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Abstract

Self-supervised learning (SSL) speech models
such as wav2vec and HuBERT have demonstrated
state-of-the-art performance on automatic speech
recognition (ASR) and proved to be extremely
useful in low label-resource settings. However,
the success of SSL models has yet to transfer to
utterance-level tasks such as speaker, emotion,
and language recognition, which still require su-
pervised fine-tuning of the SSL models to obtain
good performance. We argue that the problem is
caused by the lack of disentangled representations
and an utterance-level learning objective for these
tasks. Inspired by how HuBERT uses clustering
to discover hidden acoustic units, we formulate a
factor analysis (FA) model that uses the discov-
ered hidden acoustic units to align the SSL fea-
tures. The underlying utterance-level representa-
tions are disentangled from the content of speech
using probabilistic inference on the aligned fea-
tures. Furthermore, the variational lower bound
derived from the FA model provides an utterance-
level objective, allowing error gradients to be
backpropagated to the Transformer layers to learn
highly discriminative acoustic units. When used
in conjunction with HuBERT’s masked predic-
tion training, our models outperform the current
best model, WavLM, on all utterance-level non-
semantic tasks on the SUPERB benchmark with
only 20% of labeled data.
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1. Introduction
Supervised learning has driven the development of speech
technologies for two decades. However, annotating speech
data is considerably more challenging than other modali-
ties. For example, automatic speech recognition (ASR) and
language identification require linguistic knowledge. For
speaker and emotion recognition, label ambiguity and hu-
man error are hard to avoid. Self-supervised learning (SSL)
promises a prospect of learning without labeled datasets.
SSL speech models such as wav2vec (Schneider et al., 2019;
Baevski et al., 2020b) and HuBERT (Hsu et al., 2021a) have
profoundly changed the research landscape of ASR. By
training on a large amount of unlabeled speech to learn a
general representation and then fine-tuning with a small
amount of labeled data, SSL models demonstrated state-of-
the-art performance and proved to be very resource efficient
in low label-resource settings (Hsu et al., 2021a; Baevski
et al., 2020b).

The success of wav2vec and HuBERT attracts researchers
to apply SSL to other speech tasks (Wang et al., 2021). For
this purpose, Speech processing Universal PERformance
Benchmark (SUPERB) for SSL models was proposed in
(Yang et al., 2021). The tasks include content-based clas-
sifications, such as ASR, phoneme recognition, and intent
classification, and utterance-level discriminative tasks, such
as speaker recognition, diarization, and emotion recognition.
SUPERB focuses on reusability of SSL features. Thus all
tasks must share the same SSL model. Only the classifica-
tion heads are learned using labeled data for a specific task.
This encourages learning task-agnostic features for down-
stream tasks. Recently, a NOn-Semantic Speech benchmark
(NOSS) that specifically designed for utterance-level tasks
was proposed in (Shor et al., 2020). Using a triplet-loss
unsupervised objective, they were able to exceeds the state-
of-the-art performance on a number of transfer learning
tasks.

Although it has been shown that SSL features can outper-
form hand-crafted features for almost all tasks (Yang et al.,
2021) under the SUPERB protocols, the performance of
supervised downstream models are still far behind the fully
supervised or find-tuned models in utterance-level tasks,
suggesting that directly using the SSL features to train the
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(c) Aligned BERT Layer-6 Features (Cluster2)

Figure 1. Scatter plots of UMAP embeddings of Transformer features from HuBERT. Different colors represent different speakers.
“Aligned” means that the frames were aligned using K-means.

downstream models is not enough. Besides, the labeled
datasets in these tasks are considerably large. Using SSL
models with little labeled data has yet to be explored for
these tasks. This has led us to search for a more appro-
priate representation and an utterance-level self-supervised
learning objective for these tasks.

But, can an SSL model trained for frame-wise discrimina-
tion benefits utterance-level discrimination? We believe so.
As shown in (Lei et al., 2014), a DNN trained for phoneme
classification can be used for training a powerful speaker ver-
ification system. The key is in frame alignments. Averaging
frame-level features cannot produce a good utterance rep-
resentation because content variations within an utterance
is too structural to be treated as Gaussian. To demonstrate
this, we randomly selected 200 recordings from 5 speakers
in the LibriSpeech (Panayotov et al., 2015) test set and ex-
tracted speech features from the sixth Transformer layer of
a HuBERT model. The UMAP (McInnes et al., 2018) em-
beddings of the features are plotted in Figure 1(a). Different
colors in the figure represent different speakers. We cannot
see any apparent speaker clusters in Figure 1(a). If the con-
tent variations within an utterance are Gaussian, we should
see blob-like speaker clusters. One way to reduce content
variations is to align frames according to phoneme-like units.
However, the existing frame aligners either require super-
vised learning such as phoneme classification DNNs (Lei
et al., 2014) or not amenable to stochastic gradient descent
training such as Gaussian mixture models (GMM). Inspired
by HuBERT’s use of K-means to discover hidden acoustic
units, we propose aligning the frames using K-means. To
this end, we trained a K-means model with 100 clusters on
the LibriSpeech training set and used it to label the test set
recordings. Then, we randomly selected two K-means clus-
ters and only kept the frames assigned to these two clusters.
The results are presented in Figures 1(b) and (c). As we can
see, the speaker clusters are clearly revealed with the help
of K-means alignments.

Specifically, we propose using the offline K-means model
in HuBERT training to align the speech features. K-means
is conceptually simple and amenable to the mini-batch train-
ing (Sculley, 2010). During HuBERT training, the K-means
model is updated iteratively, which means the aligners can
be gradually improved as well. With the K-means aligned
features, we then decompose the utterance-level variations
into a set of cluster-dependent loading matrices and a com-
pact utterance-level vector. The utterance-level representa-
tion can be extracted using probabilistic inference on the
aligned features. Finally, instead of using the EM algorithm
to train the FA model as in many traditional FA approaches
(Dehak et al., 2010), we derived an utterance-level learn-
ing objective using the variational lower bound of the data
likelihood. This allows gradients to be back-propagated to
the Transformer layers to learn more discriminative acous-
tic features. Our experiments show that this objective can
significantly improve the performance of SSL models on
utterance-level tasks.

2. Related Work
Self-supervised Learning for Speech The majority of SSL
approaches rely on pretext tasks, tasks that are not neces-
sarily the direct objective but learning them can capture a
high-level structure in the data (Devlin et al., 2019; Chen
et al., 2020; Doersch et al., 2015). In the speech commu-
nity, some early attempts used multiple tasks as the learning
pretexts (Pascual et al., 2019; Ravanelli et al., 2020). An
increasingly popular pretext is to use a context encoder to
encode information about past frames to predict or recon-
struct future frames, as pioneered by contrastive predictive
coding (CPC) (Oord et al., 2018). This line of work in-
cludes wav2vec (Schneider et al., 2019), which encodes raw
waveform to perform frame differentiation, and autoregres-
sive predictive coding (Chung & Glass, 2020) which uses
an autoregressive model to predict future frames. Some
researchers found that it is helpful to perform the frame
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Figure 2. Training of the HuBERT variant of our neural factor analysis model. The dashed arrows represent gradient pathways. For the
details of the learning algorithm, the reader may refer to Algorithm 1.

discrimination on quantized representations (Baevski et al.,
2020a; Ling et al., 2020). Later, Transformers were used
to encode both future and past contexts to perform frame
discrimination, as in wav2vec 2.0 (Baevski et al., 2020b)
and Mockingjay (Liu et al., 2020).

More recently, the Hidden-Unit BERT (HuBERT) was pro-
posed for self-supervised speech representation learning
(Hsu et al., 2021a). Different from explicit frame-wise dis-
crimination in wav2vec and its variants, HuBERT is trained
to perform masked prediction of pseudo labels given by an
inferior HuBERT model from the previous optimization step.
Later, multi-layer masked prediction losses were added to
the intermediate layers of HuBERT to further strengthen
the representation (Wang et al., 2022). In ContentVec (Qian
et al., 2022), the authors improved HuBERT’s performance
for content-related tasks by disentangling speaker informa-
tion from content information using voice conversion units.
WavLM (Chen et al., 2022), on the other hand, was proposed
to improve both content-related tasks and utterance-level
tasks by adding utterance mixing during training and gated
relative position bias to the Transformer.

Factor Analysis Factor analysis (FA) and probabilistic mod-
els in general have wide applications in machine learning
(Bishop & Nasrabadi, 2006; Murphy, 2012). Before the
advent of deep learning, there had been several successes
of FA models in speaker verification, face recognition, and
ECG signal classification, including joint-factor analysis
(Kenny et al., 2007), probabilistic linear discriminative anal-
ysis (Prince & Elder, 2007), and most famously i-vector
(Dehak et al., 2010). The FA models generally assume
that there is a latent variable responsible for generating the
observation vectors. Different relationships between the
observation vectors and the latent variable result in differ-
ent FA models, such as one-to-one mapping between the
observation and the latent variable in probabilistic PCA and

many observations to one latent variable in i-vector and
JFA. Noticeably most of these FA models are applied to raw
input or hand-craft features such as natural images or mel-
frequency cepstral coefficients (MFCCs). One exception
is PLDA in speaker verification, which is applied to neural
speaker embeddings or i-vectors.

Utterance-level Speech Tasks Utterance-level speech tasks
include speaker recognition (Tu et al., 2022), emotion recog-
nition (Wani et al., 2021), and language identification (Li
et al., 2013). They are an important part of intelligent speech
systems. Besides their respective applications, they are es-
sential for semantic and generative tasks like ASR and text-
to-speech (TTS) synthesis. For example, multilingual ASR
and speech translation often require language identification
as the first step (Radford et al., 2022). Multi-speaker TTS
and voice conversion systems rely on speaker recognition
models to extract speaker information (Jia et al., 2018; Qian
et al., 2019). Solving these utterance-level tasks often in-
volves different model architectures and domain knowledge.

3. Methodology
In this section, we will introduce our neural factor analy-
sis (NFA) in the context of HuBERT. NFA aims to disen-
tangle utterance-level information such as speaker identity,
emotional state, and language from frame-wise content in-
formation such as phonemes. Figure 2 shows the training
procedure of the HuBERT variant of our NFA model. The
learning objective we are about to derive can be used in
any SSL model, such as wav2vec and its variants, as long
as frame assignments are provided. NFA can learn various
utterance-level representations, such as speaker identities,
emotion states, and language categories. We will refer to
them as utterance-level identities in the remaining paper.
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3.1. HuBERT

Consider an acoustic sequence X of T frames. We denote
M ⊂ {1, . . . , T} as the index set indicating the frames in
X to be masked. Define X̃ = mask(X,M) as the masked
version of X, where the masked xt (t ∈M) is replaced by
a mask embedding. The BERT encoder fθ(.) takes as in-
put the masked sequence X̃ and outputs a feature sequence
H = [h1, . . . ,hT ]. Let us introduce a K-dimensional bi-
nary random variable yt for frame t having a 1-of- K rep-
resentation, where ytk ∈ 0, 1 and

∑
k ytk = 1. Denote the

output of the predictor as qϕ (ytk | H) . Given the target
distribution for the masked frames p (ytk), the cross-entropy
can be computed as:

Lm(H,M) = −
∑
t∈M

∑
k

p (ytk) log qϕ (ytk | H) (1)

However, we do not have access to the target distribution
p (ytk). HuBERT solves this problem by iterative clustering
to obtain the frame label ztk as a surrogate for p (ytk), where
ztk ∈ 0, 1 and

∑
k ztk = 1. With the frame label ztk, the

cross-entropy loss can be re-written as:

Lm(H,Z,M) = −
∑
t∈M

∑
k

ztk log qϕ (ytk | H) (2)

At first, the cluster assignments are obtained by running
K-means clustering on MFCCs. Then the model is updated
by minimizing the masked prediction loss. New cluster as-
signments are obtained by running K-means on the updated
features at the Transformer layer. The learning process then
proceeds with new cluster assignments {zt}. The masked
prediction and cluster refinement are performed iteratively.
The blue area in Figure 2 illustrates HuBERT’s masked
prediction training.

3.2. Utterance-level Representation Learning via Neural
Factor Analysis

Figure 1 shows that the K-means alignments can reveal
meaningful speaker information. One simple way to obtain
the utterance-level representation is to average the aligned
frames in each cluster and concatenate the results. The
probabilistic model for such approach can be written as
follows:

hi
t ∼

K∑
k=1

zitkN
(
µk +wi

k,Σk

)
, (3)

where hi
t is the Transformer layer features from the utter-

ance i, zitk ∈ {0, 1} is the frame label assigned by K-means,
µk is the k-th cluster center, Σk is the covariance matrix of
the k-th cluster, and wi

k is the utterance identity in the k-th
cluster. The concatenation of wi

k, i.e. [wi
1, . . .w

i
K ], can

be used as utterance identity representation. However, its

dimension scales linearly with K. Instead, we decompose
wi

k into the product of a cluster-dependent loading matrix
Tk and utterance identity vector ωi for more compact rep-
resentation:

hi
t ∼

K∑
k=1

zitkN
(
µk +Tkω

i,Σk

)
. (4)

Specifically, we train a K-means model using the Trans-
former layer features to produce {µk}, which can be viewed
as content representations of the speech. Then, we run K-
means to produce frame labels {zitk} and calculate {Σk}
and cluster weight prior {πk} for the K clusters, which we
denoted as Φ = {πk,µk,Σk |k = 1, . . . ,K}. With clus-
ter parameters and frame labels {zitk}, we only have one
set of parameters {Tk} and one latent variable ωi left in
the model, which is a problem that can be solved with the
expectation-maximization (EM) algorithm.

Given a sequence of frame-level features Hi =
{hi

1, . . . ,h
i
T }, the frames labels (alignments) Zi =

{zitk|t = 1, . . . , T ; k = 1, . . . ,K}, and cluster parame-
ters Φ, we can use the EM algorithm to find T = {Tk|k =
1, . . . ,K}. In the E-step, we compute the posterior of utter-
ance identity ωi:

pT
(
ωi|Hi;Zi,Φ

)
=

∏T
t=1 pT

(
hi
t|ωi; zit•

)
p
(
ωi

)∫ ∏T
t=1 pT(h

i
t|ωi; zit•)dωi

, (5)

where zit• = {zitk}Kk=1 and pT
(
ωi|Hi;Zi,Φ

)
is the prob-

ability distribution of ωi conditioned on Hi given Zi and
Φ. Because the alignments Zi and the cluster parameters
Φ are fixed while optimizing the likelihood, we drop the
dependency when expressing the posterior for simplicity.

In the M-step, we choose the T that maximize the expected
log-likelihood:

argmax
T

I∑
i=1

Ep
T

′ (ωi|Hi)

[
log pT

(
Hi,ωi

)]
, (6)

where T
′

is the loading matrix from the previous M-step (or
randomly initialized). Eq. 6 has a closed-form solution. Af-
ter the matrix T is found, the mean of the posterior E[ω|H]
is used as the utterance identity representation.

E[ω|H] = (I+

K∑
k

TT
kΣ

−1
k Tk)

−1
K∑
k

TT
kΣ

−1
k

∑
t

(ht−µk).

(7)

Learning via gradient on ELBO There are two limita-
tions to learning matrix T using the EM algorithm. First,
the EM algorithm limits the possibility of large-scale train-
ing. In Eq. 6, the loading matrix T is estimated using the
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Algorithm 1 Training procedure of the proposed NFA model

Initialize: BERT parameters θ, predictor parameters ϕ, Loading matrix T, Initial cluster labels {Zi}Ii=1.
for n← 0 to N iterations do

Input: CNN encoder output {Xi}Ii=1, masking index setM.
if n > 0 then

Run K-means on the BERT features to obtain frame labels {Zi}Ii=1

end if
Use the alignments {Zi}Ii=1 and Transformer features {Hi}Ii=1 to compute cluster parameters Φ.
for i← 1 to I do

# Forward Pass
Mask the encoder output X̃

i
= mask(Xi,M).

Calculate BERT output Hi = fθ(X̃
i
)

Calculate the posteriors of the latent factor (Eq. 5) and use them to update the ELBO LELBO
(
Hi;T

)
(Eq. 10).

# Backward Pass
Calculate the gradients on cross entropy loss Lm(Hi,Zi,M).
Calculate the ELBO gradients with respect to T (Eq. 11).
Calculate the ELBO gradients with respect to the Transformer parameters θ (Eq. 13)).
Update θ, ϕ, and T using gradient descent.

end for
end for
Return θ, T

whole training set, contrary to the stochastic update in mod-
ern DNN training. Another disadvantage is the separation
between the Transformer layers and the FA model during
training, which prevents the possibility of joint optimization
of the matrix T and Transformer layers’ parameters θ.

We aim to derive a learning rule that is amenable to stochas-
tic updates and allows joint optimization of the FA model
and the Transformer layers. As a latent variable model, the
log-likelihood of our FA model can be written as (Bishop &
Nasrabadi, 2006; Kingma & Welling, 2013):

log pT
(
Hi

)
= DKL

(
q(ωi)∥pT(ωi|Hi)

)
+LELBO

(
Hi;T

)
,

(8)
where LELBO

(
Hi;T

)
is called the evidence lower bound

(ELBO). DKL
(
q(ωi)∥pT(ωi|Hi)

)
is the KL-divergence

between the approximate posterior q(ωi) and true posterior
pT(ω

i|Hi). Minimizing KL or maximizing the ELBO can
both increase the log-likelihood. In the case of our model,
minimizing the KL is easy as the posterior of ω is tractable,
which gives rise to the E-step in Eq. 5. To optimize the
ELBO, we need to re-write Eq. 8 as:

LELBO
(
Hi;T

)
= Eq(ωi)

[
− log q(ωi) + log pT(H

i,ωi)
]
.

(9)
Because we already know the closest ELBO to likelihood is
when q(ωi) equals to the posterior pT

(
ωi | Hi

)
, Eq. 9 can

be written as:

Ep
T

′ (ωi|Hi)

[
− log pT′

(
ωi | Hi

)
+ log pT(H

i,ωi)
]
,

(10)
where T

′
is the loading matrix from the last update. We can

see the first term is a constant with respect to T. Therefore,
the gradient of the lower-bound with respect to T is:

dLELBO

dT
= ∇TEpT′ (ωi|Hi)

[
log pT

(
Hi,ωi

)]
. (11)

The gradient with respect to the Transformer features dLELBO
dHi

involves both terms in Eq. 10:

∇HiEp
T

′ (ωi|Hi)

[
− log pT′

(
ωi | Hi

)
+ log pT(H

i,ωi)
]
.

(12)
By applying the chain rule, we can obtain the gradient with
respect to the Transformer parameters θ:

dLELBO

dθ
=

dLELBO

dHi

dHi

dθ
. (13)

Eq. 13 shows that we can backpropagate the gradient of
ELBO back to the Transformer layers. The total loss of our
NFA model is:∑

i

(
Lm(Hi,Zi,M)− λLELBO

(
Hi;T

))
. (14)

Therefore, in addition to HuBERT’s mask prediction and
self-training, in each forward pass, we will compute the
posteriors pT

(
ωi | Hi

)
(Eq. 5) given a sequence of BERT

features and frame labels produced by K-means. Then, we
use the posteriors to evaluate the gradient with respect to T
to update the loading matrix and the gradient with respect
to BERT features Hi to update the SSL model parameters
θ. Algorithm 1 summarizes the whole training procedure of
our NFA.
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4. Experiments
In this section, we will evaluate the proposed NFA model’s
performance on three kinds of utterance-level speech tasks,
namely speaker, emotion, and language recognition, by com-
paring it to SSL models such as wav2vec2.0, HuBERT, and
WavLM. Note that the NFA can use both HuBERT and
wav2vec2.0 architecture as long as frame labels are pro-
vided.

4.1. Tasks, Datasets, Baselines, and Implementation

Speech Tasks and Datasets The speech tasks that we will
evaluate include:

• Automatic speaker verification (ASV or SV), speaker
identification (SID), and speaker diarization (SD). We
followed the SUPERB protocol (Yang et al., 2021)
using the VoxCeleb1 (Nagrani et al., 2017) training
split to train the model and used the test split to eval-
uate speaker verification performance. Note that the
reported ASV downstream model in (Yang et al., 2021)
is a deep neural network (Snyder et al., 2018) trained
on SSL features (Yang et al., 2021). The evaluation
metric is equal error rate (EER) (the lower, the bet-
ter). For speaker identification, we used the VoxCeleb1
train-test split provided by the SUPERB organizer. The
evaluation metric is accuracy. For SID, the SUPERB
downstream model is a linear classifier trained on aver-
aged SSL features. Speaker diarization is to segment
and label a recording according to speakers. We fol-
lowed the SUPERB protocol using the LibriSpeech
(Panayotov et al., 2015) splits for training and evalua-
tion. The SUPERB downstream model is a recurrent
neural network. The evaluation metric is diarization
error rate (DER) (the lower, the better)

• Emotion recognition (ER). We used IEMOCAP (Busso
et al., 2008) dataset. Following the same protocol as
SUPERB, we dropped the unbalance emotion classes
to leave the neutral, happy, sad, and angry classes. The
evaluation metric is accuracy. The SUPERB down-
stream model is a linear classifier trained on averaged
SSL features.

• Language identification (LID). Language identification
is not included in the SUPERB benchmark. We in-
cluded it because it is also an important utterance-level
task. The dataset we used is the the Common Language
dataset prepared by (Sinisetty et al., 2021), which in-
cludes 45 languages with 45.1 hours of recordings. On
average, each language has one-hour recordings.1 The
downstream baseline is a linear classifier trained on

1https://huggingface.co/datasets/common_
language

averaged SSL features.

Pre-trained models The pre-trained models we used in
this paper include HuBERT (Hsu et al., 2021a), WavLM
(Chen et al., 2022), and wav2vec2-XLS-R (Babu et al.,
2022). HuBERT and WavLM models were used in speaker
and emotion evaluation. Because language identification
requires models trained on multi-lingual data, wav2vec2-
XLS-R was used.

Implementation details. The HuBERT and Wav2vec2-
based NFA models were trained on LibriSpeech using the
model checkpoints provided by fairseq. The language iden-
tification NFA models were trained on the Common Lan-
guage dataset using the XLS-R checkpoint. λ in Eq. 14 is
set to 0.01 for all models. After the optimization steps in
Algorithm 1 were done, we re-trained the loading matrix
T for each task with EM using unlabeled task-related data.
Other than specifically stated, the acoustic features were
extracted from layer 6 for the base SSL models (HuBERT,
WavLM, and Wav2Vec2-XLS-R) and layer 9 for the large
SSL models. The number of clusters in K-means is 100,
and the rank of loading matrix dimension is 300 for all NFA
models. After utterance-level representations have been ex-
tracted using Eq. 7, we used the simple logistic classifier in
sklearn (Pedregosa et al., 2011) for SID, ER, and LID. For
speaker verification, we used the PLDA backend. For SD,
we used linear discriminant analysis (LDA) to reduce the
dimension to 200 and then used agglomerative hierarchical
clustering to produce speaker assignments. Note that all our
downstream methods are linear models.

4.2. SUPERB Experiments

In this section, we evaluate the NFA’s performance on SU-
PERB tasks (Yang et al., 2021; Chen et al., 2022). Besides
the standard speaker-related and emotion recognition, we
also included language identification (LID) on Common
Langue (Sinisetty et al., 2021). For LID, we followed the
same protocol as other SUPERB tasks, i.e., the SSL models’
weights were frozen, and only linear models were trained
with labeled data without data augmentation. To give a
better idea of the expected performance of each task in un-
restricted settings, we also included the results using the
fine-tuned SSL models on the ASV and ER tasks and the cur-
rent best result in the Common Language dataset reported
by other researchers.

The results are presented in Table 1. As observed in the
table, NFA significantly outperforms all SSL models across
ASV, SD, SID, and LID. NFA performs only marginally
worse than the self-supervised Conformer (Shor et al., 2020),
which has been specifically designed for utterance-level
tasks. In speaker verification, the relative EER reduc-
tion is 40% when compared with the WavLM, the previous

6
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Table 1. Results on SUPERB and language identification tasks.
Tasks ASV SD SID ER LID
Metrics EER ↓ DER ↓ Acc ↑ Acc ↑ Acc ↑
WAV2VEC2.0 LARGE (Yang et al., 2021) 5.65 5.62 86.14 65.64 -
SUPERVISED FINETUNING (WANG ET AL., 2021) 4.46 - - 64.2
NFA (WAV2VEC2-BASED) 4.02 2.83 96.3 73.4

HUBERT LARGE (Yang et al., 2021) 5.98 5.75 90.33 67.62 -
WAVLM LARGE (Chen et al., 2022) 3.77 3.24 95.49 70.62 -
SUPERVISED FINETUNING HUBERT LARGE(WANG ET AL., 2021) 2.36 - - 72.7
NFA (HUBERT-BASED) 2.26 1.84 98.1 78.1 -

CONFORMERS (Shor et al.) - - - 79.2 -

WAV2VEC2-XLS-R - - - - 80.4
ECAPA-TDNN - - - - 84.9
NFA (XLS-R-BASED) - - - - 86.3
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Figure 3. Bar plots of SSL models’ performance in low label-resource settings.
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Figure 4. NFA embeddings’ zero-shot performance on speaker
verification and language ID.

best model on utterance-level tasks. It is worth noting that
WavLM’s ASV baseline used a DNN network trained on
the Transformer features, but we only use linear models.
Our models even perform better than the fully fine-tuned
models in (Wang et al., 2021) in both ASV and ER tasks.
For LID, our XLS-R-based NFA performs better than the
best-reported result on Common Language by SpeechBrain
(Ravanelli et al., 2021).

4.3. Downstream Low Label-resource Experiments

One of the most attractive features of wav2Vec and Hu-
BERT is their performance on low label-resource ASR. The
resource efficiency of these models enables the potential de-
velopment of many low label-resource languages and speech
tasks where labeled data are hard to collect. In this section,
we evaluate NFA performance in low label-resource settings.
To this end, we divided the labeled dataset in the speaker
recognition, emotion recognition, and language identifica-
tion tasks into 10%, 20%, and 30% subsets as low label-
resource settings. For ASV, SD, SID, and ER, we extracted
the embeddings from a large Hubert-based NFA model. For
LID, we used the embeddings from the XLS-R-based NFA
model. WavLM Large and XLS-R were used as perfor-
mance references. To reduce the performance deviation in
the division, we ran each partition five times and reported
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Table 2. Zero-shot speaker verification performance on different
domains. The metric is the equal error rate.

Dataset LibriSpeech VoxCeleb VOiCES

I-VECTOR 11.2 15.8 22.3

HUBERT 28.7 32.1 34.5
NFA 3.98 9.32 12.32

HUBERT LARGE 30.21 26.88 37.45
NFA LARGE 2.87 7.92 12.02

the results. The loading matrices in the NFA models were
trained using the entire unlabeled dataset. The results are
presented in Figure 3.

We can see that even with only 10% of labeled data for the
downstream models, NFA’s performance in ER, SID, and
LID is very close to the WavLM and XLS-R. For ASV and
SD, our method already outperforms the WavLM models
trained on fully labeled data. With 20% labeled data, NFA
already outperforms WavLM and XLS-R on all tasks. This
shows the high resource efficiency of our NFA models.

4.4. Zero-Shot Speaker Verification

In Figure 1, we observe that by clustering and aligning the
Transformer features, speaker information can be revealed.
This is all done without labeled data. But how discrimina-
tive these unsupervised learned embeddings are? We will
evaluate NFA embeddings’ zero-shot performance quantita-
tively in this section. Specifically, we evaluated NFA models
on zero-shot speaker verification. After we extracted the
utterance-level representations using Eq. 7, we directly used
cosine similarity to obtain verification scores without any
supervised training (the models were never given speaker
information). We evaluated the performance on (1) Lib-
riSpeech, which is considered in-domain data as HuBERT
and NFA were trained on this dataset (Panayotov et al., 2015;
Hsu et al., 2021a), (2) Voxceleb1-test, a popular speaker
verification dataset (Nagrani et al., 2017), and (3) VOiCES
(Nandwana et al., 2019), a dataset used to evaluated speaker
verification robustness against noise and room reverberation.
As a comparison, we also included i-vector (Dehak et al.,
2010) and averaged Transformer features (HuBERT rows in
Table 2) as baselines.

The results are presented in Table 2. Without supervision,
simple averaging the Transformer features cannot produce
useful speaker representations. It even performs worse than
i-vector, a non-DNN approach. NFA embeddings, how-
ever, achieve an EER of 3.98% on LibriSpeech without
any supervised training. This suggests that during self-
supervised learning, the model has already learned to dif-
ferentiate speakers, which also empirically demonstrates

that the NFA model can disentangle speaker information
from the content information. However, when evaluated on
VoxCeleb1 and VOiCES, the performance of zero-shot SV
dropped significantly. This may be because VoxCeleb1 and
VOiCES are real-world speech datasets containing sponta-
neous speech and environmental noise. NFA and HuBERT
were pre-trained on a read speech dataset. The domain dis-
crepancy in SSL models can have a significant impact on the
downstream tasks, as mentioned in (Hsu et al., 2021b). An-
other interesting observation is that scaling the model size
improves the zero-shot SV performance, as shown when
using HuBERT Large and NFA large models.

4.5. Layer-wise Representation Evaluation

Because our NFA models show excellent zero-shot per-
formance, we can use them to evaluate the discrimination
power from each Transformer layer before supervised learn-
ing is applied. We extracted the acoustic features from
Layer 1 to Layer 12 of the Transformer in the NFA model to
conduct zero-shot speaker verification and language identifi-
cation. For language identification, we used top-1 accuracy
as the metric. Then, we used the labeled data to train an
LDA on top of NFA embeddings to compare the results.
The results are presented in Figure 4.

The blue lines in Figure 4 show that under zero-shot settings,
both speaker and language discriminative abilities increase
from Layer 1 up to Layer 6. Then, the features from the
deeper layers have poorer performance. This is largely
consistent with the supervised baselines (orange lines), with
Layer 7 obtaining the lowest speaker verification error and
Layer 6 having the highest language identification top-1
accuracy in supervised settings. This shows that our NFA
models’ zero-shot performance can be a reliable predictor
of supervised performance.

4.6. Gradient-based Learning Versus EM

To assess whether gradient-based learning has an edge over
the Expectation-Maximization (EM) method, we extracted
HuBERT features and separately trained a factor analysis
model using EM. The results are displayed in Table 3. We
observe that gradient-based optimization consistently out-
performs EM-based I-vector trained on HuBERT features.
This suggests that jointly training the NFA model with the
SSL model can yield more potent feature representations
than training the two modules independently.

4.7. Impact on ASR

The ultimate goal of a self-supervised learning (SSL) speech
model is to utilize a single backbone model for all down-
stream tasks. Consequently, it’s critical that the NFA model
does not compromise performance on content-based tasks

8
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Model Checkpoint Optimization ASV (EER) ↓ ER (ACC) ↑ Lang. ID (ACC) ↑
HuBERT-Large EM 2.54% 73.4% -
HuBERT-Large-NFA Gradient 2.26% 78.1% -
Wav2vec-XLS-R EM - - 83.6%
Wav2vec-XLS-R-NFA Gradient - - 86.3%

Table 3. The performance of gradient-based learning versus EM.

Models WER

Base HuBERT 6.42
Base NFA 6.31
Large HuBERT 3.62
Large NFA 3.66

Table 4. ASR performance on LibriSpeech clean subset.

such as ASR. To ensure this, we compared the performance
of the NFA and the large NFA model against HuBERT on the
LibriSpeech clean subset. The results, as shown in Table 4,
demonstrate that the NFA and large NFA models perform
on par with HuBERT. This confirms that our NFA model
does not sacrifice performance on content-based tasks.

5. Conclusions
In this paper, we proposed a novel self-supervised speech
model for utterance-level speech tasks. Instead of using
frame-wise discrimination loss alone, we introduced an
utterance-level learning objective based on factor analy-
sis and feature disentanglement. Through extensive experi-
ments, we demonstrate that our NFA model can significantly
improve SSL models’ performance on utterance-level dis-
criminative tasks without supervised fine-tuning. The zero-
shot and low label-resource experiments also show the data
efficiency of our approach, which to the best of our knowl-
edge, has yet been shown for utterance-level tasks. This
can significantly benefit the utterance-level speech classi-
fication tasks where labeled data is hard to obtain, such as
speaker recognition for low label-resource languages (Thanh
et al., 2021), depression speech detection (Ma et al., 2016),
children speech processing (Shahnawazuddin et al., 2021),
speech disorder diagnosis (Alhanai et al., 2017), and clas-
sifying intelligibility for disordered speech (Venugopalan
et al., 2021).

Our findings also shed some insights into speech SSL learn-
ing itself. Currently, the frame-wise discriminative SSL
models are often thought of as acoustic unit discovery mod-
els. Little has been considered for utterance-level identity
discovery such as speaker information in self-supervised
learning. As we show in Section 4.4, SSL can perform very
well on speaker verification with supervision, which sug-

gests speaker-related information is also discovered during
the self-supervised learning stage. This is encouraging as
it shows that SSL learning can discover multiple hidden
information in the speech that can benefit a wide range of
speech tasks.

A significant limitation of the NFA model lies in its perfor-
mance with out-of-domain data. As observed in Section 4.4,
NFA’s performance significantly deteriorates when evalu-
ated on out-of-domain data. This observation underscores
the persistent challenge of achieving robust zero-shot perfor-
mance in SSL models. Another limitation of NFA pertains
to the types of signals it can effectively disentangle. While
the NFA model showcases impressive feature disentangle-
ment capabilities across several utterance-level tasks, it’s
worth noting that it does not disentangle different types of
utterance-level information from one another. For instance,
it does not separate speaker information from emotional
states. For such nuanced tasks, we continue to rely on down-
stream models to achieve this level of disentanglement. In
future research, we intend to explore methodologies that
could disentangle different types of utterance-level informa-
tion during the self-supervised learning stage.
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