
Speed-Oblivious Online Scheduling: Knowing (Precise) Speeds is not Necessary

Alexander Lindermayr * 1 Nicole Megow * 1 Martin Rapp * 2

Abstract
We consider online scheduling on unrelated (het-
erogeneous) machines in a speed-oblivious set-
ting, where an algorithm is unaware of the ex-
act job-dependent processing speeds. We show
strong impossibility results for clairvoyant and
non-clairvoyant algorithms and overcome them in
models inspired by practical settings: (i) we pro-
vide competitive learning-augmented algorithms,
assuming that (possibly erroneous) predictions on
the speeds are given, and (ii) we provide com-
petitive algorithms for the speed-ordered model,
where a single global order of machines according
to their unknown job-dependent speeds is known.
We prove strong theoretical guarantees and evalu-
ate our findings on a representative heterogeneous
multi-core processor. These seem to be the first
empirical results for scheduling algorithms with
predictions that are evaluated in a non-synthetic
hardware environment.

1. Introduction
Heterogeneous processors are getting more and more com-
mon in various domains. For several years now, efficiency
and performance gains in smartphone chips have depended
crucially on the combination of high-performance and low-
performance (but energy-efficient) cores (ARM Limited,
2013). Heterogeneity has recently been introduced also to
the desktop market with Intel Alder Lake (Q1’2022) (Rotem
et al., 2022) and AMD Zen 5 (announced for 2023). Fur-
ther, jobs differ in their instruction mix and memory ac-
cess patterns, and hence may not benefit uniformly from
the high-performance cores, which typically feature larger
caches, out-of-order execution, and a higher CPU frequency.
Figure 1 shows job-dependent speed varieties in common
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Figure 1. The execution time and speedup of the big over LITTLE
cores on an Arm big.LITTLE heterogeneous processor varies
strongly between jobs and different input data. Variations of
the speedup w.r.t. input data are large for some jobs (e.g., water-
nsquared) but small for others (e.g., fmm).

benchmark suites (PARSEC-3.0, SPLASH-3, Polybench)
running on big and LITTLE cores of a Kirin 970 smartphone
system-on-chip (SoC) with Arm big.LITTLE architecture.

These advances show the demand for schedulers that respect
job-dependent heterogeneity. Formally, the (processing)
speed sij of job j on machine i is the amount of processing
that j receives when running on i for one time unit. Despite
the relevance of values sij for high-performance schedul-
ing, there is a big discrepancy between how theory and
practice handle them: while scheduling theory most com-
monly assumes that speeds are known to an algorithm, this
is typically not the case in practice. Hence, algorithms that
perform well in theory are often not applicable in practice.

In this work, we propose new models and algorithms to
bridge this gap. In particular, we introduce speed-oblivious
algorithms, which do not rely on knowing (precise) speeds.
Thereby we focus on (non-)clairvoyant scheduling subject
to minimizing the total (weighted) completion time.

Formally, an instance of this scheduling problem is com-
posed of a set J of n jobs, a set I of m machines, and a
time-discretization. The characteristics of a job j ∈ J are
its processing requirement pj , its weight wj , and for every
machine i ∈ I its individual processing speed sij > 0. A
job j arrives online at its release date rj , i.e., an algorithm
is unaware of its existence before that time. A schedule
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assigns for every unfinished job j ∈ J and for every ma-
chine i ∈ I at any time t ≥ rj a (machine) rate yijt ∈ [0, 1],
which induces the progress qjt =

∑
i sijyijt of j at time t.

The completion time Cj of a job j in a fixed schedule is
the first point in time t that satisfies

∑t
t′=rj

qjt′ ≥ pj . A
schedule is feasible if there exists a progress-preserving ac-
tual schedule, where at any infinitesimal time a job is being
processed on at most one machine. This applies if the rates
satisfy

∑
i∈I yijt ≤ 1 for all j ∈ J and

∑
j∈J yijt ≤ 1

for all i ∈ I at any time t (Im et al., 2018). The task is to
compute a feasible schedule that minimizes

∑
j∈J wjCj .

An algorithm is called non-migratory, if it assigns for each
job j positive rates only on a single machine ij , and mi-
gratory otherwise. Further, it is called non-preemptive if
for all jobs j, machines i, and times t, a rate yijt > 0 im-
plies yijt′ = 1 for all times t′ with t ≤ t′ ≤ Cj . We say
that the machines are related if si = sij for all jobs j and
machines i, i.e., speeds are not job-dependent.

Models and state-of-the-art in theory Scheduling jobs
(offline) on machines with job-dependent heterogeneity
(called unrelated machine scheduling) to minimize the total
weighted completion time is a prominent NP-hard problem;
several approximation algorithms are known, e.g., (Hall
et al., 1997; Schulz & Skutella, 2002a; Li, 2020; Bansal
et al., 2021; Im & Li, 2023). Well-studied online models
include online job arrival (Pruhs et al., 2004), i.e., a job
is unknown to an algorithm until its release date rj , and
non-clairvoyance (Motwani et al., 1994), i.e., an algorithm
has no knowledge about the total processing requirement pj
of a job (as opposed to clairvoyant schedulers). In particu-
lar, online algorithms cannot revert previous decisions. The
performance of an online algorithm is typically evaluated by
its competitive ratio (Borodin & El-Yaniv, 1998), i.e., the
worst-case ratio between the algorithm’s objective value and
the optimal objective value (given full information upfront)
for every instance. We say that an algorithm is ρ-competitive
if its competitive ratio is at most ρ. Known online results
include (Hall et al., 1997; Chadha et al., 2009; Anand et al.,
2012; Im et al., 2014; 2018; Gupta et al., 2020; Jäger, 2021;
Bienkowski et al., 2021; Lindermayr & Megow, 2022).

To the best of our knowledge, unrelated machine scheduling
has been studied only in a speed-aware setting, where an
algorithm knows the speeds sij for available jobs. It is not
difficult to see that there are prohibitive lower bounds for
speed-oblivious scheduling on (un-)related machines: con-
sider an instance with a single unit-sized job j which makes
substantial progress only on one machine. This means that
in the worst-case, the first m − 1 machines tried by the
algorithm have speed ϵ and j makes no substantial progress.
Thus, the algorithm spends at least m time units to complete
it. Knowing this fast machine upfront allows an optimal
solution to complete the job immediately. This implies a

competitive ratio of at least Ω(m) for m machines:
Observation 1.1. Any speed-oblivious algorithm has a
competitive ratio of at least Ω(m) for minimizing the to-
tal (weighted) completion time on m related machines, even
if the algorithm is clairvoyant.

Models and state-of-the-art in practice Practical
scheduling algorithms commonly operate in open systems
(Feitelson & Rudolph, 1998), where jobs arrive online, are
non-clairvoyant, and, in contrast to the assumption in theory,
their exact processing speeds on every core are unknown up-
front. Therefore, state-of-the-practice schedulers usually ig-
nore heterogeneity between jobs, e.g., Linux Energy-Aware
Scheduling (The kernel development community, 2019).
State-of-the-art schedulers rely on prior knowledge about
jobs (Khdr et al., 2015), which is not always available, or
rely on predictions of job characteristics to leverage this
information gap. Such predictions could be based on prior
executions of repeating jobs or on machine-learning-based
techniques (Gupta et al., 2018; Rapp et al., 2021). They
are often quite precise, but can be highly inaccurate due to
varying and unpredictable input data as shown in Figure 1.
To the best of our knowledge, all these approaches are eval-
uated only empirically. In particular, there are no theoretical
guarantees on the performance in worst-case scenarios or
with respect to a prediction’s quality.

1.1. Our Results

We initiate the theoretical study of speed-oblivious algo-
rithms. Since strong lower bounds rule out good worst-case
guarantees for speed-oblivious unrelated machine schedul-
ing without further assumptions, we propose two (new)
models which are motivated by data-driven machine-learned
models and modern heterogeneous hardware architectures:

• Speed predictions give algorithms access to values ŝij
for every machine i at the release date of every job j.
We measure the accuracy of such a prediction by the
distortion error µ, where µ = µ1 · µ2 and

µ1 = max
i∈I,j∈J

{
ŝij
sij

}
and µ2 = max

i∈I,j∈J

{
sij
ŝij

}
.

• Speed-ordered machines assume an order on I such
that for all i, i′ ∈ I and jobs j ∈ J holds sij ≥ si′j if
and only if i ≤ i′. Algorithms are aware of this order.

Finally, we compare algorithms for these models with heuris-
tics in experiments on an actual modern heterogeneous chip.
These are the first empirical results which show the benefit
of learning-augmented algorithms and validate theoretical
findings on real hardware. In particular, we initiate the inves-
tigation in practical applicability of theoretical scheduling
algorithms for actual realistic hardware environments.
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We now give a more detailed overview of our results.

Learning-augmented algorithms for speed predictions
We provide the first learning-augmented algorithms with
job-dependent speed predictions and prove error-dependent
performance guarantees w.r.t. the distortion error µ. This
gives formal evidence on why algorithms perform well in
practice, even if the assumed speeds slightly diverge from
the true speeds. We further show that a competitive ratio
linear in µ is best possible, even for migratory algorithms
and related machines. We emphasize that the algorithms do
not have access to µ upfront for the given instance.

Theorem 1.2. For minimizing the total weighted completion
time on unrelated machines, there exist speed-oblivious
online algorithms with speed predictions that are

(i) clairvoyant and 8µ-competitive,
(ii) clairvoyant, non-preemptive and 7.216µ2-competitive,

(iii) non-clairvoyant and 108µ-competitive.

For (i), we design a novel and efficient clairvoyant algo-
rithm, which might be of independent interest. It always
schedules the subset of jobs that maximizes the total (pre-
dicted) density in a feasible job-to-machine assignment,
where the density of a job j on machine i is equal to wjsij

pj
.

We show that it is 8-competitive in the speed-aware setting.
Interestingly, this algorithm reduces to Smith’s rule on a
single machine (Smith et al., 1956) and preemptive variants
(Schulz & Skutella, 2002b; Megow & Schulz, 2004).

On the technical side, we prove upper bounds on the compet-
itive ratios using the dual-fitting technique (Jain et al., 2003;
Anand et al., 2012). There, we lower bound the optimal so-
lution by the dual of a linear programming (LP) relaxation,
and then show that a specific feasible dual assignment has
an objective value which is close to the algorithm’s objec-
tive value. The main difficulty is therefore to come up with
good dual assignment. For (i), we present a new dual setup,
which we believe could be helpful for future dual-fitting
approaches. The algorithms and proofs for (ii) and (iii) are
are inspired by previous work (Greedy WSPT (Gupta et al.,
2020), Proportional Fairness (Im et al., 2018)). However,
for (iii) we achieve better constants via optimized duals,
even for the speed-aware case. In all proofs, we use scalable
properties of duals to convert bad decisions due to imprecise
predictions into scaled bounds on the competitive ratio.

Novel algorithms for speed-ordered machines The
strong lower bound of Ω(m) on the competitive ratio for
speed-oblivious algorithms for m machines crucially relies
on accelerating the machine that an algorithm tries last. This
argument becomes infeasible in the speed-ordered setting,
because the machines are distinguishable upfront. Design-
ing an algorithm is yet still challenging, as precise factors
between speeds remain unknown. On the negative side, we

show that any constant-competitive algorithm must migrate
jobs. This is even true for clairvoyant algorithms and related
machines. On the positive side, we present two algorithms:
Theorem 1.3. There is a clairvoyant speed-oblivious online
algorithm for minimizing the total weighted completion time
on speed-ordered related machines with a competitive ratio
of at most 8.

We show that this algorithm is not competitive on unrelated
machines. Somewhat surprisingly, our non-clairvoyant algo-
rithm achieves non-trivial competitive ratios for both related
and unrelated machines, as the following theorem states.
Theorem 1.4. There is a non-clairvoyant speed-oblivious
online algorithm for minimizing the total completion time

(i) on speed-ordered related machines with a competitive
ratio of at most 216, and

(ii) on speed-ordered unrelated machines with a competi-
tive ratio of Θ(log(min{n,m})).

A crucial observation for deriving these algorithms is that
in the speed-ordered setting certain speed-aware algorithms
use strategies which can be formulated even without precise
speed values. An additional challenge is the few-job regime,
i.e., there are less jobs than machines, where we have to
ensure that the algorithms prefer the fast machines.

1.2. Further Related Work

Uncertainty about machine speeds or, generally, the ma-
chine environment, have hardly been studied in scheduling
theory. Some works consider scheduling with unknown
non-availability periods, i.e., periods with speed 0 (Albers
& Schmidt, 2001; Diedrich et al., 2009), permanent break-
downs of a subset of machines (Stein & Zhong, 2020), or
more generally arbitrarily changing machine speed for a sin-
gle machine (Epstein et al., 2012), but not on heterogenous
machines. In scheduling with testing, unknown process-
ing requirements of a job (and thus its machine-dependent
speed) can be explored by making queries, e.g., (Dürr et al.,
2020; Albers & Eckl, 2020; Arantes et al., 2018), but also
here heterogenous processors are not considered.

Mitigating pessimistic lower bounds of classic worst-case
analysis via untrusted predictions (Mitzenmacher & Vassil-
vitskii, 2022; Lindermayr & Megow, 2023) has been suc-
cessfully applied to various scheduling problems (Purohit
et al., 2018; Lattanzi et al., 2020; Azar et al., 2021; 2022; Im
et al., 2021; Li & Xian, 2021; Lindermayr & Megow, 2022;
Antoniadis et al., 2022; Dinitz et al., 2022). While all these
results concentrate on the uncertainty of online arrival and
non-clairvoyance, Balkanski et al. (2022) consider a robust
scheduling problem where machine speeds are only pre-
dicted and jobs have to be grouped to be scheduled together
before knowing the true machine speeds; such problems
without predictions were introduced in (Eberle et al., 2021;
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Stein & Zhong, 2020). In contrast, in our model an algo-
rithm will never learn about a job’s true speed(s) before its
completion and, further, the speeds might be job-dependent.

2. Algorithms with Speed Predictions
In this section, we investigate the model with speed predic-
tions. We first rule out any sublinear error-dependency.

Theorem 2.1. Any speed-oblivious algorithm with
speed predictions has a competitive ratio of at
least Ω(min{µ,m}) for minimizing the total (weighted)
completion time, even if the algorithm is clairvoyant and
machines are related.

Proof. Let µ1, µ2 ≥ 1 and µ = µ1 · µ2. Consider an
instance J = {j} with pj = 2µ and m ≥ 2µ machines
such that ŝi = µ1 for all 1 ≤ i ≤ m. The algorithm cannot
distinguish the machines. For the first 2µ− 1 machines i on
which the algorithm processes j, the adversary fixes si = 1.
Thus, at time 2µ− 1, the remaining processing requirement
of j is at least 2µ−(2µ−1) = 1 and there exists a machine i′

on which j has not been processed yet. Thus, the adversary
can set si′ = µ and complete j on i′ within two time units,
implying a competitive ratio of at least Ω(min{µ,m}).

Observe that this construction already works for two ma-
chines when migration is forbidden.

2.1. A Clairvoyant Algorithm

We firstly present a novel migratory algorithm for the clair-
voyant setting with known processing requirements for both
the speed-aware setting as well as speed predictions. Se-
quencing jobs by Smith’s rule by non-increasing density wj

pj

(aka Weighted-Shortest-Processing-Time, WSPT) is optimal
on a single machine (Smith et al., 1956). In the online setting
with release dates, this policy is 2-competitive when applied
preemptively on the available unfinished jobs (Schulz &
Skutella, 2002b). It can be extended to identical parallel
machines (Megow & Schulz, 2004), by processing at any
time the (at most) m jobs with highest densities. However,
this approach is infeasible on unrelated machines, because
jobs can have different densities on every machine.

Inspired by the power of densities, we compute a subset of at
most m jobs that instead maximizes the total density, that is,
the sum of the densities of the job-to-machine assignment.
This can be done efficiently by computing at any time t a
matching Mt between alive jobs j ∈ J(t) = {j ∈ J | rj ≤
t ≤ Cj} and machines i ∈ I with edge weights δ̂ij =

wj ŝij
pj

using, e.g., the Hungarian algorithm (Kuhn, 1955). In the
analysis, we crucially exploit the local optimality of any two
matched job-machine pairs via exchange arguments.

Algorithm 1 Maximum Density
Require: time t, speed (predictions) {ŝij}

1: Construct a complete bipartite graph Gt = I ∪ J(t)

where an edge (i, j) ∈ I×J(t) has weight δ̂ij =
wj ŝij
pj

.
2: Compute a maximum-weight matching Mt for Gt.
3: Schedule jobs to machines according to Mt at time t.

Theorem 2.2. Algorithm 1 has a competitive ratio of at
most 8µ for minimizing the total weighted completion time
on unrelated machines with speed predictions.

This theorem implies immediately the following corollary
for the speed-aware setting (µ = 1).
Corollary 2.3. Algorithm 1 has a competitive ratio of at
most 8 for minimizing the total weighted completion time
on unrelated machines in the speed-aware setting.

The remaining section is devoted to proof of Theorem 2.2,
which uses a dual-fitting argumentation. To this end, we
state the standard migratory linear programming relaxation
for our objective function (Schulz & Skutella, 2002a). In
fact, we state a variant where the machines of an optimal
solution run at a lower speed of 1

α for α ≥ 1 (Im et al.,
2018).

min
∑
i∈I

∑
j∈J

∑
t≥0

wj · t ·
xijtsij
pj

(LPα)

s.t.
∑
i∈I

∑
t≥0

xijtsij
pj

≥ 1 ∀j ∈ J

∑
j∈J

α · xijt ≤ 1 ∀i ∈ I, t ≥ 0

∑
i∈I

α · xijt ≤ 1 ∀j ∈ J, t ≥ rj

xijt ≥ 0 ∀i ∈ I, j ∈ J, t ≥ rj

xijt = 0 ∀i ∈ I, j ∈ J, t < rj

Let OPTα denote the optimal objective value in this re-
stricted setting. The dual of (LPα) can be written as follows.
(From now on we omit obvious set constraints in the nota-
tion for an improved readability.)

max
∑
j

aj −
∑
i,t

bit −
∑

j,t≥rj

cjt (DLPα)

s.t.
ajsij
pj
− αbit − αcjt ≤ wj

sijt

pj
∀i, j, t ≥ rj

aj , bit, cjt′ ≥ 0 ∀i, j, t ∀t′ ≥ rj

Fix an instance and the algorithm’s schedule. Let κ ≥ 1 be
a constant. We define for every machine i and any time t

βit =

{
δ̂ij if i is matched to j ∈ J(t) in Mt

0 otherwise,
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and for every job j and any time t

γjt =

{
δ̂ij if j is matched to i ∈ I in Mt

0 otherwise.

Consider the following values:

• āj = wjCj for every job j,

• b̄it =
1
κ

∑
t′≥t βit′ for every machine i and time t, and

• c̄jt =
1
κ

∑
t′≥t γjt′ for every job j and time t ≥ rj .

We show in Lemma 2.5 that these values define a feasible
solution for the dual problem (DLPα), and that the corre-
sponding dual objective value is at least a certain fraction
of the algorithm’s solution value (Lemma 2.4). Weak LP
duality then implies Theorem 2.2. Let ALG =

∑
j wjCj .

Lemma 2.4. (1 − 2µ1

κ )ALG ≤
∑

j āj −
∑

i,t b̄it −∑
j,t≥rj

c̄jt

In the following, let Ut be the set of unfinished jobs at time t,
i.e., all jobs j with t ≤ Cj , and let Wt =

∑
j∈Ut

wj .

Proof. Fix a time t and a job j. If j ∈ Ut, let ij1, . . . , i
j
z(j)

be the sequence of individual machine assignments of j
between time t and Cj . Let δ̂(i, j) := δ̂ij . Note that

z(j)∑
ℓ=1

δ̂(ijℓ , j) =

z(j)∑
ℓ=1

ŝijℓ ,j
wj

pj
≤ µ1

z(j)∑
ℓ=1

sijℓ ,j
wj

pj
≤ µ1wj .

Therefore,
∑

i b̄it = 1
κ

∑
j∈Ut

∑z(j)
ℓ=1 δ̂(i

j
ℓ , j) ≤

µ1

κ Wt.

Similarly, c̄jt = 1
κ

∑z(j)
ℓ=1 δ̂(i

j
ℓ , j) ≤

µ1

κ wj . If j ∈ J \ Ut,
then, c̄jt = 0. Hence,

∑
j∈J c̄jt ≤ µ1

κ Wt. Finally, we con-
clude

∑
i,t b̄it ≤

µ1

κ ALG and
∑

j,t≥rj
c̄jt ≤ µ1

κ ALG.

Lemma 2.5. Assigning aj = āj , bit = b̄it and cjt = c̄jt is
feasible for (DLPα) if α = µ2κ.

Proof. First note that the dual assignment is non-negative.
Let i ∈ I, j ∈ J and t ≥ rj . The definition of āj

yields āj
sij
pj
− wjt

sij
pj
≤
∑Cj

t′=t
wjsij
pj

. By using the fact

that wjsij
pj
≤ µ2

wj ŝij
pj

, the definitions of b̄it and c̄jt, and the
value of α, it remains to validate for every t ≤ t′ ≤ Cj

that wj ŝij
pj

= δ̂ij ≤ βit′ + γjt′ . We distinguish five cases:

(i) If (i, j) ∈Mt′ , then δ̂ij = βit′ = γjt′ .

(ii) If (i, j′) ∈ Mt′ and (i′, j) ∈ Mt′ s.t. i′ ̸= i (and
thus j′ ̸= j), we know by the optimality of Mt′ that

δ̂ij ≤ δ̂ij + δ̂i′j′ ≤ δ̂i′j + δ̂ij′ = γjt′ + βit′ .

Algorithm 2 Greedy WSPT
Require: speed predictions {ŝij}

function UponJobArrival(job j)
Assign job j to machine g(j) = argmini∈I Q̂ij .

end function
function UponMachineIdle(machine i, time t)

Start processing the job j with largest δ̂ij among all
alive jobs assigned to i which satisfy r̂ij ≤ t.

end function

(iii) If (i′, j) ∈ Mt′ and i is not matched in Mt′ , we con-
clude δ̂ij ≤ δ̂i′j = γjt′ .

(iv) If (i, j′) ∈Mt′ and j is not matched in Mt′ , we con-
clude δ̂ij ≤ δ̂ij′ = βit′ .

(v) The case where ŝij > 0, wj > 0, but both i and j are
unmatched in Mt′ contradicts the optimality of Mt′ ,
as t′ ≤ Cj . Else holds δ̂ij = 0, and we conclude since
the right side of the inequality is non-negative.

Proof of Theorem 2.2. Weak LP duality implies that the
optimal objective value of (DLPα) is greater or equal to
the optimal objective value of (LPα). Being the objective
value of a relaxation, the latter is a lower bound on OPTα,
which in turn is at most αOPT by scaling completion times,
where OPT denotes the optimal objective value of the origi-
nal problem. This implies via Lemma 2.4 and Lemma 2.5

µ2κ · OPT ≥ OPTµ2κ ≥
∑
j

āj −
∑
i,t

b̄it −
∑

j,t≥rj

c̄jt

≥
(
1− 2µ1

κ

)
· ALG.

Choosing κ = 4µ1, we conclude ALG ≤ 8µ · OPT.

2.2. A Clairvoyant Non-Preemptive Algorithm

In many applications, job migration or preemption are not
possible. In this section, we show that the non-preemptive
Greedy WSPT algorithm by (Gupta et al., 2020) achieves
an error-dependent competitive ratio when using predicted
speeds to make decisions (Algorithm 2). The intuition of
this algorithm is to greedily assign arriving jobs to ma-
chines, where they are then scheduled in WSPT order, i.e.,
on machine i by non-decreasing wjsij

pj
. The greedy job-to-

machine assignment intuitively minimizes the increase of
the objective value that scheduling the job on a machine
incurs in the current state. Additionally, the execution of
job j is delayed depending on its processing time pj

sij
on the

assigned machine i. This is necessary due to simple lower
bounds in the non-preemptive setting (Lu et al., 2003).

To make this precise, for every j ∈ J , let Mi(j) be the set
of jobs, excluding job j, which are assigned to machine i at

5
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Algorithm 3 Proportional Fairness
Require: time t, speed predictions {ŝij}

Use solution {yijt}i,j of (CPt) as rates at time t.

time rj , but have not been started yet. As this definition is
ambiguous if there are two jobs j and j′ with rj = rj′ being
assigned to i, we assume that we assign them in the order of
their index. For all machines i, jobs j and a constant θ > 0,
which we will set θ = 2

3 , we define r̂ij = max{rj , θ pj

ŝij
}

and Q̂ij as

wj

(
r̂ij +

r̂ij
θ

+
pj
ŝij

+
∑

j′∈Mi(j)

δ̂ij′≥δ̂ij

pj′

ŝij′

)
+

pj
ŝij

∑
j′∈Mi(j)

δ̂ij′<δ̂ij

wj′ .

We prove in Appendix A.1 the following theorem.

Theorem 2.6. Algorithm 2 has a competitive ratio of at
most 368

51 µ2 < 7.216µ2 for minimizing the total weighted
completion time on unrelated machines with speed predic-
tions.

2.3. A Non-Clairvoyant Algorithm

In the non-clairvoyant setting, any constant-competitive
algorithm for minimizing the total completion time on unre-
lated machines has to migrate and preempt jobs (Motwani
et al., 1994; Gupta et al., 2012). Since such algorithms can-
not compute densities, a common strategy is to run all jobs
simultaneously at a rate proportional to their weight (Mot-
wani et al., 1994; Kim & Chwa, 2003). On unrelated ma-
chines with job-dependent speeds, the Proportional Fairness
Algorithm (PF) develops this idea further by respecting job-
dependent speeds (Im et al., 2018). It is known that PF has
a competitive ratio of at most 128 for minimizing the total
weighted completion time (Im et al., 2018). In the follow-
ing, we show that PF has a linear error-dependency in µ
when computing rates via predicted speeds. As a byproduct,
we slightly improve the upper bound on the speed-aware
competitive ratio of PF via optimized duals to 108.

Theorem 2.7. Algorithm 3 has a competitive ratio of at
most 108µ for minimizing the total weighted completion
time on unrelated machines with predicted speeds.

At every time t, Algorithm 3 schedules jobs J(t) with rates
computed via the following convex program (CPt) with
variables ŷijt for every machine i and job j ∈ J(t).

max
∑

j∈J(t)

wj log

(∑
i∈I

ŝij ŷijt

)
(CPt)

s.t.
∑

j∈J(t)

ŷijt ≤ 1 ∀i ∈ I

∑
i∈I

ŷijt ≤ 1 ∀j ∈ J(t)

ŷijt ≥ 0 ∀i ∈ I, j ∈ J(t)

We now give an overview over the proof of Theorem 2.7
and defer further details to Appendix A.2.

Fix an instance and PF’s schedule. Let κ ≥ 1 and 0 < λ < 1
be constants which we fix later. In the following, we as-
sume by scaling that all weights are integers. For every
time t, let Zt be the sorted (ascending) list of length Wt

composed of wj copies of qjt
pj

for every j ∈ Ut. We de-
fine ζt as the value at the index ⌊λWt⌋ in Zt. Let {ηit}i,t
and {θjt}j∈J(t),t be the KKT multipliers of the first two
constraint sets of the optimal solution {yijt}i,j . Let 1[φ]
be the indicator variable of the formula φ, and consider the
following duals: āj =

∑Cj

t′=0 wj · 1
[
qjt′

pj
≤ ζt′

]
for every

job j, b̄it = 1
κ

∑
t′≥t ζt′ηit′ for every machine i and time t,

and c̄jt =
1
κ

∑Cj

t′=t ζt′θjt′ for every job j and time t ≥ rj .

We show that this assignment has an objective value which
lower bounds a fraction of PF’s objective value, and that it
is feasible for (DLPα) for some values of α.
Lemma 2.8. (λ − 4

(1−λ)κ )ALG ≤
∑

j āj −
∑

i,t b̄it −∑
j,t≥rj

c̄jt

Lemma 2.9. Assigning aj = āj , bit = b̄it and cjt = c̄jt is
feasible for (DLPα) if α = κµ.

Both lemmas and weak LP duality yield Theorem 2.7 when
choosing κ = 36 and λ = 2

3 .

3. Algorithms for Speed-Ordered Machines
This section contains our results on speed-ordered machines.
In the first subsection, we present a clairvoyant algorithm,
and in the second subsection a non-clairvoyant algorithm.
But first, we observe in Appendix B that in this model
migration is necessary for speed-oblivious algorithms.
Theorem 3.1. Any non-migratory speed-oblivious algo-
rithm has a competitive ratio of at least Ω(m) for minimiz-
ing the total completion time on m speed-ordered machines,
even if it is clairvoyant and the machines are related.

3.1. A Clairvoyant Algorithm

Our clairvoyant algorithm for speed-ordered related ma-
chines is motivated by the following observation. If the

6
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Algorithm 4 Maximum Density for speed-ordered machines
Require: time t, speed-ordered machines s1 ≥ . . . ≥ sm

1: σt ← order of J(t) with non-increasing wj

pj
.

2: Mt = {(k, σt(k))}k∈[ℓ] where ℓ = min{m, |J(t)|}
3: Schedule jobs to machines according to Mt at time t.

Algorithm 5 Round Robin for speed-ordered machines
Require: time t, speed-ordered machines s1j ≥ . . . ≥ smj

Use rates yijt = |J(t)|−1 · 1 [i ≤ |J(t)|] at time t.

machines are related and speed-ordered, Algorithm 1, given
correct speed predictions, will assign jobs by non-increasing
order of wj

pj
to machines in speed order, because this clearly

maximizes the total scheduled density, i.e., sum of as-
signed wjsi

pj
. Algorithm 4 can therefore emulate this sched-

ule of maximum density without having to compute a maxi-
mum matching, and thus does not require (predicted) speeds.
These observations also suggest that the analysis must be
similar. Indeed, we can use a similar dual-fitting as for The-
orem 2.2 to prove the following theorem in Appendix B.1,
where we mainly present a new proof for the dual feasibility.

Theorem 3.2. Algorithm 4 has a competitive ratio of at
most 8 for minimizing the total weighted completion time
on speed-ordered related machines.

Note that the above observation does not hold for unrelated
machines. Indeed, in Appendix B.1 we show that Algo-
rithm 4 is at least Ω(n)-competitive on unrelated machines.

3.2. A Non-Clairvoyant Algorithm

The non-clairvoyant setting is more difficult. This is be-
cause the schedules of speed-aware algorithms, such as PF,
are not as easy to describe, as it was the case for clairvoyant
algorithms. However, for unit weights, related machines and
many alive jobs, i.e., |J(t)| ≥ m, one solution of (CPt) is to
schedule all jobs on all machines with the same rate, i.e., do
Round Robin on every machine. We can describe this sched-
ule without knowing anything about the speeds. However,
in the few-job regime, i.e., |J(t)| < m, this approach vio-
lates the packing constraints of the jobs, i.e.,

∑
i yijt > 1.

This is where the speed order comes into play: we partition
a job’s available rate only to the |J(t)| fastest machines. For
the final algorithm (Algorithm 5), we prove below a guaran-
tee for unrelated machines, and a constant upper bound for
related machines in Appendix B.2.2.

Theorem 3.3. Algorithm 5 has a competitive ratio of at
most O(log(min{n,m})) for minimizing the total comple-
tion time on speed-ordered unrelated machines.

In Appendix B.2.1 we show that this bound is tight for Algo-
rithm 5, even if all speeds are from {0, 1}. We prove Theo-

rem 3.3 via dual-fitting based on (DLPα), where wj = 1 for
every job j. Fix an instance and the algorithm’s schedule.
For every time t, we write mt = min{m, |J(t)|}, and we
define βit =

1
i · |J(t)| · 1 [i ≤ |J(t)|] for every machine i,

and γjt = 1 [j ∈ J(t)] for every job j.

Let κ = Θ(log(min{n,m})). Intuitively, this factor up-
per bounds

∑mt

i=1
1
i , which will be necessary when han-

dling
∑

i βit. For related machines, we can alter the defi-
nition of βit and thus have a constant κ, which eventually
implies a constant upper bound on the competitive ratio.

For every time t, consider the sorted (ascending) list Zt

composed of values qjt
pj

for every j ∈ Ut. We define ζt as
the value at the index ⌊ 12 |Ut|⌋ in Zt. Consider the following

duals: āj =
∑Cj

t′=0 1
[
qjt′

pj
≤ ζt′

]
for every job j, b̄it =

1
κ

∑
t′≥t βit′ζt′ for every machine i and time t, and c̄jt =

1
κ

∑
t′≥t γjt′ζt′ for every job j and time t ≥ rj . We prove

the following bound on ALG in Appendix B.2.1.

Lemma 3.4. Ω(1) ·ALG ≤
∑

j āj−
∑

i,t b̄it−
∑

j,t≥rj
c̄jt

This lemma, weak LP duality, and the feasibility of the
crafted duals (Lemma 3.5) imply Theorem 3.3 for α = κ.

Lemma 3.5. Assigning aj = āj , bit = b̄it and cjt = c̄jt is
feasible for (DLPα) if α = κ.

Proof. First observe that the dual assignment is non-
negative. Let i ∈ I, j ∈ J and t ≥ rj . Since the rates
of Algorithm 5 imply qjt =

∑mt

ℓ=1
sℓj

|J(t)| , we have

ājsij
pj
− sij · t

pj
≤

Cj∑
t′=t

sij
pj
· 1
[
qjt′

pj
≤ ζt′

]
≤

Cj∑
t′=t

sij
qjt′

ζt′

≤
Cj∑
t′=t

sij∑mt′
ℓ=1

sℓj
|J(t′)|

ζt′ . (1)

Consider any time t′ with t ≤ t′ ≤ Cj . If i ≤ |J(t′)|, by
the speed order,

∑mt′
ℓ=1 sℓj ≥

∑i
ℓ=1 sℓj ≥ i · sij , and thus

sij∑mt′
ℓ=1 sℓj

· |J(t′)| · ζt′ ≤
1

i
· |J(t′)| · ζt′ = βit′ · ζt′ .

Otherwise, that is, i > |J(t′)|, we conclude by the speed
order,

∑mt′
ℓ=1 sℓj ≥

∑|J(t′)|
ℓ=1 sℓj ≥ |J(t′)| · sij . Therefore,

sij∑mt′
ℓ=1 sℓj

· |J(t′)| · ζt′ ≤
|J(t′)|
|J(t′)|

· ζt′ = γjt′ · ζt′ ,

because t′ ≤ Cj . Put together, (1) is at most

Cj∑
t′=t

βit′ζt′ +

Cj∑
t′=t

γjt′ζt′ ≤ κ(̄bit + c̄jt),

which verifies the dual constraint.
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(a) Low load: 1 task / min. (b) High load: 4 tasks / min.

Figure 2. Real experiments on a HiKey 970 board. The experiments are each repeated 3 times with the same workload but different
random noise for speed predictions. Shaded areas show the standard deviation.

4. Experimental Evaluation
Setup We perform experiments on real hardware running
representative jobs, which enables us to perform a realis-
tic evaluation. The setup uses a HiKey 970 board (Linaro
96Boards) with a Kirin 970 Arm big.LITTLE SoC featur-
ing 4 big cores and 4 LITTLE cores, running Android 8.0.
This is a representative smartphone platform. The big cores
always offer a higher performance than the LITTLE cores
(speed-ordered) because they support out-of-order execution
at higher frequency and larger caches (see also Figure 1, all
speedups are > 1). Our workload comprises 100 randomly
selected single-threaded jobs from the well-established
PARSEC-3.0 (Zhan et al., 2016), SPLASH-3 (Sakalis et al.,
2016), and Polybench (Yuki & Pouchet, 2015) benchmark
suites. These benchmarks represent various use cases from
video transcoding, rendering, compression, etc. The arrival
times are drawn from a Poisson distribution with varying
rate parameter to study different system loads. We charac-
terized all jobs offline to get accurate speed sij and job vol-
ume pj values. Speed predictions are created with control-
lable error by ŝij = sij ·yij , where yij follows a log-normal
distribution ln(yij) ∼ N (0, σ2). Note that the predictions
do not consider slowdown effects on real hardware, e.g., due
to shared resource contention, adding additional inaccuracy.

We consider all algorithms presented in previous sections.
Additionally, we consider Round Robin (RR), which dis-
tributes a job evenly over all machines, and Iterative Greedy,
which at any time iteratively schedules the job j on ma-
chine i which has the maximum ŝij among all unassigned
alive jobs and free machines. We show in Appendix C that
Iterative Greedy is not competitive (lower bound of Ω(n)).

Additionally, we perform synthetic experiments (Ap-
pendix C), which use similar workload and core config-
urations, but are only simulated. An advantage is that rates

must not be transformed to actual schedules. The results are
in line with the results of our hardware experiments.

Results Figure 2 presents the results of the hardware ex-
periments. We exclude PF because it produces fractional
schedules which are often difficult to convert into real sched-
ules (Im et al., 2018), and Greedy WSPT, because, given
incorrect predictions, it significantly underperforms in syn-
thetic experiments. We repeat each experiment 3 times with
the same workload (jobs and arrival times) but different
random noisy speed predictions and plot the average and
standard deviation of the average completion times.

Under low system load (Figure 2a), the number of active
jobs is mostly ≤ 4, i.e., it is mostly feasible to only use
the big cores (load analysis in Appendix C). Consequently,
the algorithms that exploit the speed-ordered property (red)
consistently perform best. Algorithms with speed predic-
tions (blue) perform equally well for accurate predictions
but their performance deteriorates for very noisy predictions.
RR always uses all cores and thus shows a low performance.

Under high system load (Figure 2b), the number of active
jobs is mostly > 4, thus, LITTLE cores have to be used. RR
and speed-ordered RR perform similarly, as both mostly
use the same cores. For low prediction noise (σ < 1),
Maximum Density performs best, but also requires most
information (speed predictions and clairvoyant). For higher
prediction noise, speed-ordered Maximum Density is better
because too noisy speed predictions result in bad schedules.
Iterative Greedy performs best among the non-clairvoyant
algorithms, but does not offer any theoretical guarantees.

Speed predictions are beneficial in the average case if they
are relatively accurate. With inaccurate predictions, relying
on the speed-ordering instead is beneficial. In summary,
our experiments show the power of speed predictions and

8



Speed-Oblivious Online Scheduling: Knowing (Precise) Speeds is not Necessary

speed-ordering for online scheduling in real-world settings.

5. Conclusion and Future Directions
We initiated research on speed-oblivious algorithms with
two models motivated by real-world observations. Future
directions include settling the asymptotic competitive ratio
for (non-)clairvoyant speed-oblivious algorithms on speed-
ordered unrelated machines, shrinking the upper bound of
PF to a small constant, and investigating speed-oblivious
algorithms for other objective functions such as the total
flow time, potentially also in the speed-scaling model.
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F., and Ogras, Ü. Y. STAFF: online learning with sta-
bilized adaptive forgetting factor and feature selection
algorithm. In DAC, pp. 177:1–177:6. ACM, 2018.

9



Speed-Oblivious Online Scheduling: Knowing (Precise) Speeds is not Necessary

Gupta, V., Moseley, B., Uetz, M., and Xie, Q. Greed
works - online algorithms for unrelated machine stochas-
tic scheduling. Math. Oper. Res., 45(2):497–516, 2020.

Hall, L. A., Schulz, A. S., Shmoys, D. B., and Wein, J.
Scheduling to minimize average completion time: Off-
line and on-line approximation algorithms. Math. Oper.
Res., 22(3):513–544, 1997.

Im, S. and Li, S. Improved approximations for unrelated
machine scheduling. In SODA, pp. 2917–2946. SIAM,
2023.

Im, S., Kulkarni, J., Munagala, K., and Pruhs, K. Self-
ishmigrate: A scalable algorithm for non-clairvoyantly
scheduling heterogeneous processors. In FOCS, pp. 531–
540. IEEE Computer Society, 2014.

Im, S., Kulkarni, J., and Munagala, K. Competitive al-
gorithms from competitive equilibria: Non-clairvoyant
scheduling under polyhedral constraints. J. ACM, 65(1):
3:1–3:33, 2018.

Im, S., Kumar, R., Qaem, M. M., and Purohit, M. Non-
clairvoyant scheduling with predictions. In SPAA, pp.
285–294. ACM, 2021.
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A. Details on Algorithms with Speed Predictions
A.1. Full Analysis of Greedy WSPT with Speed Predictions

In this section, we present an error-dependent competitive ratio for Greedy WSPT with speed predictions and eventually
prove Theorem 2.6. The analysis is inspired by (Gupta et al., 2020), but uses a different approach for proving the feasibility
of the crafted duals. In particular, we need less scaling parameters than Gupta et al.

Theorem 2.6. Algorithm 2 has a competitive ratio of at most 368
51 µ2 < 7.216µ2 for minimizing the total weighted completion

time on unrelated machines with speed predictions.

Fix an instance and the algorithm’s schedule. Let κ ≥ 1 and 0 < θ < 1 be constants. We assume w.l.o.g. by scaling
the instance that all processing requirements and release dates are integer multiples of κ. Recall that δ̂ij =

wj ŝij
pj

and r̂ij = max{rj , θ pj

ŝij
}. We write for every job j and machine i

Qij = wj

(
r̂ij + µ1

r̂ij
θ

+
pj
sij

+
∑

j′∈Mi(j)

δ̂ij′≥δ̂ij

pj′

sij′

)
+

pj
sij

∑
j′∈Mi(j)

δ̂ij′<δ̂ij

wj′ .

Also, recall that the algorithm uses the values Q̂ij to assign a job j at time rj to machine g(j) = argmini Q̂ij :

Q̂ij = wj

(
r̂ij +

r̂ij
θ

+
pj
ŝij

+
∑

j′∈Mi(j)

δ̂ij′≥δ̂ij

pj′

ŝij′

)
+

pj
ŝij

∑
j′∈Mi(j)

δ̂ij′<δ̂ij

wj′ .

We now introduce a linear programming relaxation of our problem. As we consider a non-preemptive scheduling problem
here, we can define a stronger linear program relaxation than (LPα) (Schulz & Skutella, 2002a):

min
∑
i,j,t

wj · xijt ·
(
1

2
+

sij
pj
·
(
t+

1

2

))
(NP-LP)

s.t.
∑

i,t≥rj

xijtsij
pj

≥ 1 ∀j

∑
j

xijt ≤ 1 ∀i, t

xijt ≥ 0 ∀i, j, t
xijt = 0 ∀i, j, t < rj

This relaxation has an integrality gap of 2 (Schulz & Skutella, 2002a). The dual of (NP-LP) can be written as follows:

max
∑
j

aj −
∑
i,t

bit (NP-DLP)

s.t.
ajsij
pj
− bit ≤ wj

(
sij

t+ 1/2

pj
+

1

2

)
∀i, j, t ≥ rj (2)

aj , bit ≥ 0 ∀i, j, t

We define a solution for (NP-DLP) which depends on the schedule produced by the algorithm. Let Ui(t) = {j ∈ J | g(j) =
i ∧ t < Cj}. Note that Ui(t) includes unreleased jobs at time t. Consider the following dual assignment:

• āj = Qg(j)j for every job j and

• b̄it = µ ·
∑

j∈Ui(κ·t) wj for every machine i and time t.

12
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We first show that the objective value of (NP-DLP) for (āj , b̄it) is close to the objective value of the algorithm.

Lemma A.1.
∑

j āj ≥ ALG

Proof. Consider the algorithm’s schedule. Let xi(t) denote the amount of time (not volume) the currently processed job on
machine i requires to complete. If there is no job running on machine i at time t, we define xi(t) = 0. We now calculate the
contribution of some job j to the algorithm’s objective value ALG. Suppose that j gets assigned to g(j) = i. Then, j might
delay other jobs with smaller predicted density which have been already assigned to i, i.e., are part of Mi(j). Further, j
might be delayed by jobs which have higher predicted density and are part of Mi(j). Finally, j’s completion time cannot be
less than r̂ij +

pj

sij
due to the definition of the algorithm, and this value might be delayed further by xi(r̂ij). In total, we

conclude that the contribution of j to ALG is at most

wj

(
r̂ij + xi(r̂ij) +

pj
sij

+
∑

j′∈Mi(j)

δ̂ij′≥δ̂ij

pj′

sij′

)
+

pj
sij

∑
j′∈Mi(j)

δ̂ij′<δ̂ij

wj′ .

This value is indeed at most Qij , because if at time r̂ij some job k is being processed, it must be that r̂ik ≤ r̂ij , and thus

xi(r̂ij) ≤
pk
sik
≤ µ1

pk
ŝik
≤ µ1

r̂ik
θ
≤ µ1

r̂ij
θ
.

The statement then follows by summation of all jobs and the observation that this contribution only affects jobs that were
handled before job j.

Lemma A.2.
∑

i,t b̄it =
µ
κ ALG

Proof. Since we assumed that all release dates and processing times in J are integer multiples of κ, all all job completions
occur at integer multiples of κ. Thus,

∑
t

∑
j∈Ui(κ·t) wj =

1
κ

∑
t

∑
j∈Ui(t)

wj for every machine i, and we conclude

∑
i,t

b̄it = µ
∑
i,t

∑
j∈Ui(κ·t)

wj =
1

κ

∑
i,t

∑
j∈Ui(t)

wj =
µ

κ
· ALG.

These two lemmas give the following corollary.

Corollary A.3.
∑

j āj −
∑

i,t b̄it ≥
(
1− µ

κ

)
· ALG.

Second, we show that scaling the crafted duals makes them feasible for (NP-DLP).

Lemma A.4. Assigning aj = āj/λ and bit = b̄it/λ gives a feasible solution for (NP-DLP) for a constant λ > 0 that
satisfies λ ≥ 2µ(2 + θ) and λ ≥ µ1(

1
θ + µ2 · κ).

Proof. Since our defined variables are non-negative by definition, it suffices to show that this assignment satisfies (2). Fix a
job j, a machine i and a time t ≥ rj . We assume that no new job arrives after j, since such a job may only increase b̄it
while āj stays unchanged. We define a partition of Mi(j) into high priority and low priority jobs with respect to j, and into
completed and unfinished jobs with respect to time κ · t:

• HU = {j′ ∈Mi(j) : δ̂ij′ ≥ δ̂ij ∧ Cj′ > κ · t} and HC = {j′ ∈Mi(j) : δ̂ij′ ≥ δ̂ij ∧ Cj′ ≤ κ · t},

• LU = {j′ ∈Mi(j) : δ̂ij′ < δ̂ij ∧ Cj′ > κ · t} and LC = {j′ ∈Mi(j) : δ̂ij′ < δ̂ij ∧ Cj′ ≤ κ · t}.

13
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We write H = HC ∪HU , L = LC ∪ LU and δij =
wjsij
pj

. Due to the choice of g(j) in the algorithm, Q̂g(j)j ≤ Q̂i′j for

every machine i′. Hence, we have āj = Qg(j)j ≤ µ1 · Q̂g(j)j ≤ µ1 · Q̂ij , and using that,

āj · sij
λpj

≤ µ1
Q̂ij · sij
λpj

= δij
µ1

λ

r̂ij +
r̂ij
θ

+
pj
ŝij

+
∑
j′∈H

pj′

ŝij′

+
µ1

λ

sij
ŝij

∑
j′∈L

wj′

≤ δij
µ1

λ

(1 + 1

θ

)
rj +

∑
j′∈H

pj′

ŝij′

+ µ1
sijwj

λpj
(2 + θ)

pj
ŝij

+
µ1

λ

sij
ŝij

∑
j′∈L

wj′

≤ δij
µ1

λ

(1 + 1

θ

)
rj +

∑
j′∈H

pj′

ŝij′

+ µ
wj

λ
(2 + θ) +

µ1

λ

sij
ŝij

∑
j′∈L

wj′

≤ δij
µ1

λ

(1 + 1

θ

)
rj +

∑
j′∈H

pj′

ŝij′

+
wj

2
+

µ1

λ

sij
ŝij

∑
j′∈L

wj′ ,

where the second inequality is due to (1 + 1
θ )r̂ij ≤ (1 + 1

θ )rj + (1 + θ)
pj

ŝij
, which follows from the definition of r̂ij , and

the last inequality requires λ ≥ 2µ(2 + θ). Thus, asserting the dual constraint (2) reduces to proving

δij
µ1

λ

(1 + 1

θ

)
rj +

∑
j′∈H

pj′

ŝij′

+
µ1

λ

sij
ŝij

∑
j′∈L

wj′ ≤ δijt+
b̄it
λ
.

To this end, first note that for all j′ ∈ L holds

wj′
ŝij′

pj′
= δ̂ij′ < δ̂ij =

wj ŝij
pj

=
δij ŝij
sij

=⇒ sij
δij ŝij

wj′ ≤
ŝij′

pj′
, (3)

and for all j′ ∈ H

δij ≤ µ2 · δ̂ij ≤ µ2 · δ̂ij′ =
wj′ ŝij′

pj′
=⇒ δij

p′j
ŝij′
≤ wj′ . (4)

Using these two inequalities gives

δij
µ1

λ

(1 + 1

θ

)
rj +

∑
j′∈HC

pj′

ŝij′
+
∑

j′∈HU

pj′

ŝij′

+
µ1

λ

sij
ŝij

∑
j′∈LC

wj′ +
µ1

λ

sij
ŝij

∑
j′∈LU

wj′

= δij
µ1

λ

(1 + 1

θ

)
rj +

∑
j′∈HC

pj′

ŝij′
+

sij
δij ŝij

∑
j′∈LC

wj′

+ δij
µ1

λ

∑
j′∈HU

pj′

ŝij′
+

µ1

λ

sij
ŝij

∑
j′∈LU

wj′

≤ δij
µ1

λ

(1 + 1

θ

)
rj +

∑
j′∈HC

pj′

ŝij′
+
∑

j′∈LC

pj′

ŝij′

+
µ1

λ

sij
ŝij

∑
j′∈HU

wj′ +
µ1

λ

sij
ŝij

∑
j′∈LU

wj′

≤ δij
µ1

λ

rj
θ

+ µ2

rj +
∑

j′∈Mi(j):κ·t≥Cj′

pj′

sij′

+
µ1

λ
µ2

∑
j′∈Mi(j):κ·t<Cj′

wj′

≤ δij
µ1

λ

(
t

θ
+ µ2 · κ · t

)
+

µ

λ

∑
j′∈Ui(κ·t)

wj′

≤ δijt+
b̄it
λ
.
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In the first inequality we use (4) and (3). In order to understand the third inequalty, first recall that Mi(j) contains all jobs
that are assigned to machine i but unstarted at time rj . Thus, the total processing duration of these jobs that are completed
within time κ · t can be at most κ · t− rj . The last inequality follows from λ ≥ µ1(

1
θ + µ2 · κ) and the definition of b̄it.

Proof of Theorem 2.6. We set κ = 23
6 µ, θ = 2

3 and λ = 16
3 µ2. Then, weak duality, Corollary A.3 and Lemma A.4 imply

OPT ≥
∑
j

aj −
∑
i,t

bit =
1

λ

∑
j

āj −
∑
i,t

b̄it

 =

(
1− µ/κ

λ

)
· ALG.

Since κ > µ and λ > 0, we conclude that

ALG ≤
16
3 · µ

2

1− 6
23

· OPT =
368

51
· µ2 · OPT.

A.2. Full Analysis of Proportional Fairness with Speed Predictions

This section contains the detailed analysis of PF with speed predictions, and thus the proof of Theorem 2.7. It is based on
the analysis of the speed-aware PF given in (Im et al., 2018).

Theorem 2.7. Algorithm 3 has a competitive ratio of at most 108µ for minimizing the total weighted completion time on
unrelated machines with predicted speeds.

Fix an instance and PF’s schedule. Let κ ≥ 1 and 0 < λ < 1 be constants which we fix later. Recall that qjt denotes the
progress of job j at time t. For every t, consider the sorted (ascending) list Zt composed of wj copies of qjt

pj
for every j ∈ Ut.

Note that Zt has length Wt. We define ζt as the value at the index ⌊λWt⌋ in Zt.

We first state the KKT conditions with multipliers {ηit}i and {θjt}j∈J(t) of the optimal solution {yijt}i,j of (CPt) the
algorithm uses at time t:

ŝijwj∑
i′ ŝi′jyi′jt

≤ θjt + ηit ∀t,∀i,∀j ∈ J(t) (5)

yijt

(
ŝijwj∑
i′ ŝi′jyi′jt

− (θjt + ηit)

)
= 0 ∀t,∀i,∀j ∈ J(t) (6)

θjt

(∑
i

yijt − 1

)
= 0 ∀t,∀j ∈ J(t) (7)

ηit

∑
j

yijt − 1

 = 0 ∀t,∀i (8)

θjt, ηit ≥ 0 ∀t,∀i,∀j ∈ J(t) (9)

We have the following dual assignment:

• āj =
∑Cj

t′=0 ājt′ , where ājt′ = wj · 1
[
qjt′

pj
≤ ζt′

]
, for every job j,

• b̄it =
1
κ

∑
t′≥t ζt′ηit′ for every machine i and time t, and

• c̄jt =
1
κ

∑Cj

t′=t ζt′θjt′ for every job j and time t ≥ rj .

The following three lemmas will conclude that the dual objective value of this assignment is close the algorithm’s objective
value, and thus prove Lemma 2.8.
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Lemma A.5.
∑

j āj ≥ λ · ALG

Proof. Consider a time t and the list Zt. Observe that
∑

j∈Ut
ājt contains for every job j which satisfies qjt

pj
≤ ζt its

weight wj . By the definitions of Zt and ζt, we conclude that this is at least λWt, i.e.,
∑

j∈Ut
ājt ≥ λWt. The statement

then follows by summing over all times t.

Lemma A.6. At any time t,
∑

i ηit +
∑

j∈J(t) θjt ≤Wt.

Proof. At any time t holds

∑
i

ηit +
∑

j∈J(t)

θjt =

∑
i

ηit
∑

j∈J(t)

yijt

+

 ∑
j∈J(t)

θjt
∑
i

yijt


=
∑
i

∑
j∈J(t)

yijt(ηit + θjt)

=
∑
i

∑
j∈J(t)

yijt
ŝijwj∑
i′ ŝi′jyi′jt

=
∑

j∈J(t)

∑
i

ŝijyijt
wj∑

i′ ŝi′jyi′jt
=
∑

j∈J(t)

wj ≤Wt.

The first equality is due to (7) and (8), and the third equality due to (6).

Lemma A.7. At any time t,
∑

i b̄it +
∑

j∈J:t≥rj
c̄jt ≤ 4

(1−λ)κWt.

Proof. Fix a time t. Observe that for every t′ ≥ t the definitions of Zt′ and ζt′ imply (1−λ)Wt′ ≤
∑

j∈Ut′
wj ·1

[
qjt′

pj
≥ ζt′

]
.

Thus,

ζt′ · (1− λ)Wt′ ≤
∑
j∈Ut′

wj · ζt′ · 1
[
qjt′

pj
≥ ζt′

]
≤
∑
j∈Ut′

wj ·
qjt′

pj
· 1
[
qjt′

pj
≥ ζt′

]
. (10)

We define a partition {Mk}k≥1 of the time interval [t,∞) such that the total weight of unfinished jobs at all times during Mk

is part of ( 1
2k
Wt,

1
2k−1Wt]. Fix a k ≥ 1. Rearranging (10) and estimating the total weight of unfinished jobs in a partition

against both its upper and lower bound yields∑
t′∈Mk

ζt′ ≤
∑

t′∈Mk

1

1− λ

∑
j∈Ut′

wj

Wt′
· qjt

′

pj
· 1
[
qjt′

pj
≥ ζt′

]
≤ 1

1− λ

∑
t′∈Mk

∑
j∈Ut′

wj

Wt′
· qjt

′

pj

≤ 2k

(1− λ)Wt

∑
t′∈Mk

∑
j∈Ut′

wj ·
qjt′

pj

≤ 2k ·Wt

(1− λ)Wt · 2k−1
=

2

1− λ
.

The definitions of b̄it and c̄jt and Lemma A.6 imply

∑
i

b̄it +
∑

j∈J:t≥rj

c̄jt =

∑
i

1

κ

∑
t′≥t

ηit′ · ζt′

+

 ∑
j∈J:t≥rj

1

κ

Cj∑
t′=t

θjt′ · ζt′


=

1

κ

∑
t′≥t

ζt′

∑
i

ηit′ +
∑

j∈J(t′)

θjt′

 ≤ 1

κ

∑
t′≥t

ζt′Wt′ .
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By dividing the time after t into the partition {Mk}k≥1 and using our bound on
∑

t′∈Mk
ζt′ , we conclude that this is at most

1

κ

∑
k≥1

∑
t′∈Mk

ζt′Wt′ ≤
1

κ

∑
k≥1

Wt

2k−1

∑
t′∈Mk

ζt′ ≤
2

κ(1− λ)
Wt

∑
k≥1

1

2k−1
≤ 4

κ(1− λ)
Wt.

The last inequality uses a bound on the geometric series.

Lemma 2.8. (λ− 4
(1−λ)κ )ALG ≤

∑
j āj −

∑
i,t b̄it −

∑
j,t≥rj

c̄jt

Proof. Follows directly from Lemmas A.5 and A.7.

Lemma 2.9. Assigning aj = āj , bit = b̄it and cjt = c̄jt is feasible for (DLPα) if α = κµ.

Proof. First observe that for every t and j holds∑
i

ŝijyijt ≤ µ1

∑
i

sijyijt = µ1 · qjt. (11)

Fix a job j, a machine i and a time t ≥ rj .

ājsij
pj
− wj ·

t · sij
pj
≤ sij ·

Cj∑
t′=t

ājt′

pj

= sij ·
Cj∑
t′=t

wj

pj
· 1
[
qjt′

pj
≤ ζt′

]

= sij ·
Cj∑
t′=t

wj∑
i′ ŝi′jyi′jt′

·
∑

i′ ŝi′jyi′jt′

qjt′
· qjt

′

pj
· 1
[
qjt′

pj
≤ ζt′

]

≤ µ1 · µ2 ·
Cj∑
t′=t

ŝijwj∑
i′ ŝi′jyi′jt′

· qjt
′

pj
· 1
[
qjt′

pj
≤ ζt′

]

≤ µ ·
Cj∑
t′=t

(ηit′ + θjt′) ·
qjt′

pj
· 1
[
qjt′

pj
≤ ζt′

]

≤ µ ·
Cj∑
t′=t

(ηit′ + θjt′) · ζt′

≤ µκ · 1
κ

∑
t′≥t

ηit′ · ζt′

+ µκ ·

 1

κ

Cj∑
t′=t

θjt′ · ζt′


= µκ · b̄it + µκ · c̄jt.

The second inequality uses (11) and the third inequality uses (5). Since α = κµ, this dual assignment indeed satisfies the
constraint of (DLPα).

Proof of Theorem 2.7. Weak duality, Lemma 2.8 and Lemma 2.9 imply

κµ · OPT ≥ OPTκµ ≥
∑
j

āj −
∑
i,t

b̄it −
∑

j,t≥rj

c̄jt ≥
(
λ− 4

(1− λ)κ

)
· ALG.

Setting κ = 36 and λ = 2
3 implies ALG ≤ 108µ · OPT.
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B. Details on Algorithms for Speed-Ordered Machines
Theorem 3.1. Any non-migratory speed-oblivious algorithm has a competitive ratio of at least Ω(m) for minimizing the
total completion time on m speed-ordered machines, even if it is clairvoyant and the machines are related.

Proof. Consider the execution of some algorithm on an instance of n jobs with unit-weights and with processing requirements
equal to n2m and s1 = n2m. If at some point in time, the algorithm starts a job on machines 2, . . . ,m, the adversary
sets s2 = . . . = sm = 1 to enforce an objective value of at least Ω(n2m), while scheduling all jobs on the first machine
gives an objective value of at most O(n2). If this does not happen, the algorithm must have scheduled all jobs on the first
machine. But then the adversary sets s2 = . . . = sm = n2m and achieves an objective value of O(n

2

m ) by distributing the
jobs evenly to all machines, while the algorithm has an objective value of Ω(n2).

B.1. Full Analysis of Maximum Density for Speed-Ordered Related Machines

This section is devoted to the proof of Theorem 3.2, which we firstly restate:

Theorem 3.2. Algorithm 4 has a competitive ratio of at most 8 for minimizing the total weighted completion time on
speed-ordered related machines.

We use a dual-fitting analysis based on (DLPα) to prove this theorem. Fix an instance and the algorithm’s schedule, and
observe that the algorithm ensures at every time t that Mt is a matching between alive jobs and machines. Recall that for
related machines, si = sij for every job j and every machine i.

Let κ ≥ 1 be a constant. We define for every machine i and any time t

βit =

{
wjsi
pj

if i is matched to j ∈ J(t) in Mt

0 otherwise,

and for every job j and any time t

γjt =

{
wjsi
pj

if j is matched to i ∈ I in Mt

0 otherwise.

Using these values, we have the following dual assignment:

• āj = wjCj for every job j,

• b̄it =
1
κ

∑
t′≥t βit′ for every machine i and time t, and

• c̄jt =
1
κ

∑
t′≥t γjt′ for every job j and time t ≥ rj .

We first observe that the dual objective of this assignment is close to algorithm’s objective. The proof works analogous to
the proof of Lemma 2.4.

Lemma B.1. (1− 2
κ )ALG ≤

∑
j āj −

∑
i,t b̄it −

∑
j,t≥rj

c̄jt

Lemma B.2. Assigning aj = āj , bit = b̄it and cjt = c̄jt is feasible for (DLPα) if α = κ and si = sij for every job j and
every machine i.

Proof. Since the dual assignment is clearly non-negative, we now show that it satisfies the dual constraint. Let i ∈ I, j ∈ J
and t ≥ rj . We first observe that

āj
si
pj
− wjt

si
pj
≤

Cj∑
t′=t

wjsi
pj

.

Using α = κ, it remains to validate for every t ≤ t′ ≤ Cj that wjsi
pj
≤ βit′ + γjt′ . We distinguish five cases:
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(i) If (i, j) ∈Mt′ , then wjsi
pj

= βit′ = γjt′ .

(ii) If (i, j′) ∈ Mt′ and (i′, j) ∈ Mt′ s.t. i ̸= i′, we have two cases. If i < i′, it must be that σt′(j
′) < σt′(j) and,

thus, wj′

pj′
≥ wj

pj
. But then, wjsi

pj
≤ wj′si

pj′
. Otherwise, that is, i > i′, we know by the speed order that si ≤ si′ , and,

thus, wjsi
pj
≤ wjsi′

pj
. Put together,

wjsi
pj
≤ wj′si

pj′
+

wjsi′

pj
= βit′ + γjt′ .

(iii) If (i′, j) ∈Mt′ and i is not matched in Mt′ , it follows i′ < i, which gives wjsi
pj
≤ wjsi′

pj
= γjt′ .

(iv) If (i, j′) ∈ Mt′ and j is not matched in Mt′ , it follows σt′(j
′) < σt′(j), and hence wj

pj
≤ wj′

pj′
. This immediately

concludes wjsi
pj
≤ wj′si

pj′
= βit′ .

(v) The case where both i and j are unmatched in Mt′ contradicts the definition of Mt′ in Algorithm 4.

Proof of Theorem 3.2. Weak duality, Lemma B.2 and Lemma B.1 imply

κ · OPT ≥ OPTκ ≥
∑
j

āj −
∑
i,t

b̄it −
∑

j,t≥rj

c̄jt ≥
(
1− 2

κ

)
· ALG.

Using κ = 4 concludes ALG ≤ κ
1−2/κ · OPT = 8 · OPT.

We finally observe that Algorithm 4 cannot achieve a good competitive ratio if speeds are job-dependent.

Lemma B.3. Algorithm 4 has a competitive ratio of at least Ω(n) for minimizing the total weighted completion time on
speed-ordered unrelated machines, even on two machines and if wj = 1 for all jobs j.

Proof. Let 0 < ϵ < 1. Consider an instance composed of n jobs and 2 machines, where wj = 1 for all jobs j, p1 = 1
and pj = 1 + ϵ for all 2 ≤ j ≤ n. The processing speeds are given by s11 = s21 = ϵ, and s1j = 1 and s2j = ϵ for
all 2 ≤ j ≤ n. Note that the machines are speed-ordered. Algorithm 4 completes at time 1

ϵ job 1 on machine 1 before any
other job. Thus, ALG ≥ n

ϵ . Another solution is to schedule jobs 2, . . . , n on machine 1, and job 1 on machine 2, giving an
objective of at most n2 + 1

ϵ . For ϵ < n−2, this concludes that ALG
OPT
≥ Ω(n).

B.2. Round Robin for Speed-Ordered Machines

B.2.1. MISSING DETAILS FOR THE ANALYSIS FOR UNRELATED MACHINES

This section contains missing details for the proof of Theorem 3.3, which we firstly restate:

Theorem 3.3. Algorithm 5 has a competitive ratio of at most O(log(min{n,m})) for minimizing the total completion time
on speed-ordered unrelated machines.

Proposition B.4. At any time t,
∑

i βit ≤ O(log(min{n,m})) · |Ut|.

Proof. At any time t, ∑
i∈I

βit =

mt∑
i=1

1

i
· |J(t)| ≤ |Ut|

mt∑
i=1

1

i
≤ O(log(min{n,m})) · |Ut|,

where in the last inequality we use that mt = min{m, |J(t)|} ≤ min{m,n}.

Proposition B.5. At any time t,
∑

j∈J:rj≥t γjt ≤ |Ut|.

Lemma B.6.
∑

j āj ≥
1
2 · ALG.

Proof. Analogous to the proof of Lemma A.5.
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Lemma B.7. At any time t,
∑

i b̄it ≤ O(1) · |Ut|.

Proof. Analogous to the proof of Lemma A.7 when using Proposition B.4 and the fact that κ = Θ(log(min{m,n})).

Lemma B.8. At any time t,
∑

j∈J:rj≥t c̄jt ≤ O(1) · |Ut|.

Proof. Analogous to the proof of Lemma A.7 when using Proposition B.5.

Observe that Lemma B.6, Lemma B.7 and Lemma B.8 imply Lemma 3.4. It remains the proof of Theorem 3.3:

Proof of Theorem 3.3. Weak duality, Lemma 3.4 and Lemma 3.5 imply

κ · OPT ≥ OPTκ ≥
∑
j

āj −
∑
i,t

b̄it −
∑

j,t≥rj

c̄jt ≥ Ω(1) · ALG.

We conclude the proof by noting that κ = Θ(log(min{m,n})).

We finally observe that this competitive ratio is tight for Algorithm 5 on speed-ordered unrelated machines.

Lemma B.9. Algorithm 4 has a competitive ratio of at least Ω(log(min{n,m})) for minimizing the total completion time
on speed-ordered unrelated machines, even if processing speeds are exclusively from {0, 1}.

Proof. Consider an instance of m unit-sized jobs [m] and m machines [m]. Every job j ∈ [m] has on machine i ∈ [m] a
processing speed equal to sij = 1 [i ≤ m− j + 1]. First observe that OPT ≤ m, because we can process and complete every
job j ∈ [m] excusively on machine m− j + 1 at time 1. We now calculate the algorithm’s objective value. To this end, we
argue that in the algorithm’s schedule holds Cj = 1+

∑j−1
i=1

1
m−i+1 for every job j. Then, ALG =

∑m
j=1 Cj = Ω(m logm)

concludes the statement.

We first observe that C1 = 1, because job 1 receives in interval I1 = [0, C1) on every machine a rate equal to 1
m . We

now argue iteratively for j = 2, . . . ,m that Cj = 1 +
∑j−1

i=1
1

m−i+1 . Consequently, in interval Ij = [Cj−1, Cj) must be
exactly jobs j, . . . ,m alive. Fix a job j with 2 ≤ j ≤ m and let 2 ≤ i ≤ j. Since j receives progress on exactly m− j + 1
machines, there are m− i+ 1 alive jobs in Ii, and Ii has length 1

m−i+2 , its total progress in Ii is equal to m−j+1
(m−i+1)(m−i+2) .

Further, j’s progress is equal to m−j+1
m in I1. Summing over all intervals Ii with 1 ≤ i ≤ j concludes that j’s progress until

the end of Ij is equal to

m− j + 1

m
+

j∑
i=2

m− j + 1

(m− i+ 1)(m− i+ 2)
= 1,

asserting that 1 +
∑j−1

i=1
1

m−i+1 is indeed j’s competion time in the algorithm’s schedule.

B.2.2. FULL ANALYSIS OF ROUND ROBIN FOR SPEED-ORDERED RELATED MACHINES

Theorem B.10. Algorithm 5 has a competitive ratio of at most 216 for minimizing the total completion time on speed-ordered
related machines.

We prove this theorem using a dual-fitting proof based on (DLPα), where wj = 1 and si = sij for every job j and every
machine i. Fix an instance and the algorithm’s schedule. For every time t we write mt = min{m, |J(t)|}. We define for
every machine i and any time t

βit =
si∑mt

ℓ=1 sℓ
· |J(t)| · 1 [i ≤ |J(t)|] ,

and γjt = 1 [j ∈ J(t)] for every job j and any time t.

Observe the following bounds when summing up these values:

Proposition B.11. At any time t,
∑

i βit ≤ |Ut|.
Proposition B.12. At any time t,

∑
j∈J(t) γjt ≤ |Ut|.
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Let κ ≥ 1 and 0 < λ < 1 be constants. For every t, consider the sorted (ascending) list Zt composed of values qjt
pj

for
every j ∈ Ut. We define ζt as the value at the index ⌊λ|Ut|⌋ in Zt. Consider the following duals:

• āj =
∑Cj

t′=0 1
[
qjt′

pj
≤ ζt′

]
for every job j,

• b̄it =
1
κ

∑
t′≥t βit′ζt′ for every i and t, and

• c̄jt =
1
κ

∑
t′≥t γjt′ζt′ for every j and t ≥ rj .

Lemma B.13.
∑

j āj ≥ λ · ALG.

Proof. Analogous to the proof of Lemma A.5.

Lemma B.14. At any time t,
∑

i b̄it ≤
4

(1−λ)κ |Ut|.

Proof. Analogous to the proof of Lemma A.7 when using Proposition B.11.

Lemma B.15. At any time t,
∑

j∈J:rj≥t c̄jt ≤
4

(1−λ)κ |Ut|.

Proof. Analogous to the proof of Lemma A.7 when using Proposition B.12.

Lemmas B.13 to B.15 conclude the following bound between ALG and the objective value of the crafted duals.
Lemma B.16. (λ− 8

(1−λ)κ )ALG ≤
∑

j āj −
∑

i,t b̄it −
∑

j,t≥rj
c̄jt

We finally prove that the crafted duals are feasible under certain conditions.
Lemma B.17. Assigning aj = āj , bit = b̄it and cjt = c̄jt is feasible for (DLPα) if α = κ and si = sij for all machines i
and jobs j.

Proof. First observe that the dual assignment is non-negative. Let i ∈ I, j ∈ J and t ≥ rj . Since the rates of Algorithm 5
imply qjt =

∑mt

ℓ=1
sℓ

|J(t)| , we have

ājsi
pj
− si · t

pj
≤

Cj∑
t′=t

si
pj
· 1
[
qjt′

pj
≤ ζt′

]
=

Cj∑
t′=t

si
qjt′
· qjt

′

pj
· 1
[
qjt′

pj
≤ ζt′

]
≤

Cj∑
t′=t

si∑mt′
ℓ=1

sℓ
|J(t′)|

· ζt′ (12)

Consider any time t′ with t ≤ t′ ≤ Cj . If i ≤ |J(t′)|, the definition of βit′ yields
si∑mt′
ℓ=1 sℓ

· |J(t′)| · ζt′ = βit′ · ζt′ .

Otherwise, i > |J(t′)|, the fact that s1 ≥ . . . ≥ sm implies
∑mt′

ℓ=1 sℓ ≥
∑|J(t′)|

ℓ=1 sℓ ≥ |J(t′)| · si, and thus

si∑mt′
ℓ=1 sℓ

· |J(t′)| · ζt′ ≤
|J(t′)|
|J(t′)|

· ζt′ = γjt′ · ζt′ ,

because t′ ≤ Cj . Put together, (12) is at most

Cj∑
t′=t

βit′ζt′ +

Cj∑
t′=t

γjt′ζt′ ≤ κ(̄bit + c̄jt),

which verifies the dual constraint.

Proof of Theorem B.10. Weak duality, Lemma B.16 and Lemma B.17 imply

κ · OPT ≥ OPTκ ≥
∑
j

āj −
∑
i,t

b̄it −
∑

j,t≥rj

c̄jt ≥
(
λ− 8

(1− λ)κ

)
· ALG.

Setting κ = 72 and λ = 2
3 concludes ALG ≤ 216 · OPT.
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C. Further Details on Experimental Results
C.1. The Iterative Greedy Algorithm

Algorithm 6 Iterative Greedy
Require: time t, speed predictions {ŝij}

1: I ′ ← I, J ′ ← J(t)
2: while I ′ ̸= ∅ ∧ J ′ ̸= ∅ do
3: (i, j) = argmaxi∈I′,j∈J′ wj ŝij
4: I ′ ← I ′ \ {i}, J ′ ← J ′ \ {j}
5: Schedule job j on machine i with rate yijt = 1 at time t.
6: end while

Lemma C.1. Algorithm 6 has a competitive ratio of at least Ω(n) for minimizing the total completion time on unrelated
machines, even if sij = ŝij for all jobs j and machines i.

Proof. Let ϵ > 0 and n > m ≥ 2 such that n−1
m−1 is an integer. Consider a unit-weight instance of one job with p1 =

n−1
m−1 , s11 = 1+ϵ and si1 = 1 for 2 ≤ i ≤ m, and n−1 jobs with pj = ϵ and s1j = 1 and sij = ϵ for 2 ≤ j ≤ n, 2 ≤ i ≤ m.
Algorithm 6 first schedules job 1 on machine 1, and the n − 1 others on the remaining m − 1 machines. Since the
completion time of job 1 is equal to n−1

(1+ϵ)(m−1) , jobs 2, . . . , n will complete at time at least n−1
m−1 only on machines 2, . . . ,m

if ϵ < m
n−m−1 , hence this allocation will remain until the end of the instance. This implies a total completion time

of Ω(n
2

m ) for jobs 2, . . . , n. Another solution is to schedule all jobs 2, . . . , n on machine 1 with a total completion time of at
most O(ϵn2), and job 1 latest at time O( n

m ) on any other machine. This implies that Algorithm 6 has a competitive ratio of
at least Ω(n).

C.2. Implementation Details

We implemented the schedulers as separate applications running in userspace, scheduling jobs via Linux affinity masks,
which indicate for each process on which core it may be executed. The schedulers compute a schedule every 2 s based on
the currently active jobs and their (predicted) characteristics. The schedulers are provided with the process IDs of the tasks
in the workload, potentially along with predictions, and only manage these processes via affinity masks. Other processes
may run on any core, but their load is negligible.

We use native input set for the PARSEC-3.0 jobs. For the SPLASH-3 jobs, we use both the large input set and custom input
sizes to study the impact of different input data (see Figure 1). The Polybench jobs use their standard hard-coded inputs. We
discard jobs that execute for less than 30 s on a big core to reduce measurement noise, and discard jobs that use more than
512 MB RAM because the HiKey 970 board has only 6 GB RAM and Android does not support swap. Overall, this results
in 43 combinations of jobs and input data, i.e., some jobs are repeated in the workloads.

C.3. Further Analysis of the Hardware Results

Figure 3 shows the distribution of system load during the experiments with speed-ordered Round Robin (Algorithm 5). At
low job arrival rate (1 task/min), the system load is ≤ 4 during 87 % of the time. This means that during the majority of the
time, it is possible to only use the big cores, explaining why speed predictions or clairvoyance bring little benefit over the
speed-ordered setting as in Figure 2a. In contrast, the system load is ≤ 4 during 43 % of the time at a high job arrival rate (4
tasks/min), reaching up to 46. Accurate speed and job volume predictions are much more beneficial in this case, explaining
the larger differences between algorithms in Figure 2b.

C.4. Simulation Experiments

The experiments on real hardware are slow, hence we can only study a limited set of workload scenarios. We therefore
additionally test many different scenarios in synthetic experiments in simulation. These synthetic experiments also model
an 8-core processor. We create 20 random workloads with 100 synthetic jobs, whose arrival times are drawn from a
Poisson distribution and with random characteristics: 4 LITTLE cores with speed 1, 4 big cores with job-dependent speeds
from U(2, 6), and pj ∼ U(60, 600). Speed predictions are same as in the hardware experiments, i.e., ŝij = sij · yij .
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(a) Low load: 1 task / min. (b) High load: 4 tasks / min.

Figure 3. Distribution of the system load with speed-ordered Round Robin (Algorithm 5).
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Figure 4. Synthetic experiments. The experiments are each repeated 20 times with different random workloads.

Figure 4 shows the results of the synthetic experiments, including the fractional schedulers Greedy WSPT and PF. Unlike
the real experiments, we are not restricted to a single workload and instead run 20 different workloads and plot the average
results. Inaccurate speed predictions in Greedy WSPT result in large idle times, greatly deteriorating the performance. PF
performs similar to or worse than Maximum Density, depending on the system load. The other algorithms perform similar
to the experiments on the real platform, confirming that the results are not depending on a specific workload.

23


