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Abstract

Large transformer models powered by diverse
data and model scale have dominated natural lan-
guage modeling and computer vision and pushed
the frontier of multiple AI areas. In reinforce-
ment learning (RL), despite many efforts into
transformer-based policies, a key limitation, how-
ever, is that current transformer-based policies
cannot learn by directly combining information
from multiple sub-optimal trials. In this work, we
address this issue using recently proposed chain
of hindsight to relabel experience, where we train
a transformer on a sequence of trajectory expe-
rience ascending sorted according to their total
rewards. Our method consists of relabelling target
return of each trajectory to the maximum total re-
ward among in sequence of trajectories and train-
ing an autoregressive model to predict actions con-
ditioning on past states, actions, rewards, target
returns, and task completion tokens, the resulting
model, Agentic Transformer (AT), can learn to
improve upon itself both at training and test time.
As we show on D4RL and ExoRL benchmarks,
to the best our knowledge, this is the first time
that a simple transformer-based model performs
competitively with both temporal-difference and
imitation-learning-based approaches, even from
sub-optimal data. Our Agentic Transformer also
shows a promising scaling trend that bigger mod-
els consistently improve results.

1. Introduction
Large transformer (Vaswani et al., 2017) models have sub-
stantially advanced the state-of-the-art across a variety of
domains, including natural language processing tasks (De-
vlin et al., 2018; Brown et al., 2020; Liu et al., 2019), com-
puter vision (Dosovitskiy et al., 2020; Alayrac et al., 2022),
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Figure 1. Agentic Transformer can automatically improve its per-
formance at evaluation time by rollouting more trajectories in a
trial-and-error manner. The scaling improves with both more chain
of hindsight training sequences.

and code generation (Lewkowycz et al., 2022; Chen et al.,
2021c).

Despite the successes, a key limitation is that these models
are not agentic, i.e. they cannot interact with the real world
to accomplish tasks like a robot. Reinforcement learning
(RL), on the other hand, in principle is designed for building
interactive agents. However, conventional RL algorithms
are limited to small models (e.g., an MLP with two layers)
and are difficult to train and scale (see e.g. Andrychowicz
et al., 2020). The difficulty of scaling the model size in con-
ventional RL algorithms make it difficult to take advantage
of large Transformer models.

In order to combine Transformer with decision-making,
there have been lots of efforts in attempting to cast RL from
offline data as a sequence modeling problem (Chen et al.,
2021a; Laskin et al., 2022; Reed et al., 2022). For instance,
DT (Chen et al., 2021a) proposes to train a Transformer
to autoregressively predict action sequences based on se-
quences of returns-to-go and states.

Despite the progress made, existing Transformer based
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decision-making models cannot learn by directly combin-
ing information from multiple sub-optimal trials, in fact,
they require high-return data to achieve high return (see e.g.
Chen et al., 2021a; Laskin et al., 2022; Yarats et al., 2022),
indicating the lack of extrapolation ability besides the im-
itation learning ability. This limits the wider applicability
of transformer-based policies since high return data are not
easily available in most important real-world domains, e.g.,
health care and industry robots.

To resolve these issues, we first hypothesize that the fact that
existing Transformer based decision-making models under-
perform TD-learning approaches and lack of extrapolation
is due to the fact that during training and inference, the
model can only do one trial. Our key observation is that one
ability humans have, unlike the current generation of models,
is to learn almost as much from achieving an undesired
outcome as from the desired one. We take the approach
chain of hindsight introduced in Liu et al. (2023) which
proposes to condition language model on positive indicator
and negative example to predict positive example, and vice
versa. The idea applies to learn decision making – imagine
learning basketball and attempting a shot that misses the net
on the right. Existing models conclude that the sequence
of performed actions don’t result in success, and little is
learned. It is however possible to chain another attempt’s
sequence of actions which missed even more far away with
this sequence of actions, as if this sequence of actions would
be a successful second attempt if the goal is placing the ball
closer to the net.

In this paper, we propose to train Transformer to perform
exactly this kind of reasoning. Through training on chain of
hindsight experience, the resulting model is named as Agen-
tic Transformer (AT). Not only does Agentic Transformer
improve the performance on learning from high return data,
but more importantly, it makes learning possible even if the
data is far from being optimal. Our approach is based on
training a decoder-only Transformer (Radford et al., 2018;
2019; Brown et al., 2020) which takes as input not only the
current episode, but also multiple episodes whose returns
are lower than current episode’s return and are ascending
sorted according to their returns. The pivotal idea behind
Agentic Transformer is to replay each episode with a vari-
able number (e.g., randomly choose between 0 and 4) of
episodes to form chain of hindsight experience, as if the
model was trying to improve from previous episode(s) to
current episode.

Agentic Transformer achieves state-of-the-arts on standard
RL benchmarks including D4RL (Fu et al., 2020) and Ex-
oRL (Laskin et al., 2021; Yarats et al., 2022). Agentic
Transformer can learn by directly combining information
from multiple sub-optimal trials and being able to improve
itself through multiple trials at test time. Our experiments

show that AT scales well in both model size and the length
of chain of hindsight experience, indicating further improve-
ment could be possible by scaling up model and data.

2. Preliminaries
2.1. Reinforcement Learning

We consider learning problem in the context of a Markov
Decision Process (MDP) represented by the tuple (S, A,
P , R). The MDP tuple consists of states s ∈ S, actions
a ∈ A, transition dynamics P (s′|s, a), and a reward func-
tion r = R(s, a). To describe the state, action, and reward at
time step t, the notations st, at, and rt = R(st, at) are used.
A trajectory is a sequence of states, actions, and rewards and
is denoted by τ = (s0, a0, r0, s1, a1, r1, . . . , sT , aT , rT ).
The return of a trajectory at time step t, Rt =

∑T
t′=t rt′ ,

is calculated as the sum of future rewards from that time
step. The goal of reinforcement learning is to find a policy
that maximizes the expected return E

[∑T
t=1 rt

]
in an MDP.

In supervised or offline reinforcement learning, data is ob-
tained from a fixed limited dataset of trajectory rollouts from
arbitrary policies, instead of from environment interactions.
This setting eliminates the ability of the agents to explore
the environment and gather additional feedback. Conven-
tional datasets either consist mainly of high quality, near
optimal trajectories like in D4RL (Fu et al., 2020) which are
obtained by running trained expert policies or by storing the
experience of training an expert policy, or mainly consist
of diverse, exploratory and sub-optimal trajectories like in
ExoRL (Yarats et al., 2022) where trajectories are collected
through unsupervised exploration algorithms.

2.2. Transformers

The Transformer (Vaswani et al., 2017) architecture consists
of multiple layers of self-attention operation and MLP. The
self-attention begins by projecting input data X with three
separate matrices onto D-dimensional vectors called queries
Q, keys K, and values V . These vectors are then passed
through the attention function:

Attention(Q,K, V ) = softmax(QKT /
√
D)V. (1)

The QKT term computes an inner product between two
projections of the input data X . The inner product is then
normalized and projected back to a D-dimensional vector
with the scaling term V . Transformers (Vaswani et al., 2017;
Devlin et al., 2018; Brown et al., 2020) utilize self-attention
as a core part of the architecture to process sequential data
such as text sequences. Transformers are usually pre-trained
with a self-supervised objective. Common prediction tasks
include predicting randomly masked out tokens (Devlin
et al., 2018) or applying a causal mask and predicting the
next token (Radford et al., 2018; Brown et al., 2020). The
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Figure 2. Agentic Transformer. The input sequence consists of multiple episodes ascending sorted according to their total rewards.
The initial desired return R̂0 of all trajectories are set to the maximum total rewards among all trajectories. For each trajectory, the
return-to-go is updated using rewards in the same trajectory: R̂t = R̂0 −

∑t
j=0 rj . The task completion token d indicates whether

achieved cumulative rewards in a trajectory is larger than desired target return( Equation 2), this gives model feedback on past trajectories
and help steer model to try to reach target return in next trajectory at test time. States, actions, rewards, returns-to-go, and task completion
are fed into modality specific linear embeddings and a positional episodic timestep encoding is added. Tokens are fed into a GPT
architecture which predicts actions autoregressively using a causal self-attention mask. At training time: The model is trained to
predict action tokens in the last (best) trajectory conditioning on past trajectories, states, actions, returns-to-go and task completion tokens.
At testing time: The model predicts action autoregressively across multiple trajectories.

GPT architecture (Radford et al., 2018) replaces the sum-
mation/softmax over the n tokens with only the previous
tokens in the sequence (j ∈ [1, i]), enabling autoregres-
sive generation by using causal self-attention mask. In this
work, we use the GPT architecture because we need to do
autoregressive generation at test time.

2.3. Transformer based Behavior Cloning

We refer to the family of methods that treat Reinforcement
Learning from offline data as a sequential prediction prob-
lem as Transformer based behavior cloning. Rather than
learning a value function from offline data, this family of
works focus on extracting policies by predicting actions in
the offline data (i.e. behavior cloning) with an autoregres-
sive sequence model and either return conditioning (Chen
et al., 2021b; Laskin et al., 2022; Lee et al., 2022) or fil-
tering out suboptimal data (Reed et al., 2022) or training
masked sequence model bypredicting masked states and
actions tokens (Liu et al., 2022a; Carroll et al., 2022).

3. Method
In this section, we present Agentic Transformer (AT), which
models chain of hindsight experience trajectories autoregres-
sively based on Transformer archiecture, as summarized in
Figure 2 and Algorithm 1.

Chain of hindsight Experience. The key factors that influ-
enced our decision on how to represent trajectories are: (1)
the ability of transformers to uncover meaningful patterns
from multiple trajectories sampled from arbitrary offline
data, and (2) the capacity to produce actions conditionally
during evaluation and improve itself conditions on collected
experience. Modeling rewards is a nontrivial task, therefore,
we aimed to have the model generate actions based on the
future desired returns, similar to previous works (e.g., Chen
et al., 2021a; Laskin et al., 2022), rather than relying on past
rewards. We feed the model with the initial target returns-to-
go R̂0 and update R̂t = R̂0 −

∑t
j=0 rj using rewards. We

also feed the model with a completion token d that indicates
whether the achieved cumulative rewards in a trajectory are
larger than or equal to desired returns-to-go, specifically

dT = 1

 T∑
j=0

rj ≥ R̂0

 di = 0, ∀i ∈ [1, T − 1], (2)

where 1 is indicator function. This leads to the following tra-
jectory representation which is amenable to autoregressive
training and generation:

τ =
(
R̂0, s0, a0, r0, d0, . . . , R̂T , sT , aT , rT , dT

)
where R̂t = R̂0 −

t∑
j=0

rj . (3)
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Since we want the model to learn to ’stitch’ sub-optimal data
rather than just imitating optimal data, and at test time we
want the model to achieve desired target return through mul-
tiple trajectories of trial-and-errors, we construct a chain of
hindsight experience for the model to learn to improve even
from sub-optimal data and learning to self-improve during
test time. To achieve this, we take the approach called chain
of hindsight (Liu et al., 2023) which trains language model
from human feedback by conditioning on positive indicator
and negative rated example to predict corresponding pos-
itive rated example. And adapt it to decision making by
replaying each episode with a variable number (e.g., ran-
domly choose between 0 and 4) of episodes to form chain of
hindsight experience, as if the model was trying to improve
from previous episode(s) to current episode.

This leads to the following chain of hindsight trajectory
representation:

s =
(
τ1, τ2 . . . , τn

)
(4)

where

τ i =
(
R̂i

0, s
i
0, a

i
0, r

i
0, d

i
0, . . . , R̂

i
T , s

i
T , a

i
T , r

i
T , d

i
T

)
(5)

s.t.

T∑
t=1

r0t ≤
T∑

t=1

r1t ≤ · · · ≤
T∑

t=1

rnt (6)

R̂i
0 =

T∑
t=1

rnt ∀ 1 ≤ i ≤ n (7)

R̂i
t = R̂i

0 −
t∑

j=0

rij ∀ 1 ≤ i ≤ n, (8)

Equation 6 states the ordering requirement, meaning that tra-
jectories are ascending sorted according to their total reward.
Equation 7 sets the hindsight target: for all n trajectories,
initial target equals to trajectory n’s total reward. Equation 8
updates returns-to-go using trajectory reward.

At test time, we can specify the desired performance (e.g.
1 for success or 0 for failure), as well as the environment
starting state, and the conditioning information to initiate
generation. After executing the generated action for the
current state, we decrement the target return by the achieved
reward and repeat until episode termination. If the target
return is not achieved, the model starts a new episode and
continues interacting with the environment until the maxi-
mum episode number is reached.

Architecture. We feed the n trajectories into Agentic Trans-
former, this results in a total of 5× n× T tokens, with one
token for each of the five modalities: returns-to-go, state,
action, reward, and completion. To create the token em-
beddings, a linear layer is trained for each modality which
transforms the raw inputs into the desired embedding di-

mension, followed by layer normalization (Ba et al., 2016).
In addition to this, an embedding for each time step is also
learned and added to the tokens, which is distinct from the
standard positional embedding used in transformers where
one time step is represented by five tokens. Finally, the
tokens are processed by a GPT model (Radford et al., 2018)
that predicts future action tokens through autoregressive
modeling.

Training and Test. We are given a dataset of offline trajecto-
ries. We sample minibatches of trajectories from the dataset.
The model predicts the action token at given the input token
st, and the prediction is evaluated with either cross-entropy
loss or mean-squared error, depending on whether the ac-
tions are discrete or continuous. The losses from each time
step are averaged. Note that only the action tokens at from
the last trajectory τn are used for loss calculation. While
it’s feasible to predict other tokens or use other trajectories
in the training process, we didn’t observe improvements in
performance and consider it as a potential area for future
research. At test time, following standard practice in NLP,
we cache key and query during autoregressive decoding to
speed up inference. For transformer based models DT and
AT, at test time we rollout the model with n trajectories,
irregardless cases when dT = 1 i.e. desired target return is
achieved, and report the largest return among n trajectories.
For DT the maximum return is achieved at the 1st trajectory
while AT improves itself along the trajectory sequence and
achieves higher return with more trajectories. The model
sizes are shown in Table 1, base is used by default unless oth-
erwise mentioned. Since in our default configuration n = 4,
and T is typically 1000 in D4RL and ExoRL, total sequence
length is 20,000 which uses a large amount of memory for
large models. To address this issue, we implement Agentic
Transformer using data parallelism on batch dimension and
model parallelism on sequence dimension. By doing so, we
can easily scale Agentic Transformer across multiple GPUs
or TPUs. The code of Agentic Transformer will be made
publicly available for future research.

Algorithm 1 Training Agentic Transformer
Required: Dataset of Trajectories, Transformer Model
Required: Max Iterations m, Max Number of trajectories in
chain of hindsight experience n
Initialize
for i = 1 to m− 1 do

Randomly sample j from 1 to n
Randomly sample j episodes from dataset
Compute returns-to-go R̂ for all steps for each episode
Sort j episodes ascending according to their returns
Let R̂max be the return of the last episode
For each other episode, recomputing its returns-to-go by
setting R̂0 = R̂max
Concatenate j episodes as a sequence
Train Transformer to predict next action token (see Figure 2).

end for
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Model Layers # of heads dmodel Batch size

Small 2 4 64 256
Base 4 8 256 256
Large 6 16 512 256
XLarge 8 16 512 256

Table 1. Architecture details of different sized models used in
Agentic Transformer. We list the number of layers, dmodel, the
number of attention heads and attention head size, training batch
size, and sequence length. The feed-forward size dff is always
4× dmodel and attention head size is always 16.

4. Experiments

Dataset: D4RL. In this section, we consider the continuous
control tasks from the D4RL benchmark (Fu et al., 2020).
The different dataset settings are described below.

1. Medium: 1 million timesteps generated by a “medium”
policy that performs approximately one-third as well
as an expert policy.

2. Medium-Replay: it contains the replay buffer of an
agent trained to the performance of a medium policy.

3. Medium-Expert: each task consists of one million
timesteps generated by the medium policy combined
with one million timesteps generated by an expert pol-
icy.

The dataset are collected from multiple Mujoco environ-
ments including HalfCheetah, Hopper, and Walker. Since
D4RL dataset is collected by conventional RL algorithms, it
consists of many high return trajectories that are near expert.
Therefore, filtered behavior cloning (e.g.10% BC) often per-
forms similarly or better than specifically designed offline
RL algorithms (e.g.DT). In order to evaluate our method
in a more challenging and realistic setting, we consider Ex-
oRL (Yarats et al., 2022) dataset that only consists of diverse
and low return trajectories.

Dataset: ExoRL. The ExoRL dataset is based on unlabeled
exploratory data collected by running unsupervised RL algo-
rithms. For each environment, it comes with eight different
unsupervised data collection algorithms, taken from from
URLB (Laskin et al., 2021). The datasets are collected by
unsupervised RL and then relabeled using task reward func-
tion. In light of the benefit of scaling up data (Hoffmann
et al., 2022), we opted to use the combination of all datasets
for all baselines and our method. Specifically, for each
environment, we combine the datasets collected by eight
algorithms (Pathak et al., 2017; 2019; Burda et al., 2019;
Liu & Abbeel, 2021b; Yarats et al., 2021; Eysenbach et al.,
2019; Lee et al., 2019; Liu & Abbeel, 2021a). The result-
ing mixed dataset consists of 8 millions timesteps (8000

episodes). Since it is collected by unsupervised RL without
using task rewards, the dataset is optimized for diversity but
is far from optimal task rewards. The details are referred to
the original papers.

Baselines. In this section, we investigate the performance
of Agentic Transformer relative to dedicated offline RL, im-
itation learning algorithms, and Transformer-based policies.
In particular, our primary points of comparison are prior
Transformer-based policies such as decision transformer
since architecture wise Agentic Transformer is similar them.
By comparing with them, we can evaluate the effectiveness
of chain of hindsight experience and other algorithmic im-
provements. We further compare with model-free offline
RL algorithms based on TD-learning, since architecture is
fundamentally model-free in nature as well. Furthermore,
TD-learning is the dominant paradigm in RL for sample
efficiency and is effective at learning from sub-optimal data.
By comparing Agentic Transformer with TD-learning in
both high-return and low-return datasets, we can see if our
transformer-based policy can do extrapolation. We also
compare with behavior cloning and variants, since it also
involves a likelihood based policy learning formulation sim-
ilar to ours. Our baselines can be categorized as follows:

• Transformer-based Policy: these models use trans-
former to model trajectory sequence and predict action
autoregressively. We consider decision transformer
(DT) (Chen et al., 2021b) which is shown to be effec-
tive on D4RL.

• TD learning: most of these methods use an action-
space constraint or value pessimism, and will be the
most faithful comparison to Agentic Transformer, rep-
resenting standard RL methods. We consider state-
of-the-art TD3+BC (Fujimoto & Gu, 2021) which is
shown to be effective on D4RL and TD3 (Fujimoto
et al., 2018) which is shown to be effective on ExoRL.

• Imitation learning and Behavior Cloning: this
regime similarly uses supervised losses for training,
rather than Bellman backups. We consider BC-10%.
BC-10% is shown to be competitive to state-of-the-arts
on D4RL. DT also belongs to this category since it is
a transformer based return conditioned BC, both are
closely related to our model.

In total for offline RL we use five algorithms: BC-10%,
TD3+BC, TD3 and DT. We adhere closely to the original
hyper-parameter settings for each algorithm, but in several
cases we perform hyper-parameter tuning to achieve best
possible performance. We train offline RL algorithms for
500k gradient updates and then evaluate by rolling out 10
episodes in the environment. We report mean and standard
error across 3 random seeds.
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Figure 3. Agentic Transformer performs competitively with both temporal-difference based and imitation-learning based approaches in
ExoRL as well as D4RL tasks. Left. Tasks average performance on D4RL. Right. Tasks average performance on ExoRL. We report the
mean and variance for three seeds.

Table 2. Results for D4RL datasets. We report the mean and variance for three seeds. Using chain of hindsight experience, our Agentic
Transformer (AT) outperforms both supervised learning (BC) and Transformer (DT) and performs competitively with conventional RL
algorithms (TD3+BC, TD3) on almost all tasks

Dataset Environment BC-10% TD3+BC TD3 DT Agentic Transformer (AT)

Medium-Expert HalfCheetah 94.11 96.59 87.60 93.40 95.81 ± 0.25
Medium-Expert Hopper 113.13 113.22 98.41 111.18 115.92 ± 1.26
Medium-Expert Walker 109.90 112.21 100.52 108.71 114.87 ± 0.56
Medium HalfCheetah 43.90 48.93 34.60 42.73 45.12 ± 0.34
Medium Hopper 73.84 70.44 56.98 69.42 70.45 ± 0.45
Medium Walker 82.05 86.91 70.95 74.70 88.71 ± 0.55
Medium-Replay HalfCheetah 42.27 45.84 38.81 40.31 46.86 ± 0.33
Medium-Replay Hopper 90.57 98.12 78.90 88.74 96.85 ± 0.41
Medium-Replay Walker 76.09 91.17 65.94 68.22 92.32 ± 1.21

Total Average 80.65 84.83 70.30 77.49 85.21

4.1. D4RL results

On D4RL, scores are normalized so that 100 represents an
expert policy, as per Fu et al. (2020). Baselines numbers are
reported by the original papers and from the D4RL paper.
Agentic Transformer surpasses the baselines in a wide range
of tasks. Our results are shown in Table 2. Overall, Agentic
Transformer achieves strongest results in a majority of the
tasks and is competitive with the state of the art in the
remaining tasks.

Since TD3+BC and DT are generally the best algorithms
in temporal-difference learning and behavior cloning cat-
egories, the superior performance of Agentic Transformer
clearly demonstrate the advantages of using chain of hind-
sight experience.

4.2. ExoRL results

On ExoRL, we report the cumulative return, as per Yarats
et al. (2022). BC, TD3+BC, and TD3 numbers are from the
ExoRL paper, DT numbers are run by ourselves. Our results
are shown in Table 3. Agentic Transformer achieves the

highest scores in a majority of the tasks and is competitive
with the state of the art in the remaining tasks.

Since the ExoRL data is significantly more diverse than
D4RL because it is collected using unsupervised RL (Laskin
et al., 2021), it is found that temporal-difference learning
performs best while behavior cloning struggles. Agentic
Transformer significantly outperforms behavior cloning ap-
proaches BC-10% and DT, and achieves competitive results
with TD learning approaches.

We further evaluate Agentic Transformer with different mod-
els sizes. We select two tasks from ExoRL in order to re-
duce compute cost incurred by XLarge model size. Figure 4
shows the results. Agentic Transformer improves with larger
model size, showing promising scaling behavior.

4.3. Evaluation of Agency

At test time, the total rewards of each trajectory in a se-
quence are reported in Figure 1. We follow DT’s experimen-
tal settings and use their target return as initial return-to-go
for both DT and AT.
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Table 3. Results for ExoRL datasets. We report the mean and variance for three seeds. Using chain of hindsight experience, our Agentic
Transformer (AT) outperforms both supervised learning (BC) and Transformer (DT) on almost all tasks, and performs competitively with
conventional RL algorithms (TD3+BC, TD3).

Dataset Task BC-10% TD3+BC TD3 DT Agentic Transformer (AT)

All Walker Stand 52.91 67.13 832.10 34.54 68.55
All Walker Run 34.81 45.83 387.76 49.82 88.56
All Walker Walk 13.53 56.73 897.81 34.94 64.56
All Cheetah Run 34.66 187.55 318.41 67.53 125.68
All Jaco Reach 23.95 167.85 287.55 18.64 52.98
All Cartpole Swingup 56.82 78.57 787.52 67.56 97.81

Total Average 36.11 100.61 585.19 45.51 83.02

As the number of trajectories increases, the return for AT
also increases. In some cases, AT is able to attain the desired
target return by the 2nd or 3rd trajectory, resulting in a higher
return in the last 4th trajectory. On the other hand, when
multiple trajectories are rolled out using DT, the results are
poor. DT is unable to produce consistent or higher returns
beyond the 1st trajectory.

E
xo

R
L 

R
et

ur
n

50

75

100

125

150

Small Base Large XLarge

ExoRL Walker Stand ExoRL Cheetah Run

Figure 4. The results of Agentic Transformer with different model
sizes on two ExoRL tasks.

4.4. Model Variations

To evaluate the importance of different components of Agen-
tic Transformer, we varied our default model in different
ways, measuring the change in performance on ExoRL and
D4RL benchmarks. We present these results in Table 4.

In Table 4 rows (A), we vary the number of training trajec-
tories n, keeping the number of testing trajectories constant.
Performance improves with the increasing of number of
training trajectories, this indicates a promising scaling di-
rection for further improvement.

In Table 4 rows (B), we remove the task completion token ’d’
from the input sequence, so the model is trained to ’blindly’
learn from hindsight experience. We vary the number of

trajectories at test time, we observe that using ’d’ token
is crucial. While without it Agentic Transformer still out-
performs baselines, the performance degrades significantly
compared with default configuration. In addition, without
this completion token, the model does not improve with
more trajectories at test time, indicating that completion
token is important for the model to learn from hindsight
experience.

In Table 4 rows (C), we observe that removing reward token
’r’ has minimal negative effect. This is probably because the
model can infer reward token by a simple subtraction from
two consecutive returns-to-go tokens.

In Table 4 rows (D), we vary the desired return R̂0. Since
default configuration uses 4 trajectories, the default target
equals to total reward of last trajectory R̂0 =

∑T
t=1 r

4
t . We

vary R̂0 to be the total reward of other trajectories. We
observe that changing this target decreases performance
significantly, with the largest decrease happens when R̂0

equals the total reward of the first trajectory.

In Table 4 rows (E), instead of having ordered trajectories
s =

(
τ1, τ2 . . . , τn

)
, we randomly shuffle all τ for each

training batch. We observed significantly worse results, in
particularly on ExoRL, this change decreases the perfor-
mance to only slightly better than BC and DT.

In Table 4 rows (F), we evaluate different number of tra-
jectories at test time, we observed a steady better result
from using more trajectories at test time. We further ob-
serve that although results are better with more trajectories,
even using one trajectory, Agentic Transformer still out-
performs Transformer-based policies on both ExoRL and
D4RL benchmarks. This suggests that Agentic Transformer
not only learns more than just imitation learning, but also
learns to improve upon its own experience.

In Table 4 rows (G), we consider applying loss on all trajec-
tories rather than just last trajectory. We observe that it is
detrimental to performance, and particularly reduces perfor-
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Table 4. Variations on the Agentic Transformer and chain of hindsight experience. Unlisted values are identical to those of the default
configuration. All metrics are averaged over 3 random seeds based on the ExoRL and D4RL benchmarks.

Variants With ’d’ With ’r’ Hindsight Tgt Ordered # Test Traj # Train Traj All tokens loss ExoRL Avg D4RL Avg

Default true true 4th true 4 4 false 83.02 85.21

(A)
3 76.19 82.45
2 65.47 80.85
1 46.45 80.26

(B) false

1 57.09 74.34
2 61.92 73.56
3 60.91 70.88
4 61.20 75.68

(C) false 76.59 80.43

(D)
1st 14.18 52.33

2nd 32.29 65.55
3rd 58.48 78.81

(E) false 17.25 29.78

(F)
1 58.35 81.48
2 74.17 82.56
3 76.29 84.88

(G)

1 true 35.88 66.45
2 true 66.30 71.55
3 true 73.16 76.80
4 true 73.88 78.88

mance for when the number of test trajectories is small. This
suggests that it is best to optimize model towards ’better’
behaviors rather than imitating all behaviors.

5. Related Work
5.1. Transformer for Decision-Making

Prior works explored using Transformers in the context of
supervised or offline RL. Among them, decision transformer
(DT) (Chen et al., 2021a) proposes to model trajectories as
sequences and autoregressively predicts action conditioning
on desired returns-to-go and past states and actions. Our
model takes input as multiple trajectories and conditions on
hindsight information for learning to improve. Chen et al.
(2021a) found that DT does not benefit from longer context
window and the results saturates at very short context length
(e.g., 3-5), possibly due to Markovian environments. Our
Agentic Transformer (AT) models non-Markovian multi-
ple episodes, it shows improved results with longer context
length and benefits from Transformers architecture. Algo-
rithm distillation (AD) (Laskin et al., 2022) also conditions
the model on multiple trajectories, the difference is that AD
requires the data to be the experience over the life time of
a RL algorithm, while our model can learn from data from
any sources. Another key difference is our model condi-
tions on hindsight information including hindsight desired
returns-to-go and hindsight task completion tokens. We ob-

serve these algorithm modifications are crucial for superior
performance. Transformer has been explored in learning
general world model (Liu et al., 2022a; Carroll et al., 2022;
Wu et al., 2023), learning from multiple games (Reed et al.,
2022; Lee et al., 2022), offline model-based learning (Jan-
ner et al., 2021; Liu et al., 2022a), meta learning (Melo,
2022; Team et al., 2023), vision-language navigation (Chen
et al., 2021d; Shah et al., 2022), robot learning and behavior
cloning from noisy demonstrations (Shafiullah et al., 2022;
Cui et al., 2022), learning from multiple cameras (Seo et al.,
2022), and language-conditioned imitation learning (Guhur
et al., 2022; Liu et al., 2022b; Shridhar et al., 2022; Zheng
et al., 2022). Since our model is a general decision-making
model, applying it to these interesting tasks is possible.

5.2. Learning from Hindsight Experience

Learning from hindsight experience was explored in goal
conditioned RL (Kaelbling, 1993; Andrychowicz et al.,
2017; Schaul et al., 2015). Andrychowicz et al. (2017) pro-
poses hindsight experience replay (HER) to relabel rewards
and transitions retroactively to learn from sparse reward. In
relation to HER (Andrychowicz et al., 2017), our work is
in the batch setting rather than online setting. We propose
algorithm improvement to construct hindsight experience
directly from offline experience. HER is designed for Q-
learning algorithms (Van Hasselt et al., 2016; Mnih et al.,
2013; 2015) while AT use next token prediction to learn
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from hindsight information. Chain-of-hindsight (Liu et al.,
2023) explores turning all (binary or multi-scale) feedback
into a sentence that consists of chain of all feedback and
show improve improvements in aligning language models
with human preferences. In relation to it, our work can be
seen as applying chain-of-hindsight in the context of auto-
matic feedback. Our work steers model’s behavior using
the desired target return and reward function at each step as
feedback instead of using human preference.

5.3. Supervised and Meta RL

Motivated by transforming conventional RL (e.g., policy gra-
dient (Schulman et al., 2015; 2017) and Q-learning (Watkins,
1989; Mnih et al., 2013)) as a supervised learning problem,
prior work explored various ways (Srivastava et al., 2019;
Paster et al., 2020; Liu et al., 2022a; Carroll et al., 2022;
Chen et al., 2021b; Laskin et al., 2022). Our work is closely
related in that our model is similarly a return conditioned su-
pervised learning. At test time, our model can self-improve
based upon past experience to try to achieve target desired
return. Using experience to improve model without chang-
ing weights is similar to few-shot or in-context learning in
large language models (Brown et al., 2020). Recent work
Algorithm Distillation (AD) (Laskin et al., 2022) demon-
strates similar in-context behaviors in transformer model.
AD is trained on the lifetime trajectories of a RL algorithm
that can solves the task, posing a strong requirement of of-
fline data, while in many important real world domains there
exists only diverse, lower return data from multiple sources.
In relation to AD, Agentic Transformer can be learned from
sub-optimal data by turning the data into chain of hindsight
experience. Leveraging online experience to improve model
at test time is related to meta reinforcement learning (meta
RL) (Duan et al., 2016; Wang et al., 2016). In meta RL the
objective is to explicitly optimize for meta learning at test
time, while Agentic Transformer does not, in contrast, the
meta learning behavior emerges from training on chain of
hindsight experience.

6. Conclusion
We propose Agentic Transformer (AT), a Transformer model
with the ability of learning by directly combining informa-
tion from multiple sub-optimal trials and being able to im-
prove itself through multiple trials at test time. Motivated
by prior works on hindsight experience replay and chain of
hindsight, the key innovation behind Agentic Transformer
is relabelling multiple trajectories to chain of hindsight ex-
perience that can be easily constructed from arbitrary offline
data. On standard RL benchmarks, we showed AT outper-
forms both strong algorithms designed explicitly for offline
RL as well as state-of-the-art Transformer-based policies.

Limitations and Future Work.

• Large diverse datasets. While Agentic Transformer
(AT) outperforms prior transformer-based policies and
performs competitively with TD-learning in standard
RL benchmarks. AT is a GPT model therefore all lim-
itations of transformer model still apply to AT. For in-
stance, training AT requires large memory because of
self-attention quadratic complexity and long sequence
length. At test time, rollouting our model is sequential
thus slower than non-transformer models. That being
said, we believe the advantages of AT outweigh its draw-
backs. As we observed in NLP and CV, it is worth
scaling transformer-based policies in both model size
and dataset size. As the datasets used in this work are
still small, future work could explore scaling up dataset
and model and have more investigation into using large
transformer models for RL.

• Real world applications. As we observed in the ex-
periments, Agentic Transformer can learn by directly
combining information from multiple sub-optimal tri-
als. Because diverse sub-optimal data is ubiquitous in
the real world and AT scales well with model size and
dataset diversity, we believe an interesting future direc-
tion is applying AT for real-world applications.
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A. Experimental Details
The default length of chain of hindsight experience is four (i.e. input sequence consists of four trajectories) unless mentioned
otherwise. For small and base model size, we distribute batch size 256 across multiple TPU devices and use gradient
accumulation when necessary to reach effective batch size 256. For large and x-large model sizes, we distribute model
weights across devices and similarly accumulate gradient to reach effective batch size 256. Our experiments are conducted
on TPUv3 32 using Jax and Flax. On 32 TPUv3, each experiment takes around 4 hours on D4RL and around 6 hours on
ExoRL. Models were trained for 105 gradient steps using the AdamW optimizer.

Our hyperparameters on all tasks are shown below in Table 5. In our preliminary experiments on ExoRL, we found that
Agentic Transformer can condition on higher return targets, for fair comparison, we choose the return targets are chosen
the same as in prior works. Specifically, on D4RL the target return equals to expert performance for each environment,
except for 50% performance in HalfCheetah, and on ExoRL since the datasets are diverse and contain many lower return
trajectories, we choose target returns based on TD3 performance.

Table 5. Hyperparameters of Agentic Transformers.

Hyperparameter Value

Number of layers 3
Number of attention heads 1
Embedding dimension 128
Activation function ReLU
Batch size 64
Dropout 0.1
Learning rate 10−4

Learning rate decay Linear warmup for 105 steps
Grad norm clip 0.25
Weight decay 10−4

Initial desired target return at test time (D4RL) 6000 HalfCheetah
3600 Hopper
5000 Walker

Initial desired target return at test time (ExoRL) 850 Walker Stand
400 Walker Run
900 Walker Walk
350 Cheetah Run
300 Jaco Reach
800 Cartpole Swingup

Number of trajectories to form chain of hindsight experience during training 4
Number of trajectories at test time 4
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