeat the same argument.

We complete the proof of Thm. 4.

In order to prove Lemma 19, we will need the following lemma.

Lemma 20. If Xt = op(1) and T ∼ Bin(π, t) and T and the sequence are independent, then XT = op(1).

Proof of Lemma 20. By Xt = op(1) we know for all ϵ > 0 it holds P(|Xt| > ϵ) → 0, or equivalently supk≥t P(|Xk| >
ϵ) → 0 as t → ∞. By a concentration for binomial distribution, we know for all δ > 0, it holds P(|T − πt| > δπt) ≤
2 exp(−δ2πt/3). Now write

P(|XT | > ϵ) ≤ P(|XT | > ϵ, T ∈ (1± δ)πt) + P(T /∈ (1± δ)πt)

≤
∑

k∈(1±δ)πt

P(|Xk| > ϵ)P(T = k) + 2 exp(−δ2πt/3)

≤ sup
k≥(1−δ)πt

P(|Xk| > ϵ) + 2 exp(−δ2πt/3)→ 0 as t→∞

where in the second inequality we use the independence between T and the sequence. We conclude XT = op(1), complet-
ing proof of Lemma 20.

Proof of Lemma 19. The first statement uses the independence between t1 and the items (θ1,1, θ1,2, . . . ). Define R(k) =√
t(βk(1)− βlin,k(1)). By Eq. (29), we have R(k) = op(1) as k →∞. With this notation, the first statement is equivalent

to R(t1) = op(1) where t1 ∼ Bin(π, t), which holds true by Lemma 20.

The second statement is equivalent to
√
⌊πt⌋

(
βlin,t1(1) − βlin,⌊πt⌋(1)

)
= op(1). To prove this we use a Komogorov’s

inequality. By Theorem 2.5.5 from Durrett (2019), for any ϵ > 0, (let σDβ
= E[∥Dβ(1, θ)∥22]1/2)

P
(√
⌊πt⌋ sup

(1−ϵ)⌊πt⌋≤m≤(1+ϵ)⌊πt⌋
∥βlin,m(1)− βlin,(1−ϵ)⌊πt⌋(1)∥2 ≥ δσDβ

)
≤ 2ϵ

δ2
.
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Then

P
(√
⌊πt⌋

∥∥βlin,t1(1)− βlin,⌊πt⌋(1)
∥∥
2
≥ δ

)
≤ P

(√
⌊πt⌋

∥∥βlin,t1(1)− βlin,⌊πt⌋(1)
∥∥
2
≥ δ, (1− ϵ)⌊πt⌋ ≤ t1 ≤ (1 + ϵ)⌊πt⌋

)
+ P

(
t1 /∈

[
(1− ϵ)⌊πt⌋, (1 + ϵ)⌊πt⌋

])
≤

2ϵσ2
Dβ

δ2
+ P

(
t1 /∈

[
(1− ϵ)⌊πt⌋, (1 + ϵ)⌊πt⌋

])
→

2ϵσ2
Dβ

δ2

Finally, since the above holds for all ϵ > 0, we obtain
√
⌊πt⌋(βlin,t1 − βlin,⌊πt⌋) = op(1). We complete the proof of

Lemma 19.

G. Experiment Details
G.1. Constraint identification and fast convergence rate; see Figures 1 to 3

We verify that βγ
i converges to 1 at a faster speed than the usual Op(t

−1/2) if β∗
i = 1, i.e., the constraint is active. We

choose the FPPE instances as follows.

• n = 25 buyers and t = 1000 items.

• budget: bi = Ui + 1 for i = 1, . . . , 5 and bi = Ui for i = 6, . . . , 25, Ui’s are i.i.d. uniforms. The extra budgets are to
ensure we observe β∗

i = 1 for the first few buyers.

• value and supply: we let {v1, · · · , vn} be identically and independently distributed as either uniforms, exponential, or
truncated standard normal.

Under each configuration we form 100 observed FPPEs (100 trials), and plot the histogram of each
√
t(βγ

i − β∗
i ). The

population EG Eq. (P-DualEG) is a constrained stochastic program and can be solved with stochastic gradient based method.
In particular, the true value β∗ is computed by the dual averaging algorithm (Xiao, 2010). The mean square error decays
as E[∥βda,t − β∗∥2] = O(t−1) with t being the number of iteration, and so if we choose t to be large enough, it will be
accurate to replace β∗, and we still observe CLT for the quantities

√
t(βda,t − βγ).

We clearly see that (i) if β∗
i < 1 then the finite sample distribution is close to a normal distribution, and (ii) if β∗

i = 1 (or
very close to 1, such as β14,21 in the uniform value plots, β20,23 in exponential), the finite sample distribution puts most of
the probability mass at 1. For cases where β∗

i is close to 1, we need to futher increase number of items to observe normality.

G.2. Choice of smoothing parameter εt; see Figures 3 to 5.

Recall that a key component in the variance estimator is the Hessian estimation, during which we choose a smoothing
parameter εt. In particular, the smoothing εt is used to (1) estimate the active constraints and (2) construct the numerical
difference estimator Ĥ. Thm. 3 suggests a choice of εt = t−d for some 0 < d < 1

2 . We investigate the effect of d in this
experiment.

We look at the following configuration of Ht defined in Eq. (S-DualEG) and the smoothing parameter d. Note we will be
evaluating Hessian at a prespecified point and do not need to form any market equilibria in this experiment.

• n = 9 buyers. The item size t ranges from 200 to 5000, at a log scale. Concretely, we choose t ∈ [199, 223, 249, 279,
311, 348, 389, 434, 486, 543, 606, 678, 757, 846, 946, 1057, 1181, 1319, 1474, 1647, 1841, 2057, 2298, 2568, 2870,
3207, 3583, 4004, 4474, 5000]

• budget: it does not play a role in Hessian estimation.

• value and supply: uniform, exponential, or truncated standard normal

• the smoothing parameter d ∈ [0.10, 0.17, 0.25, 0.32, 0.40, 0.47, 0.55, 0.62, 0.70].

We evaluate the Hessian ∇2H at a pre-specified point β = [0.200, 0.333, 0.467, 0.600, 0.733, 0.867, 1.000], and plot the
estimated diagonal values, Ĥii for i ∈ [7], against the number of items t. Under each configuration we repeat for 10 trials.
We see that d represents a bias-variance trade-off. For a small d (0.10, 0.17, 0.25), the variance of the estimated value Ĥii
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is small and yet bias is large (since the plots seem to be trending to some point as number of item increases). For a large d
(0.55, 0.62, 0.70) variance is large and yet the bias is small (the estimates are stationary around some point). It is suggested
to use d ∈ (0.32, 0.47).

G.3. Coverage rate of revenue confidence interval Eq. (11); see Tables 1 to 3.

• n ∈ [10, 20, 30, 40, 50, 60, 100, 200, 300] buyers. Number of items t ∈ [40, 60, 80, 100, 200, 400].

• budget and proportion of buyer with leftover budgets: bi = Ui + 1 for i = 1, . . . , [αn] and bi = Ui for i =
[αn] + 1, . . . , n, Ui’s are i.i.d. uniforms. Here α ∈ [0.4, 0.6, 0.8] is the proportion of buyers with leftover budgets.

• value and supply: uniform, exponential, or truncated standard normal

• the smoothing parameter in Hessian estimation d = 0.4.

• Coverage rate α = 0.05, so we construct 90% CIs.

Under each configuration, we calculate the true revenue in the limit FPPE with dual averaging and sampling, and then form
100 (or 50 in the larger size experiment) observed FPPEs. For each observed FPPE, we construct the revenue confidence
interval as in Eq. (11). Then we see if the interval covers the true revenue. After 100 trials (or 50 in larger size experiments),
we report the coverage rate for that configuration.

We observe that the empirical coverage rate agrees with the nominal coverage rate 90%.

G.4. Effect of treatment assignment probability π in A/B testing; see Table 4.

In this experiment we study the effect of treatment assignment probability π on the coverage rate of treatment effect
confidence interval Eq. (17).

• n ∈ [30, 60, 100] buyers. The item size t ∈ [100, 200, 400].

• budget and proportion of buyer with leftover budgets: bi = Ui + 1 for i = 1, . . . , [αn] and bi = Ui for i =
[αn] + 1, . . . , n, Ui’s are i.i.d. uniforms. Here α = .3 is the proportion of buyers with leftover budgets.

• treatment effects on values: suppose before treatment values are uniformly distributed, and after treatment values
become exponentially distributed.

• the smoothing parameter in Hessian estimation d = .4.

• the treatment probability π ∈ [.1, .3, .5, .7, .9]

We do observe that for markets with fewer buyers (say 30), the treatment probability has an effect on coverage rate if one
type of treatment is applied to a small proportion of items; the empirical coverage rates are slightly lower than the nominal
90%; see for example the entries corresponding to “treatment prob = 0.9” and “number of buyers = 30”. However, when
we increase the number of buyers, the empirical coverage rate agrees with the nominal 90%.
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Figure 1: Distribution of
√
t(βγ

i − β∗
i ) for all i ∈ [n]. Nonnormality and fast convergence for buyers with β∗

i = 1.
Uniform values.
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Figure 2: Distribution of
√
t(βγ

i − β∗
i ) for all i ∈ [n]. Nonnormality and fast convergence for buyers with β∗

i = 1.
Exponential values.
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Figure 3: Distribution of
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i ) for all i ∈ [n]. Nonnormality and fast convergence for buyers with β∗

i = 1.
Truncated normal values.
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Figure 4: Effect of smoothing parameter on numerical difference estimation of Hessian. Each curve represents the
estimated value ofHii. Uniform values.
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Figure 5: Effect of smoothing parameter on numerical difference estimation of Hessian. Each curve represents the
estimated value ofHii. Exponential values.
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Figure 6: Effect of smoothing parameter on numerical difference estimation of Hessian. Each curve represents the
estimated value ofHii. Truncated normal values.
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number of buyers 10 20 30
beta = 1 proportion 0.4 0.6 0.8 0.4 0.6 0.8 0.4 0.6 0.8

number of items value distribution

40
uniform 0.91 0.88 0.84 0.92 0.88 0.86 0.91 0.93 0.90
normal 0.92 0.87 0.85 0.88 0.89 0.92 0.87 0.86 0.90
exponential 0.89 0.90 0.92 0.88 0.85 0.91 0.84 0.93 0.79

60
uniform 0.88 0.90 0.89 0.92 0.86 0.89 0.92 0.90 0.90
normal 0.89 0.94 0.85 0.90 0.90 0.89 0.95 0.83 0.87
exponential 0.84 0.87 0.93 0.91 0.88 0.81 0.87 0.88 0.93

80
uniform 0.84 0.92 0.92 0.87 0.88 0.92 0.92 0.95 0.87
normal 0.86 0.86 0.92 0.85 0.86 0.89 0.89 0.87 0.87
exponential 0.90 0.90 0.86 0.88 0.87 0.93 0.90 0.88 0.90

Table 1: Coverage rate of the 90% revenue CI defined in Eq. (11). Number of trials for each entry = 100.

number of buyers 40 50 60
beta = 1 proportion 0.4 0.6 0.8 0.4 0.6 0.8 0.4 0.6 0.8

number of items value distribution

100
uniform 0.93 0.89 0.92 0.85 0.87 0.87 0.85 0.85 0.91
normal 0.89 0.87 0.84 0.91 0.88 0.84 0.83 0.82 0.90
exponential 0.93 0.90 0.95 0.83 0.80 0.85 0.89 0.90 0.87

200
uniform 0.82 0.88 0.86 0.85 0.88 0.96 0.88 0.89 0.81
normal 0.91 0.87 0.87 0.86 0.86 0.88 0.89 0.92 0.86
exponential 0.92 0.85 0.93 0.94 0.87 0.92 0.86 0.85 0.97

400
uniform 0.80 0.92 0.90 0.91 0.89 0.92 0.85 0.89 0.89
normal 0.87 0.86 0.88 0.83 0.89 0.91 0.86 0.91 0.86
exponential 0.90 0.86 0.92 0.84 0.84 0.81 0.86 0.93 0.92

Table 2: Coverage rate of the 90% revenue CI defined in Eq. (11). Number of trials for each entry = 100.

number of buyers 100 200 300
beta = 1 proportion 0.4 0.6 0.8 0.4 0.6 0.8 0.4 0.6 0.8

number of items value distribution

100
uniform 0.92 0.88 0.98 0.90 0.80 0.92 0.94 0.92 0.84
normal 0.90 0.92 0.86 0.84 0.94 0.86 0.90 0.92 0.88
exponential 0.80 0.80 0.74 0.88 0.82 0.72 0.90 0.80 0.92

200
uniform 0.82 0.92 0.90 0.90 0.90 0.86 0.92 0.82 0.90
normal 0.88 0.88 0.88 0.92 0.84 0.90 0.92 0.72 0.96
exponential 0.84 0.80 0.92 0.90 0.78 0.86 0.94 0.80 0.84

400
uniform 0.86 0.90 0.88 0.98 0.88 0.94 0.86 0.86 0.76
normal 0.78 0.86 0.90 0.88 0.90 0.88 0.80 0.82 0.82
exponential 0.88 0.80 0.88 0.80 0.80 0.70 0.86 0.92 0.88

Table 3: Coverage rate of the 90% revenue CI defined in Eq. (11). Number of trials for each entry = 50.
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treatment prob 0.1 0.3 0.5 0.7 0.9
number of buyers number of items

30
100 0.84 0.82 0.82 0.87 0.79
200 0.89 0.87 0.76 0.85 0.86
500 0.88 0.89 0.95 0.81 0.68

60
100 0.87 0.88 0.81 0.87 0.75
200 0.89 0.87 0.85 0.83 0.85
500 0.88 0.91 0.86 0.85 0.90

100
100 0.89 0.84 0.95 0.85 0.82
200 0.92 0.90 0.83 0.85 0.86
500 0.92 0.94 0.89 0.93 0.89

Table 4: Coverage rate of the 90% CI for revenue treatment effect defined in Eq. (17). Number of trials for each entry =
100.
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