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Abstract

Proteins power a vast array of functional pro-
cesses in living cells. The capability to create
new proteins with designed structures and func-
tions would thus enable the engineering of cel-
lular behavior and development of protein-based
therapeutics and materials. Structure-based pro-
tein design aims to find structures that are des-
ignable (can be realized by a protein sequence),
novel (have dissimilar geometry from natural
proteins), and diverse (span a wide range of ge-
ometries). While advances in protein structure
prediction have made it possible to predict struc-
tures of novel protein sequences, the combina-
torially large space of sequences and structures
limits the practicality of search-based methods.
Generative models provide a compelling alterna-
tive, by implicitly learning the low-dimensional
structure of complex data distributions. Here, we
leverage recent advances in denoising diffusion
probabilistic models and equivariant neural net-
works to develop Genie, a generative model of
protein structures that performs discrete-time dif-
fusion using a cloud of oriented reference frames
in 3D space. Through in silico evaluations, we
demonstrate that Genie generates protein back-
bones that are more designable, novel, and di-
verse than existing models. This indicates that
Genie is capturing key aspects of the distribution
of protein structure space and facilitates protein
design with high success rates. Code for gen-
erating new proteins and training new versions
of Genie is available at https://github.
com/aqlaboratory/genie.
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1. Introduction
Proteins play a key role in cellular processes, ranging from
chemical catalysis to molecular transport. Over the course
of evolution, nature has explored a plethora of protein
structures and accordant functions. Yet, relative to the po-
tential size of foldable protein space, evolution has only
explored a small subregion (Huang et al., 2016). This sug-
gests the possibility of designing new proteins unlike any
seen in nature, if suitable methods can model uncharted
parts of fold space. Protein design methods have histori-
cally focused on optimizing functional properties of natural
proteins through directed evolution (Dougherty & Arnold,
2009) or through rational design of novel protein sequences
that hew closely to known structural motifs (Kuhlman et al.,
2003). This limited exploration of fold space to regions ad-
jacent to natural proteins. With recent advances in protein
structure prediction methods, new approaches have been
proposed that leverage representations learned by these
methods to more broadly explore structure space. For ex-
ample, Anishchenko et al. (2021) performed Monte Carlo
sampling in sequence space using trRosetta (Yang et al.,
2020) as a guide and were able to discover novel structures.
One disadvantage of this approach however is the reliance
on sampling, which can be computationally expensive and
difficult to steer toward desirable design goals. Generative
models that capture complex data distributions provide a
new direction for de novo protein design. In lieu of sam-
pling from protein sequence space, new designs could be
discovered by implicitly learning the space of structures.

Generative modeling trilemma Generative models
generally contend with a trilemma in optimizing between
quality (physicality and designability of protein structures),
mode coverage (novelty and diversity of structures) and
sampling time (Xiao et al., 2022). Multiple modeling
paradigms exist — for example, Generative Adversarial
Networks (GANs) (Goodfellow et al., 2014) and Varia-
tional AutoEncoders (VAEs) (Kingma & Welling, 2013)
— each making a different trade-off. Recently, denois-
ing diffusion probabilistic models (DDPMs) (Ho et al.,
2020; Nichol & Dhariwal, 2021) have shown considerable
promise in generating high quality 2D images, as exempli-
fied by DALL-E 2 (Ramesh et al., 2022). DDPMs consist
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of a forward process that iteratively adds Gaussian noise
to a sample and a reverse process that iteratively removes
noise from a noisy sample. DDPMs optimize for sam-
ple quality and diversity, achieving state-of-the-art perfor-
mance on both (Dhariwal & Nichol, 2021) at the cost of
increased sampling time.

Application to protein design Multiple prior efforts
have applied generative modeling to structure-based pro-
tein design. The first generation of methods parameterized
protein geometry using inter-residue distances, leveraging
the pre-existing machinery for 2D image generation. For
instance, Anand and Huang (2018) used GANs to gen-
erate pairwise distance matrices of Cα atoms in proteins,
followed by convex optimization to reconstruct the corre-
sponding 3D coordinates. Anand et al. (2019) later intro-
duced an additional refinement network to improve coor-
dinate reconstruction. One limitation of this approach is
the lack of a guarantee that generated pairwise distances
are embeddable in 3D space, leading to potential incon-
sistencies between raw samples (in distance matrix space)
and generated coordinates. Errors in distance matrices of-
ten lead to significant deterioration in structural quality
(Eguchi et al., 2022), and prevent the model from being
optimized in an end-to-end fashion for final 3D geometry.

An alternate parameterization for protein structure is in-
ternal coordinates, where torsion angles between adjacent
residues are used to encode 3D geometry. This approach
sidesteps the embeddability problem of distance-based rep-
resentations, but is overly reliant on reasoning over local
geometry (AlQuraishi, 2019). One example is FoldingDiff
(Wu et al., 2022a), which performs diffusion using inter-
nal coordinates with a bidirectional transformer that itera-
tively denoises a sequence of torsion angles. FoldingDiff
yields protein-like backbones but the majority of generated
structures are predicted to not be designable when assessed
using self-consistency metrics (described later).

A third approach parameterizes proteins using atomic co-
ordinates in Cartesian space. Unlike distance-based and
internal coordinate parameterizations, this approach is not
inherently invariant to rotations and translations (SE(3)-
invariance). As proteins do not have preferred orientations
or locations, capturing these invariances in a model would
improve its data efficiency. Recent developments in geo-
metric neural networks, including EGNN (Satorras et al.,
2021) and GVP (Jing et al., 2021), provide powerful tools
for geometric reasoning in an SE(3)-equivariant manner.
Employing EGNNs for this purpose, Trippe et al. (2022)
developed ProtDiff, a DDPM that directly generates the Cα

coordinates of protein structures. Although a promising ap-
proach, ProtDiff struggles to produce geometries with real-
izable protein sequences. One potential reason for this is
the reflection-invariant property of EGNNs, which is non-

physical and frequently yields left-handed alpha helices, an
exceedingly rare structural element in real proteins.

In protein structure prediction, AlphaFold2 (Jumper et al.,
2021) achieved great success by combining implicit rea-
soning in a latent space (evoformer module) with geo-
metric reasoning in Cartesian space (structure module).
A key feature of the latter is Invariant Point Attention
(IPA), a mechanism for computationally-efficient, SE(3)-
equivariant reasoning that is sensitive to reflections. IPA
parameterizes proteins using rigid body frames anchored
at residues, which can be defined in a consistent manner
irrespective of global position or orientation by taking ad-
vantage of the polymeric nature of proteins. Using a cloud
of reference frames, instead of a point cloud, retains an-
gular information between residues and thus accounts for
chemical chirality. Reformulating this construction for pro-
tein design, Anand and Achim (2022) combine IPA with
a DDPM to generate protein structures and their corre-
sponding sequences by conditioning on secondary struc-
ture topology. They perform diffusion in frame space, us-
ing random Gaussian-distributed 3D vectors and random
rotation matrices as noise (the latter does not satisfy the
Gaussian assumption of the original DDPM construction).
Using this approach their model shows promising empirical
results for secondary structure-conditioned protein design.

In this work, we similarly combine aspects of the SE(3)-
equivariant reasoning machinery of IPA with DDPMs to
create an (unconditional) diffusion process over protein
structures. Unlike Anand and Achim (2022), we intro-
duce a geometric asymmetry in how protein residues are
represented—as point clouds in the forward process (the
noising procedure) and as a cloud of reference frames in
the reverse process (sample generation). This yields a sim-
ple and cheap process for noising structures while retain-
ing the full expressivity of IPA during generation, with-
out violating the Gaussian assumption of DDPMs. The
resulting model, Genie, generates diverse, designable, and
novel structures. When compared to other methods, Genie
achieves state-of-the-art performance on key design met-
rics. Nearly contemporaneous with this work, three other
methods reported performant DDPMs for protein design
inspired by similar ideas (Ingraham et al., 2022; Watson
et al., 2022; Yim et al., 2023), although their architectural
details and training procedures are distinct from Genie’s.

2. Methods
Genie is a DDPM that generates protein backbones as a
sequence of Cα atomic coordinates. It performs diffusion
directly in Cartesian space and uses an SE(3)-equivariant
denoiser that reasons over a cloud of reference frames to
predict noise displacements at each diffusion step. In Sec-
tion 2.1, we describe our implementation of DDPMs for
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protein generation. In Section 2.2, we provide details on
the SE(3)-equivariant denoiser. In Sections 2.3 and 2.4, we
describe how we train and sample from the model.

2.1. Denoising Diffusion Probabilistic Model

Let x = [x1,x2, · · · ,xN ] denote a sequence of Cα co-
ordinates of length N , corresponding to a protein with N
residues. Given a sample x0 from the unknown data dis-
tribution over protein structures, the forward process iter-
atively adds isotropic Gaussian noise to the sample fol-
lowing a cosine variance schedule βββ = [β1, β2, · · · , βT ],
where the total number of diffusion steps T is set to 1,000:

q(xt|xt−1) = N (xt |
√
1− βtxt−1, βtI) (1)

By reparameterization, we have

q(xt|x0) = N (xt |
√
ᾱtx0, (1− ᾱt)I) (2)

where

ᾱt =

t∏
s=1

αs and αt = 1− βt

Since the isotropic Gaussian noise added at each diffusion
step is small, the corresponding reverse process could be
modeled with a Gaussian distribution:

p(xt−1|xt) = N (xt−1 | µµµθ(xt, t),ΣΣΣθ(xt, t)I) (3)

where

µµµθ(xt, t) =
1

√
αt

(
xt −

βt√
1− ᾱt

ϵϵϵθ(xt, t)

)
ΣΣΣθ(xt, t) = βt

By starting the reverse process from white noise and then
iteratively removing noise, Genie generates new proteins
(Appendix A.1). This reverse process requires evaluating
ϵϵϵθ(xt, t), which predicts the noise added at time step t. We
do this using a noise predictor that forms the core of Genie.

2.2. Noise Prediction

In Genie, the noise predictor first takes the Cα coordinates
at diffusion step t, denoted by xt, and computes discrete
Frenet-Serret (FS) frames based on the backbone geom-
etry encoded by xt. Each FS frame represents the posi-
tion and orientation of a residue relative to the global ref-
erence frame. Once constructed, these FS frames enable
downstream model components, including IPA, to reason
about the relative orientations of protein residues and parts.
FS frames are passed together with a sinusoidal encod-
ing of diffusion step t to an SE(3)-invariant encoder and
an SE(3)-equivariant decoder to compute a new set of FS
frames, from which updated coordinates are extracted (see

Appendix A.2 for more details). Noise is then computed as
a set of displacement vectors between the original and up-
dated coordinates, which is the final prediction of ϵϵϵθ(xt, t).
Figure 1 summarizes Genie’s architecture.

FS frames Following Hu et al. (2011) and Chowdhury
et al. (2022), we construct discrete FS frames F as

ti =
xi+1 − xi

∥xi+1 − xi∥

bi =
ti−1 × ti

∥ti−1 × ti∥

ni = bi × ti

Ri = [ti,bi,ni]

Fi = (Ri,xi)

where the first element of Fi is the rotation matrix and the
second element is the translation vector. To handle the edge
cases corresponding to the N- and C-termini of proteins, we
assign the frames of the second and second-to-last residues
to the first and last residues, respectively.

SE(3)-invariant encoder Given frames Ft and the si-
nusoidal encoding of the corresponding diffusion step t,
the encoder generates and refines single residue and paired
residue-residue representations, which are used later by the
decoder to update the structure. As illustrated in Figure
1 (“Invariant Encoder”), the Single Feature Network first
creates per residue representations (st) from sinusoidal en-
codings of residue indices and the diffusion step. The Pair
Feature Network then computes paired residue-residue rep-
resentations (pt) from the outer sum of the (single) residue
representations, relative positional encodings of residue
pairs, and a pairwise distance matrix representation of the
structure (based on Cα coordinates). These pair represen-
tations pt are iteratively refined in the Pair Transform Net-
work using triangular multiplicative updates (Jumper et al.,
2021). The encoder is SE(3)-invariant since both its single
and pair representations are derived from SE(3)-invariant
features. Appendix A.3 further elaborates the encoder.

SE(3)-equivariant decoder Given frames Ft and the
single (st) and pair representations (pt) from the encoder,
the decoder iteratively refines the structure by operating
over Ft in an SE(3)-equivariant manner. As illustrated in
Figure 1 (“Equivariant Decoder”), the decoder first uses
IPA to generate a new single representation s′t based on
Ft, st, and pt. Here, frames are initialized using Ft in
lieu of the “black hole” initialization used by AlphaFold2.
The Backbone Update Network then computes and applies
frame updates based on the updated single representation
s′t, resulting in a new set of frames F′

t. The decoder is
SE(3)-equivariant since frame updates are computed based
on the SE(3)-invariant s′t. Thus, any global transformation
of the input frames is also applied to the final output frames.

Noise prediction Given the input coordinates xt and the
updated frames F′

t, we extract the updated coordinates x′
t

from the translation component of F′
t and compute the pre-

dicted noise ϵϵϵθ(xt, t) as xt − x′
t.
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Figure 1. Architecture of SE(3)-equivariant denoiser, including SE(3)-invariant encoder (bottom left) and SE(3)-equivariant decoder
(bottom right). Notation: r: number of residues, cs: dimensionality of single representation, cp: dimensionality of pair representation.

2.3. Training

Since the forward diffusion process is predefined with a
fixed variance schedule, training Genie reduces to train-
ing the noise prediction model. By minimizing the error
in noise prediction for each diffusion step, Genie learns to
iteratively reverse the forward process and generate struc-
tures. Appendix A.6 further elaborates the training process.

Loss Following Ho et al. (2020), which found that diffu-
sion models achieve better performance when using noise
ϵϵϵt as the prediction target instead of the mean in the reverse
probability distribution p(xt−1|xt), we define our loss as:

L = Et,x0,ϵϵϵ

[
N∑
i=1

∥ϵϵϵt − ϵϵϵθ(xt, t)∥2
]

= Et,x0,ϵϵϵ

[
N∑
i=1

∥ϵϵϵt − ϵϵϵθ(
√
ᾱtx0 +

√
1− ᾱtϵϵϵt, t)∥2

]

At each training step, we sample a protein domain x0 from
the training dataset, a diffusion step t from a uniform dis-
tribution of integers between 1 and T , and noise vectors ϵϵϵt
from a unit Gaussian, and update model weights in the di-
rection of minimizing the sum of per residue L2 distances
between true and predicted noise vectors.

Datasets We employ two datasets for training and as-
sessing models, one based on the Structural Classification
of Proteins - extended (SCOPe) database (Fox et al., 2014;
Chandonia et al., 2022) and one based on the AlphaFold-
Swissprot database (Jumper et al., 2021; Varadi et al.,
2022). Details of experimental setup are noted in Section 3.
For SCOPe, we filter protein domains so that no two share
>40% sequence identity, ensuring non-redundancy and di-
versity. We also use the SCOPe structural hierarchy to de-
lineate domains along four major classes: all alpha, all beta,
alpha and beta (α/β), and alpha and beta (α + β). We re-
move domains with multiple chains and missing backbone
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atoms. Our resulting training set comprises 8,766 domains,
with 3,942 domains having at most 128 residues and 7,249
domains having at most 256 residues.

For AlphaFold-SwissProt, we remove structures with low
confidence scores based on the predicted local distance dif-
ference test score averaged across all residues (pLDDT).
pLDDT is an AlphaFold2-derived score that summarizes
its own confidence in its predictions, ranging in value from
0 to 100 (higher is better). We use a cutoff of pLDDT > 80.
The resulting training set contains 195,214 protein struc-
tures having at most 256 residues.

2.4. Sampling

To generate a new protein backbone of length N , we first
sample a random sequence xT = [x1

T ,x
2
T , · · · ,xN

T ] of Cα

coordinates drawn from xi
T ∼ N (0, I) for all i ∈ [1, N ].

This sequence of coordinates xT is then recursively fed
through the reverse diffusion process until diffusion step
0 is reached. Using Equation 3, the update rule is:

xt−1 =

{
µµµθ(xt, t) +

√
ΣΣΣθ(xt, t) · ϵϵϵ, if t > 1

µµµθ(xt, t), otherwise

where ϵϵϵ = [ϵϵϵ1, ϵϵϵ2, · · · , ϵϵϵN ] and each ϵϵϵi ∼ N (0, I).

3. Results
To evaluate Genie, we perform two set of experiments. In
Section 3.1, we compare Genie with ProtDiff and Fold-
ingDiff, both of which are capable of generating proteins
up to 128 residues in length (hereafter referred to as “short”
models). In Section 3.2, we compare Genie with FrameDiff
and RFDiffusion, which are capable of generating longer
proteins (hereafter referred to as “long” models). We also
visualize the design space of Genie in Section 3.3.

3.1. Comparisons with short models

To compare with ProtDiff and FoldingDiff, we train Genie
on the SCOPe dataset with maximum sequence length set
to 128. To ensure fairness, we retrain ProtDiff and Fold-
ingDiff on our filtered SCOPe dataset. For FoldingDiff,
we ultimately reverted to using the original weights as it
achieves better generative performance that way (see Ap-
pendix A.7 for more details). To evaluate a method, we
generate 10 proteins for each sequence length between 50
and 128 residues and assess the resulting structures on des-
ignability, diversity, and novelty. We find that Genie out-
performs ProtDiff and FoldingDiff on all three criteria.

3.1.1. DESIGNABILITY

The first assessment criterion we consider is designabil-
ity, i.e., whether a generated structure can be realized by

a protein sequence. We follow the self-consistency Tem-
plate Modeling (scTM) approach proposed by Trippe et
al. (2022). Although purely an in silico method, it has
shown promise in correctly identifying designable struc-
tures (Dauparas et al., 2022) by focusing on their over-
all, coarse geometry, which is suitable for the short mod-
els we consider here. Briefly, scTM takes a generated
structure and feeds it into ProteinMPNN, a state-of-the-
art structure-conditioned sequence generation method. Us-
ing ProteinMPNN set at a sampling temperature of 0.1,
we generate eight sequences per input structure and then
use OmegaFold (Wu et al., 2022b) to predict the struc-
ture of each putative sequence. The original scTM ap-
proach used AlphaFold2 but we substitute OmegaFold for
AlphaFold2 as it outperforms the latter on single-sequence
structure prediction (we also employ ESMFold (Lin et al.,
2022) for the same purpose and observe similar trends —
see Appendix C.1). Finally, we compute scTM by measur-
ing the TM-score (Zhang & Skolnick, 2004) — a metric
of structural congruence — of the OmegaFold-predicted
structure with respect to the original generated structure.
scTM scores range from 0 to 1, with higher numbers corre-
sponding to increased likelihoods that an input structure is
designable. Appendix B.1 illustrates this pipeline.

For each structure generated by each method, we compute
the highest scTM score achieved across the eight putative
sequences and the OmegaFold-derived pLDDT score for
the designed structure with the highest scTM score. Figure
2A shows the distribution of highest scTM scores versus
pLDDTs for all three models. Similar to previous work
(Trippe et al., 2022; Wu et al., 2022a), we first use scTM >
0.5 as a cutoff for designability since it suggests that the
generated and designed structures have the same fold (Xu
& Zhang, 2010). 81.5% of protein domains generated by
Genie have scTM > 0.5, far exceeding the percentages
for ProtDiff (5.1% and 11.8% for retrained and reported
models, respectively) and FoldingDiff (19.6% and 22.7%
for resampled and reported results, respectively). Thus on
average Genie yields more designable structures.

While scTM reflects a model’s ability to find structures
with designable sequences, it leaves open the possibil-
ity that OmegaFold-predicted structures are of insufficient
quality to be used reliably in computing scTM scores. We
thus place an additional constraint that predicted struc-
tures achieve pLDDT > 70 to enrich for confidently-
predicted structures. When considering both criteria,
58.3% of domains generated by Genie are designable with
confidently-predicted structures (henceforth, “confidently
designable”), while only 3.2% and 17.7% of ProtDiff- and
FoldingDiff-generated domains are, respectively. Figure
2C shows the distribution of confidently designed struc-
tures binned by sequence length. We observe that Genie
outperforms ProtDiff and FoldingDiff across short and long
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Figure 2. Analysis of structures generated by Genie and short models. (A) Heatmap of the relative frequencies of generated domains
with specific combinations of highest scTM and pLDDT values achieved by ProtDiff, FoldingDiff, and Genie. (B) Heatmap of relative
frequencies of confidently designable domains with specific combinations of fractional SSE content. The number of designed domains
for each model is shown in parentheses. Heatmap of relative frequencies of the SCOPe dataset is provided in Figure 11C (Appendix C.1)
for reference. (C) Histogram of confidently designable domains as a function of sequence length. (D) Bar chart of number of designable
domains generated by different methods out of a fixed budget of 780 attempted designs per method.

proteins. Furthermore, Genie-generated structures univer-
sally satisfy physical chirality constraints while those gen-
erated by ProtDiff often contain left-handed helices.

3.1.2. DIVERSITY

The second assessment criterion we consider is the diver-
sity of generated structures. We first evaluate diversity by
considering the relative proportion of secondary structure
elements (SSEs) in generated domains. SSEs are local pat-
terns of structure within proteins that are characterized by
specific types of hydrogen bonding networks. The most
common types of SSEs are α-helices and β-strands, and
we focus on these in our assessments.

To identify SSEs in generated structures, we use the Pro-
tein Secondary Element Assignment (P-SEA) algorithm
(Labesse et al., 1997). P-SEA detects SSEs using a set of
hand-crafted rules based on distances and angles between
consecutive Cα atoms in protein backbones. We applied P-
SEA to all confidently designable structures (scTM > 0.5;
pLDDT > 70). Figure 2B shows the relative frequen-
cies of designed domains with different fractions of SSEs.
Domains generated by FoldingDiff and ProtDiff are domi-
nated by mainly α-helical domains, with only 2 (out of 25,
8%) and 10 (out of 138, 7.25%) of their designs containing
β-strands, respectively. In contrast, Genie designs are more
diverse, with 254 mainly α-helical, 25 mainly β-strand, and

176 α, β-mixed domains.

In addition to SSE content, we assess the diversity of ter-
tiary structures in confidently designed domains. For each
domain, we compute its maximum TM score to all other
confidently designed domains, which quantifies its simi-
larity to the most structurally similar domain in the de-
signed set. For a diverse set of domains, most domains
should have small maximum TM scores to all other do-
mains. Genie achieves, on average, a maximum TM score
of 0.561 ± 0.086 relative to the designed set, which is
lower than both ProtDiff (0.583 ± 0.115) and FoldingDiff
(0.668 ± 0.178). This suggests that Genie-designed do-
mains are more diverse and better able to capture the fold
distribution of protein structure space.

3.1.3. NOVELTY

The third assessment criterion we consider is the novelty
of generated structures. As one goal of protein design is
the creation of new protein folds and geometries, novelty
is a key feature of any structure-based protein design tool.
To quantify the novelty of generated structures we compute
their maximum TM scores with respect to all structures in
the training set. We use the TM-Align software package
for this purpose (Zhang & Skolnick, 2004). To classify a
confidently designable domain as novel, we require that its
maximum TM score to the training set is less than 0.5 — a
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widely used heuristic for determining when two protein do-
mains are of dissimilar folds. Using this criterion, we find
that 98 out of 455 (21.5%) confidently designable struc-
tures generated by Genie are novel, relative to 4% (1 out
of 25) and 20.3% (28 out of 138) for ProtDiff and Fold-
ingDiff, respectively. Figure 2D summarizes the statistics
on generated domains for all three models.

3.2. Comparisons with long models

Contemporaneous with the development of Genie, new
protein diffusion models have been developed that are ca-
pable of generating long proteins at high levels of quality
and diversity. RFDiffusion (Watson et al., 2022) performs
diffusion in SE(3) space by finetuning the RoseTTAFold
(Baek et al., 2021) structure prediction model to de-
noise at each diffusion time step. Chroma (Ingraham
et al., 2022) utilizes a correlated Gaussian diffusion pro-
cess with a covariance model to enforce protein chain and
radius of gyration statistics. To reverse the added noise,
Chroma utilizes random GNNs to reason over pairwise
constraints, followed by equivariant structure updates via
convex optimizations. FrameDiff (Yim et al., 2023) uses
a geometrically-principled approach for SE(3) diffusion by
accounting for both translational and rotational noise in the
diffusion process, and does so by training a model from
scratch without relying on a pretrained structure prediction
method, similar to Genie and Chroma. In this section, we
restrict our comparisons to RFDiffusion and FrameDiff as
the source code for Chroma is not publicly available.

To compare Genie with long models, we develop two vari-
ants of it, one trained on the SCOPe dataset and the other
on the SwissProt dataset; we term these two models Genie-
SCOPe and Genie-SwissProt, respectively. For both mod-
els, we use the same Genie architecture as before but set
the maximum sequence length to 256. Following Wat-
son et al. (2022) and Yim et al. (2023), we adjust the
noise scale at sampling time by multiplying the sampled
noise vector with a constant factor η, analogous to low-
temperature sampling. We analyze the effect of the sam-
pling noise scale on generative performance and summa-
rize our results in Appendix D.1. Here, we focus on the de-
fault (best-performing) sampling noise scale choices used
in the original versions of the models (1 for RFDiffusion
and 0.1 for FrameDiff). For all methods, we generate 5 pro-
teins for each sequence length between 50 and 256 residues
and evaluate them on designability, diversity, and novelty.
We find that Genie achieves competitive performance.

3.2.1. DESIGNABILITY

To assess the designability of long models, we use self-
consistency Root Mean Square Deviation (scRMSD) which
employs the same approach as scTM but uses the RMSD

between generated and designed structures. scRMSD is
more stringent than scTM due to the sensitivity of RMSD
to small structural differences and is thus more suitable for
assessing the more capable long models (lower scRMSD
corresponds to higher quality.) Appendix B.2 discusses the
differences between scTM and scRMSD. We define sam-
pling quality as the percentage of generated structures that
are confidently designable (scRMSD < 2 and pLDDT >
70). Here, we compute scRMSD using the ProteinMPNN-
ESMFold pipeline to maintain consistency with RFDiffu-
sion and FrameDiff, which do the same. Table 1 (“Des-
ignability”) summarizes the percentage of generated struc-
tures that are confidently designable. We find that Ge-
nie outperforms FrameDiff in sampling quality, even when
trained on the smaller SCOPe dataset, but underperforms
RFDiffusion. Increasing training set size markedly im-
proves Genie’s sampling quality but RFDiffusion retains
an edge. Appendix D.2 provides visualizations of the dis-
tribution of scRMSDs versus pLDDTs.

3.2.2. DIVERSITY

To quantify sampling diversity, we first visualize the dis-
tribution of SSE content in Figure 3 (similar to Figure 2B
in the short model section). We find that Genie generates
structures with diverse helices and strands, but FrameDiff-
and RFDiffusion-generated structures show greater SSE di-
versity, particularly for beta sheets.

We also consider tertiary diversity. We first hierarchically
cluster generated structures based on pairwise TM scores
using single linkage for cluster distances and a TM thresh-
old of 0.6, similar to the approach of RFDiffusion and
FrameDiff. Each pairwise TM score is computed using
TMAlign (Zhang & Skolnick, 2004) and normalized by
the length of the larger protein. We then define tertiary
diversity as the number of clusters divided by the num-
ber of generated structures. We find that all models are
capable of generating diverse structures (Table 1 (“Diver-
sity”)), with RFDiffusion achieving best performance, fol-
lowed by Genie (both Genie-SCOPe and Genie-SwissProt)
and FrameDiff. When trained with a larger dataset, Genie
achieves higher designablity at the cost of reduced diver-
sity, likely due to small model size.

To better assess this tradeoff between designability and di-
versity, we compute the F1 score as the harmonic mean of
designability (pstructures) and diversity (pclusters):

Fβ = (1 + β2) · pstructures · pclusters

(β2 · pstructures) + pclusters

where β ∈ R+ tunes the relative importance of designabil-
ity vs. diversity. We set β = 1 to weigh both equally.

We report F1 scores in Table 1 (“F1”). Genie outper-
forms FrameDiff on both metrics even when trained on the
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Table 1. Comparison of Genie with long models on designability, diversity, and novelty of protein structure generation. Designability
is computed as the number of confidently designable structures over total number of generated structures. Diversity is computed as the
number of clusters over total number of generated structures, using single-linkage hierarchical clustering with a TM score cutoff of 0.6.
Novelty is computed as the number of novel structures over total number of generated structures. For sampling time profiling (reported
in minutes), T denotes the total number of diffusion steps in the sampling process and L denotes the number of residues in the structure.
The performance of Genie-SCOPe on sampling time is omitted since it is in theory identical to that of Genie-SwissProt.

METHOD NPARAMS
SAMPLING METRICS SAMPLING TIME

DESIGNABILITY DIVERSITY F1 NOVELTY T L = 200

FRAMEDIFF 17.4M 0.483 0.590 0.531 0.006 500 0.388
RFDIFFUSION 59.8M 0.951 0.667 0.784 0.170 50 0.740
GENIE-SCOPE 4.1M 0.586 0.738 0.654 0.039
GENIE-SWISSPROT 4.1M 0.790 0.642 0.708 0.041 1000 1.331

Figure 3. Heatmap of relative frequencies of confidently des-
ignable structures with specific combinations of fractional SSE
content for Genie and long models.

smaller SCOPe dataset while RFDiffusion performs best.
However, RFDiffusion is pretrained on predicting protein
structures while Genie is trained from scratch. RFDiffusion
also contains around 14 times more parameters than Genie
(59.8M versus 4.1M). In Appendix D.3, we further com-
pute the maximum TM score to other generated structures
for every generated structure and provide a visualization of
the distribution of these values versus scRMSD.

3.2.3. NOVELTY

To quantify the novelty of generated structures, we com-
pute their maximum TM scores with respect to all

monomers in the Protein Data Bank (PDB) (Berman et al.,
2000). Following Yim et al. (2023), we filter the PDB
by restricting protein lengths to lie between 60 and 512
residues and resolution to be 5Å or better, which yields
26,468 monomers. To classify a structure as novel, we
require that it is confidently designable (scRMSD < 2;
pLDDT > 70) and that its maximum TM score to the PDB
is less than 0.5. Overall novelty is reported as the percent-
age of novel structures in Table 1 (“Novelty”). Genie gen-
erates more novel structures than FrameDiff but RFDiffu-
sion performs best. Appendix D.4 further visualizes the
distribution of maximum TM score to PDB structures ver-
sus scRMSD. We note that the novelty results reported here
might overestimate Genie-SwissProt’s performance due to
the larger size of the AlphaFold-SwissProt database rela-
tive to the PDB. Nonetheless, the performance of Genie-
SCOPe, which does not have this caveat, exhibits the same
trend.

3.2.4. SPEED

Because the long models we assess can be computationally
expensive, generation speed becomes an important factor.
We profile models using one Nvidia A6000 GPU on se-
quences of length 200 (Table 1). We find FrameDiff to be
the fastest, followed by RFDiffusion and Genie. While Ge-
nie is the smallest method of the set, it uses more time steps
to generate samples and employs triangular multiplicative
update layers which have O(N3) time complexity.

3.3. Visualization of Design Space

To visualize Genie’s design space, we apply multidimen-
sional scaling (MDS) to the pairwise TM scores of all
818 confidently designable structures generated by Genie-
SwissProt and show the resulting 2D space in Figure 4. By
overlaying maximum TM scores (relative to PDB struc-
tures) and SSE content on the MDS embedding, we con-
firm that Genie-SwissProt generates diverse structures. We
illustrate the quality and diversity of these structures by
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Figure 4. Design space of Genie-SwissProt. 818 confidently designable structures were embedded in 2D space using multidimensional
scaling (MDS) with pairwise TM scores as the distance metric. Domains are colored by their maximum TM score to PDB structures
(central panel), fraction of helical residues (top left panel), fraction of beta strand residues (middle left panel), and sequence length
(bottom left panel). Eight novel designed domains are shown as representatives.

showing eight novel designs chosen from diverse embed-
ding locations. Appendix D.5 provides more visualizations
of novel structures. We also perform the same analysis for
the short version of Genie in Appendix C.2 and observe
similar trends. Interestingly, the short version of Genie
generates more diverse structures than Genie-SwissProt.

4. Conclusion
In this work we present Genie, a DDPM for de novo protein
design that substantially outperforms short structure-based
models and achieves competitive performance relative to
much larger long models. One important contributing fac-
tor to Genie’s success is the use of dual representations for
protein residues. By representing a protein as a sequence
of Cα coordinates in Cartesian space instead of FS frames,
we can perform diffusion by injecting isotropic Gaussian
noise into Cα coordinates, bypassing the need to noise rota-
tion matrices, a more delicate task. On the other hand, dur-
ing noise prediction, proteins are represented as sequences
of FS frames, allowing Genie to reason about inter-residue
orientations and achieve high structural quality. Thus Ge-
nie simultaneously achieves simplicity of design and ge-

ometric expressiveness. Noise prediction is accomplished
by combining IPA with backbone updates, which provide
a powerful way to reason spatially about protein structure,
maintaining equivariance to both translations and rotations
while being sensitive to reflections.

Future directions center around three areas. First is scaling
up model size, as current versions appear to be capacity-
limited. Second is concurrently generating sequence along
with structure. Third is conditionally generating struc-
tures based on geometric or functional criteria. Such con-
ditional generation has been achieved by other methods,
for example in producing structures that contain functional
sites (Wang et al., 2022). The use of pretrained classi-
fiers (e.g., function classifiers) to guide DDPM generation
towards novel proteins with desired properties is particu-
larly promising, including in drug discovery. Recent works
(Ingraham et al., 2022; Watson et al., 2022; Hie et al.,
2022) have shown promise in this direction and we hope
that the innovations introduced by Genie will further drive
progress.
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A. Genie Architectural Details
A.1. Illustration of Protein Backbone Diffusion

Figure 5 visualizes the diffusion process of a protein backbone in Cartesian space. The forward process iteratively adds
isotropic Gaussian noise to Cα coordinates, while the reverse process iteratively denoises noisy coordinates through an
SE(3)-equivariant model.

Figure 5. Diffusion of protein backbone in Cartesian space.

A.2. Encodings

Sinusoidal encoding of diffusion step Let T denote the total number of diffusion steps and D denote the encoding
dimension. We define the sinusoidal encoding of diffusion step t as

ϕ(t) =


f(t, 1)
f(t, 2)

...
f(t,D)


where

f(t, d) =

sin
(
t · π/T 2·d

D

)
, if d mod 2 = 0

cos
(
t · π/T

2·(d−1)
D

)
, otherwise

Sinusoidal encoding of residue index Let N denote the maximum sequence length. We define the sinusoidal encoding
of residue index n as

ϕ(n) =


f(n, 1)
f(n, 2)

...
f(n,D)


where

f(n, d) =

sin
(
n · π/N 2·d

D

)
, if d mod 2 = 0

cos
(
n · π/N

2·(d−1)
D

)
, otherwise

Relative positional encoding We use a linear function to encode the k-clipped relative position between residue pairs.
Given residue i and residue j, we first compute the clipped distance between residues in the amino acid sequence using

d(i, j) = min(max(i− j,−k), k)

We then compute a one-hot encoding of this clipped distance and use a linear function to project it to the same dimension-
ality as the pair representation. Residue pairs more than k residues apart are all assigned the same learned encoding.

A.3. SE(3)-Invariant Encoder

The SE(3)-invariant encoder constructs and refines single and pair representations based on input FS frames and a sinu-
soidal encoding of the diffusion step.
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Figure 6. Architecture of the Single Feature Network, which generates single representations from sinusoidal encodings of the diffusion
step and residue index. Notation: r: number of residues, cs: dimension of single representation.

Figure 7. Architecture of the Pair Feature Network, which generates pair representations from the single representation and Frenet-Serret
frames. Notation: r: number of residues, cs: dimensionality of single representation, cp: dimensionality of pair representation, relpos:
relative positional encoding function, pdist: pairwise distance function.

Single Feature Network The Single Feature Network constructs the (single) residue representation si by concatenating
the sinusoidal encoding of diffusion step t and the sinusoidal encoding of residue index i, followed by a linear projection
to si (Figure 6).

Pair Feature Network The Pair Feature Network computes the pair representation pij by summing three latent pair
representations – the relative positional encoding between residue i and j (Appendix A.2), the outer summation of the
projections of single representations si and sj , and the projection of the pairwise distance between residues i and j (Figure
7).

Pair Transform Network The Pair Transform Network uses 5 layers of triangular multiplicative updates (introduced
in the evoformer module of AlphaFold2) with pair transitions to refine the pair representations, which are later used
by the SE(3)-equivariant decoder to update the single representations and FS frames. We consider a graph over amino
acid residues. For each triplet of nodes ijk in the graph, where i, j and k are residue indices, edge ij is updated by
integrating information from its two adjacent edges ik and jk. Since each edge is directed, there are two symmetric
updates: the ”incoming” edge version which updates edge ij based on the representations of incoming edges ki and kj,
and the ”outgoing” edge version which updates edge ij based on the representations of outgoing edges ik and jk. We
perform triangular multiplicative updates using both versions.

A.4. SE(3)-Equivariant Decoder

SE(3)-equivariant decoder utilizes single and pair representations from the previous encoder and refines input frames in a
translationally- and rotationally-equivariant manner. Each decoding layer uses Invariant Point Attention (IPA) module to
refine single representations and backbone update module to compute and apply frame updates based on updated single
representations. In this section, we provide further details on how input frames are refined.

Invariant Point Attention IPA modules computes attention weights by combining standard attention on single repre-
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sentations st, linear projection of pair representations pt and squared distance affinities of coordinates in global backbone
frames Ft. These attention weights are then applied to values computed from single, pair and geometric representations
respectively, which are summed to generate updated single representations s′t.

Backbone Update Network The Backbone Update Network utilizes a linear layer to project the updated single repre-
sentation (s′t)

i into a translation vector and a rotation matrix (represented as a quaternion with the first component set to 1)
for each residue i, which are then applied to the corresponding input frame F i

t . Since updates are computed from SE(3)-
invariant single representation s′t, arbitrary translation and rotations on input frames Ft will be preserved in the updated
frames F ′

t . This implies that the backbone update network is SE(3)-equivariant.

A.5. Model Hyperparameters

Table 2 and Table 3 summarize the set of hyperparameters for SE(3)-invariant encoder and SE(3)-equivariant decoder
respectively.

Table 2. Hyperparameters for SE(3)-invariant encoder

DESCRIPTION VALUE

DIMENSION OF SINGLE REPRESENTATIONS 128
DIMENSION OF PAIR REPRESENTATIONS 128
DIMENSION OF RESIDUE INDEX ENCODING 128
DIMENSION OF DIFFUSION TIME STEP ENCODING 128
RELATIVE POSITIONAL ENCODING CLIPPING LENGTH 32
NUMBER OF TRIANGULAR MULTIPLICATIVE UPDATE LAYERS 5
HIDDEN DIMENSION OF TRIANGULAR MULTIPLICATIVE UPDATE LAYERS 128
MULTIPLICATIVE FACTOR OF PAIR TRANSITION LAYERS 4

Table 3. Hyperparameters for SE(3)-equivariant decoder

DESCRIPTION VALUE

NUMBER OF DECODING LAYERS 5
HIDDEN DIMENSION OF IPA 16
NUMBER OF IPA HEADS 12
NUMBER OF IPA QUERY POINTS 4
NUMBER OF IPA KEY POINTS 4
NUMBER OF IPA VALUE POINTS 8
IPA DROPOUT RATE 0.1

A.6. Training

Genie is implemented in PyTorch. For AlphaFold2-inspired components, such as triangular multiplicative updates and
Invariant Point Attention, we adapted implementations from OpenFold (Ahdritz et al., 2022). To train Genie, we use an
Adam optimizer with a learning rate of 10−4. For the shorter version of Genie (that is used for comparisons with ProtDiff
and FoldingDiff), we train the model using data parallelism on 2 A100 Nvidia GPUs with an effective batch size of 48.
We train Genie for 50,000 epochs (∼9 days). For Genie-SCOPe, we train the model using data parallelism on 12 A100
Nvidia GPUs with an effective batch size of 48. We train Genie-SCOPe for 30,000 epochs (∼2 weeks). For Genie-
SwissProt, we train the model using data parallelism on 6 A6000 Nvidia GPUs with an effective batch size of 24. We train
Genie-SwissProt for 100 epochs (∼8 days).

A.7. Evaluation

For evaluating ProtDiff we retrained the model on our filtered SCOPe dataset (described in 2.3) since the original training
dataset and pretrained model weights are not publicly available. The retrained model achieves slightly worse results than
the reported model, possibly due to differences in training and dataset size.

For FoldingDiff, the original model is trained using the CATH dataset, filtering at 40% sequence identity and cropping
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Figure 8. Comparison on sampling quality for the original and retrained FoldingDiff. The first row compares the distribution of lowest
scRMSD versus pLDDT. Higher density in the upper left region indicates higher sampling quality. The second row compares the
distribution of highest scTM versus pLDDT. Higher density in the upper right region indicates higher sampling quality.

domains longer than 128 residues to 128-residue windows. This leads to 24,316 protein backbones for training. For fair
assessment, we retrained the model on our filtered SCOPe dataset and observed degraded performance in the retrained
model, mainly due to differences in dataset size. Similar to our results section, for each model, we sample 10 proteins
for each sequence length between 50 and 128 residues. Figure 8 compares the performance of our retrained FoldingDiff
and the original FoldingDiff based on the distribution of scRMSD versus pLDDT and the distribution of scTM versus
pLDDT. When comparing with Genie in our main results, we continue to use the original version of FoldingDiff (with
model weights provided by their paper) for evaluations since it provides better generative performance.

For FrameDiff and RFDiffusion, we use their provided weights for evaluations without any retraining.
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B. Discussion on Self-consistency Pipeline
B.1. Illustration of the Self-consistency Pipeline

Figure 9 provides an illustration of the self-consistency pipeline, demonstrating how both scTM and scRMSD are computed
given a generated structure.

Figure 9. Self-consistency pipeline. A generated structure is passed through an inverse folding model (e.g., ProteinMPNN) to generate
a sequence that is then passed to a protein structure prediction model (e.g., AlphaFold2) to obtain the final designed structure. The
self-consistency Template Matching (scTM) score is defined as the TM score between the generated and designed structures, while
the self-consistency Root Mean Square Deviation (scRMSD) is defined as the root mean square deviation between the generated and
designed structures.
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B.2. Visualization of the Distribution of scTM versus scRMSD

We visualize the distribution of scTM versus scRMSD for structures generated by Genie-SCOPe and Genie-SwissProt
(with maximum sequence length of 256) in Figure 10. 33.8% Genie-SCOPe-generated structures (18.3% for Genie-
SwissProt) satisfy scTM > 0.5 but have scRMSD > 2, which suggests a mismatch in the generated and designed struc-
tures. Conversely, all generated structures with scRMSD < 2 satisfy the constraint scTM > 0.5. This indicates that
scRMSD is a more stringent metric for designability compared to scTM.

Figure 10. Distribution of highest scTM versus lowest scRMSD, showing a non-negligible proportion of generated structures with
scTM > 0.5 failing to meet the constraint scRMSD < 2.
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C. Additional Evaluation Results for Short Models
C.1. Extra Evaluations using ProteinMPNN-ESMFold scTM Pipeline

In Figure 11 we provide additional evaluations of Genie and other methods by replacing OmegaFold with ESMFold for
protein structure prediction in scTM calculations. Overall trends remain unchanged from OmegaFold, except for an overall
decrease in the number of confidently designable domains containing β-strands.

Figure 11. Evaluation results using ESMFold. (A) Heatmap of the relative frequencies of generated domains with specific combinations
of highest scTM and pLDDT values achieved by ProtDiff, FoldingDiff, and Genie. (B) Heatmap of relative frequencies of confidently
designable domains with specific combinations of fractional SSE content. The number of designed domains for each model is shown in
parentheses. (C) Heatmap of relative frequencies of our SCOPe dataset. This diagram uses the same color scheme as (B) and is provided
for reference. (D) Histogram of confidently designable domains as a function of sequence length. (E) Bar chart of number of designable
domains generated by different methods out of a fixed budget of 780 attempted designs per method.
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C.2. Visualization of Genie’s Design Space

Figure 12. Design space of Genie. 455 Genie-generated structures that are confidently designable were embedded in 2D space using
multidimensional scaling (MDS) with pairwise TM scores as the distance metric. Domains are colored by their maximum TM score
to the training set (central panel), fraction of helical residues (top left panel), fraction of beta strand residues (middle left panel), and
sequence length (bottom left panel). Eight novel designed domains are shown as representatives.
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C.3. Visualizations of Genie-Generated Protein Backbones

We provide additional visualizations of Genie-generated domains that are novel and confidently designable in Figure 13.

Figure 13. Additional examples of novel and confidently designable domains generated by Genie.
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D. Additional Evaluation Results for Long Models
D.1. Discussion on the Effect of Sampling Noise Scale

Figure 14 shows the effect of sampling noise scale on designability, diversity, and F1 score for RFDiffusion, FrameDiff,
and Genie. Generally, lower sampling noise leads to higher quality structures at a cost of lower diversity. With a sampling
noise scale of 0.4, Genie achieves an optimal balance between sample quality and sample diversity.

Figure 14. Additional examples of novel and confidently designable domains generated by Genie.
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D.2. Visualizations of the Distribution of scRMSD/scTM versus pLDDT for Long Models

Figure 15. Visualizations of the distribution of scRMSDs/scTMs versus pLDDTs for long models. (A) Heatmap of relative frequencies
of generated structures with specific combinations of lowest scRMSD and pLDDT. Higher density in the top left region indicates higher
sampling quality. (B) Heatmap of relative frequencies of generated structures with specific combinations of highest scTM and pLDDT.
Higher density in the top right region indicates higher sampling quality.
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D.3. Visualization of Tertiary Diversity versus Designability

Figure 16. Heatmap of relative frequencies of generated structures with specific combinations of lowest scRMSD and maximum TM
scores to generated structures for Genie and long models. This equivalently shows the density of generated structures on designability
versus tertiary diversity. Higher density in the lower left region indicates higher designability and diversity.
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D.4. Visualization of Novelty versus Designability

Figure 17. Heatmap of relative frequencies of generated structures with specific combinations of lowest scRMSD and maximum TM
scores to PDB structures for Genie and long models. This equivalently shows the density of generated structures on designability versus
novelty. Higher density in the lower left region indicates higher designability and novelty.
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D.5. Visualizations of Protein Backbones Generated by Genie-SwissProt

Figure 18. Additional examples of novel and confidently designable structures generated by Genie-SwissProt.
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