
Text Generation with Diffusion Language Models: A Pre-training Approach
with Continuous Paragraph Denoise

Zhenghao Lin 1 2 3 Yeyun Gong 4 Yelong Shen 5 Tong Wu 6 2 Zhihao Fan 7 2

Chen Lin 1 3 Nan Duan 4 Weizhu Chen 5

Abstract

In this paper, we introduce a novel dIffusion
language modEl pre-training framework for text
generation, which we call GENIE. GENIE is a
large-scale pre-trained diffusion language model
that consists of an encoder and a diffusion-based
decoder, which can generate text by gradually
transforming a random noise sequence into a
coherent text sequence. To pre-train GENIE
on a large-scale language corpus, we design a
new continuous paragraph denoise objective,
which encourages the diffusion-decoder to
reconstruct a clean text paragraph from a
corrupted version while preserving the semantic
and syntactic coherence. We evaluate GENIE
on four downstream text generation benchmarks,
namely XSUM, CNN/DAILYMAIL, GIGA-
WORD, and COMMONGEN. Our experimental
results show that GENIE achieves comparable
performance with the state-of-the-art autore-
gressive models on these benchmarks, and
generates more diverse text samples. The
code and models of GENIE are available
at https://github.com/microsoft/
ProphetNet/tree/master/GENIE.

1. Introduction
Text generation is a crucial task in natural language process-
ing, which aims to produce fluent and coherent texts for var-
ious applications. Previous text generation methods mainly
relied on recurrent neural networks (RNNs) (Pawade et al.,
2018; Song et al., 2018; Gu et al., 2016a; Qi et al., 2021),
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which generate texts sequentially from left to right. How-
ever, RNNs suffer from issues such as long-term dependency
and exposure bias. Recently, Transformer (Vaswani et al.,
2017b), a self-attention-based neural network, has emerged
as the dominant paradigm for text generation, thanks to its
ability to capture global dependencies and leverage large-
scale pre-trained language models (Qi et al., 2020; Lewis
et al., 2019; Raffel et al., 2020a). Transformer-based meth-
ods typically adopt an encoder-decoder architecture, where
the encoder maps the input text to a sequence of hidden vec-
tors, and the decoder generates the output text either autore-
gressively (AR) or non-autoregressively (NAR). Generally,
AR decoding is more accurate but slower, as it predicts each
word conditioned on the previous ones. NAR decoding is
faster but less precise, as it predicts all words simultaneously
without modeling their dependencies.

This paper presents a new text generation approach, called
GENIE, that integrates the diffusion model and Transformer-
based method. The diffusion model is a generative model
that reverses a stochastic process of adding noise to the data
and has shown promising results in image (Ho et al., 2020;
Song et al., 2020), molecule (Hoogeboom et al., 2022),
video (Ho et al., 2022), and text (Li et al., 2022b; Gong
et al., 2022; Strudel et al., 2022; Reid et al., 2022) generation.
GENIE follows the encoder-decoder architecture, where the
encoder transforms the input text to hidden vectors, and
the diffusion model restores the output text from a random
Gaussian noise, guided by the encoder’s hidden vectors.
The diffusion model iterates over multiple time steps and
gradually denoises the output text at each step.

To leverage the large-scale unlabeled text data, we also pro-
pose an end-to-end pre-training method for GENIE. Unlike
the existing pre-training tasks that involve masking or split-
ting tokens or texts (Qi et al., 2020; Lewis et al., 2019; Raffel
et al., 2020a), we design a novel pre-training task, called
continuous paragraph denoise (CPD). CPD requires the
model to predict the noise added to continuous paragraphs
in the current time step, given the paragraph context and the
noisy paragraph information.

We evaluate GENIE on four popular text generation bench-
marks: XSum (Narayan et al., 2018), CNN/DailyMail (Her-
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mann et al., 2015), Gigaword (Rush et al., 2015), and Com-
monGen (Lin et al., 2019). The experimental results demon-
strate that GENIE achieves competitive performance with
Transformer-based AR methods, and that the proposed pre-
training method can effectively improve the performance.
We notice that GENIE has significantly increased the diver-
sity of the generated texts. To evaluate the multiple outputs
of the generation model, we design an automatic annotation
method based on the large language model. We also conduct
ablation studies to analyze the impact of the diffusion steps
and pre-training steps.

The main contributions of this work are summarized as
follows:

• We propose GENIE, the first large-scale language
pre-trained model based on the diffusion framework,
which can generate high-quality texts for sequence-to-
sequence tasks.

• We introduce a novel CPD loss as the pre-training
objective, which can enhance the model’s ability to
denoise noisy texts and capture paragraph-level coher-
ence.

• We validate the effectiveness of the pre-trained diffu-
sion model on downstream tasks, and design a new
automatic annotation method for the evaluation based
on a large language model. We also provide extensive
analyses of the model’s behavior and properties.

2. Preliminary
2.1. Task Definition

In the classical sequence-to-sequence task, given a source
text s = {ws1, ws2, . . . , wsn} with n tokens, it generates tar-
get text sequence y = {wy1 , w

y
2 , . . . , w

y
n}. A sequence gen-

eration model can achieve this by modeling the conditional
probability: p (y | s).

2.2. Diffusion model

In the diffusion model, the diffusion process can be regarded
as a discrete-time Markov process. The diffusion process
starts with the initial state x0 at time step t = 0, where x0

is the Gaussian distribution of the original data. It gradually
adds Gaussian noises to x0 in the forward diffusion process
according to a variance schedule β1, ..., βT . At the time step
t+ 1, the latent variable xt+1 is only determined by the xt
at time t, expressed as:

q (xt+1 | xt) = N
(
xt+1;

√
1− βt+1xt, βt+1I

)
. (1)

As t increases, xt becomes closer to standard Gaussian
noise N (xT ; 0, I).

The diffusion model learns to perform the inverse diffusion
process during generation, which predicts the noise given
the current state xt at time step t. The previous state xt−1
can be reconstructed by subtracting the noise and re-scaling
the mean. Thus, the distribution of xt−1 given xt is a
Gaussian with mean µt−1θ and variance σt−1θ

2
:

p (xt−1 | xt) = N
(
xt−1;µt−1

θ , σt−1
θ

)
, (2)

µt−1
θ =

1√
αt

(
xt −

βt√
1− ᾱt

zθ (xt, t)

)
, (3)

σt−1
θ

2
=

1− ᾱt−1

1− ᾱt
· βt, (4)

where αt = 1 − βt, ᾱt =
∏t
i=1 αi and zθ is predicted by

a neural network parameterized by θ. The diffusion model
is trained by minimizing the mean squared error between
µt−1θ and the true mean µ̂t−1, which is computed from the
reverse conditional distribution q(xt−1|xt,x0):

q (xt−1 | xt,x0) = N
(
xt−1; µ̂t−1, β̂t−1I

)
, (5)

µ̂t−1
θ =

√
ᾱt−1βt

1− ᾱt
x0 +

√
αt (1− ᾱt−1)

1− ᾱt
xt. (6)

Following the variational lower bound (VLB) approach (Ho
et al., 2020), the diffusion model can be trained by minimiz-
ing the loss function:

Ldiff =

T∑
t=1

E
q(xt|x0)

∥∥µt−1
θ − µ̂t−1

∥∥2 . (7)

3. Model
GENIE is the proposed diffusion language model for pre-
training, it adopts the sequence-to-sequence framework
as illustrated in Figure 1. GENIE could generate a high-
quality text sequence y given a source text s, such as pro-
ducing y : Messi’s performance from s : In the World
Cup 2022, [MASK] won people’s praise.. To achieve this,
GENIE leverages two components: a bidirectional encoder
model and a cross-attention diffusion model. The encoder
model encodes the source text s into a set of hidden vec-
tors Hs = Encoder(s), which indicates the distributed
representation of s. The diffusion model takes Hs and a
Gaussian noise as inputs, and iteratively refines the data by
applying a sequence of denoising operations. In contrast
to the traditional autoregressive text generation paradigm,
which generates one token at a time, the diffusion model in
GENIE outputs the sequence of embeddings in parallel at
each denoising step, making GENIE a non-autoregressive
generation (NAR) model.
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Figure 1. The framework of GENIE. We take the masked source sequence s as the input of the Encoder to obtain the hidden information
Hs, and interact with Language Diffusion Model through cross attention. The language Diffusion Model restores the randomly initial
Gaussian noise to the output text y through the iterative denoising and grounding process.

Encoder The encoder in GENIE is a 6-layer transformer
model which takes the source text s as input with bidi-
rectional self-attention. Specifically, given a source text
sequence s = {ws1, ws2, . . . , wsn} with n tokens, the encoder
model computes the vector hi for each token wi. Thus,
the source text s can be represented as Hs by the encoder
model:

Hs = {h1,h2, ...,hn} = Encoder(s). (8)

Language Diffusion Model The diffusion model in
GENIE is a 6-layer transformer with cross-attention on the
source text representation Hs. It learns to predict Gaussian
noise zθ (xt, t,Hs) conditioned on the current diffusion
step t and the state xt, where xt is the continuous latent
representation of the target text. We use an embedding func-
tion and a clamping trick to ground the continuous state xt
with discrete target tokens, which will be elaborated in the
following section.

Inference Phase To generate text from the diffusion
model, we start from the final step t = T and sample a
state xT from a standard Gaussian distribution. Then we
iteratively generate the noise for the previous step using
equations 3 and 4, and subtract it from the current state to
obtain xt−1. After arriving at t = 0, we apply the clamp-
ing trick (Li et al., 2022b) to replace the values of x0 with
its closest word embeddings, and then decode the discrete
tokens from x0.

Training Phase To train the diffusion model for sequence-
to-sequence tasks, we first convert the target sequence

y = {wy1 , w
y
2 , . . . , w

y
n} into a continuous state x0 using

the embedding function with an additional Gaussian noise
permutation, which can be expressed as:

q(x0|y) = N (x0; Emb(y), β0I) , (9)

where Emb(·) is embedding function, β0 represents the
scaling of variance at time step t = 0. Then we apply the
forward diffusion process (equation 1) to obtain the state xt
at any step t as a function of x0, as shown in equation:

q(xt|x0) = N
(
xt;
√
ᾱtx0,

√
1− ᾱtI

)
, (10)

where ᾱt =
∏t
i=1 αi. In the training phase, we sample

a random step t to calculate xt, and then use the denois-
ing architecture to predict the noise for that step, based
on the cross-attention with the source representation Hs.
The mean and variance of the predicted noise are given by
equations 11:

µt−1
θ =

1√
αt

(
xt −

βt√
1− ᾱt

zθ (xt, t,Hs)

)
, (11)

where zθ is the output of the denoising architecture and θ
are its parameters. The training objective is to minimize
the squared error between the predicted and true noise, as
well as the reconstruction error between x0 and the target
embeddings, as expressed in equation 12:

Ls2s = E
q(x0:T |y)

[

T∑
t=1

∥∥µt−1θ − µ̂t−1
∥∥2 (12)

+
∥∥Emb(y)− µ0

θ

∥∥2 − log pθ(y|x0)],
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where pθ(y|x0) =
∏n
i=1 pθ(w

y
i |x0), represents mapping

the continuous latent variable x0 into the discrete space
token wyi .

3.1. Pre-training GENIE

Diffusion models have great potential for natural language
generation (NLG) due to their ability to produce diverse
outputs. However, they have been largely overlooked in
NLG because of their slow convergence and low quality
compared to autoregressive models. In this section, we ad-
dress these challenges by pre-training a diffusion language
model and introducing a novel, tailored pre-training task.
The novel pre-training task we propose is called continuous
paragraph denoise (CPD). CPD aims to train the model to
predict the noise added to a continuous paragraph in the cur-
rent diffusion step, given the paragraph and its surrounding
context.

Specifically, given a document d = {wd1 , wd2 , . . . , wdl }
with l words, we randomly select a paragraph p =
{wp1 , w

p
2 , . . . , w

p
m} from d, where m = bγ ∗ lc is

the paragraph length and γ is a predefined ratio. We
mask the paragraph in the document with a special to-
ken ([MASK]), and feed the masked document d′ =
{wd′1 , wd

′

2 , . . . , [MASK], . . . , wd
′

l−m} to the GENIE en-
coder. We also apply the forward diffusion process to the
paragraph p and obtain a noisy version xt at a random step
t, and feed it to the GENIE denoising architecture. The
denoising architecture then uses the cross-attention with the
source representation Hs to predict the noise for the current
step, using equations 11. In summary, the pre-training ob-
jective of CPD is to minimize the same loss as in equation
12, except that y is replaced by p and x0 is the embedded
paragraph with noise.

Through this pre-training task, the diffusion model can en-
hance its semantic understanding of the continuous text and
its denoising ability at each diffusion step. Moreover, the
CPD task is self-supervised and does not rely on external
labeled data sources, so it can fully exploit the information
in the original pre-trained corpus.

4. Experiments and Results
In this section, we will introduce the details of GENIE pre-
training, the data setting, and show extensive experimental
results on various NLG downstream tasks.

4.1. GENIE Pre-training

Model Framework Our model uses a 6-layer transformer
as the the encoder, and a 6-layer cross-attention transformer
as the denoising architecture. In particular, in denoising
architecture, we use the random embedding function to map
discrete tokens into continuous variables. We set the latent

variable dim to 768 and embedding dim to 128.

Pre-training Data Recent works have shown that pre-
training on large-scale corpus can improve the performance
of the model on downstream tasks (Lewis et al., 2019; Qi
et al., 2020), which is also applicable to GENIE based on
the diffusion model. Following BART (Lewis et al., 2019),
we use pre-training data consisting of 160Gb of news, books,
stories, and web text. We segment sentences belonging to
different chapters and ensure that the input text length does
not exceed 512.

Pre-training Setting We use the CPD task mentioned in
§3.1 to pre-train GENIE on a large-scale corpus. The pro-
portion of continuous paragraph γ sets to 30%. Hence, for
the 512-length input, the target length is 153. We randomly
extract 153 length targets from the input text and leave the
[MASK] token at the extracted position. In the training
process, we use Adam optimizer (Kingma & Ba, 2015) with
a learning rate 1e-4, and we set the batch size to 512. We
pre-trained our model on 8 × 40GB NVIDIA A100 GPUs
with 5 million steps, lasting for 50 days. In the fine-tuning
phase, we use the final pre-training model checkpoint to
conduct fine-tuning on various downstream tasks.

4.2. Fine-tune on Downstream Tasks

To verify the effectiveness of pre-training on GENIE based
on the diffusion model, we fine-tune and verify the effect of
GENIE on various downstream tasks. Through the above
task, we can prove that the pre-trained GENIE can quickly
adapt to different types of NLG tasks without long-time
training like other diffusion models.

Text Summarization As an important task in the NLG
field, text summarization aims to summarize long docu-
ments into fluent short texts. In the experiment, we selected
three widely used datasets: (a) GIGAWORD corpus (Rush
et al., 2015), (b) CNN/DAILYMAIL (Hermann et al., 2015),
and (c) XSUM (Narayan et al., 2018). In the process of fine-
tuning, we set the learning rate to 5e-5 and the 120K training
steps for all three datasets. In the inference process, we ran-
domly sample 10 Gaussian noises for iteration denoising,
and use the highest score as the final generated result. For
different sample numbers, please refer to Appendix C. Dur-
ing evaluation, we following the existing work (Lewis et al.,
2019; Qi et al., 2020), reporting F1 scores of ROUGE-1,
ROUGE-2, and ROUGE-L on test set.

Common Sense Generation Common sense generation
tasks require the model to have the ability of generative com-
monsense reasoning. Specifically, given a series of common
sense concepts, the model needs to generate coherent state-
ments based on these concepts that adhere to real-world
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Table 1. Results of Semi-NAR, NAR and AR on XSUM. Index OVERALL represents the average value of ROUGE-1, ROUGE-2 and
ROUGE-L. It should be noted that GENIE belongs to Semi-NAR.

Methods Pattern XSUM
ROUGE-1 ROUGE-2 ROUGE-L OVERALL

NAT (Gu et al., 2017)

NAR

24.0 3.9 20.3 16.1
iNAT (Lee et al., 2018) 24.0 4.0 20.4 16.1
CMLM (Ghazvininejad et al., 2019) 23.8 3.6 20.2 15.9
LevT (Gu et al., 2019b) 24.8 4.2 20.9 16.6
BANG (Qi et al., 2021) 32.6 9.0 27.4 23.0
ELMER (Li et al., 2022a) 38.3 14.2 29.9 27.5
LSTM (Greff et al., 2017)

AR

25.1 6.9 19.9 17.3
Transformer (Vaswani et al., 2017b) 30.7 10.8 24.5 22.0
MASS (Song et al., 2019) 39.7 17.2 31.9 29.6
BART (Lewis et al., 2019) 39.8 17.2 32.2 29.7
ProphetNet (Qi et al., 2020) 39.9 17.1 32.1 29.7
BANG (Qi et al., 2021) 41.1 18.4 33.2 30.9
InsT (Stern et al., 2019)

Semi-NAR

17.7 5.2 16.1 13.0
iNAT (Lee et al., 2018) 27.0 6.9 22.4 18.8
CMLM (Ghazvininejad et al., 2019) 29.1 7.7 23.0 20.0
LevT (Gu et al., 2019b) 25.3 7.4 21.5 18.1
BANG (Qi et al., 2021) 34.7 11.7 29.2 25.2
GENIE (w/o pre-train) 38.9 17.5 31.0 29.1
GENIE 42.9 21.4 35.1 33.2

Table 2. The main results on CNN/DAILYMAIL and GIGAWORD.
Method CNN/DAILYMAIL GIGAWORD

ROUGE-1 ROUGE-2 ROUGE-L ROUGE-1 ROUGE-2 ROUGE-L
NAG-BERT (Su et al., 2021) - - - 35.1 16.5 33.3
LSTM (Greff et al., 2017) 37.3 15.7 34.4 34.2 16.0 31.8
Transformer (Vaswani et al., 2017a) 39.5 16.7 36.7 37.1 18.4 34.5
BART (Lewis et al., 2019) 41.3 19.4 38.1 38.6 19.5 35.7
MASS (Song et al., 2019) 42.1 19.5 39.0 38.7 19.7 35.9
ProphetNet (Qi et al., 2020) 42.5 19.7 39.5 38.9 19.9 36.0
GENIE (w/o pre-train) 43.8 20.6 41.2 43.7 23.3 40.8
GENIE 45.6 23.2 43.1 45.7 25.8 42.9

scenarios. We select the widely used dataset COMMON-
GEN (Lin et al., 2019) to evaluate whether GENIE has good
creativity and reasoning ability in natural language gener-
ating. In the fine-tuning phase, we set the learning rate
to 1e-4 and train the model for 10k steps in total. Finally,
we randomly sampled 10 Gaussian noises and selected the
best sample as the final result. Referring to the previous
work (Lin et al., 2019), we reported the indicators includ-
ing F1 scores of ROUGE-2/L, BLEU-3/4, CIDEr, and
SPICE.

4.3. Baselines

We compare GENIE with the baselines of several main-
stream methods. Specifically, these methods can be divided
into two groups. The first group is the NAR model, in-
cluding NAT (Gu et al., 2017), iNAT (Lee et al., 2018),
NAG-BERT (Su et al., 2021), CMLM (Ghazvininejad et al.,
2019), LevT (Gu et al., 2019b), ConstLeven (Susanto et al.,
2020), BANG (Qi et al., 2021), ELMER (Li et al., 2022a)
and InsT (Stern et al., 2019). Among them, InsT, iNAT,

CMLM, LevT, ConstLeven, and BANG can also be used
in Semi-NAR, which can optimize the generation quality
through multiple NAR iterations. It is worth noting that
GENIE also belongs to the Semi-NAR model.

The second group is AR model, the model of encoder-
decoder structure including LSTM (Greff et al., 2017),
Transformer (Vaswani et al., 2017a), bRNN-CopyNet (Gu
et al., 2016a), Trans-CopyNet (Lin et al., 2019),
MeanPooling-CopyNet (Lin et al., 2019) without pre-
training, and strong baselines MASS (Song et al., 2019),
BART (Lewis et al., 2019), T5 (Raffel et al., 2020b),
BANG (Qi et al., 2021), and ProphetNet (Qi et al., 2020)
with large scale pre-training. For large-scale pre-training
models mentioned above, we select the base version of the
model, which is equivalent to the total number of GENIE
parameters.

4.4. Main Results

We present the results of GENIE and the baselines on
XSUM, CNN/DAILYMAIL, GIGAWORD, COMMONGEN in
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Table 3. The main results on COMMONGEN.
Method COMMONGEN

ROUGE-2/L BLEU-3/4 CIDEr SPICE
bRNN-CopyNet (Gu et al., 2016b) 9.2 30.6 13.6 7.8 6.0 16.9
Trans-CopyNet (Lin et al., 2019) 11.1 32.6 17.2 10.6 7.0 18.0
MeanPooling-CopyNet (Lin et al., 2019) 11.4 34.6 14.8 8.9 7.2 20.2
LevT (Gu et al., 2019a) 12.2 35.4 23.1 15.0 8.9 21.4
ConstLeven (Susanto et al., 2020) 13.5 35.2 21.3 12.3 11.1 23.2
T5-Base (Raffel et al., 2020b) 15.3 36.2 28.1 18.0 9.7 23.4
GENIE (w/o pre-train) 14.6 36.0 21.0 12.5 8.1 20.6
GENIE 26.2 43.9 29.5 19.6 10.3 23.4

Table 1, Table 2, and Table 3. Our results demonstrate that
the pre-trained GENIE is a powerful NAR model for text
generation. Especially on the XSUM dataset, GENIE outper-
forms other NAR and Semi-NAR methods by a large mar-
gin, and on all three text summarization datasets, GENIE
achieves comparable quality to the pre-trained AR model.
In addition, GENIE shows creativity and logic in common
sense generation tasks. On COMMONGEN, GENIE sur-
passes other baseline models, including T5 which has been
pre-trained on a large-scale corpus.

We also compare the pre-trained GENIE and GENIE trained
from scratch (w/o pre-train). As shown in Table 1 and Ta-
ble 2, pre-training significantly improves the ROUGE-1,
ROUGE-2, ROUGE-L scores of GENIE on the three text
summarization datasets. Similarly, the results on COM-
MONGEN in Table 3 indicate that pre-training enhances the
performance of GENIE on this task. These results confirm
the effectiveness of our pre-training method.

4.5. Generate Diversity Comparison

With the emergence of the diffusion-based model such as
GENIE, the advantages of text generation in diversity will
be gradually valued. In this experiment, we will use both
quantitative metrics and qualitative examples to show the
richness of GENIE in text generation.

To measure the diversity of GENIE generation, we use
SELF-BLEU as the metric. The lower the SELF-BLEU
score, the more diverse the generated texts are. For compar-
ison, we use BART, a state-of-the-art autoregressive model,
which is pre-trained on large-scale corpora. For BART, we
apply different decoding methods of autoregressive models,
such as greedy search, beam search (Xiao et al., 2022), di-
verse beam search (diversity strength = 0.8) (Vijayakumar
et al., 2016), typical sampling (τ = 1.2) (Meister et al.,
2022), top-k sampling (k = 50) (Fan et al., 2018), and nu-
cleus sampling (p = 0.92) (Holtzman et al., 2020). These
decoding methods can generate multiple texts from the same
source sequence. In this experiment, we generate 10 differ-
ent target sequences for each source sequence using GENIE
and BART. Then we use the 10 summaries generated from
XSUM, CNN/DAILYMAIL, and GIGAWORD to calculate

the SELF-BLEU scores.

As shown in Table 4, although the diversity of autoregres-
sive generation can be slightly improved by using diverse
beam search or some sampling methods with BART, the
improvement is not significant. On the other hand, the diver-
sity of generation is greatly enhanced by using the GENIE.
The large gaps in SELF-BLEU indicate that GENIE can
generate more diverse texts, not just varying a few words.

To complement the quantitative metrics, we also provide
a case study in Appendix A to analyze the quality of the
texts generated by BART and GENIE. We find that the au-
toregressive generation method can produce high-quality
texts when there is only one output, but when generating
multiple outputs, even with different decoding methods, it
is hard to increase its diversity, and there may be many re-
peated prefixes. In contrast, the diffusion generation method
can maintain the quality of generation while offering rich
diversity.

However, it may not be fair to compare GENIE directly with
the single reference to prove that GENIE can achieve diver-
sity without compromising quality. Therefore, we design
a new evaluation method. We use text-davinci-003
version of InstructGPT (Ouyang et al., 2022), which is based
on the large language model (LLM) GPT-3.5, to score our
generated texts, that is, to evaluate the quality of the gen-
erated summaries. Specifically, we first obtain the sample
set (10 summaries generated by BART using diverse beam
search and 10 summaries generated by GENIE), and design
a prompt to input into text-davinci-003 to score the
generated summaries, while counting the number of high-
quality summaries within the 10 summaries generated by
BART and GENIE respectively. We conduct the experiment
on the three different text summarization datasets and use
two evaluation methods, Average Summary Score represents
the average score given by text-davinci-003, ranging
from 1 to 3, and Average High-quality Summary represents
the average number of high-quality summaries in 10 sam-
ples, ranging from 0 to 10. For more detailed experimental
settings, please refer to Appendix B.

As shown in Table 5, although GENIE’s scores are slightly
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Table 4. SELF-BLEU score of BART and GENIE generated results. For each data sample, we use BART and GENIE to generate 10
summaries to evaluate diversity.

Model Generate Method XSUM CNN/DAILYMAIL GIGAWORD

BART

Greedy Search 100.0 100.0 100.0
Beam Search 93.4 96.2 90.2

Diverse Beam Search 75.6 84.1 71.8
Typical Sample 76.9 84.6 80.1
Top-k Sample 80.2 85.2 82.6

Nucleus Sample 79.1 83.5 79.4
GENIE Diffusion 29.3 37.6 39.9

Table 5. Large language model evaluation on three summarization benchmarks.
Method XSUM CNN/DAILYMAIL GIGAWORD

BART GENIE BART GENIE BART GENIE
Average Summary Score 2.69 2.58 2.96 2.90 2.58 2.46

Average High-quality Summary 6.91 5.95 9.66 9.04 5.99 4.99

Table 6. Effect of pre-training step, on XSUM. The result is the
optimal value of 5 Gaussian samples.

Model ROUGE-1 ROUGE-2 ROUGE-L
w/o pre-train 37.3 15.3 29.4
GENIE(100w) 39.4 17.1 31.5
GENIE(200w) 40.4 18.2 32.5
GENIE(300w) 40.6 18.5 32.8
GENIE(400w) 40.9 18.7 33.0
GENIE(500w) 41.2 19.1 33.4

Table 7. Effect of the proportion of continuous paragraphs, on
XSUM. The result is the optimal value of 5 Gaussian samples.

CPD Proportion ROUGE-1 ROUGE-2 ROUGE-L
γ = 15% 40.24±0.03 18.03±0.01 32.30±0.02

γ = 20% 40.14±0.10 17.90±0.04 32.21±0.08

γ = 25% 40.24±0.10 18.12±0.04 32.37±0.04

γ = 30% 40.37±0.04 18.20±0.02 32.58±0.05

γ = 35% 40.29±0.06 18.18±0.02 32.45±0.06

γ = 40% 40.15±0.08 17.87±0.07 32.12±0.09

lower than BART’s, according to the results in Table 4, the
diversity of samples generated by BART is much lower than
GENIE. Given the trade-off between diversity and quality,
the score difference is within the acceptable range. More-
over, the result of Average High-quality Summary shows
that there are still enough high-quality summaries in the
case of high diversity. Such advantages of GENIE deserve
our attention and further exploration in our future work.

4.6. Impact of Pre-training Steps

Our pre-training method and the diffusion model are de-
signed to achieve long-term convergence and unlimited po-
tential, but they also require a large amount of pre-training
time. Here we investigate how the pre-training steps af-
fect the performance of our model compared with a non-

Table 8. Difference between uniform time schedule sample(UI)
and loss aware sample(LA), on XSUM. The result is the optimal
value of 5 Gaussian samples.

Method ROUGE-1 ROUGE-2 ROUGE-L
γ = 15%,UI 40.24±0.03 18.03±0.01 32.30±0.02

γ = 15%,LA 40.06±0.04 17.90±0.02 32.17±0.05

γ = 30%,UI 40.37±0.04 18.20±0.02 32.58±0.05

γ = 30%,LA 40.18±0.03 17.94±0.02 32.24±0.02

pre-trained GENIE on the XSUM dataset. We fine-tune
the checkpoints obtained at 1 million step intervals from
pre-training and evaluate them using 5 random Gaussian
noises, selecting the highest score as the final result. As
shown in Table 6, pre-training for only 1 million steps can
significantly improve the quality of generation over the non-
pre-trained GENIE. Moreover, we can see from the results
that pre-training continues to steadily boost the performance
of the GENIE on the downstream task as the pre-training
steps increase.

4.7. Impact of Pre-training Parameters

In this subsection, we examine the effect of important pre-
training parameters on the pre-training performance. First,
in the unsupervised pre-training method CPD, we need to
explore how the proportion of continuous paragraphs γ
influences the pre-training performance. We vary the value
of γ from 15% to 40% (with 5% intervals) and conduct
2 million pre-training steps for each value. After the pre-
training, we evaluate the pre-training effect by fine-tuning
on XSUM. For a rigorous evaluation, we sample 5 Gaussian
noises, repeat the experiment 5 times with different random
seeds, and report the mean and standard deviation of the
results, each time choosing the highest score as the final
result. As shown in Table 7, too large or too small values
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Figure 2. Effect of different diffusion steps on text generation qual-
ity, on XSUM. The result is the optimal value of 5 Gaussian
samples.

Table 9. Using the same time step T during the training and infer-
ence phases. The result is the optimal value of 5 Gaussian samples,
on XSUM.

Total Time Step ROUGE-1 ROUGE-2 ROUGE-L
T=25 40.3 18.0 32.4
T=50 40.7 18.5 32.9
T=100 40.9 18.7 33.1
T=200 41.1 18.7 33.2
T=500 41.1 18.8 33.2
T=1000 41.1 18.9 33.2
T=2000 41.2 19.1 33.4

of γ lead to instability and poor performance of the pre-
trained model. Pre-training is more stable and effective
when γ = 30%.

Second, we investigate the time step sampling method used
in the pre-training. Before each training step, we need to
sample a time step as part of the model input. The exist-
ing two common time step sampling methods are uniform
sample and loss-aware sample. The former assigns equal
probabilities to each time step, while the latter updates the
sampling weights according to the training loss, so that
more important time steps have higher chances of being
sampled. In the experiment, we use these two sampling
methods, test them on two different values of γ (15% and
30%), and perform a rigorous evaluation similar to the pre-
vious experiment. As shown in Table 8, we observe that
under 2 million steps of pre-training, the uniform sample
outperforms the loss-aware sample for different values of
γ. Intuitively, although the loss-aware sample can speed
up the convergence of the diffusion model, we hope that
the model can learn sufficient knowledge at each time step
during the pre-training, so that it can converge faster and
perform better on downstream tasks.

Table 10. Generate sequences with length of 100 using batch
size=1 and batch size=100, and compare the generation speed.

Model batch = 1(s) batch = 100(s, s/Sample)
BART 1.81 19.33, 0.19
GENIE(T=25) 0.61 4.62, 0.046
GENIE(T=50) 1.21 9.25, 0.093
GENIE(T=100) 2.43 19.18, 0.19
GENIE(T=200) 4.79 38.32, 0.38
GENIE(T=500) 11.71 96.12, 0.96
GENIE(T=1000) 23.72 193.71, 1.94
GENIE(T=2000) 47.63 387.79, 3.88

4.8. Impact of Diffusion Time Step

The number of diffusion time steps has a great impact on the
quality of generation. We explore how the GENIE performs
under two different settings for diffusion steps on the XSUM
dataset.

Assuming that the total number of diffusion steps T = 2000,
we set the interval step of inverse diffusion to 1, 2, 4, 8, 20,
and the corresponding numbers of inverse diffusion steps are
2000, 1000, 500, 250, 100. In this experiment, we sample
5 Gaussian noises and choose the best denoising result. As
shown in Figure 2, we can clearly see that when the number
of inverse diffusion steps is small, the quality of generation
with GENIE deteriorates significantly. As the number of
inverse diffusion steps increases to 1000, the generation
quality of GENIE becomes stable.

In the second experimental setting, we make the total num-
ber of diffusion time steps T in the fine-tuning and inference
phase consistent. Specifically, we set different total time
steps T = 25, 50, 100, 200, 500, 1000, 2000, and discuss
the performance of the fine-tuned model in the correspond-
ing time steps on the downstream tasks. The experimental
results (XSum) under the second experimental setup are
shown in Table 9. We found that under this setting, GENIE
has less loss in generation quality and can generate text
more quickly at the expense of a bit of quality.

Moreover, we hope to present the generation speed of the
GENIE at different diffusion time steps through specific met-
rics. Specifically, we set batch size=1 and batch size=100
to generate sequences with a length of 100, and record the
generation time. For the setting of batch size=100, we si-
multaneously calculate the time required to generate a batch
of text and the average time required to generate each sam-
ple. As shown in Table 10, we calculated the time required
to generate text under different diffusion time steps, and
compared it with the autoregression model BART under the
same settings. It can be found that the generation speed of
the BART and GENIE is similar when the time step T=100.
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5. Related Work
5.1. Large Scale Pre-training Language Models

Recently, a major breakthrough has been made in the model
of pre-training on large scale corpus. As unidirectional lan-
guage models, GPT (Radford et al., 2018), GPT2 (Radford
et al., 2019) modeling the text based on left-to-right, and pre-
dict the next token according to the token appearing on the
left. At the same time, bidirectional language models, which
uses bidirectional encoder to model text, can obtain better
context sensitive representation, such as BERT (Devlin et al.,
2019) and RoBERT (Liu et al., 2019). RoBERT optimizes
pre-training tasks compared to BERT, both of which signifi-
cantly improve the ability of natural language understanding.
In order to improve the performance of the large scale pre-
training model in natural language generation, some works
has designed pre-training tasks based on the standard frame-
work of sequence-to-sequence. MASS (Song et al., 2019)
lets the model predict the short masked token span step by
step, while ProphetNet (Qi et al., 2020) predict more words
in each step to ease local over fitting.

5.2. Diffusion Models for Text

In recent years, diffusion model has achieved great suc-
cess in the domains of image generation (Ramesh et al.,
2022; Saharia et al., 2022; Rombach et al., 2022). Be-
cause of its amazing generation quality, some works ap-
ply diffusion model in text generation domains. Diffusion-
LM (Li et al., 2022b) maps discrete tokens into continuous
latent variable, achieving more complex controllable text
generation through continuous diffusion. In the field of
text revision where non-autoregressive method is widely
used, DiffusER (Reid et al., 2022) also uses the diffusion
model to implement the edit based generative processes.
DiffuSeq (Gong et al., 2022) achieves conditional text gen-
eration with a new method which controlled information
is also involved in the diffusion process. Different from
the above work, we build a novel language model based
on the diffusion model for the first time, using the standard
enocoder-decoder framework. For our best knowledge, we
are the first to adopt large scale pre-training on the language
model based on the diffusion model.

6. Conclusion
In this paper, we have presented a novel diffusion language
model GENIE, which leverages a large-scale corpus for pre-
training. Our model adopts a sequence-to-sequence frame-
work, where a bidirectional encoder encodes the source se-
quence and a denoising decoder predicts and removes noise
from the target sequence in a non-auto-regressive fashion.
This design allows us to generate diverse text by gradually
refining the output from a noisy initial state. Moreover,

we have introduced a new pre-training method called con-
tinuous paragraph denoise, which aims to denoise whole
paragraphs as the target sequence. Our experiments on
various NLG tasks demonstrate that GENIE can produce
high-quality and diverse text, and validate the benefits of
pre-training our diffusion model on a large-scale corpus.
However, the inference speed and training speed of text
diffusion models still need to be improved. In the future,
how to achieve a fast and better text generation diffusion
model is a direction worthy of in-depth research.
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A. Case Study
In the section§4, we have made a rigorous analysis of the
quality and diversity of GENIE. We hope that by comparing
diffusion model with traditional autoregressive generation
models, we can find the potential of diffusion model in
natural language generation tasks. Nowadays, most of the
excellent language generation models belong to autoregres-
sive generation models, but at the same time, we also need
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Table 11. Summary examples of BART and GENIE generated results.

source sequence I
(abbreviated)

Those who participated in the Aberdeen Children of the 1950s project, which saw all primary
pupils aged seven to 12 surveyed by the Medical Research Council in 1962, have been contacted.
They have been asked to take part in the Scottish Family Health Study. It aims to investigate why
diseases such as cancer can run in families.Those recruited will have their health tracked, with
the intention of creating a Scottish ”bio-bank” containing genetic, medical and family history
and lifestyle information. The data gathered would help future research into the prevention,
treatment and diagnosis of illnesses.

GENIE summaries I
(diffusion)

1. health information have been recruited by university school primary pupils to help improve
their lives.
2. a health project is to be recruited by learning for university researchers in scotland.
3. scientists in aberdeen are to meet experts in scotland to get more health data for their children.

BART summaries I
(diversity beam search)

1. thousands of children from aberdeen are being recruited to help scientists investigate why
diseases run in families.
2. thousands of children in scotland have been asked to take part in a new project to study their
health.
3. thousands of children in scotland have been asked to take part in a new project to study their
health..

source sequence II
(abbreviated)

Elin Jones is expected to lay out plans where some areas of Welsh forest could be transferred to
the private sector or to not for profit organisations.But she has already ruled out the widespread
sale of Welsh woodlands.Forestry Commission Wales said it would explore the feasibility of
transfer to the private sector case by case.The minister told BBC Radio Wales she plans to
”compensate” the public by buying new land for new planting or management if any forest was
sold off on a case-by-case basis.”I don’t want any stagnancy in the forest estate. I want it to work
for public benefit whether that’s economic or environmental or access benefit,” she said.”It’s my
view there should be no reduction in the publicly owned estate and I have asked the Forestry
Commission to look at how it can make that estate work harder, provide a better return for
the public.”Whether that’s in terms of public access, in terms of environmental benefit in the
production of renewable energy or biomass potential or also in terms of the economic return
from that forestry estate.”

GENIE summaries II
(diffusion)

1. the forestry minister is preparing to fill out its plan for some members of the public on wales’
forests to be reduced.
2. the forestry minister is picking forward plans to tackle some of the companies in wales to
develop a boost in the management of forests.
3. the forestry minister hopes to face plans continue on the future of wales’ forest estate to be
held to a growing and better access to the private sector.

BART summaries II
(diversity beam search)

1. the environment minister has said there should be no ”stagnancy” in the size of the welsh
forest estate.
2. the forestry minister has said there should be no ”stagnancy” in the size of the welsh forest
estate.
3. the future of wales’ forests could be decided by the environment minister.

Table 12. Example of prompt used by text-davinci-003.

Prompt Input > Deborah Steel, who was 37 and ran the Royal Standard in Ely, was last seen in the early
hours of 28 December. Her body has not been found. No further action will be taken against a 50-year-old
and a 70-year-old, both from Ely, Cambridgeshire Police said .A 72-year-old man from Ely has been
re-bailed until 17 February. Ms Steel’s disappearance was recently reclassified from a long-term missing
person inquiry to a murder inquiry by officers.

If the following sentences as summary of the above article, please assign an overall score. Scores
range from 1 to 3, 1 represents bad, 2 represents neutral, 3 represents good. The output format is ’Score: 1’.

Two of the three men arrested by detectives investigating the disappearance of a Cambridgeshire
pub landlady in 1997 have been released.

Output > Score: 3
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some new ideas and generation paradigm to make natu-
ral language generation not limited to autoregressive. The
ways of natural language generation need to be diversified
to broaden researchers’ thinking, just as the application of
diffusion model in natural language generation can bring
rich diversity to the generated text. We are excited that the
diversity of the content generated by the diffusion model
does not come from a large number of wrong words or unre-
lated texts, but from different sentence patterns and different
information obtained from the original text. This shows us
the future prospects of the diffusion model in the natural
language generation task.

In order to more intuitively show the quality of the text
generated by the diffusion model and the autoregressive
generation model, we selected two samples from the text
summarization dataset XSUM in Table 11. For each sample,
we used GENIE and BART to generate three summaries
respectively, of which the BART generation method is diver-
sity beam search. For display purposes, the source sequence
has been intercepted and abbreviated to reduce the length.
It can be seen from the generated summaries that if we
only observe one sentence of the generated summary, the
summary generated by the autoregressive model BART is
of good quality and is related to the content of the source
sequence, the generated text is relatively fluent due to the
autoregressive generation mode. But if we look at the three
generated summaries, the text generated by the autoregres-
sive model BART obviously has a lot of duplication. In the
second example, ”there should be no ’stagnancy’ in the size
of the Welsh forest estate” has repeated descriptions in two
different summaries. In the first example, there are even two
summaries that are almost identical. The difference is only
one meaningless full stop at the end. Although we use the
diversity beam search generation method when generating,
it is difficult to let the autoregressive model jump out of the
essence of iterative generation to generate creative text.

In contrast, we can see that the summary generated by
GENIE may not be as fluent as BART due to the non-
autoregressive generation mode if only from the quality
of single sentence generation. Once multiple summaries
are generated, we can observe GENIE’s creative generating
ability. In the first example, GENIE describes the medi-
cal project in the source sequence from three related direc-
tion. Health information collection, project information and
project objectives are mentioned in the generated summary.
In the second example, ”the forestry minister” mentioned
a variety of measures on the forest industry, and the three
summaries generated by GENIE described different parts re-
spectively, including the formulation of public plans, cooper-
ation with Welsh companies to promote forest management,
and the involvement of private enterprises in the forest in-
dustry. Compared with the single information ”there should
be no ’stagnancy’ in the size of the Welsh forest estate” pro-

vided by BART, although BART also provides a concise
summary, it is difficult to conclude that BART’s summary
is better, because people are accustomed to understanding
some problems from multiple perspectives in practice, rather
than a conclusive conclusion.

After analyzing the above examples, we can observe the
great potential of new language model GENIE. In the prac-
tical application of text generation, diversified generation
results can be used in many scenarios. The unique gener-
ation method of diffusion model brings new ideas to text
generation, and also lets us consider whether the single-label
text generation really meets our needs. We do not need the
diffusion model to be superior to the autoregressive gener-
ation model in all aspects. What we need is a new idea to
bring more possibilities to text generation. We believe that
the diffusion model can be widely used in text generation in
the future.

B. Large Language Model Evaluation
Recently, the large language model has been widely used in
various tasks with its amazing performance. In this paper,
we use the large language model to evaluate the quality of
the generated summary. We select text-davinci-003
as the evaluation model in our experiment, the most impor-
tant thing is the construction of the prompt which will input
into the model.

As prompt example shown in Table 12, we divide the prompt
into three parts. The first part is the text of the original arti-
cle, the middle part is the evaluation requirements, and the
end part is the summary that needs to be evaluated. Finally,
we can get output score through the large language model.
For each summary, we need to organize the above prompt
for the model input, but the evaluation requirements for each
summary are the same. During the test, we asked the model
to give the following score to the summary: 1 represents
bad, 2 represents neutral, 3 represents goods. After getting
the score of each summary, we will further count the number
of high-quality samples in the 10 samples generated. Here,
we define high-quality summary as summary with a score
equal to 3. Finally, we can summarize and integrate all the
scores obtained, and count the average summary score and
the average number of high-quality summaries.

C. Impact of Sample Number
Compared with the autoregressive model, GENIE based
on the diffusion model can generate more diverse texts in
the inference phase, even under the guidance of the source
sequence. Different Gaussian noises sampled during de-
noising can often lead to completely different generation
results. This method is more flexible, but it is not conducive
to the evaluation against a single reference answer. However,
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Figure 3. Effect of sample number, on XSUM.

as the number of Gaussian noises sampled increases, the
generated text has a higher probability of approaching the
single reference answer, and the corresponding evaluation
score is higher. To this end, we test the performance of the
model on the test set under different numbers of samples
on the XSUM dataset. As shown in Figure 3, we evaluate
the results of 5, 10, 15 and 20 samples. We can observe
that as the number of samples increases, the more likely
the generated sample is to be similar to the original label.
The improvement of the similarity is more noticeable in the
early stage of increasing the number of samples.
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