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Abstract
Continual learning (CL), which aims to learn a
sequence of tasks, has attracted significant recent
attention. However, most work has focused on the
experimental performance of CL, and theoretical
studies of CL are still limited. In particular, there
is a lack of understanding on what factors are im-
portant and how they affect “catastrophic forget-
ting” and generalization performance. To fill this
gap, our theoretical analysis, under overparam-
eterized linear models, provides the first-known
explicit form of the expected forgetting and gen-
eralization error for a general CL setup with an
arbitrary number of tasks. Further analysis of
such a key result yields a number of theoretical ex-
planations about how overparameterization, task
similarity, and task ordering affect both forgetting
and generalization error of CL. More interestingly,
by conducting experiments on real datasets using
deep neural networks (DNNs), we show that some
of these insights even go beyond the linear mod-
els and can be carried over to practical setups.
In particular, we use concrete examples to show
that our results not only explain some interesting
empirical observations in recent studies, but also
motivate better practical algorithm designs of CL.

1. Introduction
Continual learning (CL) (Parisi et al., 2019) is a learning
paradigm where an agent needs to continuously learn a se-
quence of tasks. To resemble the extraordinary lifelong
learning capability of human beings, the agent is expected
to learn new tasks more easily based on accumulated knowl-
edge from old tasks, and further improve the learning per-
formance of old tasks by leveraging the knowledge of new
tasks. The former is referred to as forward knowledge trans-
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fer and the latter as backward knowledge transfer. One
major challenge herein is the so-called catastrophic for-
getting (McCloskey & Cohen, 1989), i.e., the agent easily
forgets the knowledge of old tasks when learning new tasks.

Although there have been significant efforts in experimental
studies (e.g., Kirkpatrick et al. 2017; Chaudhry et al. 2018;
Yoon et al. 2020; Doan et al. 2021; Evron et al. 2022) to
address the forgetting issue, the theoretical understanding of
CL is still in the early stage, where only a few attempts have
emerged recently, e.g., Yin et al. 2020; Bennani et al. 2020;
Doan et al. 2021; Evron et al. 2022 (see a more detailed dis-
cussion about the previous theoretical studies of CL in Sec-
tion 2). However, none of these existing theoretical results
provide an explicit characterization of forgetting and gener-
alization error, that only depends on fundamental system pa-
rameters/setups (e.g., number of tasks/samples/parameters,
noise level, task similarity/order). Thus, our work here pro-
vides the first-known explicit theoretical result in a more
general CL setup with an arbitrary number of tasks, which
enables us to comprehensively understand which factors
are relevant and how they (precisely) affect forgetting and
generalization error of CL.

Our main contributions can be summarized as follows.

First, we provide theoretical results on the expected value
of forgetting and overall generalization error in CL, un-
der a linear regression setup with i.i.d. Gaussian features
and noise. The expression of our results is in an explicit
form that captures a clear dependency on various system
parameters/setups. Note that analyzing overparameterized
linear models are important in their own right and also, as
demonstrated in many recent works, are a first step towards
understanding the generalization performance of DNNs,
e.g., Belkin et al. 2018; Bartlett et al. 2020b; Ju et al. 2020;
Muthukumar et al. 2020; Hastie et al. 2022.

Second, we investigate the impact of overparameterization,
task similarity, and task ordering on both forgetting and
generalization error of CL, which reveals the following im-
portant insights: 1) Both forgetting and generalization error
can benefit from more parameters in the overparameterized
regime. Moreover, benign overfitting exists and is easier
to observe with large noise and/or low task similarity. 2)
In terms of the impact of task similarity, we show that the
generalization error always decreases when tasks become
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more similar, whereas this ‘monotonicity’ does not always
hold for forgetting. Surprisingly, forgetting can even de-
crease when tasks are less similar under certain scenarios.
3) In order to minimize forgetting, the optimal task order
should diversify the learning tasks in the early stage and
learn more dissimilar tasks adjacently. This is also corrob-
orated by some special scenarios where the tasks can be
divided into multiple categories, and the optimal task order
therein alternatively learns tasks from different categories.

Last but not least, we show that our findings for the linear
models are applicable to and can also guide the algorithm
designs for CL in practice, by conducting experiments on
real datasets with DNNs. Specifically, our analysis of the
impact of task similarity is clearly corroborated by the ex-
perimental results, which further sheds light on the recent
observations (Ramasesh et al., 2020; Lee et al., 2021; Evron
et al., 2022) that ‘intermediate task similarity’ leads to the
worst forgetting in the two-task setup. Experimental results
on the impact of task ordering are also consistent with our
findings in linear models. More interestingly, inspired by
our analysis of knowledge transfer in linear models, we
slightly modify a previous method (Lin et al., 2022b) on
leveraging task correlation to facilitate forward knowledge
transfer, and show that better performance can be achieved
by counting more on fresher old tasks. These encouraging
results corroborate the benefits of studying the overparame-
terized linear models to fundamentally demystify CL.

2. Related Work
Empirical studies in CL. CL has attracted much attention
in the past decade, and a vast amount of empirical methods
have been proposed to address catastrophic forgetting. In
general, the existing methods can be divided into three cate-
gories: (1) Regularization-based methods (e.g., Kirkpatrick
et al. 2017; Aljundi et al. 2018; Liu & Liu 2022), which
regularize the modifications on the important weights to old
tasks when learning the new task; (2) Parameter-isolation
based methods (e.g., Serra et al. 2018; Yoon et al. 2020;
Yang et al. 2021), which learn a mask to fix the important
weights to old tasks during the new task learning and further
expand the neural network when needed; (3) Memory-based
methods, which either store and replay data of old tasks
when learning the new task, i.e., experience-replay based
methods (e.g., Chaudhry et al. 2018; Riemer et al. 2018; Jin
et al. 2021), or store the gradient information of old tasks
and learn the new task in the orthogonal direction to old
tasks without data replay, i.e., orthogonal-projection based
methods (e.g., Farajtabar et al. 2020; Saha et al. 2021; Lin
et al. 2022b).

Theoretical studies in CL. Specifically, (Bennani et al.,
2020) and (Doan et al., 2021) analyzed generalization error
and forgetting for the orthogonal gradient descent (OGD)

approach (Farajtabar et al., 2020) based on NTK models,
and further proposed variants of OGD to address forgetting.
(Yin et al., 2020) proposed a unified framework for the per-
formance analysis of regularization-based CL methods, by
formulating them as a second-order Taylor approximation
of the loss function for each task. (Asanuma et al., 2021)
and (Lee et al., 2021) studied CL in the teacher-student
setup to characterize the impact of task similarity on forget-
ting performance. (Cao et al., 2022) and (Li et al., 2022)
investigated continual representation learning with dynam-
ically expanding feature spaces, and developed provably
efficient CL methods with a characterization of the sam-
ple complexity. (Chen et al., 2022) characterized the lower
bound of memory in CL using the PAC framework. By
investigating the information flow between neural network
layers, (Andle & Yasaei Sekeh, 2022) analyzed the selection
of frozen filters based on layer sensitivity to maximize the
performance of CL. (Goldfarb & Hand, 2023) investigated
the impact of overparameterization for linear models in a
two-task setup. Nevertheless, none of these existing works
show an explicit form of forgetting and generalization error,
that only depends on fundamental system parameters/setups
(e.g., number of tasks/samples/parameters, noise level, task
similarity/order). In contrast, our work is the first one to
provide such an explicit theoretical result in a more general
CL setup with an arbitrary number of tasks, which enables
us to comprehensively understand what factors (and how
they) affect the forgetting and generalization performance
of CL.

The most relevant study to our work is (Evron et al., 2022),
which also studied CL in overparameterized linear models.
However, our work is quite different from (Evron et al.,
2022): (1) We study and provide the exact forms of both
forgetting and generalization error based on the testing loss,
while (Evron et al., 2022) only evaluated forgetting using
the training data; (2) Our results characterize the perfor-
mance of CL in a comprehensive way, through investigating
how overparameterization, task similarity and task ordering
affect both forgetting and generalization error, while (Evron
et al., 2022) only studied the upper bound of catastrophic
forgetting under specific task orderings; (3) Unlike (Evron
et al., 2022), our study is able to explain recent phenomena
and guide the algorithmic development in CL with DNN.

Studies about generalization performance on overparam-
eterized models (benign overfitting). DNNs are usually
so overparameterized that can completely fit all training
samples, yet they can still generalize well on unseen test
data. This seems to contradict the classical knowledge of
bias-variance trade-off. As a first step of understanding
this mystery, the “benign overfitting” or “double-descent”
phenomenon1 has been discovered and studied for overfit-

1i.e., test error decreases again in the overparameterized re-
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ted solutions of single-task linear regression. For exam-
ple, some work discovered and studied double-descent with
min ℓ2-norm overfitted solutions (Belkin et al., 2018; 2019;
Bartlett et al., 2020a; Hastie et al., 2019; Muthukumar et al.,
2019) or min ℓ1-norm overfitted solutions (Mitra, 2019; Ju
et al., 2020), while using simple features such as Gaussian
or Fourier features. Some other recent work studied the over-
fitted generalization performance by adopting features that
approximate shallow neural networks, for example, random
feature (RF) models (Mei & Montanari, 2019), two-layer
neural tangent kernel (NTK) models (Arora et al., 2019; Sat-
pathi & Srikant, 2021; Ju et al., 2021), and three-layer NTK
models (Ju et al., 2022). All of these studies considered only
a single task. In contrast, our work focuses on CL with a
sequence of tasks, which brings in many new variables such
as task similarity and task ordering.

3. Continual Learning in Linear Models
Consider the standard CL setup where a sequence of tasks
T = {1, ..., T} arrives sequentially in time.

Ground truth. We consider a linear ground truth (Belkin
et al., 2018; Evron et al., 2022) for each task. Specifically,
for task t, the output y ∈ R is given by

yt = x̂⊤
t ŵ

∗
t + zt, (1)

where x̂t ∈ Rst denotes the feature vector, ŵ∗
t ∈ Rst

denotes the model parameters, and zt is the random noise.
Here st denotes the number of features of ground truth (i.e.,
the number of true features). In practice, true features are
unknown in advance. Therefore, when choosing a model
to learn a certain task, people usually choose more features
than enough such that all possible features are included. We
write this formally into the following assumption2.

Assumption 3.1. We index all possible features by 1, 2, · · · .
Let W denote the set of indices of all the chosen features
in the model to be trained, with cardinality |W| = p. Let
St denote the set of indices of t-th task’s true features, with
cardinality |St| = st. We assume that

⋃
t∈T St ⊆ W .

We next define an expanded ground-truth vector w∗
t ∈ Rp

that expands the original ground-truth vector ŵ∗
t from di-

mension st to dimension p by filling zeros in the positions
W\St. Let xt be the corresponding features for w∗

t . There-
fore, the ground truth Equation (1) can be rewritten as

yt = x⊤
t w

∗
t + zt. (2)

Data. For each task t ∈ T, the training dataset is denoted as
Dt = {(xt,j , yt,j) ∈ Rp×R}j∈[nt] with sample size nt. By
stacking the training data as Xt := [xt,1 xt,2 · · · xt,nt

] ∈

gion with more parameters, so the overfitting is benign for the
generalization performance.

2When Assumption 3.1 does not hold, the derivation techniques
for Theorem 4.1 in the next section still hold with a minor modifi-
cation that treats the missing features as noise.

Rp×nt and yt := [yt,1 yt,j · · · yt,nt
]⊤ ∈ Rnt×1, Equa-

tion (2) can be written as yt = X⊤
t w∗

t + zt.

To simplify our analysis, we consider i.i.d. Gaussian fea-
tures and noise, which is stated in the following assumption.

Assumption 3.2. Each element of Xt for all t ∈ T follows
standard Gaussian distribution N (0, 1) and is independent
of each other. The noise zt ∼ N (0, σ2

t Ip) and is indepen-
dent of each other for all t ∈ T, where σt ≥ 0 denotes the
noise level.

Learning procedure. We train the model parameters w
for each task sequentially. Let wt denote the result after
training for task t, which is also the initial point in the model
training for task t+1. Let w0 = 0, i.e., task 1 starts training
from zero. For each task t, the training loss is defined by
mean-squared-error (MSE) with respect to (w.r.t.) (Xt,yt):

Ltr
t (w,Dt) =

1
nt
∥(Xt)

⊤w − yt∥22. (3)
When underparameterized (i.e., nt ≤ p), minimizing Equa-
tion (3) has a unique solution (with probability 1). When
overparameterized (i.e., p > nt), minimizing Equation (3)
has an infinite number of solutions that make Equation (3)
zero. Among all overfitted solutions, we are particularly
interested in the one corresponding to the convergent point
of stochastic gradient descent (SGD) for minimizing Equa-
tion (3). In fact, it can be shown that such an overfitted solu-
tion has the smallest ℓ2-norm of the change of parameters
(Gunasekar et al., 2018). In other words, wt corresponds to
the solution to the following optimization problem:

min
w

∥w −wt−1∥2, s.t. (Xt)
⊤w = yt. (4)

The constraint in Equation (4) implies that the training loss
is exactly zero (i.e., overfitted).

Performance evaluation. For the described linear system,
we use Lt(w) to denote the model error3 for task t:

Lt(w) = ∥w −w∗
t ∥2, (5)

which characterizes the generalization performance of w
on task t. As is standard in the empirical studies of CL,
e.g., (Chaudhry et al., 2018; Lin et al., 2022b), we evaluate
the performance of CL on two key metrics, forgetting and
overall generalization error, defined as below:

(1) Forgetting: It measures how much ‘knowledge’ of old
tasks has been forgotten after learning the current task.
Specifically, after learning task t ∈ [2, T ], the average for-
getting over all old tasks i ∈ [1, t− 1] is defined as:

Ft =
1

t−1

∑t−1
i=1(Li(wt)− Li(wi)). (6)

In Equation (6), Li(wt)−Li(wi) denotes the performance
difference between wi (the result after training task i) and
wt (the result after training task t) on test data of task i.

(2) Overall generalization error: We evaluate the model

3It can be proved that the model error we defined here is equiv-
alent to the mean-squared-error on noise-free test data.
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generalization performance of the final task model wT in
terms of the average model error over all tasks:

GT = 1
T

∑T
i=1 Li(wT ). (7)

It is worth noting that the forgetting defined in (Evron et al.,
2022) is based on the training loss, which consequently ig-
nores the generalization performance of the learned models
for old tasks. Such a definition is not only inconsistent with
the evaluation metric in empirical studies, but also insuffi-
cient to capture the backward knowledge transfer because
the value of forgetting therein can not be negative.

We further simplify the current setup by assuming that each
task has the same number of training samples as well as the
same noise level σ, stated as follows.
Assumption 3.3. nt = n and σt = σ for all t ∈ T.
Note that Assumption 3.3 is adopted only to make our results
(which will be shown in the next section) easy to interpret.
In fact, our analysis can be easily generalized to the situation
when Assumption 3.3 does not hold.

4. Main Results and Interpretations
Although we use linear models, in order to provide hints on
understanding DNNs that are usually heavily overparame-
terized, we are particularly interested in the performance
of CL in the overparameterized region (p > n), where we
define the overparameterized ratio as r := 1− n

p . For ease
of exposition, we define the following coefficients that will
appear in our main theorem:

ci,j := (1− r)
(
rT−i − rj−i + rT−j

)
, (8)

where 1 ≤ i < j ≤ T are the indices of tasks. Now we
are ready to state our main theorem that characterizes the
expected value of forgetting and overall generalization error:
Theorem 4.1. When p ≥ n+ 2, we must have

E[FT ] =
1

T − 1

T−1∑
i=1

[
(rT − ri)∥w∗

i ∥2︸ ︷︷ ︸
Term F1

+

T∑
j>i

ci,j∥w∗
i −w∗

j ∥2︸ ︷︷ ︸
Term F2

+
pσ2

p− n− 1
(ri − rT )︸ ︷︷ ︸

Term F3

]
(9)

E[GT ] =
rT

T

T∑
i=1

∥w∗
i ∥2︸ ︷︷ ︸

Term G1

+
1

T

T∑
i=1

nrT−i

p

T∑
k=1

∥w∗
k −w∗

i ∥2︸ ︷︷ ︸
Term G2

+
pσ2

p− n− 1

(
1− rT

)
︸ ︷︷ ︸

Term G3

. (10)

To the best of our knowledge, Theorem 4.1 is the first result
that establishes the closed forms of forgetting and overall
generalization error of CL in overparameterized linear mod-
els. In the rest of the paper, we will see that Theorem 4.1
not only describes how CL performs on the linear system

but also provides guidance on applying CL in practice that
DNNs and real-world datasets. The proof of Theorem 4.1
is in Appendix D.3. We also verify the correctness of The-
orem 4.1 in Figure 1 where discrete points indicated by
markers in Figure 1 (drawn by simulations) are very close
to the curves (drawn by Theorem 4.1 and Theorem 4.3).

We can further simply Equation (9) and Equation (10) by
only considering two tasks, so as to better understand The-
orem 4.1. The result is shown in the following corollary,
which clearly characterizes the dependence on task similar-
ity and different system parameters.

Corollary 4.2. When T = 2 and p ≥ n+ 2, we must have

E[F2] =(r2 − r)∥w∗
1∥2 +

n

p
∥w∗

2 −w∗
1∥2 +

nrσ2

p− n− 1
,

(11)

E[G2] =
r2

2

(
∥w∗

1∥2 + ∥w∗
2∥2
)
+

1− r2

2
∥w∗

1 −w∗
2∥2

+
pσ2(1− r2)

p− n− 1
. (12)

Based on Theorem 4.1, we will provide insights on the
following three aspects.

(1) Overparameterization (Section 4.1). In order to un-
derstand the generalization power of overfitted machine
learning models, much attention has focused (e.g., Belkin
et al. 2018; Ju et al. 2020; Hastie et al. 2022) on studying
the impact of overparameterization on single-task learning,
whereas how overparameterization affects the performance
of CL still remains unclear. Fortunately, the exact forms
in Theorem 4.1 provide a way to directly evaluate the im-
pact of overparameterization and the random noise on both
forgetting and generalization error in CL.

(2) Task similarity (Section 4.2). Both forgetting and gen-
eralization error depend on the optimal model gap between
any two tasks , i.e., ∥w∗

k−w∗
i ∥2 for any task k and i, which

defines the task similarity in this work (smaller gap means
higher similarity). This model gap can be treated as the char-
acterization of the task similarity, which depends only on
the underlying true model of each task and is independent
of the learnt models. Understanding the impact of task simi-
larity is helpful to not only explain empirical observations
but also guide better designs of CL in practice.

(3) Task ordering (Section 4.3). Given a fixed set of tasks in
CL, the learning order of the task sequence clearly plays an
important role in affecting both E[FT ] and E[GT ], through
the task order-dependent coefficients, e.g., cij in Equa-
tion (9) and rT−i in Equation (10). For example, suppose
∥w∗

i ∥2 is the same for all i ∈ T, the optimal task ordering
to minimize the generalization error is to learn the tasks
in a decreasing order of

∑T
k=1 ∥w∗

k −w∗
i ∥2, i.e., i < j if∑T

k=1 ∥w∗
k −w∗

i ∥2 >
∑T

k=1 ∥w∗
k −w∗

j ∥2. Intuitively, the
most dissimilar task should be learnt first in this case. Inves-
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tigating the impact of task ordering is particularly valuable
when the agent can control the task order in CL, in the same
spirit of curriculum learning (Bengio et al., 2009).

In what follows, we will delve into the impact of those
three crucial factors in order to provide a comprehensive
understanding of CL in the linear models.

4.1. The impact of overparameterization

In this subsection, we show some insights about the impact
of overparameterization. Specially, we will discuss what
happens when p changes under a fixed n.

1) More parameters can lead to zero forgetting and alle-
viate the negative impact of task dissimilarity on gener-
alization error. As shown in Theorem 4.1, when p → ∞,
we can have that E[FT ] → 0 and Term G2 also approaches
zero. In some special cases, we can further show that Term
G2 is monotonically decreasing w.r.t. p. A more detailed
discussion can be found in Appendix C.3.

2) Benign overfitting exists and is easier to observe with
large noise and/or low task similarity. As we introduced
in related work, benign overfitting has recently been dis-
covered and studied in linear models as a first step towards
understanding why DNNs can still generalize well even
when heavily overparameterized. The concept of “benign
overfitting” and “double-descent” is initially proposed for
only a single task. We now show that such a phenomenon
also exists in CL where there exists a sequence of tasks.

Notice that Theorem 4.1 is for the overparameterized region.
For a precise comparison between the performance of over-
fitting and underfitting, we present the theoretical result of
the underparameterized region in the following theorem.
Theorem 4.3. When n ≥ p+ 2, we must have

E[FT ] =
1

T − 1

T−1∑
i=1

∥w∗
T −w∗

i ∥2,

E[GT ] =

(
1

T

T−1∑
i=1

∥w∗
T −w∗

i ∥2
)

+
pσ2

n− p− 1
.

We provide an intuitive explanation and rigorous proof of
Theorem 4.3 in Appendix D.8. As shown in Theorem 4.3,
E[GT ] becomes larger when the noise level σ is larger, and
both E[FT ] and E[GT ] become larger when tasks are less
similar (i.e., when

∑T−1
i=1 ∥w∗

T −w∗
i ∥2 is larger). In con-

trast, in the overfitted situation, Term F2 and Term G2 in
Theorem 4.1 (corresponding to task similarity), Term F3
and Term G3 (corresponding to noise) will go to zero when
p → ∞. This indicates that when the noise level is high
and/or task similarity is low, the performance of CL in the
overparameterized situation is more likely to be better than
that in the underparameterized situation, i.e., benign over-
fitting exists and is easier to observe. This can be observed
from Figure 1. For example, the blue curve with markers

“+” corresponds to the largest noise (compared with other
curves in Figure 1(d)) and the lowest task similarity (com-
pared with Figure 1(c)), and it has the deepest descent curve
in the overparameterized region (p > 50 = n). This obser-
vation indicates that benign overfitting is easier to observe
with larger noise and lower task similarity.

3) A descent floor sometimes exists on forgetting and
generalization error, especially when tasks are similar
and noise is low. In Equation (11), the term (r2 − r)∥w∗

1∥2
first decreases and then increases as p increases from n to
∞ (i.e., r increases from 0 to 1), while the remaining two
terms decrease as p increases. Thus, when ∥w∗

2 − w∗
1∥2

(task similarity) and σ2 (noise level) are relatively small,
the trend of F2 w.r.t. p will be dominated by the first term,
where a descent floor of forgetting exists. In the right-hand-
side of Equation (12), the first term increases as p increases,
while the rest two terms decrease as p increases. Taking the
derivative of Equation (12) on p, we have

∂E[G2]
∂p =

2nrw∗
1
⊤w∗

2

p2 − σ2
(

(n+1)(1−r2)
(p−n−1)2 + 2nr

(p−n−1)p

)
.

Here, since 1
p−n−1 is very large when p is close to n, while

decreasing to zero when p → ∞, we can tell that when σ2

is relatively small w.r.t. w∗
1
⊤w∗

2 , ∂E[G2]
∂p will be positive

and then negative as p increases from n+ 2 to ∞. In other
words, if these two tasks have a positive correlation (i.e.,
w∗

1
⊤w∗

2 > 0) and noise is small, there exists a descent floor
w.r.t. p on E[G2]. Such a phenomenon can exist in other
setups besides the special case of T = 2. For example, in
Figure 1(a)(c) where the ground truth for each task is exactly
the same, we can observe a descent floor for the small noise
cases σ = 0.3 and 0.1 (i.e., orange and green curves with
markers “×” and “Y”, respectively).

4.2. The impact of task similarity

Generalization error monotonically decreases with task
similarity whereas forgetting may not. Based on Theo-
rem 4.1, it can be seen that the generalization error GT (wT )
decreases when ∥w∗

k − w∗
i ∥2 for any two different tasks

k and i decreases, because of the positive coefficients in
Term G2 in Equation (10). Intuitively, the generalization
error of CL will be smaller if the tasks are more similar with
each other. In contrast, the forgetting FT may not change
monotonically with ∥w∗

k −w∗
i ∥2, because the coefficients

cij in Term F2 in Equation (9) can be negative. To verify
this result, we consider two different scenarios.

(1) Consider the case where T = 2. In Equation (11),
∥w∗

2 − w∗
1∥2 captures the task similarity between tasks 1

and 2 in terms of the optimal task models. It is clear that
forgetting increases with ∥w∗

2 −w∗
1∥2, i.e., less forgetting

when the two tasks are more similar.

(2) Consider the case where T = 4. We first assume that
∥w∗

i ∥2 = w for any task i ∈ [1, 4] considering the overpa-
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Figure 1. The trend of forgetting and overall generalization error w.r.t. the number of model parameters, where T = 8, n = 50, ŵ∗
t ∈ R10

and ∥ŵ∗
t ∥2 = 1 for all t ∈ T. The ground truths are the same for all tasks in Subfigures (a) and (c), but are orthogonal in Subfigures (b)

and (d) where ŵ∗
t equals to t-th standard basis for all t ∈ T. Here the orthogonal truth means that for two tasks i and j, they do not have

common features, i.e., Si ∩ Sj = ∅. In this case, the inner product of their ground truth model is equal to zero. The discrete points
indicated by markers are calculated by simulation and are the average of 300 random simulation runs. The curves are drawn by the
theoretical expressions in Theorem 4.1 and Theorem 4.3.

rameterized models (Evron et al., 2022). Suppose that task
1 and task 2 share the same set of true features, which is
orthogonal to the feature set of both task 3 and task 4, i.e.,
S1 = S2 and S1 ∩ (S3 ∪ S4) = ∅. Note that

∥w∗
i −w∗

j ∥2 = ∥w∗
i ∥2 + ∥w∗

j ∥2 − 2⟨w∗
i ,w

∗
j ⟩

where ⟨w∗
i ,w

∗
j ⟩ = 0 if Si ∩ Sj = ∅. Therefore, we can

control the value of ∥w∗
1 −w∗

2∥2 by changing w∗
2 , without

affecting the value of ∥w∗
i −w∗

j ∥2 for any pair of {i, j} ≠
{1, 2}. Based on Theorem 4.1, it can be shown that c1,2 < 0,
such that increasing ∥w∗

1 − w∗
2∥2, i.e., the tasks become

less similar, will surprisingly decrease forgetting.

4.3. The impact of task ordering

In order to investigate the impact of task ordering on the
performance of CL, we assume that ∥w∗

t ∥2 = w for every
task t ∈ T. By ignoring the task order-independent terms
in Equation (9) and Equation (10), we focus on the task
order-dependent terms, i.e., Term F2 and Term G2.

1) Optimal task ordering of minimizing forgetting tends
to arrange dissimilar tasks adjacently in the early stage
of the sequence. As shown in Term F2, the optimal task
order to minimize forgetting closely hinges upon the value
of ci,j . Based on Equation (8), ci,j is smaller when (1) i
and j are smaller and (2) they are closer. Intuitively, this
implies that tasks with larger ∥w∗

i −w∗
j ∥2 should be learnt

adjacently with higher priority in CL, in order to minimize
the impact of the task dissimilarity on the value of F̃T (wT ).
However, finding the optimal task order for the general
case is highly nontrivial due to the complex coupling across
∥w∗

i −w∗
j ∥2 for different tasks. To verify the implication

above and better understand the structure of the optimal task
order, we study several special cases of the task setups.

(1) [Special case I: One vs Many] There are two different
categories of tasks, where tasks in the same category have
the same optimal model; among the entire task set, one
special task belongs to Category I while the other tasks
belong to Category II. In this case, the optimal task order is
captured by the optimal learning order of the special task in

Category I. We have the following result to characterize the
optimal task order for Special case I.

Proposition 4.4. Let i∗ ∈ [1, T ] denote the optimal order
of the special task in Category I to minimize forgetting.
Suppose p ≥ n+ 2. Then 1) i∗ can take any integer value
between 2 and T

2 , depending on the value of n
p ; 2) i∗ is

non-decreasing with n
p .

As indicated by Proposition 4.4, the special task will be
learnt in the first half of the sequence, such that the task
diversity in the first half is always larger than in the second
half. Besides, with the model capacity increasing (np → 0),
the order of the special task will move towards the begin-
ning of the sequence, because 1) the model is less concerned
about the special task since it is powerful enough to learn dif-
ferent features and 2) the model focuses on the performance
of the majority and seeks to learn more tasks from Category
II at the end of the sequence for better performance.

(2) [Special case II: Equal Occurrence] There are two
different categories (C1 and C2) of tasks, where tasks in the
same category have the same optimal model; particularly,
two categories contain the same number of tasks. If task
1 ∈ C1 and task 2 ∈ C2, we will denote the task order
as (C1, C2). The following proposition characterizes the
optimal task order in this case:

Proposition 4.5. Suppose p ≥ n + 2. For T = 4 and
T = 6, the optimal task order to minimize forgetting is
the perfectly alternating order, i.e., (Ci, Cj , Ci, Cj) and
(Ci, Cj , Ci, Cj , Ci, Cj), where i, j ∈ {1, 2} and i ̸= j.

Proposition 4.5 clearly shows that adjacent tasks always be-
long to different categories in the optimal task order, which
leads to a more diverse task learning sequence. Intuitively,
the alternating order maximizes the memorization of each
category by keeping practicing on different tasks. It can be
further proved that the perfectly alternating order is also
optimal for T = 6 with three different categories (Ap-
pendix C.4). Based on these results, we expect that such an
alternating order may minimize forgetting for more general
scenarios where the tasks contain multiple categories with

6
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(a) (b) (c) (d)

Figure 2. Impact of task similarity and task order. (a) When T = 2, both forgetting and generalization error decrease when two tasks have
more overlapping classes. (b) When T = 4, the forgetting surprisingly increases when the first two tasks have more overlapping classes;
‘forgetting 0’, ‘forgetting 1’ and ‘forgetting 2’ correspond to three cases of the task setups (also in (c) and (d)). (c) Consider one special
task and five same tasks in CL with T = 6; the task order index shows the order of the special task, and the smallest forgetting is achieved
always when the special task is learnt in the first half for each case (we normalize the forgetting w.r.t. the worst forgetting in each case).
(d) Consider two categories of tasks in CL with T = 4; the task order indices 0 and 1 refer to the perfectly alternating orders, one of
which always achieve the smallest forgetting among all possible orders. All the results are averaged over 3 random seeds.

equal cross-category task model distance.

The findings on the optimal task order indeed share similar
insights with the surprising impact of task correlation on
forgetting mentioned earlier. Intuitively, learning more dis-
similar tasks in the early stage facilitates the exploration of
a larger feature space and expands the learnt feature space
in CL, which can make the learning of similar tasks in the
future much easier. In the meanwhile, the impact of task
similarity among the early tasks continuously diminishes
in CL with T increasing, as suggested by the coefficients
ci,j (which can be smaller for smaller i, j) in Theorem 4.1.
Therefore, the negative impact of learning more dissimilar
tasks on forgetting is weaker when they are learnt in the
early stage, compared to being learnt in the late stage.

2) The optimal task ordering for minimizing forgetting
and for minimizing generalization error are not always
the same. Consider Special case I and Special case II. It
can be shown that the optimal task orders for minimizing
forgetting and generalization error are different in Special
case I but same in Special case II. This would open up an
interesting direction of finding the task order with balanced
impact on forgetting and generalization error. A more de-
tailed discussion can be found in Appendix C.4.

5. Implications on CL with DNN
So far, we have explored different aspects that affect the per-
formance of CL in overparameterized linear models. More
interestingly, we will show next that Theorem 4.1 can also
shed light on CL in practice with DNNs, by reflecting on
recent empirical observations and guiding improved designs
therein. More experimental details are in Appendix A.

5.1. Forgetting is not always monotonic with task
similarity

To see if our understandings about the impact of task simi-
larity on forgetting can be carried over to CL with DNN, we
conduct experiments on MNIST (LeCun et al., 1989) using

a convolutional neural network to investigate the impact of
task similarity therein. More specifically, we consider each
task i as a binary classification problem which seeks to de-
cide if an image belongs to a task-specific label subset Yi of
the classes, i.e., Yi ⊂ {0, ..., 9} in MNIST, and we control
the task similarity through the degree of class overlapping
between the task-specific subsets, e.g., task i and j are more
similar if the cardinality of Yi ∩ Yj is larger.

We first consider the case with two tasks, where we fix Y1

for task 1 as {0, 1, 2, 3, 4} and change Y2 for task 2 to have
different numbers of overlapping classes with Y1. As shown
in Figure 2(a), both forgetting and generalization error de-
crease when the number of overlapping classes increases,
i.e., the two tasks are more similar, which is indeed con-
sistent with our analysis for the overparameterized linear
models for T = 2. More interestingly, this result also agrees
with some recent studies (Ramasesh et al., 2020; Lee et al.,
2021; Evron et al., 2022), which found that ‘intermediate
task similarity’ leads to the worst forgetting in a two-task
setup using various notions of task similarity (different from
our definition of task similarity using the optimal model
gap), through either empirical studies or analyzing the up-
per bound of forgetting. We can build the connection based
on the closed form of forgetting F2 in Equation (11).

Note that in Equation (11)
∥w∗

2 −w∗
1∥2 = ∥w∗

2∥2 + ∥w∗
1∥2 − 2⟨w∗

1 ,w
∗
2⟩

and we can divide the task correlation into three cases de-
pending on the value of ⟨w∗

1 ,w
∗
2⟩: (1) ⟨w∗

1 ,w
∗
2⟩ = 0: Two

tasks are orthogonal in the sense that they share no com-
mon features, i.e., S1 ∩ S2 = ∅; (2) ⟨w∗

1 ,w
∗
2⟩ > 0: Two

tasks share some common features and are ‘positively’ cor-
related; (3) ⟨w∗

1 ,w
∗
2⟩ < 0: Two tasks share some common

features but are ‘negatively’ correlated. Compared to the
first case when two tasks are orthogonal, it can be easily
shown that forgetting is worse when two tasks are negatively
correlated even if they share some common features, which
indeed corresponds to ‘the intermediate task similarity’ in
(Ramasesh et al., 2020; Lee et al., 2021; Evron et al., 2022).
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The reason behind is that in this case task 2 updates the
model in the opposite direction to the model update of task
1, which inevitably leads to more forgetting in CL. Note that
in Figure 2(a), the non-overlapping case means that task 1
and 2 are negatively correlated because in this two-task case
the image that is not in Y1 must be in Y2. On the other hand,
the forgetting can even be negative when the two tasks are
positively correlated.

We next consider the case with T = 4, where we control the
task similarity by changing Y2 while fixing Y1, Y3 and Y4.
Here we let (Y1 ∪ Y2) ∩ (Y3 ∪ Y4) = ∅ as in Section 4.2.
As shown in Figure 2(b), forgetting surprisingly increases
when task 1 and task 2 have more overlapping classes, which
is also consistent with our analysis for the linear models.
Indeed, this also justifies our observation that forgetting can
decrease when the adjacent tasks are more dissimilar when
studying the impact of task order.

5.2. Diversify the tasks in the early stage and order
dissimilar tasks adjacently

We also evaluate the impact of task ordering on forgetting
in CL with DNN, by constructing the tasks using a similar
strategy as in Section 5.1. More specifically, we consider
two different scenarios: (1) T = 6, where the task sequence
includes one special task and five same tasks; (2) T = 4,
where the task sequence includes two categories of tasks
and each has two same tasks.

Figure 2(c) demonstrates forgetting in the first scenario w.r.t.
the learning order of the special task, and three plots cor-
respond to three different cases, respectively. It is clear
that for all three cases, the optimal order of the special
task to minimize forgetting is always in the first half of
the sequence. For the second scenario, we evaluate forget-
ting in Figure 2(d) for all six possible task orders, where
task indices 0 and 1 refer to the perfectly alternating order.
We can see that the smallest forgetting is also achieved in
the perfectly alternating order. These results indicate that
our findings in Section 4.3 for the overparameterized linear
models can also be carried over to CL with DNN, i.e., the
optimal task order should diversify the tasks in the early
stage and learn more different tasks adjacently. Such an
implication is indeed consistent with the empirical obser-
vations in recent studies (Li et al., 2022; Bell & Lawrence,
2022). Note that in both Figure 2(c) and Figure 2(d), we
normalize forgetting w.r.t. the worst forgetting in each case.

5.3. Weight the fresher old tasks more in forward
knowledge transfer

Recently, there has been increasing interest in CL on lever-
aging task correlation to facilitate knowledge transfer (Ke
et al., 2020; Lin et al., 2022b;a), which first selects the most
correlated old tasks with the current task and then designs

algorithms to directly increase the knowledge transfer be-
tween correlated tasks. By investigating knowledge transfer
in the linear models, we show that improved algorithms can
be motivated to achieve better knowledge transfer.

Given a task t in CL, the forward knowledge transfer (Veniat
et al., 2020) in the linear model can be defined as

E[∥wt −w∗
t ∥2]− E[∥wr

t −w∗
t ∥2], (13)

where wr
t is the learnt model of task t by starting from a

random model. Intuitively, Equation (13) characterizes
the gap in the testing performance between wt learnt in
CL and wr

t learnt from scratch, for which a positive value
means that the accumulated knowledge in CL benefits
the learning of the current task. As the second term in
Equation (13) is independent with CL, it suffices to analyze
E[∥wt −w∗

t ∥2] for understanding the forward knowledge
transfer. Based on Lemma B.2 (Appendix B), we can obtain

E[∥wt −w∗
t ∥2] = rt∥w∗

t ∥2 +
t∑

i=1

nrt−i

p
∥w∗

i −w∗
t ∥2 +

pσ2

p− n− 1
.

While it is intuitive that better forward knowledge transfer
can be achieved when ∥w∗

i − w∗
t ∥2 is smaller for the

current task t and the old task i, the impact of different old
tasks on the current task is non-uniform, in the sense that
a more recent old task i (i.e., t − i is smaller) has a larger
effect on the forward knowledge transfer to task t. This
result implies that fresher old tasks should contribute more
when designing algorithms to leverage correlated old tasks
to facilitate better forward knowledge transfer.

To verify this insight, we consider the TRGP algorithm pro-
posed in (Lin et al., 2022b). Specifically, TRGP first selects
the most correlated old tasks with the current task and reuses
their knowledge through a scaled weight projection to facil-
itate forward knowledge transfer, where all the selected old
tasks are treated equivalently. We slightly modify TRGP by
assigning a larger weight to the selected old task that is more
recent to the current task, named as TRGP+, and evaluate its
performance on standard CL benchmarks (PMNIST (Lopez-
Paz & Ranzato, 2017) and Split CIFAR-100 (Krizhevsky
et al., 2009)) and DNN architectures. As shown in Table 1,
TRGP+ outperforms TRGP in both accuracy and forgetting.
Assigning a larger weight to the more recent correlated old
task not only improves the forward knowledge transfer, but
also increases the backward knowledge transfer by forcing
the learnt model of the current task to be closer to the model
of those highly correlated old tasks.

Table 1. The averaged final testing accuracy (ACC) and backward
transfer (BWT: negative value of forgetting, larger is better) over
all the tasks on different datasets.

Method PMNIST Split CIFAR-100

ACC(%) BWT(%) ACC(%) BWT(%)

TRGP 96.34 -0.8 74.46 -0.9

TRGP+ 96.75 -0.46 75.31 0.13
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6. Conclusions
In this work, we studied CL in the overparameterized linear
models where each task is a linear regression problem and
solved by using SGD. Under the assumption that each task
has a sparse linear model with i.i.d. Gaussian features and
noise, we derived the exact forms of both forgetting and
generalization error, which built the key foundations of un-
derstanding the performance of CL. In particular, we inves-
tigated the impact of overparameterization, task similarity,
and task ordering on both forgetting and generalization error.
Experimental results on real datasets with DNNs indicated
that our findings in linear models can even be carried over to
CL in practice and leveraged to develop better algorithms.
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Supplemental Material

A. Experimental Details
A.1. Experimental details for Section 5.1 and Section 5.2

Datasets. We consider the MNIST dataset. For each task, we randomly select 200 samples for training and 1000 samples for
testing. Different tasks have different subsets of classes.

DNN architecture and training details. We use a five-layer neural network with two convolutional layers and three fully-
connected layers. Relu is used for the first four layers and Sigmoid is used for the last layer. The first convolutional layer is
followed by 2D max-pooling operation with stride of 2. We learn each task by using SGD with a learning rate of 0.1 for 600
epochs. The forgetting and overall generalization error are evaluated as in Equation (6) and Equation (7), respectively, while
here Lt(w) is defined as the mean-squared test error instead of Equation (5).

Task setups. For Figure 2(a), we consider the following setup:

• task 1: (0, 1, 2, 3, 4).

• task 2: (5, 6, 7, 8, 9), (4, 5, 6, 7, 8), (3, 4, 5, 6, 7), (2, 3, 4, 5, 6), (1, 2, 3, 4, 5), (0, 1, 2, 3, 4), which correspond to the
different numbers of overlapping classes with task 1.

For Figure 2(b), we randomly select three different setups:

• ‘forgetting 0’:

– task 1: (0, 1, 2).
– task 2: (3, 4, 5), (2, 3, 4), (1, 2, 3), (0, 1, 2), which correspond to the different numbers of overlapping classes

with task 1.
– task 3: (7, 8, 9).
– task 4: (7, 8, 9).

• ‘forgetting 1’:

– task 1: (3, 4, 5).
– task 2: (0, 1, 2), (1, 2, 3), (2, 3, 4), (3, 4, 5), which correspond to the different numbers of overlapping classes

with task 1.
– task 3: (6, 7, 8).
– task 4: (7, 8, 9).

• ‘forgetting 2’:

– task 1: (0, 1, 2).
– task 2: (7, 8, 9), (2, 7, 8), (1, 2, 7), (0, 1, 2), which correspond to the different numbers of overlapping classes

with task 1.
– task 3: (4, 5, 6).
– task 4: (4, 5, 6).

For Figure 2(c), we randomly select three different setups:

• ‘forgetting 0’: the special task is (4, 5, 6, 7) and the other tasks are (0, 1, 2, 3).

• ‘forgetting 1’: the special task is (0, 1, 2, 3) and the other tasks are (5, 6, 7, 8).

• ‘forgetting 2’: the special task is (3, 4, 5, 6) and the other tasks are (1, 2, 7, 8).

For Figure 2(d), we randomly select three different setups:

12
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• ‘forgetting 0’: the two task categories are (4, 5, 6, 7) and (1, 2, 4, 5), and the task order indices are:

– ‘0’: (4, 5, 6, 7), (1, 2, 4, 5), (4, 5, 6, 7), (1, 2, 4, 5).
– ‘1’: (1, 2, 4, 5), (4, 5, 6, 7), (1, 2, 4, 5), (4, 5, 6, 7).
– ‘2’: (4, 5, 6, 7), (4, 5, 6, 7), (1, 2, 4, 5), (1, 2, 4, 5).
– ‘3’: (1, 2, 4, 5), (1, 2, 4, 5), (4, 5, 6, 7), (4, 5, 6, 7).
– ‘4’: (4, 5, 6, 7), (1, 2, 4, 5), (1, 2, 4, 5), (4, 5, 6, 7).
– ‘5’: (1, 2, 4, 5), (4, 5, 6, 7), (4, 5, 6, 7), (1, 2, 4, 5).

• ‘forgetting 1’: the two task categories are (4, 5, 6, 7) and (2, 3, 4, 5), and the task order indices are:

– ‘0’: (4, 5, 6, 7), (2, 3, 4, 5), (4, 5, 6, 7), (2, 3, 4, 5).
– ‘1’: (2, 3, 4, 5), (4, 5, 6, 7), (2, 3, 4, 5), (4, 5, 6, 7).
– ‘2’: (4, 5, 6, 7), (4, 5, 6, 7), (2, 3, 4, 5), (2, 3, 4, 5).
– ‘3’: (2, 3, 4, 5), (2, 3, 4, 5), (4, 5, 6, 7), (4, 5, 6, 7).
– ‘4’: (4, 5, 6, 7), (2, 3, 4, 5), (2, 3, 4, 5), (4, 5, 6, 7).
– ‘5’: (2, 3, 4, 5), (4, 5, 6, 7), (4, 5, 6, 7), (2, 3, 4, 5).

• ‘forgetting 2’: the two task categories are (6, 7, 8, 9) and (3, 4, 5, 6), and the task order indices are:

– ‘0’: (6, 7, 8, 9), (3, 4, 5, 6), (6, 7, 8, 9), (3, 4, 5, 6).
– ‘1’: (3, 4, 5, 6), (6, 7, 8, 9), (3, 4, 5, 6), (6, 7, 8, 9).
– ‘2’: (6, 7, 8, 9), (6, 7, 8, 9), (3, 4, 5, 6), (3, 4, 5, 6).
– ‘3’: (3, 4, 5, 6), (3, 4, 5, 6), (6, 7, 8, 9), (6, 7, 8, 9).
– ‘4’: (6, 7, 8, 9), (3, 4, 5, 6), (3, 4, 5, 6), (6, 7, 8, 9).
– ‘5’: (3, 4, 5, 6), (6, 7, 8, 9), (6, 7, 8, 9), (3, 4, 5, 6).

A.2. Experimental details for Section 5.3

A.2.1. TRGP VS TRGP+

TRGP (Lin et al., 2022b) seeks to solve the following optimization problem for the current task t:
min

{wl}l,{Ql
j,t}l,j∈T Rl

t

L({wl
eff}l,Dt),

s.t wl
eff = wl +

∑
j∈T Rl

t

[ProjQ
Sl
j

(wl)− ProjSl
j
(wl)], (14)

where wl is the DNN weight for the layer l, and Sl
j denotes the input subspace of the layer l for the old task j < t, which

can be constructed by using SVD on the representation matrix for that layer. Two important designs are introduced in
Equation (14):

• The trust region T Rl
t: T Rl

t denotes the set of the most correlated old tasks selected for task t based on some correlation
evaluation metric in a layer-wise manner. The purpose here is to select the most correlated old tasks and facilitate the
forward knowledge transfer by reusing the learnt knowledge of the old tasks in T Rl

t.

• The scaled weight projection ProjQ
Sl
j

(wl): ProjQ
Sl
j

(wl) is developed to reuse the learnt model of the selected old tasks

in T Rl
t. Specifically, for any j ∈ T Rl

t,
ProjQ

Sl
j

(wl) = wl
t−1B

l
jQ

l
j,t(B

l
j)

′

where Bl
j is the bases matrix for the subspace Sl

j , and Ql
j,t is the scaling matrix to scale the weight projection onto Sl

j .
In contrast, ProjSl

j
(wl) = wl

t−1B
l
j(B

l
j)

′ is the standard weight projection onto Sl
j . Since the learnt knowledge for

the old task j is indeed ProjSl
j
(wl), scaling the projection provides a way to reuse this knowledge directly for learning

the task t. Intuitively, ProjQ
Sl
j

(wl)− ProjSl
j
(wl) characterizes the boosted forward knowledge transfer from old task

j ∈ T Rl
t to task t.

13
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However, as shown in Equation (14), all the selected old tasks in T Rl
t are treated equivalently in the effective weight wl

eff ,
which could be suboptimal. As suggested by our theoretical results, we proposed a slightly modified version of TRGP, i.e.,
TRGP+, by assigning non-uniform weights for the most correlated old tasks selected in T Rl

t:
min

{wl}l,{Ql
j,t}l,j∈T Rl

t

L({wl
eff}l,Dt),

s.t wl
eff = wl +

∑
j∈T Rl

t

λj [Proj
Q

Sl
j

(wl)− ProjSl
j
(wl)], (15)

where λj > λj′ if t− j < t− j′ for both j, j′ ∈ T Rl
t.

A.2.2. EXPERIMENTAL SETUP

Datasets. We consider two standard benchmarks in CL: (1) PMNIST: 10 sequential tasks will be created using different
permutations, where each task has 10 classes; (2) Split CIFAR-100: The entire dataset of CIFAR-100 will be splitted into
10 group, where each task is a 10-way multi-class classification problem for each group.

DNN architecture and training details. Following (Lin et al., 2022b), we use a 3-layer fully-connected network with 2
hidden layer of 100 units for PMNIST, and train the network for 5 epochs with a batch size of 10 for each task. For Split
CIFAR-100, we use a version of 5-layer AlexNet, and train the network for a maximum of 200 epochs with early stopping
for each task. Two most correlated old tasks are selected for the current task for each layer, and we assign a larger weight of
1.2 to the more recent old task and 0.8 to the other one.

Evaluation metrics. The performance is evaluated based on ACC, the average final accuracy over all tasks, and Backward
Transfer (BWT) which measures the forgetting of old tasks when learning new tasks. Specfically, ACC and BWT are defined
as:

ACC =
1

T

∑T

i=1
AT,i, BWT =

1

T − 1

∑T−1

i=1
AT,i −Ai,i (16)

where AT,i is the accuracy of the model on i-th task after learning the T -th task sequentially.

B. Useful Lemmas
The following lemma characterizes the solution to the optimization problem Equation (4) for task t:

Lemma B.1. The solution to the optimization problem Equation (4), i.e., the learnt model for task t, is given by
wt = wt−1 +Xt(X

⊤
t Xt)

−1
(
yt −X⊤

t wt−1

)
. (17)

In the overparameterized case, multiple wt exist to perfectly fit (Xt)
⊤w = yt, and solving Equation (4) picks the one that

has minimum l2 distance to wt−1. Therefore, the solution in Equation (17) not only incorporates the information of current
task t through Dt but also depends on the previous model evolution trajectory in CL.

By leveraging the recent advance in (Belkin et al., 2020), we can have the following lemma about the evolution of
E[∥wt −w∗

i ∥2]:
Lemma B.2. Suppose p ≥ n+ 2. For any task t ∈ [1, T − 1] and any old task i ∈ [1, t], the following equation holds:

E[∥wt+1 −w∗
i ∥2]

=

(
1− n

p

)
E[∥wt −w∗

i ∥2] +
n

p
∥w∗

t+1 −w∗
i ∥2 +

nσ2

p− n− 1
.

C. Additional Results
C.1. Characterization of negative forgetting

As shown in Figure 2(a), the forgetting can even be negative when the two tasks are positively correlated. Intuitively, because
the common features play a similar role in these two tasks, task 2 updates the model in a favorable direction for task 1, which
could even result in better performance of task 1 due to the backward knowledge transfer herein. A formal quantification of
the condition for better performance of task 1 can be found in the following proposition:

Proposition C.1. Suppose σ2 < p−n−1
p ∥w∗

1∥2 and p ≥ n+ 2. The learning of task 2 would lead to a better model for task
1, i.e., E[F2] ≤ 0, if

2⟨w∗
1,S1

,w∗
2,S2

⟩ ≥ n

p
∥w∗

1∥2 + ∥w∗
2∥2 +

(p− n)σ2

p− n− 1
.

14
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C.2. Evolution of forgetting

We can also characterize the evolution of forgetting after learning new tasks. Based on the definition of forgetting, we have

E[Ft] =
1

t− 1

t−1∑
i=1

E
[
∥wt −w∗

i ∥2 − ∥wi −w∗
i ∥2
]
,

E[Ft+1] =
1

t

t∑
i=1

E
[
∥wt+1 −w∗

i ∥2 − ∥wi −w∗
i ∥2
]
.

Rearranging the above equations gives
t−1∑
i=1

E[∥wt −w∗
i ∥2] = (t− 1)E[Ft] +

t−1∑
i=1

E[∥wi −w∗
i ∥2],

t−1∑
i=1

E[∥wt+1 −w∗
i ∥2] = tE[Ft+1] +

t∑
i=1

E[∥wi −w∗
i ∥2]− E[∥wt+1 −w∗

t ∥2].

Based on the relationship between E[∥wt −w∗
i ∥2] and E[∥wt+1 −w∗

i ∥2] characterized in Lemma B.2, it can be seen that
t−1∑
i=1

E[∥wt+1 −w∗
i ∥2]

=tE[Ft+1] +

t∑
i=1

E[∥wi −w∗
i ∥2]− E[∥wt+1 −w∗

t ∥2]

=

t−1∑
i=1

{(
1− n

p

)
E[∥wt −w∗

i ∥2] +
n

p
∥w∗

t+1 −w∗
i ∥2 +

nσ2

p− n− 1

}

=

(
1− n

p

) t−1∑
i=1

E[∥wt −w∗
i ∥2] +

n

p

t−1∑
i=1

∥w∗
t+1 −w∗

i ∥2 +
nσ2(t− 1)

p− n− 1

=

(
1− n

p

){
(t− 1)E[Ft] +

t−1∑
i=1

E[∥wi −w∗
i ∥2]

}
+

n

p

t−1∑
i=1

∥w∗
t+1 −w∗

i ∥2 +
nσ2(t− 1)

p− n− 1
,

such that

tE[Ft+1] =(t− 1)

(
1− n

p

)
E[Ft] +

(
1− n

p

) t−1∑
i=1

E[∥wi −w∗
i ∥2] +

n

p

t−1∑
i=1

∥w∗
t+1 −w∗

i ∥2

+
nσ2(t− 1)

p− n− 1
−

t∑
i=1

E[∥wi −w∗
i ∥2] + E[∥wt+1 −w∗

t ∥2]

=(t− 1)

(
1− n

p

)
E[Ft]−

n

p

t−1∑
i=1

E[∥wi −w∗
i ∥2]− E[∥wt −w∗

t ∥2]

+
n

p

t−1∑
i=1

∥w∗
t+1 −w∗

i ∥2 + E[∥wt+1 −w∗
t ∥2] +

nσ2(t− 1)

p− n− 1
. (18)

Let i = t in Lemma B.2. We can show that
E[∥wt+1 −w∗

t ∥2 − ∥wt −w∗
t ∥2]

=
n

p
∥w∗

t+1 −w∗
t ∥2 −

n

p
E[∥wt −w∗

t ∥2] +
nσ2

p− n− 1
. (19)

By substituting Equation (19) back to Equation (18), we can have

E[Ft+1] =
t− 1

t

(
1− n

p

)
E[Ft] +

n

tp

t−1∑
i=1

{
∥w∗

t+1 −w∗
i ∥2 − E[∥wi −w∗

i ∥2]
}
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+
n

tp

{
∥w∗

t+1 −w∗
t ∥2 − E[∥wt −w∗

t ∥2]
}
+

nσ2

p− n− 1

=
t− 1

t

(
1− n

p

)
E[Ft] +

n

tp

t∑
i=1

{
∥w∗

t+1 −w∗
i ∥2 − E[∥wi −w∗

i ∥2]
}
+

nσ2

p− n− 1
. (20)

C.3. Impact of overparameterization

1) Forgetting approaches zero with more parameters. In Equation (9), when p → ∞, we have r → 1, which implies that
(rT − ri) → 0 and ci,j → 0. Therefore, we can conclude that E[FT ] → 0 when p → ∞. An intuitive explanation is that
with more parameters, the model has a larger “memory” such that it can remember all knowledge of previous tasks, i.e., zero
forgetting.

2) More parameters can alleviate the negative impact of task dissimilarity on generalization error. Term G2 in
Equation (10) describes the effect of task dissimilarity on GT . When p → ∞, Term G2 approaches zero, which indicates
that the negative impact of task dissimilarity on generalization error diminishes. In some special cases, we can further show
that Term G2 is monotonically decreasing with respect to p, e.g., T = 2 shown in Equation (12). A more general4 case is
when

∑T
k=1 ∥w∗

k −w∗
i ∥2 = C for all task i, we have Term G2 = 1−rT

T C which is also monotonically decreasing w.r.t. p.

C.4. Impact of task order

(1) [Special case III] There are three categories (C1, C2 and C3) of tasks: each category contains the same number of tasks;
the tasks are same in the same category but different across categories. Without loss of generality, we assume that for any
task i and j

∥w∗
i −w∗

j ∥2 =

{
0, if i, j ∈ Cm for m ∈ {1, 2, 3};
1, else.

Based on Theorem 4.1, we can show that the optimal task order for Special case III follows a similar structure of that for
Special case II, as characterized in the following proposition:

Proposition C.2. Suppose p ≥ n+ 2. For T = 6, the optimal task order to minimize forgetting is the perfectly alternating
order, i.e., (Ci, Cj , Ck, Ci, Cj , Ck), where i, j, k ∈ {1, 2, 3}, i ̸= j, i ̸= k and j ̸= k.

(2) [The optimal task order can be different for minimizing forgetting and generalization error]

[Special case I] As shown in Proposition 4.4, the optimal task order to minimize forgetting is to learn the special task between
the 2nd place and the T

2 th place. In stark contrast, this special task, which has the largest value of
∑T

k=1 ∥w∗
k −w∗

i ∥2,
should be always learnt in the very first place in order to minimize the generalization error, i.e., i = 1. The underlying
rationale is that the generalization error characterizes the average testing performance of the final model on all tasks, which
is maximized when the final model works the best for the majority. Therefore, in this case the optimal order for minimizing
forgetting is different from that for minimizing generalization error.

[Special case II] As shown in Proposition 4.5, the optimal task order to minimize forgetting is the perfectly alternating
order. In contrast, the task order indeed does not affect the generalization performance, because

∑T
k=1 ∥w∗

k −w∗
i ∥2 is

same for every task i ∈ T. In this case, the optimal task order for minimizing forgetting is also ‘optimal’ for minimizing
generalization error. That is to say, we can find an optimal task order to minimize forgetting and generalization error
simultaneously.

D. Proofs
D.1. Proof of Lemma B.1

Let ŵ = w −wt−1. It is clear that Equation (4) can be reformulated as
min ∥ŵ∥2, (21)

s.t. X⊤
t ŵ = yt −X⊤

t wt−1.

4For general T , this requirement holds if the ground truth of each task has the same power and is orthogonal to each other, i.e.,
∥w∗

i ∥2 = ∥w∗
j ∥2 and (w∗

i )
Tw∗

j = 0 for all i ̸= j.
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For the overparameterized case, X⊤
t Xt is invertible. Using the Lagrange multipliers, we can get

min
ŵ,λ

ŵ⊤ŵ

2
+ λT [X⊤

t ŵ − (yt −X⊤
t wt−1)].

By setting the derivative w.r.t. ŵ to 0, it follows that
ŵ∗ = −Xtλ (22)

such that
X⊤

t ŵ∗ = −X⊤
t Xtλ = yt −X⊤

t wt−1.

Therefore,
λ = −(X⊤

t Xt)
−1(yt −X⊤

t wt−1). (23)

By substituting Equation (23) into Equation (22), we can have
ŵ∗ = Xt(X

⊤
t Xt)

−1(yt −X⊤
t wt−1)

such that
wt = wt−1 +Xt(X

⊤
t Xt)

−1(yt −X⊤
t wt−1).

D.2. Proof of Lemma B.2

Let Pt := Xt(X
⊤
t Xt)

−1X⊤
t and X†

t := Xt(X
⊤
t Xt)

−1 for any t ∈ T, where Pt characterizes the projection onto the
row space of X⊤

t . Based on Lemma B.1, we have

wt+1 = (I − Pt+1)wt + Pt+1w
∗
t+1 +X†

t+1zt+1. (24)
Intuitively, the learnt model wt+1 for task t+ 1 is an ‘interpolation’ between the learnt model wt for task t and the optimal
task model w∗

t+1 for task t+ 1, while being perturbed by the random noise zt+1.

Let H = (I − Pt+1)(wt −w∗
i ) + Pt+1(w

∗
t+1 −w∗

i ). Based on Equation (24), we can know that
E[∥wt+1 −w∗

i ∥2]

=E[∥(I − Pt+1)wt + Pt+1w
∗
t+1 +X†

t+1zt+1 −w∗
i ∥2]

=E[∥(I − Pt+1)(wt −w∗
i ) + Pt+1(w

∗
t+1 −w∗

i ) +X†
t+1zt+1∥2]

=E[∥H +X†
t+1zt+1∥2]

=E[∥H∥2]︸ ︷︷ ︸
(a)

+2E[⟨H,X†
t+1zt+1⟩]︸ ︷︷ ︸

(b)

+E[∥X†
t+1zt+1∥2]︸ ︷︷ ︸
(c)

. (25)

(1) For the term (a), we have
E[∥H∥2] =E[∥(I − Pt+1)(wt −w∗

i ) + Pt+1(w
∗
t+1 −w∗

i )∥2]
=E[∥(I − Pt+1)(wt −w∗

i )∥2] + E[∥Pt+1(w
∗
t+1 −w∗

i )∥2] + 2E[⟨(I − Pt+1)(wt −w∗
i ),Pt+1(w

∗
t+1 −w∗

i )⟩]
(a)
=E[∥(I − Pt+1)(wt −w∗

i )∥2] + E[∥Pt+1(w
∗
t+1 −w∗

i )∥2]
(b)
=E[∥wt −w∗

i ∥2]− E[∥Pt+1(wt −w∗
i )∥2] + E[∥Pt+1(w

∗
t+1 −w∗

i )∥2] (26)
where (a) is because of the orthogonality between I − Pt+1 and Pt+1, and (b) is due to the Pythagorean theorem.

Because Pt+1 is the orthogonal projection matrix for the row space of Xt+1, based on the rotational symmetry of the
standard normal distribution, it follows that

E[∥Pt+1(w
∗
t+1 −w∗

i )∥2] =
n

p
∥w∗

t+1 −w∗
i ∥2, (27)

and
E[∥Pt+1(wt −w∗

i )∥2] =
n

p
E[∥wt −w∗

i ∥2], (28)

since Pt+1 is independent with wt.

By substituting Equation (27) and Equation (28) back to Equation (26), we can obtain that

E[∥H∥2] =
(
1− n

p

)
E[∥wt −w∗

i ∥2] +
n

p
∥w∗

t+1 −w∗
i ∥2. (29)
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(2) For the term (b), we have
E[⟨H,X†

t+1zt+1⟩] =E[⟨(I − Pt+1)(wt −w∗
i ) + Pt+1(w

∗
t+1 −w∗

i ),X
†
t+1zt+1⟩]

=E[⟨(I − Pt+1)(wt −w∗
i ),X

†
t+1zt+1⟩] + E[⟨Pt+1(w

∗
t+1 −w∗

i ),X
†
t+1zt+1⟩].

Because (I − Pt+1) is the projection onto the null space of X⊤
t+1 and X†

t+1zt+1 is a vector in the row space of X⊤
t+1, it

follows that
E[⟨(I − Pt+1)(wt −w∗

i ),X
†
t+1zt+1⟩] = 0. (30)

And since
E[⟨Pt+1(w

∗
t+1 −w∗

i ),X
†
t+1zt+1⟩] = E[⟨(X†

t+1)
⊤Pt+1(w

∗
t+1 −w∗

i ), zt+1⟩] = 0.

we can know that
E[⟨H,X†

t+1zt+1⟩] = 0. (31)

(3) For the term (c), we apply the “trace trick” by following (Belkin et al., 2020). Specifically, it can be first seen that
∥X†

t+1zt+1∥2 =∥Xt+1(X
⊤
t+1Xt+1)

−1zt+1∥2

=tr((X⊤
t+1Xt+1)

−1(X⊤
t+1Xt+1)(X

⊤
t+1Xt+1)

−1zt+1z
⊤
t+1)

=tr((X⊤
t+1Xt+1)

−1zt+1z
⊤
t+1)

Due to the independence between Xt+1 and the random noise zt+1, we can have that
E[∥X†

t+1zt+1∥2] =E[tr((X⊤
t+1Xt+1)

−1zt+1z
⊤
t+1))]

=tr[E[(X⊤
t+1Xt+1)

−1zt+1z
⊤
t+1]]

=tr(E[(X⊤
t+1Xt+1)

−1]E[zt+1z
⊤
t+1])

=σ2tr(E[(X⊤
t+1Xt+1)

−1]).

Since (X⊤
t+1Xt+1)

−1 follows the inverse-Wishart distribution with identity scale matrix I ∈ Rn×n and p degrees-of-
freedom, and each diagonal entry of (X⊤

t+1Xt+1)
−1 has a reciprocal that follows the χ2 distribution with p − n + 1

degrees-of-freedom. Therefore, for p ≥ n+ 2,

tr(E[(X⊤
t+1Xt+1)

−1]) =
n

p− n+ 1
,

such that

E[∥X†
t+1zt+1∥2] =

nσ2

p− n+ 1
. (32)

Lemma B.2 can be proved by substituting Equation (29), Equation (31) and Equation (32) to Equation (25).

D.3. Proof of Theorem 4.1

Based on Lemma B.2, we can have that

E[∥wt −w∗
i ∥2] =

(
1− n

p

)t

∥w0 −w∗
i ∥2 +

t∑
k=1

(
1− n

p

)t−k
n

p
∥w∗

k −w∗
i ∥2

+
nσ2

p− n− 1

t∑
k=1

(
1− n

p

)t−k

=

(
1− n

p

)t

∥w∗
i ∥2 +

t∑
k=1

(
1− n

p

)t−k
n

p
∥w∗

k −w∗
i ∥2

+
nσ2

p− n− 1

t∑
k=1

(
1− n

p

)t−k

(since w0 = 0). (33)

Let t = i in Equation (33). We have

E[∥wi −w∗
i ∥2] =

(
1− n

p

)i

∥w∗
i ∥2 +

i∑
k=1

(
1− n

p

)i−k
n

p
∥w∗

k −w∗
i ∥2
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+
nσ2

p− n− 1

i∑
k=1

(
1− n

p

)i−k

. (34)

Based on Equation (33) and Equation (34), we can obtain the closed form of E[FT ]:
E[FT ]

=
1

T − 1

T−1∑
i=1

E
[
∥wT −w∗

i ∥2 − ∥wi −w∗
i ∥2
]

=
1

T − 1

T−1∑
i=1

{(
1− n

p

)T

∥w∗
i ∥2 +

T∑
k=1

(
1− n

p

)T−k
n

p
∥w∗

k −w∗
i ∥2 +

nσ2

p− n− 1

T∑
k=1

(
1− n

p

)T−k

−
(
1− n

p

)i

∥w∗
i ∥2 −

i∑
k=1

(
1− n

p

)i−k
n

p
∥w∗

k −w∗
i ∥2 −

nσ2

p− n− 1

i∑
k=1

(
1− n

p

)i−k
}

=
1

T − 1

T−1∑
i=1

{[(
1− n

p

)T

−
(
1− n

p

)i
]
∥w∗

i ∥2 +
i∑

k=1

n

p

[(
1− n

p

)T−k

−
(
1− n

p

)i−k
]
∥w∗

k −w∗
i ∥2

+

T∑
k=i+1

n

p

(
1− n

p

)T−k

∥w∗
k −w∗

i ∥2 +
nσ2

p− n− 1

i∑
k=1

[(
1− n

p

)T−k

−
(
1− n

p

)i−k
]

+
nσ2

p− n− 1

T∑
k=i+1

(
1− n

p

)T−k
}

=
1

T − 1

T−1∑
i=1

{[(
1− n

p

)T

−
(
1− n

p

)i
]
∥w∗

i ∥2 +
T∑
j>i

ci,j∥w∗
i −w∗

j ∥2

+
nσ2

p− n− 1

i∑
k=1

[(
1− n

p

)T−k

−
(
1− n

p

)i−k
]
+

nσ2

p− n− 1

T∑
k=i+1

(
1− n

p

)T−k
}

=
1

T − 1

T−1∑
i=1

{[(
1− n

p

)T

−
(
1− n

p

)i
]
∥w∗

i ∥2 +
T∑
j>i

ci,j∥w∗
i −w∗

j ∥2

+
nσ2

p− n− 1

[
T∑

k=1

(
1− n

p

)T−k

−
i∑

k=1

(
1− n

p

)i−k
]}

=
1

T − 1

T−1∑
i=1

{[(
1− n

p

)T

−
(
1− n

p

)i
]
∥w∗

i ∥2 +
T∑
j>i

ci,j∥w∗
i −w∗

j ∥2

+
nσ2

p− n− 1

1−
(
1− n

p

)T
1−

(
1− n

p

) −
1−

(
1− n

p

)i
1−

(
1− n

p

)
}

=
1

T − 1

T−1∑
i=1

{[(
1− n

p

)T

−
(
1− n

p

)i
]
∥w∗

i ∥2 +
T∑
j>i

ci,j∥w∗
i −w∗

j ∥2

+
nσ2

p− n− 1

p

n

[(
1−

(
1− n

p

)T
)

−

(
1−

(
1− n

p

)i
)]}

=
1

T − 1

T−1∑
i=1

{[(
1− n

p

)T

−
(
1− n

p

)i
]
∥w∗

i ∥2 +
T∑
j>i

ci,j∥w∗
i −w∗

j ∥2

+
pσ2

p− n− 1

[(
1− n

p

)i

−
(
1− n

p

)T
]}
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=
1

T − 1

T−1∑
i=1

{
(rT − ri)∥w∗

i ∥2 +
T∑
j>i

ci,j∥w∗
i −w∗

j ∥2 +
pσ2

p− n− 1

(
ri − rT

)}
.

Based on Equation (33), we can also obtain the exact form of the generalization error. Specifically,
E[∥wT −w∗

i ∥2]

=

(
1− n

p

)T

∥w∗
i ∥2 +

T∑
k=1

n

p

(
1− n

p

)T−k

∥w∗
k −w∗

i ∥2 +
nσ2

p− n− 1

T∑
k=1

(
1− n

p

)T−k

,

such that

E[GT ] =
1

T

T∑
i=1

E[∥wT −w∗
i ∥2]

=
1

T

(
1− n

p

)T T∑
i=1

∥w∗
i ∥2 +

1

T

T∑
k=1

n

p

(
1− n

p

)T−k T∑
i=1

∥w∗
k −w∗

i ∥2

+
nσ2

p− n− 1

T∑
k=1

(
1− n

p

)T−k

=
1

T

(
1− n

p

)T T∑
i=1

∥w∗
i ∥2 +

1

T

T∑
k=1

n

p

(
1− n

p

)T−k T∑
i=1

∥w∗
k −w∗

i ∥2

+
nσ2

p− n− 1

1−
(
1− n

p

)T
1−

(
1− n

p

)
=

1

T

(
1− n

p

)T T∑
i=1

∥w∗
i ∥2 +

1

T

T∑
k=1

n

p

(
1− n

p

)T−k T∑
i=1

∥w∗
k −w∗

i ∥2

+
pσ2

p− n− 1

[
1−

(
1− n

p

)T
]

=
rT

T

T∑
i=1

∥w∗
i ∥2 +

1

T

T∑
i=1

nrT−i

p

T∑
k=1

∥w∗
k −w∗

i ∥2 +
pσ2

p− n− 1

(
1− rT

)
.

D.4. Proof of Proposition C.1

Based on Theorem 4.1, it follows that

E[F2] =(r2 − r)∥w∗
1∥2 +

n

p
∥w∗

1 −w∗
2∥2 +

nrσ2

p− n− 1

=−
(
1− n

p

)
n

p
∥w∗

1,s∥2 +
n

p
∥w∗

1,s∥2 +
n

p
∥w∗

2,s∥2 − 2
n

p
⟨w∗

1,s,w
∗
2,s⟩+

nrσ2

p− n− 1

=

(
n

p

)2

∥w∗
1,s∥2 +

n

p
∥w∗

2,s∥2 − 2
n

p
⟨w∗

1,s,w
∗
2,s⟩+

nrσ2

p− n− 1
.

When σ2 < p−n−1
p ∥w∗

1∥2,

n

p
∥w∗

1∥2 + ∥w∗
2∥2 +

(p− n)σ2

p− n− 1
≤ ∥w∗

1∥2 + ∥w∗
2∥2,

such that E[F2] ≤ 0 if

2⟨w∗
1,S1

,w∗
2,S2

⟩ ≥ n

p
∥w∗

1∥2 + ∥w∗
2∥2 +

(p− n)σ2

p− n− 1
.
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D.5. Proof of Proposition 4.4

Without loss of generality, we assume that ∥w∗
i −w∗

j ∥ = 1 for task i in Category I and task j in Category II. It follows that

F̃T (wT ) =
∑
i<i∗

ci,i∗ +
∑
j>i∗

ci∗,j

=(1− r)

i∗−1∑
i=1

(rT−i − ri
∗−i + rT−i∗) +

T∑
j=i∗+1

(rT−i∗ − rj−i∗ + rT−j)


=(1− r)

(
(T − 1) · rT−i∗ + rT−i∗+1 r

i∗−1 − 1

r − 1
− r

ri
∗−1 − 1

r − 1
+ 1− rT−i∗

)
=(1− r)(T − 2)rT−i∗ + (rT−i∗ − 1)(1− ri

∗−1)r + (1− r).

Letting α := rT−i∗ . Then minimizing F̃T (wT ) is equivalent to minimize

(1− r)(T − 2)α+ (α− 1)(1− rT−1

α
)r

=((1− r)(T − 2) + r)α+
rT

α
− rT − r.

By setting the derivative w.r.t. α to 0, we can have that the optimal value of α is

α =

√
rT

T − 2− (T − 1)r
(35)

which is clearly increasing with r. Therefore, the optimal order of the special task i∗ is non-increasing with r, i.e.,
non-decreasing with n

p .

D.6. Proof of Proposition 4.5

Without loss of generality, we assume that for any task i and j

∥w∗
i −w∗

j ∥2 =

{
0, if task i and j are in the same category;
1, if task i and j are in the different categories.

Based on the closed form of forgetting, we can see that it suffices to minimize
∑T−1

i=1

∑T
j>i ci,j∥w∗

i −w∗
j ∥2 in order to

minimize the forgetting FT (wT ), where ci,j = (1 − r)(rT−i − rj−i + rT−j). Besides, since whenever we change the
order between the i-th task and the j-th task, the value of rT−i + rT−j does not change. In other words, only the term rj−i

affects the optimal task order, which should minimize
∑T−1

i=1

∑T
j>i(−rj−i)∥w∗

i −w∗
j ∥2.

(1) For the case T = 4, there are three effective task orders: (1) task 1 ∈ C1, task 2 ∈ C1, task 3 ∈ C2, task 4 ∈ C2

((C1, C1, C2, C2) for simplicity); (2) (C1, C2, C1, C2); (3) (C1, C2, C2, C1). Swapping all tasks in C1 with all tasks in
C2 does not change the value of forgetting, e.g., (C1, C1, C2, C2) has the same forgetting with (C2, C2, C1, C1). In what
follows, we compare

∑T−1
i=1

∑T
j>i(−rj−i)∥w∗

i −w∗
j ∥2 among these three orders.

(a) For (C1, C1, C2, C2),
T−1∑
i=1

T∑
j>i

(−rj−i)∥w∗
i −w∗

j ∥2 = −(r2 + r3 + r + r2).

(b) For (C1, C2, C1, C2),
T−1∑
i=1

T∑
j>i

(−rj−i)∥w∗
i −w∗

j ∥2 = −(r + r3 + r + r).

(c) For (C1, C2, C2, C1),
T−1∑
i=1

T∑
j>i

(−rj−i)∥w∗
i −w∗

j ∥2 = −(r + r2 + r + r2).

It is clear that the alternating task order, i.e., (C1, C2, C1, C2) and (C2, C1, C2, C1), is the optimal order for this special
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case.

(2) For the case T = 6, based on the closed form of forgetting in Theorem 4.1, we can use computer programming to show
that besides the perfectly alternating task order, i.e., (C1, C2, C1, C2, C1, C2) and (C2, C1, C2, C1, C2, C1), there are 10
effective task orders as illustrated in Table 2. We further evaluate the difference of forgetting between each task order in
Table 2 and the perfectly alternating task order, where a positive difference means that the corresponding task order will lead
a larger forgetting than the perfectly alternating task order. It can be verified that the difference of forgetting is positive for
all the task orders in Table 2, which indicates that the optimal task order is the perfectly alternating task order.

Index Order Difference of forgetting
1 (C1, C2, C1, C2, C1, C2) 0

2 (C1, C1, C2, C1, C2, C2) r
(
2− 2r + 2r2 − 2r3

)
3 (C1, C1, C2, C2, C1, C2) r

(
2− 3r + 2r2 − r3

)
4 (C1, C1, C2, C2, C2, C1) r

(
3− 3r − r3 + r4

)
5 (C1, C2, C2, C1, C1, C2) r

(
2− 4r + 2r2

)
6 (C1, C2, C2, C1, C2, C1) r

(
1− 2r + 2r2 − 2r3 + r4

)
7 (C1, C1, C1, C2, C2, C2) r

(
4− 2r − 2r3

)
8 (C1, C2, C1, C2, C2, C1) r

(
1− 2r + 2r2 − 2r3 + r4

)
9 (C1, C2, C1, C1, C2, C2) r

(
2− 3r + 2r2 − r3

)
10 (C1, C2, C2, C2, C1, C1) r

(
3− 3r − r3 + r4

)
Table 2. Evaluation of the difference of forgetting between each effective task order and the perfectly alternating task order
(C1, C2, C1, C2, C1, C2), where a positive difference means that the corresponding task order will lead a larger forgetting than the
perfectly alternating task order.

D.7. Proof of Proposition C.2

Following the same strategy with Special case II, we can have Table 3 to show all effective task orders and their difference
of forgetting with the perfectly alternating task order, i.e., (C1, C2, C3, C1, C2, C3) and its ‘equivalent’ task orders (e.g.,
(C1, C3, C2, C1, C3, C2)). It can also be verified that the perfectly alternating task order is the optimal task order in this
case.

Index Order Difference of forgetting
1 (C1, C2, C3, C1, C2, C3) 0

2 (C1, C2, C1, C2, C3, C3) r
(
1 + 2r − 3r2

)
3 (C1, C2, C2, C3, C3, C1) r

(
2− 3r2 + r4

)
4 (C1, C2, C1, C3, C2, C3) r2 (2− 2r)

5 (C1, C2, C3, C2, C1, C3) r2
(
1− 2r + r2

)
6 (C1, C2, C3, C1, C3, C2) r2

(
1− 2r + r2

)
7 (C1, C1, C2, C3, C2, C3) r

(
1 + 2r − 3r2

)
8 (C1, C2, C2, C1, C3, C3) r

(
2− 2r2

)
9 (C1, C1, C2, C2, C3, C3) r

(
3− 3r2

)
10 (C1, C2, C1, C3, C3, C2) r

(
1 + r − 3r2 + r3

)
11 (C1, C2, C3, C3, C1, C2) r

(
1− 3r2 + 2r3

)
12 (C1, C2, C3, C3, C2, C1) r

(
1− 2r2 + r4

)
13 (C1, C2, C2, C3, C1, C3) r

(
1 + r − 3r2 + r3

)
14 (C1, C1, C2, C3, C3, C2) r

(
2− 2r2

)
15 (C1, C2, C3, C2, C3, C1) r2

(
2− 3r + r3

)
Table 3. Evaluation of the difference of forgetting between each effective task order and the perfectly alternating task order
(C1, C2, C3, C1, C2, C3), where a positive difference means that the corresponding task order will lead a larger forgetting than the
perfectly alternating task order.
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D.8. Proof of Theorem 4.3

Intuitive explanation of Theorem 4.3: In the underparameterized region, minimizing the loss Equation (3) for the current
task t will lead to a unique solution for this task, which does not depend on the learning process and the learned model of
previous tasks. That is to say, the task learning is independent among all tasks, such that (i) the learning order of the first
T − 1 tasks does not matter, and (ii) both forgetting and generalization performance depend only on the model distance
between the last task and the other tasks, i.e.,

∑T−1
i=1 ∥w∗

T −w∗
i ∥2.

Now we formally prove Theorem 4.3.

For the underparameterized regime, the solution of minimizing the training loss is
wt =(XtX

⊤
t )−1Xtyt

=(XtX
⊤
t )−1Xt

(
X⊤

t w∗
t + zt

)
=w∗

t + (XtX
⊤
t )−1Xtzt.

It follows that
wT −w∗

i = w∗
T −w∗

i + (XTX
⊤
T )−1XTzT ,

such that the model error for the i-th task can be represented as:
∥wT −w∗

i ∥2 = ∥w∗
T −w∗

i ∥2 + ∥(XTX
⊤
T )−1XTzT ∥2.

By taking expectation on both sides, we can have

E∥wT −w∗
i ∥2 = ∥w∗

T −w∗
i ∥2 +

pσ2

n− p− 1
.

Therefore, it can be shown that

E[GT ] = E
1

T

T∑
i=1

∥wT −w∗
i ∥2 =

(
1

T

T∑
i=1

∥w∗
T −w∗

i ∥2
)

+
pσ2

n− p− 1

and

E[FT ] =
1

T − 1

T−1∑
i=1

E
[
∥wT −w∗

i ∥2 − ∥wi −w∗
i ∥2
]

=
1

T − 1

T−1∑
i=1

∥w∗
T −w∗

i ∥2.
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